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Abstract. We present a new technique called type targeted testing, which trans-
lates precise refinement types into comprehensive test-suites. The key insight be-
hind our approach is that through the lens of SMT solvers, refinement types can
also be viewed as a high-level, declarative, test generation technique, wherein
types are converted to SMT queries whose models can be decoded into concrete
program inputs. Our approach enables the systematic and exhaustive testing of
implementations from high-level declarative specifications, and furthermore, pro-
vides a gradual path from testing to full verification. We have implemented our
approach as a Haskell testing tool called TARGET, and present an evaluation that
shows how TARGET can be used to test a wide variety of properties and how it
compares against state-of-the-art testing approaches.

1 Introduction

Should the programmer spend her time writing better types or thorough tests? Types
have long been the most pervasive means of describing the intended behavior of code.
However, a type signature is often a very coarse description; the actual inputs and out-
puts may be a subset of the actual values described by the types. For example, the set
of ordered integer lists is a very sparse subset of the set of all integer lists. Thus, to vali-
date functions that produce or consume such values, the programmer must painstakingly
enumerate these values by hand or via ad-hoc generators for unit tests.

We present a new technique called type targeted testing, abbreviated to TARGET,
that enables the generation of unit tests from precise refinement types. Over the last
decade, various groups have shown how refinement types – which compose the usual
types with logical refinement predicates that characterize the subset of actual type in-
habitants – can be used to specify and formally verify a wide variety of correctness
properties of programs [29,7,23,27]. Our insight is that through the lens of SMT solvers,
refinement types can be viewed as a high-level, declarative, test generation technique.

TARGET tests an implementation function against a refinement type specification
using a query-decode-check loop. First, TARGET translates the argument types into a
logical query for which we obtain a satisfying assignment (or model) from the SMT
solver. Next, TARGET decodes the SMT solver’s model to obtain concrete input values
for the function. Finally, TARGET executes the function on the inputs to get the corre-
sponding output, which we check belongs to the specified result type. If the check fails,
the inputs are returned as a counterexample, otherwise TARGET refutes the given model
to force the SMT solver to return a different set of inputs. This process is repeated for a
given number of iterations, or until all inputs up to a certain size have been tested.



TARGET offers several benefits over other testing techniques. Refinement types pro-
vide a succinct description of the input and output requirements, eliminating the need
to enumerate individual test cases by hand or to write custom generators. Furthermore,
TARGET generates all values (up to a given size) that inhabit a type, and thus does not
skip any corner cases that a hand-written generator might miss. Finally, while the above
advantages can be recovered by a brute-force generate-and-filter approach that discards
inputs that do not meet some predicate, we show that our SMT-based method can be
significantly more efficient for enumerating valid inputs in a highly-constrained space.

TARGET paves a gradual path from testing to verification, that affords several ad-
vantages over verification. First, the programmer has an incentive to write formal spec-
ifications using refinement types. TARGET provides the immediate gratification of an
automatically generated, exhaustive suite of unit tests that can expose errors. Thus, the
programmer is rewarded without paying, up front, the extra price of annotations, hints,
strengthened inductive invariants, or tactics needed for formally verifying the specifica-
tion. Second, our approach makes it possible to use refinement types to formally verify
some parts of the program, while using tests to validate other parts that may not be cost
effective for verification. TARGET integrates the two modes by using refinement types
as the uniform specification mechanism. Functions in the verified half can be formally
checked assuming the functions in the tested half adhere to their specifications. We
could even use refinements to generate dynamic contracts [9] around the tested half if
so desired. Third, even when formally verifying the type specifications, the generated
tests can act as valuable counterexamples to help debug the specification or implemen-
tation in the event that the program is rejected by the verifier.

Finally, TARGET offers several concrete advantages over previous property-based
testing techniques, which also have the potential for gradual verification. First, instead
of specifying properties with arbitrary code [4,21] which complicates the task of sub-
sequent formal verification, with TARGET the properties are specified via refinement
types, for which there are already several existing formal verification algorithms [27].
Second, while symbolic execution tools [12,22,28] can generate tests from arbitrary
code contracts (e.g. assertions) we find that highly constrained inputs trigger path ex-
plosion which precludes the use of such tools for gradual verification.

In the rest of this paper, we start with an overview of how TARGET can be used and
how its query-decode-check loop is implemented (§ 2). Next, we formalize a general
framework for type-targeted testing (§ 3) and show how it can be instantiated to gen-
erating tests for lists (§ 4), and then automatically generalized to other types (§ 4.6).
All the benefits of TARGET come at a price; we are limited to properties that can be
specified with refinement types. We present an empirical evaluation that shows TAR-
GET is efficient and expressive enough to capture a variety of sophisticated properties,
demonstrating that type-targeted testing is a sweet spot between automatic testing and
verification (§ 5).
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2 Overview

We start with a series of examples pertaining to a small grading library called Scores.
The examples provide a bird’s eye view of how a user interacts with TARGET, how
TARGET is implemented, and the advantages of type-based testing.
Refinement Types A refinement type is one where the basic types are decorated with
logical predicates drawn from an efficiently decidable theory. For example,

type Nat = {v:Int | 0 <= v}
type Pos = {v:Int | 0 < v}
type Rng N = {v:Int | 0 <= v && v < N}

are refinement types describing the set of integers that are non-negative, strictly positive,
and in the interval [0, N) respectively. We will also build up function and collection
types over base refinement types like the above. In this paper, we will not address the
issue of checking refinement type signatures [27]. We assume the code is typechecked,
e.g. by GHC, against the standard type signatures obtained by erasing the refinements.
Instead, we focus on using the refinements to synthesize tests to execute the function,
and to find counterexamples that violate the given specification.

2.1 Testing with Types

Base Types Let us write a function rescale that takes a source range [0,r1), a target
range [0,r2), and a score n from the source range, and returns the linearly scaled score
in the target range. For example, rescale 5 100 2 should return 40. Here is a first
attempt at rescale

rescale :: r1:Nat -> r2:Nat -> s:Rng r1 -> Rng r2
rescale r1 r2 s = s * (r2 ‘div‘ r1)

When we run TARGET, it immediately reports

Found counter-example: (1, 0, 0)

Indeed, rescale 1 0 0 results in 0 which is not in the target Rng 0, as the latter is
empty! We could fix this in various ways, e.g. by requiring the ranges are non-empty:

rescale :: r1:Pos -> r2:Pos -> s:Rng r1 -> Rng r2

Now, TARGET accepts the function and reports

OK. Passed all tests.

Thus, using the refinement type specification for rescale, TARGET systematically
tests the implementation by generating all valid inputs (up to a given size bound) that
respect the pre-conditions, running the function, and checking that the output satisfies
the post-condition. Testing against random, unconstrained inputs would be of limited
value as the function is not designed to work on all Int values. While in this case we
could filter invalid inputs, we shall show that TARGET can be more effective.
Containers Let us suppose we have normalized all scores to be out of 100

type Score = Rng 100
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Next, let us write a function to compute a weighted average of a list of scores.

average :: [(Int, Score)] -> Score
average [] = 0
average wxs = total ‘div‘ n
where
total = sum [w * x | (w, x) <- wxs ]
n = sum [w | (w, _) <- wxs ]

It can be tricky to verify this function as it requires non-linear reasoning about an un-
bounded collection. However, we can gain a great degree of confidence by systemati-
cally testing it using the type specification; indeed, TARGET responds:

Found counter-example: [(0,0)]

Clearly, an unfortunate choice of weights can trigger a divide-by-zero; we can fix this
by requiring the weights be non-zero:

average :: [({v:Int | v /= 0}, Score)] -> Score

but now TARGET responds with

Found counter-example: [(-3,3),(3,0)]

which also triggers the divide-by-zero! We will play it safe and require positive weights,

average :: [(Pos, Score)] -> Score

at which point TARGET reports that all tests pass.
Ordered Containers The very nature of our business requires that at the end of the
day, we order students by their scores. We can represent ordered lists by requiring the
elements of the tail t to be greater than the head h:

data OrdList a = [] | (:) {h :: a, t :: OrdList {v:a | h <= v}}

Note that erasing the refinement predicates gives us plain old Haskell lists. We can now
write a function to insert a score into an ordered list:

insert :: (Ord a) => a -> OrdList a -> OrdList a

TARGET automatically generates all ordered lists (up to a given size) and executes
insert to check for any errors. Unlike randomized testers, TARGET is not thwarted
by the ordering constraint, and does not require a custom generator from the user.
Structured Containers Everyone has a few bad days. Let us write a function that takes
the best k scores for a particular student. That is, the output must satisfy a structural
constraint – that its size equals k. We can encode the size of a list with a logical measure
function [27]:

measure len :: [a] -> Nat
len [] = 0
len (x:xs) = 1 + len xs

Now, we can stipulate that the output indeed has k scores:

best :: k:Nat -> [Score] -> {v:[Score] | k = len v}
best k xs = take k $ reverse $ sort xs
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Now, TARGET quickly finds a counterexample:

Found counter-example: (2,[])

Of course – we need to have at least k scores to start with!

best :: k:Nat -> {v:[Score]|k <= len v} -> {v:[Score]|k = len v}

and now, TARGET is assuaged and reports no counterexamples. While randomized test-
ing would suffice for best, we will see more sophisticated structural properties such as
height balancedness, which stymie random testers, but are easily handled by TARGET.
Higher-order Functions Perhaps instead of taking the k best grades, we would like
to pad each individual grade, and, furthermore, we want to be able to experiment with
different padding functions. Let us rewrite average to take a functional argument, and
stipulate that it can only increase a Score.

padAverage :: (s:Score -> {v:Score | s <= v})
-> [(Pos, Score)] -> Score

padAverage f [] = f 0
padAverage f wxs = total ‘div‘ n
where
total = sum [w * f x | (w, x) <- wxs ]
n = sum [w | (w, _) <- wxs ]

TARGET automatically checks that padAverage is a safe generalization of average.
Randomized testing tools can also generate functions, but those functions are unlikely
to satisfy non-trivial constraints, thereby burdening the user with custom generators.

2.2 Synthesizing Tests

Next, let us look under the hood to get an idea of how TARGET synthesizes tests from
types. At a high-level, our strategy is to: (1) query an SMT solver for satisfying as-
sigments to a set of logical constraints derived from the refinement type, (2) decode
the model into Haskell values that are suitable inputs, (3) execute the function on the
decoded values to obtain the output, (4) check that the output satisfies the output type,
(5) refute the model to generate a different test, and repeat the above steps until all tests
up to a certain size are executed. We focus here on steps 1, 2, and 4 – query, decode,
and check – the others are standard and require little explanation.
Base Types Recall the initial (buggy) specification

rescale :: r1:Nat -> r2:Nat -> s:Rng r1 -> Rng r2

TARGET encodes input requirements for base types directly from their corresponding
refinements. The constraints for multiple, related inputs are just the conjunction of the
constraints for each input. Hence, the constraint for rescale is:

C0
.
= 0 ≤ r1 ∧ 0 ≤ r2 ∧ 0 ≤ s < r1

In practice, C0 will also contain conjuncts of the form −N ≤ x ≤ N that restrict Int-
valued variables x to be within the size bound N supplied by the user, but we will omit
these throughout the paper for clarity.
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Note how easy it is to capture dependencies between inputs, e.g. that the score s be
in the range defined by r1. On querying the SMT solver with the above, we get a model
[r1 7→ 1, r2 7→ 1, s 7→ 0]. TARGET decodes this model and executes rescale 1 1 0

to obtain the value v = 0. Then, TARGET validates v against the post-condition by
checking the validity of the output type’s constraint:

r2 = 1 ∧ v = 0 ∧ 0 ≤ v ∧ v < r2

As the above is valid, TARGET moves on to generate another test by conjoining C0 with
a constraint that refutes the previous model:

C1
.
= C0 ∧ (r1 6= 1 ∨ r2 6= 1 ∨ s 6= 0)

This time, the SMT solver returns a model: [r1 7→ 1, r2 7→ 0, s 7→ 0] which, when
decoded and executed, yields the result 0 that does not inhabit the output type, and so is
reported as a counterexample. When we fix the specification to only allow Pos ranges,
each test produces a valid output, so TARGET reports that all tests pass.
Containers Next, we use TARGET to test the implementation of average. To do so,
TARGET needs to generate Haskell lists with the appropriate constraints. Since each list
is recursively either “nil” or “cons”, TARGET generates constraints that symbolically
represent all possible lists up to a given depth, using propositional choice variables
to symbolically pick between these two alternatives. Every (satisfying) assignment of
choices returned by the SMT solver gives TARGET the concrete data and constructors
used at each level, allowing it to decode the assignment into a Haskell value.

For example, TARGET represents valid [(Pos, Score)] inputs (of depth up to 3),
required to test average, as the conjunction of Clist and Cdata:

Clist
.
= (c00 ⇒ xs0 = []) ∧ (c01 ⇒ xs0 = x1 : xs1) ∧ (c00 ⊕ c01)

∧ (c10 ⇒ xs1 = []) ∧ (c11 ⇒ xs1 = x2 : xs2) ∧ (c01 ⇒ c10 ⊕ c11)

∧ (c20 ⇒ xs2 = []) ∧ (c21 ⇒ xs2 = x3 : xs3) ∧ (c11 ⇒ c20 ⊕ c21)

∧ (c30 ⇒ xs3 = []) ∧ (c21 ⇒ c30)

Cdata
.
= (c01 ⇒ x1 = (w1, s1) ∧ 0 < w1 ∧ 0 ≤ s1 < 100)

∧ (c11 ⇒ x2 = (w2, s2) ∧ 0 < w2 ∧ 0 ≤ s2 < 100)

∧ (c21 ⇒ x3 = (w3, s3) ∧ 0 < w3 ∧ 0 ≤ s3 < 100)

The first set of constraints Clist describes all lists up to size 3. At each level i, the choice
variables ci0 and ci1 determine whether at that level the constructed list xsi is a “nil” or
a “cons”. In the constraints [] and ( : ) are uninterpreted functions that represent “nil”
and “cons” respectively. These functions only obey the congruence axiom and hence,
can be efficiently analyzed by SMT solvers [19]. The data at each level xi is constrained
to be a pair of a positive weight wi and a valid score si.

The choice variables at each level are used to guard the constraints on the next
levels. First, if we are generating a “cons” at a given level, then exactly one of the
choice variables for the next level must be selected; e.g. c11 ⇒ c20 ⊕ c21. Second, the
constraints on the data at a given level only hold if we are generating values for that
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level; e.g. c21 is used to guard the constraints on x3, w3 and s3. This is essential to avoid
over-constraining the system which would cause TARGET to miss certain tests.

To decode a model of the above into a Haskell value of type [(Int, Int)], we
traverse constraints and use the valuations of the choice variables to build up the list
appropriately. At each level, if ci0 7→ true , then the list at that level is [], otherwise
ci1 7→ true and we decode xi+1 and xsi+1 and “cons” the results.

We can iteratively generate multiple inputs by adding a constraint that refutes each
prior model. As an important optimization, we only refute the relevant parts of the
model, i.e. those needed to construct the list (§ 4.5).
Ordered Containers Next, let us see how TARGET enables automatic testing with
highly constrained inputs, such as the increasingly ordered OrdList values required
by insert. From the type definition, it is apparent that ordered lists are the same as the
usual lists described by Clist, except that each unfolded tail must only contain values that
are greater than the corresponding head. That is, as we unfold x1:x2:xs :: OrdList

– At level 0, we have OrdList {v:Score| true}
– At level 1, we have OrdList {v:Score| x1 <= v}
– At level 2, we have OrdList {v:Score| x2 <= v && x1 <= v}

and so on. Thus, we encode OrdList Score (of depth up to 3) by conjoining Clist with
Cscore and Cord, which capture the valid score and ordering requirements respectively:

Cord
.
= (c11 ⇒ x1 ≤ x2) ∧ (c21 ⇒ x2 ≤ x3 ∧ x1 ≤ x3)

Cscore
.
= (c01 ⇒ 0 ≤ x1 < 100) ∧ (c11 ⇒ 0 ≤ x2 < 100) ∧ (c21 ⇒ 0 ≤ x3 < 100)

Structured Containers Recall that best k requires inputs whose structure is con-
strained – the size of the list should be no less than k. We specify size using special
measure functions [27], which let us relate the size of a list with that of its unfolding,
and hence, let us encode the notion of size inside the constraints:

Csize
.
= (c00 ⇒ len xs0 = 0) ∧ (c01 ⇒ len xs0 = 1 + len xs1)

∧ (c10 ⇒ len xs1 = 0) ∧ (c11 ⇒ len xs1 = 1 + len xs2)

∧ (c20 ⇒ len xs2 = 0) ∧ (c21 ⇒ len xs2 = 1 + len xs3)

∧ (c30 ⇒ len xs3 = 0)

At each unfolding, we instantiate the definition of the measure for each alternative of the
datatype. In the constraints, len · is an uninterpreted function derived from the measure
definition. All of the relevant properties of the function are spelled out by the unfolded
constraints in Csize and hence, we can use SMT to search for models for the above
constraint. Hence, TARGET constrains the input type for best as:

0 ≤ k ∧ Clist ∧ Cscore ∧ Csize ∧ k ≤ len xs0

where the final conjunct comes from the top-level refinement that stipulates the input
have at least k scores. Thus, TARGET only generates lists that are large enough. For
example, in any model where k = 2, it will not generate the empty or singleton list, as
in those cases, len xs0 would be 0 (resp. 1), violating the final conjunct above.
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-- Manipulating Refinements
refinement :: RefType -> Refinement
subst :: RefType -> [(Var, Var)] -> RefType

-- Manipulating Types
unfold :: Ctor -> RefType -> [(Var, RefType)]
binder :: RefType -> Var
proxy :: RefType -> Proxy a

Fig. 1. Refinement Type API

Higher-order Functions Finally, TARGET’s type-directed testing scales up to higher-
order functions using the same insight as in QuickCheck [4], namely, to generate a
function it suffices to be able to generate the output of the function. When tasked with
the generation of a functional argument f, TARGET returns a Haskell function that
when executed checks whether its inputs satisfy f’s pre-conditions. If they do, then
f uses TARGET to dynamically query the SMT solver for an output that satisfies the
constraints imposed by the concrete inputs. Otherwise, f’s specifications are violated
and TARGET reports a counterexample.

This concludes our high-level tour of the benefits and implementation of TARGET.
Notice that the property specification mechanism – refinement types – allowed us to
get immediate feedback that helped debug not just the code, but also the specification
itself. Additionally, the specifications gave us machine-readable documentation about
the behavior of functions, and a large unit test suite with which to automatically validate
the implementation. Finally, though we do not focus on it here, the specifications are
amenable to formal verification should the programmer so desire.

3 A Framework for Type Targeted Testing

Next, we describe a framework for type targeted testing, by formalizing an abstract
representation of refinement types (§ 3.1), describing the operations needed to generate
tests from types (§ 3.2), and then using the above to implement TARGET via a query-
decode-check loop (§ 3.3). Subsequently, we instantiate the framework to obtain tests
for refined primitive types, lists, algebraic datatypes and higher-order functions (§ 4).

3.1 Refinement Types

A refinement type is a type, where each component is decorated with a predicate
from a refinement logic. For clarity, we describe refinement types and refinements
abstractly as RefType and Refinement respectively. We write Var as an alias for
Refinement that is typically used to represent logical variables appearing within the
refinement. In the sequel, we will use backticks to represent the various entities in the
meta-language used to describe TARGET. For example, ‘x0‘, ‘k <= len v‘, and
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‘{v:[Score] | x0 <= len v}‘ are the Var, Refinement, and RefType repre-
senting the corresponding entities within the backticks.

Next, we describe the various operations over them needed to implement TARGET.
These operations, summarized in Figure 1, fall into two categories: those which manip-
ulate the refinements and those which manipulate the types.
Operating on Refinements To generate constraints and check inhabitation, we use the
function refinement which returns the (top-level) refinement that decorates the given
refinement type. We will generate fresh Vars to name values of components, and will
use subst to replace the free occurrences of variables in a given RefType. Suppose
that t is the RefType represented by ‘{v:[Score] | k <= len v}‘. Then,

– refinement t evaluates to ‘k <= len v‘ and
– subst t [(‘k‘, ‘x0‘)] evaluates to ‘{v:[Score] | x0 <= len v}‘.

Operating on Types To build up compound values (e.g. lists) from components (e.g. an
integer and a list), unfold breaks a RefType (e.g. a list of integers) into its constituents
(e.g. an integer and a list of integers) at a given constructor (e.g. “cons”). binder sim-
ply extracts the Var representing the value being refined from the RefType. To write
generic functions over RefTypes and use Haskell’s type class machinery to query and
decode components of types, we associate with each refinement type a proxy repre-
senting the corresponding Haskell type (in practice this must be passed around as a
separate argument). For example, if t is ‘{v:[Score] | k <= len v}‘,

– unfold ‘:‘ t evaluates to [(‘x‘, ‘Score‘), (‘xs‘, ‘[Score]‘)],
– binder t evaluates to ‘v‘, and
– proxy t evaluates to a value of type Proxy [Int].

3.2 The Targetable Type Class

Following QuickCheck, we encapsulate the key operations needed for type-targeted
testing in a type class Targetable (Figure 2). This class characterizes the set of types

class Targetable a where
query :: Proxy a -> Int -> RefType -> SMT Var
decode :: Var -> SMT a
check :: a -> RefType -> SMT (Bool, Var)

Fig. 2. The class of types that can be tested by TARGET

which can be tested by TARGET. All of the operations can interact with an external
SMT solver, and so return values in an SMT monad.

– query takes a proxy for the Haskell type for which we are generating values, an
integer depth bound, and a refinement type describing the desired constraints, and
generates a set of logical constraints and a Var that represents the constrained value.
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– decode takes a Var, generated via a previous query and queries the model re-
turned by the SMT solver to construct a Haskell value of type a.

– check takes a value of type a, translates it back into logical form, and verifies that
it inhabits the output type t.

3.3 The Query-Decode-Check Loop

Figure 3 summarizes the overall implementation of TARGET, which takes as input a
function f and its refinement type specification t and proceeds to test the function
against the specification via a query-decode-check loop: (1) First, we translate the re-
fined inputTypes into a logical query. (2) Next, we decode the model (i.e. satisfying
assignment) for the query returned by the SMT solver to obtain concrete inputs. (3)
Finally, we execute the function f on the inputs to get the corresponding output,
which we check belongs to the specified outputType. If the check fails, we return
the inputs as a counterexample. After each test, TARGET, refutes the given test to
force the SMT solver to return a different set of inputs, and this process is repeated
until a user specified number of iterations. The checkSMT call may fail to find a model
meaning that we have exhaustively tested all inputs upto a given testDepth bound.
If all iterations succeed, i.e. no counterexamples are found, then TARGET returns Ok,
indicating that f satisfies t up to the given depth bound.

target f t = do
vars <- forM (inputTypes t) $ \t ->

query (proxy t) testDepth t -- Query
forM [1 .. testNum] $ \_ -> do
hasModel <- checkSMT
when hasModel $ do
inputs <- forM vars decode -- Decode
output <- execute f inputs
(ok,_) <- check output (outputType t) -- Check
if ok then

refuteSMT
else
throw (CounterExample inputs)

return Ok

Fig. 3. Implementing TARGET via a query-decode-check loop

4 Instantiating the TARGET Framework

Next, we describe a concrete instantiation of TARGET for lists. We start with a con-
straint generation API (§ 4.1). Then we use the API to implement the key opera-
tions query (§ 4.2), decode (§ 4.3), check (§ 4.4), and refuteSMT (§ 4.5), thereby
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enabling TARGET to automatically test functions over lists. Finally, we show how the
list instance can be generalized to algebraic datatypes and higher-order functions (§ 4.6).

4.1 SMT Solver Interface

Figure 4 describes the interface to the SMT solvers that TARGET uses for constraint gen-
eration and model decoding. The interface has functions to (a) generate logical variables
of type Var, (b) constrain their values using Refinement predicates, and (c) determine
the values assigned to the variables in satisfying models.

fresh :: SMT Var
guard :: Var -> SMT a -> SMT a
constrain :: Var -> Refinement -> SMT ()

apply :: Ctor -> [Var] -> SMT Var
unapply :: Var -> SMT (Ctor, [Var])

oneOf :: Var -> [(Var, Var)] -> SMT ()
whichOf :: Var -> SMT Var

eval :: Refinement -> SMT Bool

Fig. 4. SMT Solver API

– fresh allocates a new logical variable.
– guard b act ensures that all the constraints generated by act are guarded by the

choice variable b. That is, if act generates the constraint p then guard b act

generates the (implication) constraint b⇒ p.
– constrain x r generates a constraint that x satisfies the refinement predicate r.
– apply c xs generates a new Var for the folded up value obtained by applying

the constructor c to the fields xs, while also generating constraints from the mea-
sures. For example, apply ‘:‘ [‘x1‘, ‘xs1‘] returns x1 : xs1 and generates
the constraint len (x1 : xs1) = 1 + len xs1.

– unapply x returns the Ctor and Vars from which the input x was constructed.
– oneOf x cxs generates a constraint that x equals exactly one of the elements

of cxs. For example, oneOf ‘xs0‘ [(‘c00‘,‘[]‘),(‘c01‘,‘x1 : xs1‘)]

yields:
c00 ⇒ xs0 = [] ∧ c01 ⇒ xs0 = x1 : xs1 ∧ c00 ⊕ x01

– whichOf x returns the particular alternative that was assigned to x in the current
model returned by the SMT solver. Continuing the previous example, if the model
sets c00 (resp. c01) to true , whichOf ‘xs0‘ returns ‘[]‘ (resp ‘x1 : xs1‘).

– eval r checks the validity of a refinement with no free variables. For example,
eval ‘len (1 : [])> 0‘ would return True.
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query p d t = do
let cs = ctors d
bs <- forM cs $ \_ -> fresh
xs <- zipWithM (queryCtor (d-1) t) bs cs
x <- fresh
oneOf x $ zip bs xs
constrain x $ refinement t
return x

queryCtor d t b c = guard b $ do
let fts = unfold c t
fs’ <- scanM (queryField d) [] fts
x <- apply c fs’
return x

queryField d su (f, t) = do
f’ <- query (proxy t) d $ t ‘subst‘ su
return ((f, f’) : su, f’)

ctors d
| d > 0 = [ ‘:‘, ‘[]‘ ]
| otherwise = [ ‘[]‘ ]

Fig. 5. Generating a Query

4.2 Query

Figure 5 shows the procedure for constructing a query from a refined list type, e.g. the
one required as an input to the best or insert functions from § 2.

Lists query returns a Var that represent all lists up to depth d that satisfy the logi-
cal constraints associated with the refined list type t. To this end, it invokes ctors to
obtain all of the suitable constructors for depth d. For lists, when the depth is 0 we
should only use the ‘[]‘ constructor, otherwise we can use either ‘:‘ or ‘[]‘. This
ensures that query terminates after encoding all possible lists up to a given depth d.
Next, it uses fresh to generate a distinct choice variable for each constructor, and calls
queryCtor to generate constraints and a corresponding symbolic Var for each con-
structor. The choice variable for each constructor is supplied to queryCtor to ensure
that the constraints are guarded, i.e. only required to hold if the corresponding choice
variable is selected in the model and not otherwise. Finally, a fresh x represents the
value at depth d and is constrained to be oneOf the alternatives represented by the
constructors, and to satisfy the top-level refinement of t.

Constructors queryCtor takes as input the refined list type t, a depth d, a particular
constructor c for the list type, and generates a query describing the unfolding of t at the
constructor c, guarded by the choice variable b that determines whether this alternative
is indeed part of the value. These constraints are the conjunction of those describing the

12



decode x = do
x’ <- whichOf x
(c,fs’) <- unapply x’
decodeCtor c fs’

decodeCtor ‘[]‘ [] = return []
decodeCtor ‘:‘ [x,xs] = do
v <- decode x
vs <- decode xs
return (v:vs)

Fig. 6. Decoding Models into Haskell Values

values of the individual fields which can be combined via c to obtain a t value. To do
so, queryCtor first unfolds the type t at c, obtaining a list of constituent fields and
their respective refinement types fts. Next, it uses

scanM :: Monad m => (a -> b -> m (a, c)) -> a -> [b] -> m [c]

to traverse the fields from left to right, building up representations of values for the fields
from their unfolded refinement types. Finally, we invoke apply on c and the fields fs’
to return a symbolic representation of the constructed value that is constrained to satisfy
the measure properties of c.
Fields queryField generates the actual constraints for a single field f with refinement
type t, by invoking query on t. The proxy enables us to resolve the appropriate type-
class instance for generating the query for the field’s value. Each field is described by
a new symbolic name f’ which is substituted for the formal name of the field f in
the refinements of subsequent fields, thereby tracking dependencies between the fields.
For example, these substitutions ensure the values in the tail are greater than the head
as needed by OrdList from § 2.

4.3 Decode

Once we have generated the constraints we query the SMT solver for a model, and if
one is found we must decode it into a concrete Haskell value with which to test the
given function. Figure 6 shows how to decode an SMT model for lists.
Lists decode takes as input the top-level symbolic representation x and queries the
model to determine which alternative was assigned by the solver to x, i.e. a nil or a cons.
Once the alternative is determined, we use unapply to destruct it into its constructor c
and fields fs’, which are recursively decoded by decodeCtor.
Constructors decodeCtor takes the constructor c and a list of symbolic representa-
tions for fields, and decodes each field into a value and applies the constructor to obtain
the Haskell value. For example, in the case of the ‘[]‘ constructor, there are no fields,
so we return the empty list. In the case of the ‘:‘ constructor, we decode the head and
the tail, and cons them to return the decoded value. decodeCtor has the type

(Targetable a) => Ctor -> [Var] -> SMT [a]

i.e. if a is a decodable type, then decodeCtor suffices to decode lists of a. Primitives
like integers that are directly encoded in the refinement logic are the base case – i.e. the
value in the model is directly translated into the corresponding Haskell value.

13



check v t = do
let (c,vs) = splitCtor v
let fts = unfold c t
(bs, vs’) <- unzip <$> scanM checkField [] (zip vs fts)
v’ <- apply c vs’
let t’ = t ‘subst‘ [(binder t, v’)]
b’ <- eval $ refinement t’
return (and (b:bs), v’)

checkField su (v, (f, t)) = do
(b, v’) <- check v $ t ‘subst‘ su
return ((f, v’) : su, (b, v’))

splitCtor [] = (‘[]‘, [])
splitCtor (x:xs) = (‘:‘, [x,xs])

Fig. 7. Checking Outputs

4.4 Check

The third step of the query-decode-check loop is to verify that the output produced by
the function under test indeed satisfies the output refinement type of the function. We
accomplish this by encoding the output value as a logical expression, and evaluating the
output refinement applied to the logical representation of the output value.

check, shown in Figure 7, takes a Haskell (output) value v and the (output) refine-
ment type t, and recursively verifies each component of the output type. It converts
each component into a logical representation, substitutes the logical expression for
the symbolic value, and evaluates the resulting Refinement.

4.5 Refuting Models

Finally, TARGET invokes refuteSMT to refute a given model in order to force the
SMT solver to produce a different model that will yield a different test input. A naı̈ve
implementation of refutation is as follows. LetX be the set of all variables appearing in
the constraints. Suppose that in the current model, each variable x is assigned the value
σ(x). Then, to refute the model, we add a refutation constraint ∨x∈Xx 6= σ(x). That
is, we stipulate that some variable be assigned a different value.

The naı̈ve implementation is extremely inefficient. The SMT solver is free to pick
a different value for some irrelevant variable which was not even used for decoding.
As a result, the next model can, after decoding, yield the same Haskell value, thereby
blowing up the number of iterations needed to generate all tests of a given size.

TARGET solves this problem by forcing the SMT solver to return models that yield
different decoded tests in each iteration. To this end TARGET restricts the refutation
constraint to the set of variables that were actually used to decode the Haskell value.
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We track this set by instrumenting the SMT monad to log the set of variables and choice-
variables that are transitively queried via the recursive calls to decode. That is, each
call to decode logs its argument, and each call to whichOf logs the choice variable
corresponding to the alternative that was returned. Let R be the resulting set of decode-
relevant variables. TARGET refutes the model by using a relevant refutation constraint
∨x∈Rx 6= σ(x) which ensures that the next model decodes to a different value.

4.6 Generalizing TARGET To Other Types

The implementation in § 4 is for List types, but ctors, decodeCtor, and splitCtor

are the only functions that are List-specific. Thus, we can easily generalize the imple-
mentation to:

– primitive datatypes, e.g. integers, by returning an empty list of constructors,
– algebraic datatypes, by implementing ctors, decodeCtor, and splitCtor for

that type.
– higher-order functions, by lifting instances of a to functions returning a.

Algebraic Datatypes Our List implementation has three pieces of type-specific logic:

– ctors, which returns a list of constructors to unfold;
– decodeCtor, which decodes a specific Ctor; and
– splitCtor, which splits a Haskell value into a pair of its Ctor and fields.

Thus, to instantiate TARGET on a new data type, all we need is to implement these
three operations for the type. This implementation essentially follows the concrete tem-
plate for Lists. In fact, we observe that the recipe is entirely mechanical boilerplate, and
can be fully automated for all algebraic data types by using a generics library.

Any algebraic datatype (ADT) can be represented as a sum-of-products of compo-
nent types. A generics library, such as GHC.Generics [15], provides a univeral sum-of-
products type and functions to automatically convert any ADT to and from the universal
representation. Thus, to obtain Targetable instances for any ADT it suffices to define
a Targetable instance for the universal type.

Once the universal type is Targetable we can automatically get an instance for
any new user-defined ADT (that is an instance of Generic) as follows: (1) to generate
a query we simply create a query for GHC.Generics’ universal representation of the
refined type, (2) to decode the results from the SMT solver, we decode them into the
universal representation and then use GHC.Generics to map them back into the user-
defined type, (3) to check that a given value inhabits a user-defined refinement type,
we check that the universal representation of the value inhabits the type’s universal
counterpart.

The Targetable instance for the universal representation is a generalized version
of the List instance from § 4, that relies on various technical details of GHC.Generics.

Higher Order Functions Our type-directed approach to specification makes it easy to
extend TARGET to higher-order functions. Concretely, it suffices to implement a type-
class instance:
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instance (Targetable input, Targetable output)
=> Targetable (input -> output)

In essence, this instance uses the Targetable instances for input and output to
create an instance for functions from input -> output, after which Haskell’s type
class machinery suffices to generate concrete function values.

To create such instances, we use the insight from QuickCheck, that to generate (con-
strained) functions, we need only to generate output values for the function. Following
this route, we generate functions by creating new lambdas that take in the inputs from
the calling context, and use their values to create queries for the output, after which we
can call the SMT solver and decode the results to get concrete outputs that are returned
by the lambda, completing the function definition. Note that we require input to also
be Targetable so that we can encode the Haskell value in the refinement logic, in
order to constrain the output values suitably. We additionally memoize the generated
function to preserve the illusion of purity. It is also possible to, in the future, extend our
implementation to refute functions by asserting that the output value for a given input
be distinct from any previous outputs for that input.

5 Evaluation

We have built a prototype implementation of TARGET and next, describe an evaluation
on a series of benchmarks ranging from textbook examples of algorithms and data struc-
tures to widely used Haskell libraries like CONTAINERS and XMONAD. Our goal in this
evaluation is two-fold. First, we describe micro-benchmarks (i.e. functions) that quanti-
tatively compare TARGET with the existing state-of-the-art, property-based testing tools
for Haskell – namely SmallCheck and QuickCheck– to determine whether TARGET is
indeed able to generate highly constrained inputs more effectively. Second, we describe
macro-benchmarks (i.e. modules) that evaluate the amount of code coverage that we get
from type-targeted testing.

5.1 Comparison with QuickCheck and SmallCheck

We compare TARGET with QuickCheck and SmallCheck by using a set of benchmarks
with highly constrained inputs. For each benchmark we compared TARGET with Small-
Check and QuickCheck, with the latter two using the generate-and-filter approach,
wherein a value is generated and subsequently discarded if it does not meet the de-
sired constraint. While one could possibly write custom “operational” generators for
each property, the point of this evaluation is compare the different approaches ability
to enable “declarative” specification driven testing. Next, we describe the benchmarks
and then summarize the results of the comparison (Figure 8).
Inserting into a sorted List Our first benchmark is the insert function from the
homonymous sorting routine. We use the specification that given an element and a
sorted list, insert x xs should evaluate to a sorted list. We express this with the
type

type Sorted a = List <{\hd v -> hd < v}> a
insert :: a -> Sorted a -> Sorted a

16



Table 1

Tool 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target 3.1140799522
399902

1.525498151
7791748

1.942239999
7711182

4.080846071
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4.785365104
675293

4.470173120
498657

4.625930070
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369873
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995117
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5.916351079
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6.008419036
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75098

6.878424167
633057

7.070596933
364868

7.949755907
058716
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792236

6.849268198
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SmallCheck 7.140636444
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0.192971944
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225708
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276001
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X

List.insert

Ti
m

e 
(s

)

0

0.01

1

100

10,000

2 4 6 8 10 12 14 16 18 20
Target SmallCheck Lazy-SmallCheck

Table 1

Tool 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target 1.360172033
3099365
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5327148
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Table 1

Tool 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target 5.4574971199
035645

4.436254024
505615

4.984083890
914917

6.654977798
461914

16.55178999
900818

66.41096591
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544281
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X X X X X X X X X X

SmallCheck 1.084399223
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Table 1

Tool 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target 4.306278944
015503
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918579
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Table 1

Tool 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Target 7.653791904
449463

9.085001945
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Fig. 8. Results of comparing TARGET with QuickCheck, SmallCheck, and Lazy SmallCheck on a
series of functions. TARGET, SmallCheck, and Lazy SmallCheck were both configured to check
the first 1000 inputs that satisfied the precondition at increasing depth parameters, with a 60
minute timeout per depth; QuickCheck was run with the default settings, i.e. it had to produce
100 test cases. TARGET, SmallCheck, and Lazy SmallCheck were configured to use the same
notion of depth, in order to ensure they would generate the same number of valid inputs at each
depth level. QuickCheck was unable to successfully complete any run due to the low probability
of generating valid inputs at random.

where the ordering constraint is captured by an abstract refinement [25] which states
that each list head hd is less than every element v in its tail.
Inserting into a Red-Black Tree Next, we consider insertion into a Red-Black tree.

data RBT a = Leaf | Node Col a (RBT a) (RBT a)
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data Col = Black | Red

Red-black trees must satisfy three invariants: (1) red nodes always have black children,
(2) the black height of all paths from the root to a leaf is the same, and (3) the elements
in the tree should be ordered. We capture (1) via a measure that recursively checks each
Red node has Black children.

measure isRB :: RBT a -> Prop
isRB Leaf = true
isRB (Node c x l r) = isRB l && isRB r &&

(c == Red => isBlack l && isBlack r)

We specify (2) by defining the Black height as:

measure bh :: RBT a -> Int
bh Leaf = 0
bh (Node c x l r) = bh l + (if c == Red then 0 else 1)

and then checking that the Black height of both subtrees is the same:

measure isBH :: RBT a -> Prop
isBH Leaf = true
isBH (Node c x l r) = isBH l && isBH r && bh l == bh r

Finally, we specify the (3), the ordering invariant as:

type OrdRBT a = RBT <{\r v -> v < r}, {\r v -> r < v}> a

i.e. with two abstract refinements for the left and right subtrees respectively, which state
that the root r is greater than (resp. less than) each element v in the subtrees. Finally, a
valid Red-Black tree is:

type OkRBT a = {v:OrdRBT a | isRB v && isBH v}

Note that while the specification for the internal invariants for Red-Black trees is tricky,
the specification for the public API – e.g. the add function – is straightforward:

add :: a -> OkRBT a -> OkRBT a

Deleting from a Data.Map Our third benchmark is the delete function from the
Data.Map module in the Haskell standard libraries. The Map structure is a balanced
binary search tree that implements purely functional key-value dictionaries:

data Map k a = Tip | Bin Int k a (Map k a) (Map k a)

A valid Data.Map must satisfy two properties: (1) the size of the left and right sub-
trees must be within a factor of three of each other, and (2) the keys must obey a binary
search ordering. We specify the balancedness invariant (1) with a measure

measure isBal :: Map k a -> Prop
isBal (Tip) = true
isBal (Bin s k v l r) = isBal l && isBal r &&

(sz l + sz r <= 1 ||
sz l <= 3 * sz r <= 3 * sz l)

and combine it with an ordering invariant (like OrdRBT) to specify valid trees.
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type OkMap k a = {v : OrdMap k a | isBal v}

We can check that delete preserves the invariants by checking that its output is an
OkMap k a. However, we can also go one step further and check the functional cor-
rectness property that delete removes the given key, with a type:

delete :: Ord k => k:k -> m:OkMap k a
-> {v:OkMap k a | MinusKey v m k}

where the predicate MinusKey is defined as:

predicate MinusKey M1 M2 K
= keys M1 = difference (keys M2) (singleton K)

using the measure keys describing the contents of the Map:

measure keys :: Map k a -> Set k
keys (Tip) = empty ()
keys (Bin s k v l r) = union (singleton k)

(union (keys l) (keys r))

Refocusing XMonad StackSets Our last benchmark comes from the tiling window
manager XMonad. The key invariant of XMonad’s internal StackSet data structure
is that the elements (windows) must all be unique, i.e. contain no duplicates. XMonad
comes with a test-suite of over 100 QuickCheck properties; we select one which states
that moving the focus between windows in a StackSet should not affect the order of
the windows.

prop_focus_left_master n s =
index (foldr (const focusUp) s [1..n]) == index s

With QuickCheck, the user writes a custom generator for valid StackSets and then
runs the above function on test inputs created by the generator, to check if in each case,
the result of the above is True.

With TARGET, it is possible to test such properties without requiring custom gener-
ators. Instead the user writes a declarative specification:

type OkStackSet = {v:StackSet | NoDuplicates v}

(We refer the reader to [26] for a full discussion of how to specify NoDuplicates).
Next, we define a refinement type:

type TTrue = {v:Bool | Prop v}

that is only inhabited by True, and use it to type the QuickCheck property as:

prop_focus_left_master :: Nat -> OkStackSet -> TTrue

This property is particularly difficult to verify; however, TARGET is able to automat-
ically generate valid inputs to test that prop_focus_left_master always returns
True.
Summary of Results Figure 8 summarizes the results of the comparison. QuickCheck
was unable to successfully complete any benchmark to the low probability of generating
properly constrained values at random.
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List Insert TARGET is able to test insert all the way to depth 20, whereas Lazy
SmallCheck times out at depth 19.

Red-Black Tree Insert TARGET is able to test add up to depth 12, while Lazy Small-
Check times out at depth 5.

Map Delete TARGET is able to check delete up to depth 10, whereas Lazy Small-
Check times out at depth 6 if it checks ordering first, or depth 5 if it checks bal-
ancedness first.

StackSet Refocus TARGET and is able to check this property up to depth 7, while Lazy
SmallCheck times out at the same depth.

TARGET sees a performance hit with properties that require reasoning with the the-
ory of Sets e.g. the no-duplicates invariant of StackSet. While Lazy SmallCheck times
out at a higher depths, when it completes e.g. at depth 6, it does so in 0.7s versus TAR-
GET’s 9 minutes. We suspect this is because the theory of sets are a relatively recent
addition to SMT solvers [18], and with further improvements in SMT technology, these
numbers will get significantly better.

Overall, we found that for small inputs Lazy SmallCheck is substantially faster as
exhaustive enumeration is tractable, and does not incur the overhead of communicating
with an external general-purpose solver. Additionally, Lazy SmallCheck benefits from
pruning predicates that exploit laziness and only force a small portion of the structure
(e.g. ordering). However, we found that constraints that force the entire structure (e.g.
balancedness), or composing predicates in the wrong order, can force Lazy SmallCheck
to enumerate the entire exponentially growing search space.

TARGET, on the other hand, scales nicely to larger input sizes, allowing systematic
and exhaustive testing of larger, more complex inputs. This is because TARGET eschews
explicit enumeration-and-filtering (which results in searching for fewer needles in larger
haystacks as the sizes increas), in favor of symbolically searching for valid models via
SMT, making TARGET robust to the strictness or ordering of constraints.

5.2 Measuring Code Coverage

The second question we seek to answer is whether TARGET is suitable for testing en-
tire libraries, i.e. how much of the program can be automatically exercised using our
system? Keeping in mind the well-known issues with treating code coverage as an in-
dication of test-suite quality [16], we ask the reader to consider this experiment as a
negative filter.

To this end, we ran TARGET against the entire user-facing API of Data.Map, our
RBTree library, and XMonad.StackSet – using the constrained refined types (e.g.
OkMap, OkRBT, OkStackSet) as the specification for the exposed types – and measured
the expression and branch coverage, as reported by hpc [11]. We used an increasing
timeout ranging from one to thirty minutes per exported function.
Results The results of our experiments are shown in Figure 9. Across all three libraries,
TARGET achieved at least 80% expression and alternative coverage at the shortest time-
out of one minute per function. Interestingly, Data.Map and RBTree show no change
in coverage metrics beyond a 5 minute timeout, while XMonad has another bump in
coverage between 10 and 15 minutes.
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There are three things to consider when examining these results. First is that some
expressions are not evaluated due to Haskell’s laziness (e.g. the values contained in
a Map). Second is that some expressions should not be evaluated and some branches
should not be taken, as these only happen when an unexpected error condition is trig-
gered (i.e. these expressions should be dead code). TARGET considers any inputs that
trigger an uncaught exception a valid counterexample; the pre-conditions should rule
out these inputs, and so we expect not to cover those expressions with TARGET.

The last remark is not intrinsically related to TARGET, but rather our means of
collecting the coverage data. hpc includes otherwise guards in the “always-true”
category, even though they cannot evaluate to anything else. Data.Map contained 56
guards, of which 26 were marked “always-true”. We manually counted 22 otherwise
guards, the remaining 4 “always-true” guards compared the size of subtrees when re-
balancing to determine whether a single or double rotation was needed; we were unable
to trigger the double rotation in these cases. XMonad contained 9 guards, of which 3
were “always-true”. 2 of these were otherwise guards; the remaining “always-true”
guard dynamically checked a function’s pre-condition. If the pre-condition check had
failed an error would have been thrown by the next case, we consider it a success of
TARGET that the error branch was not triggered.

5.3 Limitations of TARGET

Our approach is not without drawbacks. We highlight three classes of pitfalls the user
may encounter.
Laziness in the function or in the output refinement can cause exceptions to go un-
thrown if the output value is not fully demanded. For example, TARGET would decide
that the result [1, undefined] inhabits [Int] but not [Score], as the latter would
have to evaluate 0 <= undefined < 100. This limitation is not specific to our sys-
tem, rather it is fundamental to any tool that exercises lazy programs. Furthermore,
TARGET only generates inductively-defined values, it cannot generate infinite or cyclic
structures, nor will the generated values ever contain ⊥.
Polymorphism Like any other tool that actually runs the function under scrutiny, TAR-
GET can only test monomorphic instantiations of polymorphic functions. For example,
when testing XMonad we instantiated the “window” parameter to Char and all other
type parameters to (), as the properties we were testing only examined the window.
This helped drastically reduce the search space, both for TARGET and SmallCheck.

Our monomorphism restriction simplifies TARGET’s implementation as we do not
have to consider type-class or equality constraints when generating test values, but it
also reduces the generalizability of TARGET’s result. Parametricity helps a great deal
by telling us that the choice of concrete instantiation will not affect the behavior of the
function, but type-classes negate this benefit.
Advanced type-system features such as GADTs and Existential types may prevent GHC
from deriving a Generic instance, which would force the programmer to write her
own Targetable instance. Though tedious, the single hand-written instance allows
TARGET to automatically generate values satisfying disparate constraints, which is still
an improvement over the generate-and-filter approach.
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Fig. 9. Coverage-testing of Data.Map.Base, RBTree, and XMonad.StackSet using TAR-
GET. Each exported function was tested with increasing depth limits until a single run hit a time-
out ranging from one to thirty minutes. Lower is better for “always-true” and “always-false”,
higher is better for everything else.

6 Related Work

TARGET is closely related to a number of lines of work on connecting formal specifica-
tions, execution, and automated constraint-based testing. Next, we describe the closest
lines of work on test-generation and situate them with respect to our approach.

6.1 Model-based Testing

Model-based testing encompasses a broad range of black-box testing tools that facilitate
generating concrete test-cases from an abstract model of the system under test. These
systems generally (though not necessarily) model the system at a holistic level using
state machines to describe the desired behavior [6], and may or may not provide fully
automatic test-case generation. In addition to generating test-cases, many model-based
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testing tools, e.g. Spec Explorer [28] will produce extra artifacts like visualizations to
help the programmer understand the model. One could view property-based testing, in-
cluding our system, as a subset of model-based testing focusing on lower-level proper-
ties of individual functions (unit-testing), while using the type-structure of the functions
under scrutiny to provide fully automatic generation of test-cases.

6.2 Property-based Testing

Many property-based testing tools have been developed to automatically generate test-
suites. QuickCheck [4] randomly generates inputs based on the property under scrutiny,
but requires custom generators to consistently generate constrained inputs. [3] extends
QuickCheck to randomly generate constrained values from a uniform distribution. In
contrast SmallCheck [21] enumerates all possible inputs up to some depth, which al-
lows it to check existential properties in addition to universal properties; however, it too
has difficulty generating inputs to properties with complex pre-conditions. Lazy Small-
Check [21] addresses the issue of generating constrained inputs by taking advantage
of the inherent laziness of the property, generating partially-defined values (i.e. values
containing ⊥) and only filling in the holes if and when they are demanded. Korat [2]
instruments a programmer-supplied repOk method, which checks class invariants and
method pre-conditions, to monitor which object fields are accessed. The authors observe
that unaccessed fields cannot have had an effect on the return value of repOk and are
thereby able to exclude from the search space any objects that differ only in the values
of the unaccessed fields. While Lazy SmallCheck and Korat’s reliance on functions in
the source language for specifying properties is convenient for the programmer (speci-
fication and implementation in the same language), it makes the method less amenable
to formal verification, the properties would need to be re-specified in another language
that is restricted enough to facilitate verification.

6.3 Symbolic Execution and Model-checking

Another popular technique for automatically generating test-cases is to analyze the
source code and attempt to construct inputs that will trigger different paths through
the program. DART [12], CUTE [22], and Pex [24] all use a combination of symbolic
and dynamic execution to explore different paths through a program. While executing
the program they collect path predicates, conditions that characterize a path through a
program, and at the end of a run they negate the path predicates and query a constraint
solver for another assignment of values to program variables. This enables such tools
to efficiently explore many different paths through a program, but the technique re-
lies on the path predicates being expressible symbolically. When the predicates are not
expressible in the logic of the constraint solver, they fall back to the values produced
by the concrete execution, at a severe loss of precision. Instead of trying to trigger all
paths through a program, one might simply try to trigger erroneous behavior. Check ’n’
Crash [5] uses the ESC/Java analyzer [10] to discover potential bugs and constructs con-
crete test-cases designed to trigger the bugs, if they exist. Similarly, [1] uses the BLAST
model-checker to construct test-cases that bring the program to a state satisfying some
user-provided predicate.
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In contrast to these approaches, TARGET (and more generally, property-based test-
ing) treats the program as a black-box and only requires that the pre- and post-conditions
be expressible in the solver’s logic. Of course, by expressing specifications in the source
language, e.g. as contracts, as in PEX [24], one can use symbolic execution to gener-
ate tests directly from specifications. One concrete advantage of our approach over the
symbolic execution based method of PEX is that the latter generates tests by explicitly
enumerating paths through the contract code, which suffers from a similar combinato-
rial problem as SmallCheck and QuickCheck. In contrast, TARGET performs the same
search symbolically within the SMT engine, which performs better for larger input sizes.

6.4 Integrating Constraint-solving and Execution

TARGET is one of many tools that makes specifications executable via constraint solv-
ing. An early example of this approach is TestEra [17] that uses specifications written
in the Alloy modeling language [13] to generate all non-isomorphic Java objects that
satisfy method pre-conditions and class invariants. As the specifications are written in
Alloy, one can use Alloy’s SAT-solver based model finding to symbolically enumerate
candidate inputs. Check ’n’ Crash uses a similar idea, and SMT solvers to generate
inputs that satisfy a given JML specification [5]. Recent systems such as SBV [8] and
Kaplan [14] offer a monadic API for writing SMT constraints within the program, and
use them to synthesize program values at run-time. SBV provides a thin DSL over the
logics understood by SMT solvers, whereas Kaplan integrates deeply with Scala, allow-
ing the use of user-defined recursive types and functions. Test generation can be viewed
as a special case of value-synthesis, and indeed Kaplan has been used to generate test-
suites from preconditions in a similar manner to TARGET.

However, in all of the above (and also symbolic execution based methods like PEX
or JCrasher), the specifications are assertions in the Floyd-Hoare sense. Consequently,
the techniques are limited to testing first-order functions over monomorphic data types.
In contrast, TARGET shows how to view types as executable specifications, which yields
several advantages. First, we can use types to compositionally lift specifications about
flat values (e.g. Score) over collections (e.g. [Score]), without requiring special re-
cursive predicates to describe such collection invariants. Second, the compositional na-
ture of types yields a compositional method for generating tests, allowing us to use
type-class machinery to generate tests for richer structures from tests for sub-structures.
Third, (refinement) types have proven to be effective for verifying correctness proper-
ties in modern modern languages that make ubiquitous use of parametric polymorphism
and higher order functions [29,7,20,23,26] and thus, we believe TARGET’s approach of
making refinement types executable is a crucial step towards our goal of enabling grad-
ual verification for modern languages.
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