
Verified Parallel String Matching in Haskell

Niki Vazou1,2 and Jeff Polakow2

1UC San Diego 2Awake Networks

Abstract. In this paper, we prove correctness of parallelizing a string
matcher using Haskell as a theorem prover. We use refinement types
to specify correctness properties, Haskell terms to express proofs and
Liquid Haskell to check correctness of proofs. First, we specify and prove
that a class of monoid morphisms can be parallelized via parallel monoid
concatenation. Then, we encode string matching as a morphism to get a
provably correct parallel transformation. Our 1839LoC prototype proof
shows that Liquid Haskell can be used as a fully expressive theorem
prover on realistic Haskell implementations.

1 Introduction

In this paper, we prove correctness of parallelization of a näıve string matcher
using Haskell as a theorem prover. We use refinement types to specify correct-
ness properties, Haskell terms to express proofs and Liquid Haskell to check
correctness of proofs.

Optimization of sequential functions via parallelization is a well studied tech-
nique [14,4]. Paper and pencil proofs of program have been developed to support
the correctness of the transformation [6]. However, these paper and pencil proofs
show correctness of the parallelization algorithm and do not reason about the
actual implementation that may end up being buggy.

Dependent Type Systems (like Coq [3] and Adga [19]) enable program equiv-
alence proofs for the actual implementation of the functions to be parallelized.
For example, SyDPaCC [18] is a Coq extension that given a näıve Coq imple-
mentation of a function, returns an Ocaml parallelized version with a proof of
program equivalence. The limitation of this approach is that the initial func-
tion should be implemented in the specific dependent type framework and thus
cannot use features and libraries from one’s favorite programming language.

Refinement Types [8,12,24] on the other hand, enable verification of exist-
ing general purpose languages (including ML [34,2,22], C [7,23], Haskell [31],
Racket [15] and Scala [26]). Traditionally, refinement types are limited to “shal-
low” specifications, that is, they are used to specify and verify properties that
only talk about behaviors of program functions but not functions themselves.
This restriction critically limits the expressiveness of the specifications but al-
lows for automatic SMT [1] based verification. Yet, program equivalence proofs
were out of the expressive power of refinement types.

Recently, we extended refinement types with Refinement Reflection [32], a
technique that reflects each function’s implementation into the function’s type

and is implemented in Liquid Haskell [31]. We claimed that Refinement Reflec-
tion can turn any programming language into a proof assistant. In this paper
we check our claim and use Liquid Haskell to prove program equivalence. Specif-
ically, we define in Haskell a sequential string matching function, toSM, and
its parallelization, toSMPar, using existing Haskell libraries; then, we prove in
Haskell that these two functions are equivalent, and we check our proofs using
Liquid Haskell.

Theorems as Refinement Types Refinement Types refine types with properties
drawn from decidable logics. For example, the type {v:Int | 0 < v} describes
all integer values v that are greater than 0. We refine the unit type to express
theorems, define unit value terms to express proofs, and use Liquid Haskell to
check that the proofs prove the theorems. For example, Liquid Haskell accepts
the type assignment () :: {v:()| 1+1=2}, as the underlying SMT can always
prove the equality 1+1=2. We write {1+1=2} to simplify the type {v:()| 1+1=2}

from the irrelevant binder v:().

Program Properties as Types The theorems we express can refer to program
functions. As an example, the type of assoc expresses that ♦ is associative.

assoc :: x:m → y:m → z:m → {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

In § 2 we explain how to write Haskell proof terms to prove theorems like assoc

by proving that list append (++) is associative. Moreover, we prove that the
empty list [] is the identity element of list append, and conclude that the list
(with [] and (++), i.e., the triple ([a], [], (++))) is provably a monoid.

Corectness of Parallelization In § 3, we define the type Morphism n m f that
specifies that f is a morphism between two monoids (n, η, �) and (m, ε, ♦), i.e.,
f :: n → m where f η = ε and f (x � y) = f x ♦ f y.

A morphism f on a “chunkable” input type can be parallelized by:

1. chunking up the input in j chunks (chunk j),

2. applying the morphism in parallel to all chunks (pmap f), and

3. recombining the mapped chunks via ♦, also in parallel (pmconcat i).

We specify correctness of the above transformation as a refinement type.

parallelismEquivalence

:: f:(n → m) → Morphism n m f → x:n → i:Pos → j:Pos

→ {f x = pmconcat i (pmap f (chunk j x))}

§ 3 describes the parallelization transformation in details, while Correctness of
Parallelization Theorem 4 proves correctness by providing a term that satisfies
the above type.

Case Study: Parallelization of String Matching We use the above theorem to
parallelize string matching. We define a string matching function toSM ::

RString → toSM target from a refined string to a string matcher. A refined
string (§ 4.1) is a wrapper around the efficient string manipulation library
ByteString that moreover assumes various string properties, including the monoid
laws. A string matcher SM target (§ 4.2) is a data type that contains a refined
string and a list of all the indices where the type level symbol target appears in
the input. We prove that SM target is a monoid and toSM is a morphism, thus
by the aforementioned Correctness of Parallelization Theorem 4 we can correctly
parallelize string matching.

To sum up, we present the first realistic proof that uses Haskell as a theorem
prover: correctness of parallelization on string matching. Our contributions are
summarized as follows

– We explain how theorems and proofs are encoded and checked in Liquid
Haskell by formalizing monoids and proving that lists are monoids (§ 2).

– We formalize morphisms between monoids and specify and prove correctness
of parallelization of morphisms (§ 3).

– We show how libraries can be imported as trusted components by wrapping
ByteStrings as refined strings which satisfy the monoid laws (§ 4.1).

– As an application, we prove that a string matcher is a morphism between the
monoids of refined strings and string matchers, thus we get provably correct
parallelization of string matching (§ 4).

– Based on our 1839LoC proof we evaluate the approach of using Haskell as a
theorem prover (§ 5).

2 Proofs as Haskell Functions

Refinement Reflection [32] is a technique that lets you write Haskell functions
that prove theorems about other Haskell functions and have your proofs machine-
checked by Liquid Haskell [31]. As an introduction to Refinement Reflection, in
this section, we prove that lists are monoids by

– specifying monoid laws as refinement types,
– proving the laws by writing the implementation of the law specifications, and
– verifying the proofs using Liquid Haskell.

2.1 Reflection of data types into logic.

To start with, we define a List data structure and teach Liquid Haskell basic
properties about List, namely, how to check that proofs on lists are total and
how to encode functions on List into the logic.

The data list definition L is the standard recursive definition.

data L [length] a = N | C a (L a)

With the length annotation in the definition Liquid Haskell will use the length

function to check termination of functions recursive on Lists. We define length

as the standard Haskell function that returns natural numbers. We lift length

into logic as a measure [31], that is, a unary function whose (1) domain is the
data type, and (2) body is a single case-expression over the datatype.

type Nat = {v:Int | 0 ≤ v}

measure length

length :: L a → Nat

length N = 0

length (C x xs) = 1 + length xs

Finally, we teach Liquid Haskell how to encode functions on Lists into logic.
The flag "--exact-data-cons" automatically derives measures which (1) test
if a value has a given data constructor, and (2) extract the corresponding field’s
value. For example, Liquid Haskell will automatically derive the following List
manipulation measures from the List definition.

isN :: L a → Bool -- Haskell ′ s null

isC :: L a → Bool -- Haskell ′ s not . null

selC1 :: L a → a -- Haskell ′ s head

selC2 :: L a → L a -- Haskell ′ s tail

Next, we describe how Liquid Haskell uses the above measures to automatically
reflect Haskell functions on Lists into logic.

2.2 Reflection of Haskell functions into logic.

Next, we define and reflect into logic the two monoid operators on Lists. Namely,
the identity element ε (which is the empty list) and an associative operator (♦)
(which is list append).

reflect ε
ε :: L a

ε = N

reflect (♦)
(♦) :: L a → L a → L a

N ♦ ys = ys

(C x xs) ♦ ys = C x (xs ♦ ys)

The reflect annotations lift the Haskell functions into logic in three steps.
First, check that the Haskell functions indeed terminate by checking that the
length of the input list is decreasing, as specified in the data list definition. Sec-
ond, in the logic, they define the respective uninterpreted functions ε and (♦).
Finally, the Haskell functions and the logical uninterpreted functions are related
by strengthening the result type of the Haskell function with the definition of the

function’s implementation. For example, with the above reflect annotations,
Liquid Haskell will automatically derive the following strengthened types for the
relevant functions.

ε :: {v:L a | v = ε ∧ v = N }

(♦):: xs:L a → ys:L a

→ {v:L a | v = xs ♦ ys

∧ v = if isN xs then ys

else C (selC1 xs) (selC2 xs ♦ ys)

}

2.3 Specification and Verification of Monoid Laws

Now we are ready to specify the monoid laws as refinement types and provide
their respective proofs as terms of those type. Liquid Haskell will verify that our
proofs are valid. Note that this is exactly what one would do in any standard
logical framework, like LF [13].

The type Proof is defined as an alias of the unit type (()) in the library
ProofCombinators that comes with Liquid Haskell. Figure 1 summarizes the
definitions we use from ProofCombinators. We express theorems as refinement
types by refining the Proof type with appropriate refinements. For example, the
following theorem states the ε is always equal to itself.

trivial :: { ε = ε }

Where {ε = ε} is a simplification for the Proof type {v:Proof | ε = ε}, since
the binder v is irrelevant, and trivial is defined in ProofCombinators to be
unit. Liquid Haskell will typecheck the above code using an SMT solver to check
congruence on ε.

Definition 1 (Monoid). The triple (m, ε, ♦) is a monoid (with identity ele-
ment ε and associative operator ♦), if the following functions are defined.

idLeftm :: x:m → { ε ♦ x = x}

idRightm :: x:m → {x ♦ ε = x}

assocm :: x:m → y:m → z:m → {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

Using the above definition, we prove that our list type L is a monoid by defining
Haskell proof terms that satisfy the above monoid laws.

Left Identity is expressed as a refinement type signature that takes as input a
list x:L a and returns a Proof type refined with the property ε ♦ x = x

idLeft :: x:L a → { ε ♦ x = x }

idLeft x = empty ♦ x ==. N ♦ x ==. x *** QED

type Proof = ()

data QED = QED

trivial :: Proof

trivial = ()

(==.) :: x:a → y:{a | x = y} → {v:a | v = x}

x ==. _ = x

(***) :: a → QED → Proof

_ *** _ = ()

(∴) :: (Proof → a) → Proof → a

f ∴ y = f y

Fig. 1. Operators and Types defined in ProofCombinators

We prove left identity using combinators from ProofCombinators as defined in
Figure 1. We start from the left hand side empty ♦ x, which is equal to N ♦ x

by calling empty thus unfolding the equality empty = N into the logic. Next,
the call N ♦ x unfolds into the logic the definition of (♦) on N and x, which is
equal to x, concluding our proof. Finally, we use the operators p *** QED which
basically casts p into a proof term. In short, the proof of left identity, proceeds
by unfolding the definitions of ε and (♦) on the empty list.

Right identity is proved by structural induction. We encode inductive proofs
by case splitting on the base and inductive case, and enforcing the inductive
hypothesis via a recursive call.

idRight :: x:L a → { x ♦ ε = x }

idRight N = N ♦ empty ==. N *** QED

idRight (C x xs)

= (C x xs) ♦ empty

==. C x (xs ♦ empty)

==. C x xs ∴ idRight xs

*** QED

The recursive call idRight xs is provided as a third optional argument in the
(==.) operator to justify the equality xs ♦ empty = xs, while the operator
(∴) is merely a function application with the appropriate precedence. Note that
LiquiHaskell, via termination and totality checking, is verifying that all the proof
terms are well formed because (1) the inductive hypothesis is only applying to
smaller terms, and (2) all cases are covered.

Associativity is proved in a very similar manner, using structural induction.

assoc :: x:L a → y:L a → z:L a

→ { x ♦ (y ♦ z) = (x ♦ y) ♦ z}

assoc N y z

= N ♦ (y ♦ z)

==. y ♦ z

==. (N ♦ y) ♦ z

*** QED

assoc (C x xs) y z

= (C x xs) ♦ (y ♦ z)

==. C x (xs ♦ (y ♦ z))

==. C x ((xs ♦ y) ♦ z) ∴ associativity xs y z

==. (C x (xs ♦ y)) ♦ z

==. ((C x xs) ♦ y) ♦ z

*** QED

As with the left identity, the proof proceeds by (1) function unfolding (or rewrit-
ing in paper and pencil proof terms), (2) case splitting (or case analysis), and
(3) recursion (or induction).

Since our list implementation satisfies the three monoid laws we can conclude
that L a is a monoid.

Theorem 1. (L a, ε, ♦) is a monoid.

Proof. L a is a monoid, as the implementation of idLeft, idRight, and assoc

satisfy the specifications of idLeftm, idRightm, and assocm, with m = L a.
ut

3 Verified Parallelization of Monoid Morphisms

A monoid morphism is a function between two monoids which preserves the
monoidal structure; i.e., a function on the underlying sets which preserves iden-
tity and associativity. We formally specify this definition using a refinement type
Morphism.

Definition 2 (Monoid Morphism). A function f :: n → m is a morphism
between the monoids (m, ε, ♦) and (n, η, �) if Morphism n m f has an inhabi-
tant.

type Morphism n m F =

x:n → y:n → {F η = ε ∧ F (x � y) = F x ♦ F y}

A monoid morphism can be parallelized when its domain can be cut into
chunks and put back together again, a property we refer to as chunkable and
expand upon in § 3.1. A chunkable monoid morphism is then parallelized by:

1. chunking up the input,

2. applying the morphism in parallel to all chunks, and

3. recombining the chunks, also in parallel, back to a single value.

In the rest of this section we implement and verify to be correct the above
transformation.

3.1 Chunkable Monoids

Definition 3 (Chunkable Monoids). A monoid (m, ε, ♦) is chunkable if the
following four functions are defined on m.

lengthm :: m → Nat

dropm :: i:Nat → x:MGEq m i → MEq m (lengthm x-i)

takem :: i:Nat → x:MGEq m i → MEq m i

takeDropPropm :: i:Nat → x:m →
{x = takem i x ♦ dropm i x}

Where the type aliases MLeq m I (and MEq m I) constrain the monoid m to
have lengthm greater than (resp. equal) to I.

type MGEq m I = {x:m | I ≤ lengthm x }

type MEq m I = {x:m | I = lengthm x }

Note that the “important” methods of chunkable monoids are the take and
drop, while the length method is required to give pre- and post-condition on
the other operations. Finally, takeDropProp provides a proof that for each i and
monoid x, appending take i x to drop i x will reconstruct x.

Using takem and dropm we define for each chunkable monoid (m, ε, ♦) a
function chunkm i x that splits x in chunks of size i.

chunkm :: i:Pos → x:m → {v:L m | chunkResm i x v }

chunkm i x

| lengthm x ≤ i = C x N

| otherwise = takem i x 8 C 8 chunkm i (dropm i x)

chunkResm i x v

| lengthm x ≤ i = lengthm v == 1

| i == 1 = lengthm v == lengthm xs

| otherwise = lengthm v < lengthm xs

The function chunkm provably terminates as dropm i x will return a monoid
smaller than x, by the Definition of dropm. The definitions of both takem and
dropm are also used from Liquid Haskell to verify the lengthm constraints in
the result of chunkm.

3.2 Parallel Map

We define a parallelized map function pmap using Haskell’s library parallel.
Concretely, we use the function Control.Parallel.Strategies.withStrategy

that computes its argument in parallel given a parallel strategy.

pmap :: (a → b) → L a → L b

pmap f xs = withStrategy parStrategy (map f xs)

The strategy parStrategy does not affect verification. In our codebase we choose
the traversable strategy.

parStrategy :: Strategy (L a)

parStrategy = parTraversable rseq

Parallelism in the Logic. The function withStrategy is an imported Haskell
library function, whose implementation is not available during verification. To
use it in our verified code, we make the assumption that it always returns its
second argument.

assume withStrategy :: Strategy a → x:a → {v:a | v = x}

Moreover, we need to reflect the function pmap and represent its implementation
in the logic. Thus, we also need to represent the function withStrategy in the
logic. LiquidHaskell represents withStrategy in the logic as a logical function
that merely returns its second argument, withStrategy _ x = x, and does not
reason about parallelism.

3.3 Monoidal Concatenation

The function chunkm lets us turn a monoidal value into several pieces. In the
other direction, for any monoid m, there is a standard way of turning L m back
into a single m 1

mconcat :: L m → m

mconcat N = ε
mconcat (C x xs) = x ♦ mconcat xs

For any chunkable monoid n, monoid morphism f :: n → m, and natural num-
ber i > 0 we can write a chunked version of f as

mconcat . pmap f . chunkn i :: n → m.

Before parallelizing mconcat, we will prove that the previous function is equiv-
alent to f.

Theorem 2 (Morphism Distribution). Let (m, ε, ♦) be a monoid and (n,
η, �) be a chunkable monoid. Then, for every morphism f :: n → m, every
positive number i and input x, f x = mconcat (pmap f (chunkn i x)) holds.

1 mconcat is usually defined as foldr mappend mempty

morphismDistribution

:: f:(n → m) → Morphism n m f → x:n → i:Pos

→ {f x = mconcat (pmap f (chunkn i x))}

Proof. We prove the theorem by providing an implementation of morphismDistribution
that satisfies its type. The proof proceeds by induction on the length of the input.

morphismDistribution f thm x i

| lengthn x ≤ i

= mconcat (pmap f (chunkn i x))

==. mconcat (map f (chunkn i x))

==. mconcat (map f (C x N))

==. mconcat (f x 8 C 8 map f N)

==. f is ♦ mconcat N

==. f is ♦ ε
==. f is ∴ idRightm (f is)

*** QED

morphismDistribution f thm x i

= mconcat (pmap f (chunkn i x))

==. mconcat (map f (chunkn i x))

==. mconcat (map f (C takeX) (chunkn i dropX)))

==. mconcat (f takeX 8 C 8 map f (chunkn n dropX))

==. f takeX ♦ f dropX

∴ morphismDistribution f thm dropX i

==. f (takeX � dropX)

∴ thm takeX dropX

==. f x

∴ takeDropPropn i x

*** QED

where

dropX = dropn i x

takeX = taken i x

In the base case we use rewriting and right identity on the monoid f x. In the
inductive case, we use the inductive hypothesis on the input dropX = dropn i

x, that is provably smaller than x as 1 < i. Then, the fact that f is a monoid
morphism, as encoded by our assumption argument thm takeX dropX we get
basic distribution of f, that is f takeX ♦ f dropX = f (takeX � dropX). Fi-
nally, we merge takeX � dropX to x using the property takeDropPropn of the
chunkable monoid n. ut

3.4 Parallel Monoidal Concatenation

We now parallelize the monoid concatenation by defining a pmconat i x func-
tion that chunks the input list of monoids and concatenates each chunk in par-
allel.

We use the chunk function of § 3.1 instantiated to L m to define a parallelized
version of monoid concatenation pmconcat.

pmconcat :: Int → L m → m

pmconcat i x | i ≤ 1 || length x ≤ i

= mconcat x

pmconcat i x

= pmconcat i (pmap mconcat (chunk i x))

The function pmconcat i x calls mconcat x in the base case, otherwise it (1)
chunks the list x in lists of size i, (2) runs in parallel mconcat to each chunk, (3)
recursively runs itself with the resulting list. Termination of pmconcat holds, as
the length of chunk i x is smaller than the length of x, when 1 < i.

Next, we prove equivalence of parallelized monoid concatenation.

Theorem 3 (Correctness of Parallelization). Let (m, ε, ♦) be a monoid.
Then, the parallel and sequential concatenations are equivalent.

pmconcatEquivalence

:: i:Int → x:L m → { pmconcat i x = mconcat x }

Proof. We prove the theorem by providing a Haskell implementation of pmconcatEquivalence
that satisfies its type. The details of the proof can be found in [33], here we pro-
vide the sketch of the proof.

First, we prove that mconcat distributes over list splitting

mconcatSplit

:: i:Nat → xs:{L m | i ≤ length xs}

→ { mconcat xs = mconcat (take i xs)

♦ mconcat (drop i xs) }

The proofs proceeds by structural induction, using monoid left identity in the
base case and monoid associativity associavity and unfolding of take and drop

methods in the inductive step.
We generalize the above lemma to prove that mconcat distributes over list

chunking.

mconcatChunk

:: i:Pos → xs:L m

→ { mconcat xs = mconcat (map mconcat (chunk i xs)) }

The proofs proceeds by structural induction, using monoid left identity in the
base case and lemma mconcatSplit in the inductive step.

Lemma mconcatChunk is sufficient to prove pmconcatEquivalence by struc-
tural induction, using monoid left identity in the base case. ut

3.5 Parallel Monoid Morphism

We can now replace the mconcat in our chunked monoid morphism in § 3.3 with
pmconcat from § 3.4 to provide an implementation that uses parallelism to both
map the monoid morphism and concatenate the results.

Theorem 4 (Correctness of Parallelization). Let (m, ε, ♦) be a monoid and
(n, η, �) be a chunkable monoid. Then, for every morphism f :: n → m, every
positive numbers i and j, and input x, f x = pmconcat i (pmap f (chunkn
j x)) holds.

parallelismEquivalence

:: f:(n → m) → Morphism n m f → x:n → i:Pos → j:Pos

→ {f x = pmconcat i (pmap f (chunkn j x))}

Proof. We prove the theorem by providing an implementation of parallelismEquivalence
that satisfies its type.

parallelismEquivalence f thm x i j

= pmconcat i (pmap f (chunkn j x))

==. mconcat (pmap f (chunkn j x))

∴ pmconcatEquivalence i (pmap f (chunkn j x))

==. f x

∴ morphismDistribution f thm x j

*** QED

The proof follows merely by application of the two previous Theorems 2 and 3.
ut

4 Case Study: Correctness of Parallel String Matching

§ 3 showed that any monoid morphism whose domain is chunkable can be paral-
lelized. We now make use of that result to parallelize string matching. We start
by observing that strings are a chunkable monoid. We then turn string matching
for a given target into a monoid morphism from a string to a suitable monoid,
SM target, defined in § 4.2. Finally, in § 4.4, we parallelize string matching by
a simple use of the parallel morphism function of § 3.5.

4.1 Refined Strings are Chunkable Monoids

We define a new type RString, which is a chunkable monoid, to be the do-
main of our string matching function. Our type simply wraps Haskell’s existing
ByteString.

data RString = RS BS.ByteString

Similarly, we wrap the existing ByteString functions we will need to show
RString is a chunkable monoid.

η = RS (BS.empty)

(RS x) � (RS y)= S (x 8 BS.append 8 y)

lenStr (RS x) = BS.length x

takeStr i (RS x) = RS (BS.take i x)

dropStr i (RS x) = RS (BS.take i x)

Although it is possible to explicitly prove that ByteString implements a chunk-
able monoid [30], it is time consuming and orthogonal to our purpose. Instead, we
just assume the chunkable monoid properties of RString– thus demonstrating
that refinement reflection is capable of doing gradual verification.

For instance, we define a logical uninterpreted function � and relate it to the
Haskell � function via an assumed (unchecked) type.

assume (�)
:: x:RString → y:RString → {v:RString | v = x � y}

Then, we use the uninterpreted function � in the logic to assume monoid laws,
like associativity.

assume assocStr :: x:RString → y:RString → z:RString

→ { x � (y � z) = (x � y) � z }

assocStr _ _ = trivial

Haskell applications of � are interpreted in the logic via the logical � that
satisfies associativity via theorem assocStr.

Similarly for the chunkable methods, we define the uninterpreted functions
takeStr, dropStr and lenStr in the logic, and use them to strengthen the result
types of the respective functions. With the above function definitions (in both
Haskell and logic) and assumed type specifications, Liquid Haskell will check (or
rather assume) that the specifications of chunkable monoid, as defined in the
Definitions 1 and 3, are satisfied. We conclude with the assumption (rather that
theorem) that RString is a chunkable monoid.

Assumption 5 (RString is a Chunkable Monoid) (RString, η, �) com-
bined with the methods lenStr, takeStr, dropStr and takeDropPropStr is a
chunkable monoid.

4.2 String Matching Monoid

String matching is determining all the indices in a source string where a given
target string begins; for example, for source string ababab and target aba the
results of string matching would be [0, 2].

We now define a suitable monoid, SM target, for the codomain of a string
matching function, where target is the string being looked for. Additionally, we
will define a function toSM :: RString → SM target which does the string
matching and is indeed a monoid morphism from RString to SM target for a
given target.

String Matching Monoid We define the data type SM target to contain a
refined string field input and a list of all the indices in input where the target

appears.

data SM (target :: Symbol) where

SM :: input:RString

Fig. 2. Mappend indices of String Matcher

→ indices :[GoodIndex input target]

→ SM target

We use the string type literal 2 to parameterize the monoid over the target being
matched. This encoding allows the type checker to statically ensure that only
searches for the same target can be merged together. The input field is a refined
string, and the indices field is a list of good indices. For simplicity we present lists
as Haskell’s built-in lists, but our implementation uses the reflected list type, L,
defined in § 2.

A GoodIndex input target is a refined type alias for a natural number i for
which target appears at position i of input. As an example, the good indices
of "abcab" on "ababcabcab" are [2,5].

type GoodIndex Input Target

= {i:Nat | isGoodIndex Input (fromString Target) i }

isGoodIndex :: RString → RString → Int → Bool

isGoodIndex input target i

= (subString i (lenStr target) input == target)

∧ (i + lenStr target ≤ lenStr input)

subString :: Int → Int → RString → RString

subString o l = takeStr l . dropStr o

Monoid Methods for String Matching Next, we define the mappend and
identity elements for string matching.

The identity element ε of SM t, for each target t, is defined to contain the
identity RString (η) and the identity List ([]).

ε :: ∀ (t :: Symbol). SM t

ε = SM η []

The Haskell definition of ♦, the monoid operation for SM t, is as follows.

(♦)::∀ (t:: Symbol). KnownSymbol t ⇒ SM t → SM t → SM t

(SM x xis) ♦ (SM y yis)

2 Symbol is a kind and target is effectively a singleton type.

= SM (x � y) (xis ′ ++ xyis ++ yis ′)

where

tg = fromString (symbolVal (Proxy :: Proxy t))

xis ′ = map (castGoodIndexLeft tg x y) xis

xyis = makeNewIndices x y tg

yis ′ = map (shiftStringRight tg x y) yis

Note again that capturing target as a type parameter is critical, otherwise there
is no way for the Haskell’s type system to specify that both arguments of (♦)
are string matchers on the same target.

The action of (♦) on the two input fields is straightforward; however, the
action on the two indices is complicated by the need to shift indices and the
possibility of new matches arising from the concatenation of the two input

fields. Figure 2 illustrates the three pieces of the new indices field which we
now explain in more detail.

1. Casting Good Indices If xis is a list of good indices for the string x and the
target tg, then xis is also a list of good indices for the string x � y and the
target tg, for each y. To prove this property we need to invoke the property
subStrAppendRight on Refined Strings that establishes substring preservation
on string right appending.

assume subStrAppendRight

:: sl:RString → sr:RString → j:Int

→ i:{Int | i + j ≤ lenStr sl }

→ { subString sl i j = subString (sl � sr) i j }

The specification of subStrAppendRight ensures that for each string sl and sr

and each integer i and j whose sum is within sl, the substring from i with
length j is identical in sl and in (sl � sr). The function castGoodIndexLeft

applies the above property to an index i to cast it from a good index on sl to
a good index on (sl � sr)

castGoodIndexLeft

:: tg:RString → sl:RString → sr:RString

→ i:GoodIndex sl tg

→ {v:GoodIndex (sl � sr) target | v = i}

castGoodIndexLeft tg sl sr i

= cast (subStrAppendRight sl sr (lenStr tg) i) i

Where cast p x returns x, after enforcing the properties of p in the logic

cast :: b → x:a → {v:a | v = x }

cast _ x = x

Moreover, in the logic, each expression cast p x is reflected as x, thus allowing
random (i.e., non-reflected) Haskell expressions to appear in p.

2. Creation of new indices The concatenation of two input strings sl and sr

may create new good indices. For instance, concatenation of "ababcab" with
"cab" leads to a new occurence of "abcab" at index 5 which does not occur
in either of the two input strings. These new good indices can appear only at
the last lenStr tg positions of the left input sl. makeNewIndices sl sr tg

detects all such good new indices.

makeNewIndices

:: sl:RString → sr:RString → tg:RString

→ [GoodIndex {sl � sr} tg]

makeNewIndices sl sr tg

| lenStr tg < 2 = []

| otherwise = makeIndices (sl � sr) tg lo hi

where

lo = maxInt (lenStr sl - (lenStr tg - 1)) 0

hi = lenStr sl - 1

If the length of the tg is less than 2, then no new good indices are created.
Otherwise, the call on makeIndices returns all the good indices of the input sl
� sr for target tg in the range from maxInt (lenStr sl-(lenStr tg-1)) 0

to lenStr sl-1.
Generally, makeIndices s tg lo hi returns the good indices of the input

string s for target tg in the range from lo to hi.

makeIndices

:: s:RString → tg:RString → lo:Nat

→ hi:Int → [GoodIndex s tg]

makeIndices s tg lo hi

| hi < lo = []

| isGoodIndex s tg lo = lo:rest

| otherwise = rest

where

rest = makeIndices s tg (lo + 1) hi

It is important to note that makeNewIndices does not scan all the input,
instead only searching at most lenStr tg positions for new good indices. Thus,
the time complexity to create the new indices is linear on the size of the target
but independent of the size of the input.

3. Shift Good Indices If yis is a list of good indices on the string y with target
tg, then we need to shift each element of yis right lenStr x units to get a list
of good indices for the string x � y.

To prove this property we need to invoke the property subStrAppendLeft

on Refined Strings that establishes substring shifting on string left appending.

assume subStrAppendLeft

:: sl:RString → sr:RString

→ j:Int → i:Int

→ {subStr sr i j = subStr (sl � sr) (lenStr sl+i) j}

The specification of subStrAppendLeft ensures that for each string sl and sr

and each integers i and j, the substring from i with length j on sr is equal to
the substring from lenStr sl + i with length j on (sl � sr). The function
shiftStringRight both shifts the input index i by lenStr sl and applies the
subStrAppendLeft property to it, casting i from a good index on sr to a good
index on (sl � sr)

Thus, shiftStringRight both appropriately shifts the index and casts the
shifted index using the above theorem:

shiftStringRight

:: tg:RString → sl:RString → sr:RString

→ i:GoodIndex sr tg

→ {v:(GoodIndex (sl � sr) tg) | v = i + lenStr sl}

shiftStringRight tg sl sr i

= subStrAppendLeft sl sr (lenStr tg) i
8 cast 8 i + lenStr sl

String Matching is a Monoid Next we prove that the monoid methods ε
and (♦) satisfy the monoid laws.

Theorem 6 (SM is a Monoid). (SM t, ε, ♦) is a monoid.

Proof. According to the Monoid Definition 1, we prove that string matching is a
monoid, by providing safe implementations for the monoid law functions. First,
we prove left identity.

idLeft :: x:SM t → { ε ♦ x = xs }

idLeft (SM i is)

= (ε :: SM t) ♦ (SM i is)

==. (SM η []) ♦ (SM i is)

==. SM (η � i) (is1 ++ isNew ++ is2)

∴ idLeftStr i

==. SM i ([] ++ [] ++ is)

∴ (mapShiftZero tg i is ∧ newIsNullRight i tg)

==. SM i is

∴ idLeftList is

*** QED

where

tg = fromString (symbolVal (Proxy :: Proxy t))

is1 = map (castGoodIndexRight tg i η) []

isNew = makeNewIndices η i tg

is2 = (map (shiftStringRight tg η i) is)

The proof proceeds by rewriting, using left identity of the monoid strings and
lists, and two more lemmata.

– Identity of shifting by an empty string.

mapShiftZero :: tg:RString → i:RString

→ is:[GoodIndex i target]

→ {map (shiftStringRight tg η i) is = is }

The lemma is proven by induction on is and the assumption that empty
strings have length 0.

– No new indices are created.

newIsNullLeft :: s:RString → t:RString

→ {makeNewIndices η s t = [] }

The proof relies on the fact that makeIndices is called on the empty range
from 0 to -1 and returns [].

Next, we prove right identity.

idRight :: x:SM t → {x ♦ ε = x }

idRight (SM i is)

= (SM i is) ♦ (ε :: SM t)

==. (SM i is) ♦ (SM η [])

==. SM (i � η) (is1 ++ isNew ++ is2)

∴ idRightStr i

==. SM i (is ++ N ++ N)

∴ (mapCastId tg i η is ∧ newIsNullLeft i tg)

==. SM i is

∴ idRightList is

*** QED

where

tg = fromString (symbolVal (Proxy :: Proxy t))

is1 = map (castGoodIndexRight tg i η) is

isNew = makeNewIndices i stringEmp tg

is2 = map (shiftStringRight tg i η) []

The proof proceeds by rewriting, using right identity on strings and lists and
two more lemmata.

– Identity of casting is proven

mapCastId :: tg:RString → x:RString → y:RString

→ is:[GoodIndex x tg] →
→ {map (castGoodIndexRight tg x y) is = is}

We prove identity of casts by induction on is and identity of casting on a
single index.

– No new indices are created.

newIsNullLeft :: s:RString → t:RString

→ {makeNewIndices s η t = [] }

The proof proceeds by case splitting on the relative length of s and t. At
each case we prove by induction that all the potential new indices would be
out of bounds and thus no new good indices would be created.

- Finally we prove associativity. For space, we only provide a proof sketch.
The whole proof is available online [33]. Our goal is to show equality of the left
and right associative string matchers.

assoc :: x:SM t → y:SM t → z:SM t

→ { x ♦ (y ♦ z) = (x ♦ y) ♦ z}

To prove equality of the two string matchers we show that the input and indices
fields are respectively equal. Equality of the input fields follows by associativity
of RStrings. Equality of the index list proceeds in three steps.

1. Using list associativity and distribution of index shifting, we group the in-
dices in the five lists shown in Figure 3: the indices of the input x, the new
indices from mappending x to y, the indices of the input y, the new indices
from mappending x to y, and the indices of the input z.

2. The representation of each group depends on the order of appending. For ex-
ample, if zis1 (resp. zis2) is the group zis when right (resp. left) mappend
happened first, then we have

zis1 = map (shiftStringRight tg xi (yi � zi))

(map (shiftStringRight tg yi zi) zis)

zis2 = map (shiftStringRight tg (xi � yi) zi) zis

That is, in right first, the indices of z are first shifted by the length of yi
and then by the length of xi, while in the left first case, the indices of z

are shifted by the length of xi � yi. In this second step of the proof we
prove, using lemmata, the equivalence of the different group representations.
The most interesting lemma we use is called assocNewIndices and proves
equivalence of all the three middle groups together by case analysis on the
relative lengths of the target tg and the middle string yi.

3. After proving equivalence of representations, we again use list associativity
and distribution of casts to wrap the index groups back in string matchers.

Fig. 3. Associativity of String Matching

We now sketch the three proof steps, while the whole proof is available online [33].

assoc x@(SM xi xis) y@(SM yi yis) z@(SM zi zis)

-- Step 1: unwrapping the indices

= x ♦ (y ♦ z)

==. (SM xi xis) ♦ ((SM yi yis) ♦ (SM zi zis))

...

-- via list associativity and distribution of shifts

==. SM i (xis1 ++ ((xyis1 ++ yis1 ++ yzis1) ++ zis1))

-- Step 2: Equivalence of representations

==. SM i (xis2 ++ ((xyis1 ++ yis1 ++ yzis1) ++ zis1))

∴ castConcat tg xi yi zi xis

==. SM i (xis2 ++ ((xyis1 ++ yis1 ++ yzis1) ++ zis2))

∴ mapLenFusion tg xi yi zi zis

==. SM i (xis2 ++ ((xyis2 ++ yis2 ++ yzis2) ++ zis2))

∴ assocNewIndices y tg xi yi zi yis

-- Step 3: Wrapping the indices

...

-- via list associativity and distribution of casts

==. (SM xi xis ♦ SM yi yis) ♦ SM zi zis

= (x ♦ y) ♦ z

*** QED

where

i = xi � (yi � zi)

yzis1 = map (shiftStringRight tg xi (yi � zi)) yzis

yzis2 = makeNewIndices (xi � yi) zi tg

yzis = makeNewIndices yi zi tg

...

ut

4.3 String Matching Monoid Morphism

Next, we define the function toSM :: RString → SM target which does the
actual string matching computation for a set target 3

toSM :: ∀ (target :: Symbol). (KnownSymbol target)

⇒ RString → SM target

toSM input = SM input (makeSMIndices input tg) where

tg = fromString (symbolVal (Proxy :: Proxy target))

makeSMIndices

:: x:RString → tg:RString → [GoodIndex x tg]

makeSMIndices x tg

= makeIndices x tg 0 (lenStr tg - 1)

3 toSM assumes the target is clear from the calling context; it is also possible to write
a wrapper function taking an explicit target which gets existentially reflected into
the type.

The input field of the result is the input string; the indices field is computed by
calling makeIndices within the range of the input, that is from 0 to lenStr

input - 1.

We now prove that toSM is a monoid morphism.

Theorem 7 (toSM is a Morphism). toSM :: RString → SM t is a mor-
phism between the monoids (RString, η, �) and (SM t, ε, ♦).

Proof. Based on definition 2, proving toSM is a morphism requires constructing
a valid inhabitant of the type

Morphism RString (SM t) toSM

= x:RString → y:RString

→ {toSM η = ε ∧ toSM (x � y) = toSM x ♦ toSM y}

We define the function distributestoSM :: Morphism RString (SM t) toSM

to be the required valid inhabitant.
The core of the proof starts from exploring the string matcher toSM x ♦

toSM y. This string matcher contains three sets of indices as illustrated in
Figure 2: (1) xis from the input x, (2) xyis from appending the two strings,
and (3) yis from the input y. We prove that appending these three groups of
indices together gives exactly the good indices of x � y, which are also the value
of the indices field in the result of toSM (x � y).

distributestoSM x y

= (toSM x :: SM target) ♦ (toSM y :: SM target)

==. (SM x is1) ♦ (SM y is2)

==. SM i (xis ++ xyis ++ yis)

==. SM i (makeIndices i tg 0 hi1 ++ yis)

∴ (mapCastId tg x y is1 ∧ mergeNewIndices tg x y)

==. SM i (makeIndices i tg 0 hi1

++ makeIndices i tg (hi1 +1) hi)

∴ shiftIndicesRight 0 hi2 x y tg

==. SM i is

∴ mergeIndices i tg 0 hi1 hi

==. toSM (x � y)

*** QED

where

xis = map (castGoodIndexRight tg x y) is1

xyis = makeNewIndices x y tg

yis = map (shiftStringRight tg x y) is2

tg = fromString (symbolVal (Proxy:: Proxy target))

is1 = makeSMIndices x tg

is2 = makeSMIndices y tg

is = makeSMIndices i tg

i = x � y

hi1 = lenStr x - 1

hi2 = lenStr y - 1

hi = lenStr i - 1

The most interesting lemma we use is mergeIndices x tg lo mid hi that
states that for the input x and the target tg if we append the indices in the
range from to to mid with the indices in the range from mid+1 to hi, we get
exactly the indices in the range from lo to hi. This property is formalized in
the type of the lemma.

mergeIndices

:: x:RString → tg:RString

→ lo:Nat → mid:{Int | lo ≤ mid} → hi:{Int | mid ≤ hi}

→ { makeIndices x tg lo hi

= makeIndices x tg lo mid

++ makeIndices x tg (mid +1) hi}

The proof proceeds by induction on mid and using three more lemmata:

– mergeNewIndices states that appending the indices xis and xyis is equiv-
alent to the good indices of x � y from 0 to lenStr x - 1. The proof
case splits on the relative sizes of tg and x and is using mergeIndices on
mid = lenStr x1 - lenStr tg in the case where tg is smaller than x.

– mapCastId states that casting a list of indices returns the same list.
– shiftIndicesRight states that shifting right i units the indices from lo

to hi is equivalent to computing the indices from i + lo to i + hi on the
string x � y, with lenStr x = i.

ut

4.4 Parallel String Matching

We conclude this section with the definition of a parallelized version of string
matching. We put all the theorems together to prove that the sequential and
parallel versions always give the same result.

We define toSMPar as a parallel version of toSM using machinery of section 3.

toSMPar :: ∀ (target :: Symbol). (KnownSymbol target)

⇒ Int → Int → RString → SM target

toSMPar i j = pmconcat i . pmap toSM . chunkStr j

First, chunkStr splits the input into j chunks. Then, pmap applies toSM at each
chunk in parallel. Finally, pmconat concatenates the mapped chunks in parallel
using ♦, the monoidal operation for SM target.

Correctness. We prove correctness of toSMPar directly from Theorem 4.

Theorem 8 (Correctness of Parallel String Matching). For each param-
eter i and j, and input x, toSMPar i j x is always equal to toSM x.

correctness :: i:Int → j:Int → x:RString

→ {toSM x = toSMPar i j x}

Proof. The proof follows by direct application of Theorem 4 on the chunkable
monoid (RString, η, �) (by Assumption 5) and the monoid (SM t, ε, ♦) (by
Theorem 6).

correctness i j x

= toSMPar i j x

==. pmconcat i (pmap toSM (chunkStr j x))

==. toSM is

∴ parallelismEquivalence toSM distributestoSM x i j

*** QED

Note that application of the theorem parallelismEquivalence requires a proof
that its first argument toSM is a morphism. By Theorem 2, the required proof is
provided as the function distributestoSM. ut

5 Evaluation: Strengths & Limitations

Verification of Parallel String Matching is the first realistic proof that uses (Liq-
uid) Haskell to prove properties about program functions. In this section we use
the String Matching proof to quantitatively and qualitatively evaluate theorem
proving in Haskell.

Quantitative Evaluation. The Correctness of Parallel String Matching proof can
be found online [33]. Verification time, that is the time Liquid Haskell needs to
check the proof, is 75 sec on a dual-core Intel Core i5-4278U processor. The proof
consists of 1839 lines of code. Out of those

– 226 are Haskell “runtime” code,
– 112 are liquid comments on the “runtime” Haskell code,
– 1307 are Haskell proof terms, that is functions with Proof result type, and
– 194 are liquid comments to specify theorems.

Counting both liquid comments and Haskell proof terms as verification code, we
conclude that the proof requires 7x the lines of “runtime” code. This ratio is
high and takes us to 2006 Coq, when Leroy [17] verified the initial CompCert C
compiler with the ratio of verification to compiler lines being 6x.

Strengths. Though currently verbose, deep verification using Liquid Haskell has
many benefits. First and foremost, the target code is written in the general pur-
pose Haskell and thus can use advanced Haskell features, including type liter-
als, deriving instances, inline annotations and optimized library functions like
ByteString. Even diverging functions can coexist with the target code, as long
as they are not reflected into logic [31].

Moreover, SMTs are used to automate the proofs over key theories like linear
arithmetic and equality. As an example, associativity of (+) is assumed through-
out the proofs while shifting indices. Our proof could be further automated by
mapping refined strings to SMT strings and using the automated SMT string

theory. We did not follow this approach because we want to show that our
techinique can be used to prove any (and not only domain specific) program
properties.

Finally, we get further automation via Liquid Type Inference [22]. Properties
about program functions, expressed as type specifications with unit result, often
depend on program invariants, expressed as vanilla refinement types, and vice
versa. For example, we need the invariant that all indices of a string matcher are
good indices to prove associativity of (♦). Even though Liquid Haskell cannot
currently synthesize proof terms, it performs really well at inferring and prop-
agating program invariants (like good indices) via the abstract interpretation
framework of Liquid Types.

Limitations. There are severe limitations that should be addressed to make
theorem proving in Haskell a pleasant and usable technique. As mentioned earlier
the proofs are verbose. There are a few cases where the proofs require domain
specific knowledge. For example, to prove associativity of string matching x

♦ (y ♦ z) = (x ♦ y) ♦ z we need a theorem that performs case analysis
on the relative length of the input field of y and the target string. Unlike this
case split though, most proofs do not require domain specific knowledge and
merely proceed by term rewriting and structural inductuction that should be
automated via Coq-like [3] tactics or/and Dafny-like [16] heuristics. For example,
synquid [21] could be used to automatically synthesize proof terms.

Currently, we suffer from two engineering limitations. First, all reflected func-
tion should exist in the same module, as reflection needs access to the function
implementation that is unknown for imported functions. This is the reason why
we need to use a user defined, instead of Haskell’s built-in, list. In our imple-
mentation we used CPP as a current workaround of the one module restriction.
Second, class methods cannot be currently reflected. Our current workaround
is to define Haskell functions instead of class instances. For example (append,
nil) and (concatStr, emptyStr) define the monoid methods of List and Refined
String respectively.

Overall, we believe that the strengths outweigh the limitations which will be
addressed in the near future, rendering Haskell a powerful theorem prover.

6 Related Work

SMT-Based Verification SMT solvers have been extensively used to automate
reasoning on verification languages like Dafny [16], Fstar [28] and Why3 [10].
These languages are designed for verification, thus have limited support for
commonly used language features like parallelism and optimized libraries that
we use in our verified implementation. Refinement Types [8,12,24] on the other
hand, target existing general purpose languages, such as ML [34,2,22], C [7,23],
Haskell [31], Racket [15] and Scala [26]. However, before Refinement Reflec-
tion [32] was introduced, they only allowed “shallow” program specifications,
that is, properties that only talk about behaviors of program functions but not
functions themselves.

Dependent Types Unlike Refinement Types, dependent type systems, like Coq [3],
Adga [19] and Isabelle/HOL [20] allow for “deep” specifications which talk about
program functions, such as the program equivalence reasoning we presented.
Compared to (Liquid) Haskell, these systems allow for tactics and heuristics that
automate proof term generation but lack SMT automations and general-purpose
language features, like non-termination, exceptions and IO. Zombie [5,27] and
Fstar [28] allow dependent types to coexist with divergent and effectful pro-
grams, but still lack the optimized libraries, like ByteSting, which come with a
general purpose language with long history, like Haskell.

Parallel Code Verification Dependent type theorem provers have been used be-
fore to verify parallel code. BSP-Why [11] is an extension to Why2 that is using
both Coq and SMTs to discharge user specified verification conditions. Daum [9]
used Isabelle to formalize the semantics of a type-safe subset of C, by extending
Schirmer’s [25] formalization of sequential imperative languages. Finally, Swier-
stra [29] formalized mutable arrays in Agda and used them to reason about
distributed maps and sums.

One work closely related to ours is SyDPaCC [18], a Coq library that au-
tomatically parallelizes list homomorphisms by extracting parallel Ocaml ver-
sions of user provided Coq functions. Unlike SyDPaCC, we are not automati-
cally generating the parallel function version, because of engineering limitations
(§ 5). Once these are addressed, code extraction can be naturally implemented
by turning Theorem 4 into a Haskell type class with a default parallelization
method. SyDPaCC used maximum prefix sum as a case study, whose morphism
verification is much simpler than our string matching case study. Finally, our im-
plementation consists of 2K lines of Liquid Haskell, which we consider verbose
and aim to use tactics to simplify. On the contrary, the SyDPaCC implementa-
tion requires three different languages: 2K lines of Coq with tactics, 600 lines of
Ocaml and 120 lines of C, and is considered “very concise”.

7 Conclusion

We made the first non-trivial use of (Liquid) Haskell as a proof assistant. We
proved the parallelization of chunkable monoid morphisms to be correct and
applied our parallelization technique to string matching, resulting in a formally
verified parallel string matcher. Our proof uses refinement types to specify equiv-
alence theorems, Haskell terms to express proofs, and Liquid Haskell to check
that the terms prove the theorems. Based on our 1839LoC sophisticated proof we
conclude that Haskell can be successfully used as a theorem prover to prove ar-
bitrary theorems about real Haskell code using SMT solvers to automate proofs
over key theories like linear arithmetic and equality. However, Coq-like tactics
or Dafny-like heurestics are required to ease the user from manual proof term
generation.

References

1. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. 2010.

2. J. Bengtson, K. Bhargavan, C. Fournet, A.D. Gordon, and S. Maffeis. Refinement
types for secure implementations. In CSF, 2008.

3. Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Constructions.
Springer Verlag, 2004.

4. Guy E. Blelloch. Synthesis of Parallel Algorithms. Morgan Kaufmann Pub, 1993.

5. C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs in a
dependently typed language. In POPL, 2014.

6. Murray Cole. Parallel programming, list homomorphisms and the maximum seg-
ment sum problem. 1993.

7. Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C.
Necula. Dependent types for low-level programming. In ESOP, 2007.

8. R. L. Constable and S. F. Smith. Partial objects in constructive type theory. In
LICS, 1987.

9. M Daum. Reasoning on Data-Parallel Programs in Isabelle/Hol. In C/C++ Ver-
ification Workshop, 2007.

10. Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – Where Programs Meet
Provers. In ESOP, 2013.

11. J Fortin and F. Gava. BSP-Why: A tool for deductive verification of BSP algo-
rithms with subgroup synchronisation. In Int J Parallel Prog, 2015.

12. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, 1991.

13. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. J. ACM, 1993.

14. Joseph JáJá. Introduction to Parallel Algorithms. 1992.

15. Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. Occurrence typing
modulo theories. In PLDI, 2016.

16. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. LPAR, 2010.

17. Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In POPL 06, 2006.

18. Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. Calculating Parallel
Programs in Coq using List Homomorphisms. In International Journal of Parallel
Programming, 2016.

19. U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers, 2007.

20. L. C. Paulson. Isabelle A Generic Theorem prover. Lecture Notes in Computer
Science, 1994.

21. Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis
from polymorphic refinement types. In PLDI, 2016.

22. P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.

23. P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In POPL, 2010.

24. J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate sub-
typing in pvs. IEEE TSE, 1998.

25. N Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, TU Munich, 2006.

26. Georg Stefan Schmid and Viktor Kuncak. SMT-based Checking of Predicate-
Qualified Types for Scala. In Scala, 2016.

27. Vilhelm Sjöberg and Stephanie Weirich. Programming up to congruence. POPL,
2015.

28. Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. De-
pendent types and multi-monadic effects in F*. In POPL, 2016.

29. Wouter Swierstra. More dependent types for distributed arrays. 2010.
30. N. Vazou, E. L. Seidel, and R. Jhala. Liquidhaskell: Experience with refinement

types in the real world. In Haskell Symposium, 2014.
31. N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Refinement

Types for Haskell. In ICFP, 2014.
32. Niki Vazou and Ranjit Jhala. Refinement Reflection. arXiv:1610.04641, 2016.
33. Niki Vazou and Jeff Polakow. Code for verified string indexing. 2016. https:

//github.com/nikivazou/verified_string_matching.
34. H. Xi and F. Pfenning. Eliminating array bound checking through dependent

types. In PLDI, 1998.

https://github.com/nikivazou/verified_string_matching
https://github.com/nikivazou/verified_string_matching

	Verified Parallel String Matching in Haskell

