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Abstract typed dialect of a real-world, imperative, object-orighte

We present Dependent JavaScript (DJS), a statically-typeddynamiclanguage. We bridge the vast gap between System D
dialect of the imperative, object-oriented, dynamic lamgee ~~ @nd JavasScriptin three steps.

DJS supports the particularly challenging features such asStep 1: Imperative Updates.The types of variables in
run-time type-tests, higher-order functions, extensile  JavaScript are routinely “changed” either by assignment or
jects, prototype inheritance, and arrays through a combina by incrementally adding or removing fields to objects bound
tion of nested refinement typestrong updateso the heap,  to variables. The presence of mutation makes it challenging
andheap unrollingto precisely track prototype hierarchies. to assign precise types to variables, and the standard thetho
With our implementation of DJS, we demonstrate that the of assigning a single “invariant” reference type that opera
type system is expressive enough to reason about a varietyproximates all values held by the variable is useless in the
of tricky idioms found in small examples drawn from several JavaScript setting. We overcome this challenge by extendin
sources, including the popular bod&avaScript: The Good  our calculus withflow-sensitive heap typgm the style of
Partsand the SunSpider benchmark suite. [2,112, 14/ 31, 32]) which allow the system to precisely track
the heap location each variable refers to as well as alias-
. ing relationships, thereby enablirsyong updateshrough

1. Introduction mutable variables. Our formulation of flow-sensitive heaps
Dynamic languages like JavaScript, Python, and Ruby are combined with higher-order functions and refinement types
widely popular for building both client and server applica- is novel, and allows DJS to express precise pre- and post-
tions, in large part because they provide powerful sets of conditions of heaps, as in separation logic [16].

features — run-time type tests, mutable variables, extensi
ble objects, and higher-order functions. But as applicatio
grow, the lack of static typing makes it difficult to achieve
reliability, security, maintainability, and performande re-
sponse, several authors have proposed type systems whic
provide static checking for various subsets of dynamic lan-
guages[5, 15, 22, 23,130,/36].

Recently, we developed System D [8], a core calculus
for dynamic languages that supports the above dynamic id-
ioms but in a purely functional setting. The main insight in
System D is todependentlytype all values with formulas
drawn from an SMT-decidable refinement logic. We use an
SMT solver to reason about the properties it tracks well,
namely, control-flow invariants and dictionaries with dy-
namic keys that bind scalar values. But to describe dynamic
keys that bind rich values like functions, System D encodes
function types as logical terms anéststhe typing relation
as an uninterpreted predicate within the logic. By dividing
work between syntactic subtyping and SMT-based validity
checking, the calculus supports fully automatic checkihg o
dynamic features like run-time type tests, value-indexed d
tionaries, higher-order functions, and polymorphism.

In this paper, we scale up the System D calculus to Step 3: Arrays. JavaScript arrays are simply objects whose
Dependent JavaScript (abbreviated to DJS), an explicitly keys are string representations of integers. Arrays are com

Step 2: Prototype Inheritance. Each JavaScript object
maintains an implicit link to the “prototype” object from
which it derives. To resolve a key lookup from an object at
ﬁun—time, JavaScriptransitively follows its prototype links
until either the key is found or the root is reached without
success. Thus, unlike in class-based languages, inheitan
relationships areomputedat run-time rather than provided
as declarative specifications. The semantics of prototigoes
challenging for static typing, because to track the type of a
key binding, the system must statically reason about a po-
tentially unbounded number of prototype links! In DJS, we
solve this problem with a novel decomposition of the heap
into a “shallow” part, for which we precisely track a finite
number of prototype links, and a “deep” part, for which we
do not have precise information, represented abstracly vi
a logical heap variable. Wanroll prototype hierarchies in
shallow heaps to precisely model the semantics of object op-
erations, and we useinterpreted heap predicatésreason
abstractly about deep parts. In this way, we reduce the rea-
soning about unbounded, imperative, prototype hieraschie
to the underlying decidable, first-order, refinement logic.
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monly used both aketerogenousuples (that have a fixed roughly mean ECMAScript Edition 3, the standard version
number of elements of different types) as wellhmsnoge- of the language for more than a decade [24]. We say ES5
nouscollections (that have an unbounded number of ele- to refer to Edition 5 of the Ianguaﬂa,ecently released by
ments of the same type). The overloaded use of arrays, to-the JavaScript standards committee [9]. We say ES6 to refer
gether with the fact that arrays are otherwise syntacgicall to features proposed for the next version of the language,
indistinguishable and have the same prototype-based semanscheduled to be finalized within the next one or two years.
tics as non-array objects, makes it hard to statically reaso Dependent JavaScript (DJS) includes a large set of core fea-
about the very different ways in which they are used. In DJS, tures common to all editions.

we use nested refinements to address the problem neatly by

uniformly encoding tuples and collections with refinement 2-1 Base Types, Operators, and Control Flow

predicates, and by usingtersectiontypes that simultane-  Consider the following function adapted from [8] and anno-
ous encode the semantics of tuples, collections, and sbject tated in DJS. A function type annotation is written just adov
the definition inside a JavaScript comment demarcated by an
ness of DJS by using our implementaﬁoto check a additional: character. We typeset annotations in math mode

variety of properties found in small but subtle examples for clarity, but the ASCII versions parsed by our type checke

drawn from a variety of sources, including the popular book &re auite similar.

JavaScrl_pt: The Good Partﬁ_iO] and the SunSpider bench- Jx: i Top — {v|ite Num(z) Num(v) Bool(v)} %/
mark _swte [34]. Our experlments show that sever_al €XaMm- | t.nction negate(x) {

ples simultaneouslyequire the gamut of features in DJS, if (typeof x == "number") { return O - x; }
but that many examples conform to recurring patterns that| c1se { return !x; } 3
rely on particular aspects of the type system. We identify

several ways in which future work can handle the_se PatteSThe typeof operator is a facility used pervasively to direct
more specifically in order to reduce the annotation burden -qntrol flow based on the run-time “tag” of a value. If the
and performance for common cases, while falling back 10 iyt tonegate is a number, so is the return value. If not, the
the full expressiveness of DJS in general. Thus, we believe,nction uses an interesting feature of JavaScript, namely
that DJS provides a significant step towards truly retrofitti  that all values have a boolean interpretation. The values
JavaScript with a practical type system. false, null, undefined, the empty string, 0, and the
> 0 . “not-a-number” valuéiaN are considerethlsy, and evaluate

) verview to false when used in a boolean context; all other values are
Let us begin with an informal overview of the semantics truthy. The operatot inverts “truthiness,” so the else branch
of JavaScript. We will emphasize the aspects that are thereturns a boolean no matter what the type &f. The ability
most distinctive and challenging from the perspective péty  to treat arbitrary values as booleans is commonly used, for
system design, and describe the key insights in our work thatexample, to guard against nanil values.
overcome these challenges. The negate function demonstrates that even simple

JavaScript Semantics by DesugaringMany corner cases JavaScript programs depend heavily on sophisticatedalentr
of JavaScript are clarified by s [21], a syntax-directed flow t_)ased reasoning. Syr_lta_ctlc type systems are capable of
translation, ordesugaring of JavaScript programs to a tracking control flow toa I.|m|teq degree [22_. 36],_but none
mostly-standard lambda-calculus with explicit reference can_handle complex invariants like the relationship betwee
As \g is a core language with well-understood semantics the inputand output afegate. To have any chance of cap-
and proof techniques, the translation paves a path to a typeduring such invariants, types must be ablelépencbn other
dialect of JavaScript: define a type system for the core lan- Program values. Powerful dependent type systems like Coq
guage and then type check desugared JavaScript programs.can express extremely rich mvarlan_ts, but are too heavy-

We take this path by developing Systéin (pronounced W_elght for our goals since t_hey_ require the programmer to
“D-ref"), a new calculus based ok;g. Although the oper- discharge type checking obligations interactively.

ational semantics of Systetd is straightforward, thely- Refinement Types. We adopt a more lightweight mecha-
namicfeatures of the language ensure that building a type nism calledrefinement typethat has been previously ap-
system expressive enough to support desugared JavaScrigilied to purely functional dynamic languagés [5, 8]. We
idioms is not. We solve this problem by scaling the purely gemonstrate that refinement types afford us the expressive-
functional technique of nested refinement types up to the im- ness needed to precisely track control-flow invariants & th
perative, object-oriented, setting of real-world Javégcr JavaScript setting and, unlike more powerful dependent sys
Terminology. JavaScript has a long history and an evolv- tems, without sacrificing decidable type checking. In garti
ing specification. In this paper, we say “JavaScript” to ular, once the programmer has written type annotations for

Expressiveness of DJS.We demonstrate the expressive-

1 Available afravichugh.com/nested) 2Edition 4 was never standardized.
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val typeof :: (* x:Top — {v=tag(x)} *)

val tis (x x:Top — {v iff falsy(z)} *)

val (1) :: (* x:Top — y:Top — {ite falsy(z) (v=y) (v=x)} *)

val (&) :: (* x:Top — y:Top — {ite truthy(xz) (v=y) (v=12)} *)

val (===) :: (* x:Top — y:{tag(v) = tag(z)} — {ite (z=NaN v y=NaN) (v==false) (v iff z=y)} *)
val (==) :: (¥ x:Top — y:Top — {Bool(v) A (tag(z) = tag(y) = v iff (zx=yAz+NaN))} *)

val +) 2 (% x:8tr - y:Str — Str *)

val (+#) 2 (¢ x:Num - y:Num — {Num(v) A ((Int(z) A Int(y)) = (Int(v) Av=x+y))} *)

val fix 1+ (* VA. (A - A) - A %)

Figure 1. Excerpt frombasics.dref

function definitions, type checking is carried out automat- Equality. JavaScript provides two equality operatots:
ically via a combination of syntactic subtyping and SMT- implicitly coerces the second operand if its tag differsiro

based|[11] logical validity checking. the first, and strict equality== does not perform any coer-
In System!D, every value is described by a refinement cionf To avoid reasoning about implicit coercions, we give a
type of the form{v|p}, read ‘v such thatp”, where p relatively weaker type te=, where the boolean result relates

is a formula that can mention. For example, 3 can be its operandsnly if they have the same tag.
given the type{v|tag(v) = “number” } andtrue the type
{v|tag(v) = “boolean”}, wheretag is an uninterpreted
function symbol in the refinement logiepta function in the
programming language. We use the following abbreviations
to make the refinement binder implicit and the types concise.

Integers. JavaScript provides a single number type that has
no minimum or maximum value. However, programmers
and optimizing JIT compilers [38] often distinguish intege
from arbitrary numbers. In SystelD, we describe integers
with the abbreviationnt(z) = Num(z) A integer(x). We
introduce the uninterpreted predicatgeger () in the types

2 v Num(z) 2 tag(z) = “number” . . . . .
{r} o {vip} (@) o 9(w) B . of integer literals, and functions like propagate “integer-
Top(xz) = true Bool(x) = tag(x) = “boolean B . . -
o R ] ness” where possible. Furthermore, numeric functions use
T = {T(w)} Str(z) = tag(x)= “string”

. . the (decidable) theory of linear arithmetic to precisesen
if pthenqi else gz =itepq1 ¢2 = (p = @) A (-p = 2) about integers, which is important for dealing with arrays.

ziff p2 itep (z = true) (z = false
b p( ) ( ) Tracking Control Flow. System!D precisely tracks con-

trol flow by recording that the guard of an if-expression is
truthy (z) = ~falsy(x) truthy (resp. falsy) while checking the then-branch (resp.
else-branch), enabling Systelid to verify the annotation
Primitives. We use refinements to assign precise, and for negate as follows. Because of the call toypeof,
sometimes exact, types to Systébn primitive functions, SystemlD tracks thatVum(x) holds along the then-branch,
defined in the filebasics.dref (Figurel). Notice that  sox can be safely passed to the subtraction operator which
typeof returns the tag of its input. Some examples beyond produces a number as required. For the else-branch, SiBtem
ones we have already seen includg(null) = “object” records that. Num(x). The negation operator, which can be
and tag(undefined) = “undefined”. The type of the applied to any value, produces a value of typéff —falsy(x)}
negation operator inverts “truthiness.” The types of the op-  which is a subtype oBool. Thus, both branches satisfy the
erators&& and | | are interesting, because as in JavaScript, specification provided by the programmer.
they do not necessarily return booleans. The “guard” opera-
tor && returns its second operand if the first is truthy, which 2.2 Imperative Updates
enables the idiomif (x && x.f) { ... } that checks  JavaScript is an imperative language where variables can
whether the object and its“¢” field are non-null. Dually,  pe reassigned arbitrary values. Consider the DJS function
the “default” operatorl | returns its second operand if the a1so_negate in that is likenegate but first as-
first is falsy, which enables the idiom = x || default signs the eventual result in the variakleand its translation
to specify a default value. Theoperator is specified as an  to SystemD on the right (ignore the comments for now).
intersectionof function types and captures the fact that it~ Several aspects of the translation warrant attentiont, Firs
performs both string concatenation and numerical addition since the formal parameter like all JavaScript variables,
but doesnot type check expressions like+ “hi” thatrely js mutable, the translation of the function body begins with

on theimplicit coercionin JavaScript. We choose types for an explicit referencecell _x initialized with x, and each
System!D primitives that prohibit implicit coercions since

they often lead to subtle programming errors. 3Every value excepltal is strictly equal to itself.

alsy(z) £ x € {false vnull vundefined v “” v 0 Vv NaN
Yy




function also_negate(x) { 1 |let also_negate = fun x —> (xT1=@; $1=0 *)
2| let _x = ref x in (x To=x:Top; Yo= Uy x) *)
if (typeof x == "number") | 3 | if typeof (deref _x) == "number" then (* I's =Ta, _x:Refly; Xz =3o *)
x =0 - x; 4 X := 0 - (deref _x) (* Ty =T3, Num(z); Xa=3xa:Num. (bz > x4) *)
else 5 | else
x = !x; 6 _x := !(deref _x) (¥ I's =T'3,~Num(z); X6 = Ize:{Viff falsy(z)}. (le — x6) *)
71 (* Ty =T3; 7= 32" :{ite Num(x) Num(v) Bool(v)}. (s~ z') *)
return x; 8 | deref _x in (*x T's=T3; Yg=237 %)
} o |let _also_negate = ref {"__code__": also_negate}

Figure 2. DJS functiomlso_negate; Desugared to Systetd; Verifying «: Top — {ite Num(x) Num(v) Bool(v)}

a means of managing these concerns. Rather Bedfl’, a
reference type is writteRef ¢, wherel is the (compile-time)
name of a location in the heap, and a separate (compile-

read ofx is desugared to a dereference offf second,
notice that scalar constants likeand true and operators
like typeof and== are translated directly to correspond-
ing ones in SystertD. Third, notice that each assignmentto time) heap maps locations to types, for example> T').

the JavaScript variabletranslates to a set reference(as- Strong updates are realized by allowing heaps to change
signment) operation to update the contents of the heap cell.flow-sensitivelyand the aliasing problem is mitigated by
Finally, since every JavaScript function is actually arechj maintaining the invariant that distinct location nanfesnd

the translation stores the function value in a distinguishe ¢’ do not alias. SysterfD employs this approach by using a
“__code__" field, which we assume is inaccessible to source type environmenk' that grows and shrinks as usual during
programﬁ For SystemD to verify thatalso_negate sat- type checking but remains flow-insensitive, arfteap envi-
isfies the specification, it must precisely reason about heapronmentX that can be strongly updated per program point.

updates in addition to control-flow as before.

Reference Types. The traditional way to handle references

shows how SysterdD checks the desugared
version ofalso_negate. The figure shows, at each linig
the type environment; used to check the expression on the

in the A\-calculus|[28] is to (a) assign a reference cell some line, and the heap environment that existsafter checking

type Ref T', (b) require that only values of tydébe stored in

it, and then (c) conclude that dereferences produce vafues o

typeT'. This approach supports so-calledak updatese-
cause even if a stored value satisfies a stronger $ygiean

T (i.e.if S is a subtype of""), subsequent dereferences pro-
duce values of the original, weaker typePut another way,

this approach requires that the type assigned to a referenc?g - x) rather thar(¢ — Top))

cell be a supertype of all the values written to the cell. Un-
fortunately, weak updates would preclude Systénfrom
verifying also_negate. The initialization of_x on line 2
stores the parameterwhich has typelop, so_x would be
assigned typeRef Top. The assignments on lines 4 and 6

the expression. After starting with the empty heap= g,
the allocation on line 2 creates a fresh locatigin the new
heapX; 2 ¥; @ (¢, ~ x) and addsx: Ref ¢, to the type
environment. We use the symbelto construct unordered
sets of heap bindings. To exploit the precision of dependent
types, we map locations tealuesrather than typesi.g.
When checking the if-expression guard on line 3, the
deference retrieves the initial valudrom the heaps, so as
a result of the tag-test, Systdib addsNum(x) to the type
environment’, along the true-branch aneVum(x) to I'g
along the false-branch. In the true-branch, the subtnactio

type check because the updated values satisfy the triyial ty on line 4 is well-typed becaus¥um(x), and produces a

Top, but the dereference on line 8 produces a value with type

Top, which doesot satisfy the specified return type. Thus,

we need a way to reason more precisely about heap updates,

Strong Updates. Allowing assignment t@hangethe type
of a reference is calledtrong updatewhich is sound only
when a reference is guaranteed to point teirzgle heap
cell and when there accesses through otliaisesthat re-
fer to the same cell. Thalias Typespproachl[32] provides

4Presentations of imperative languages often model adsignariables
directly rather than with explicit references. Both apptues are equivalent
in expressiveness as well as challenges for type checkieg;hwose the
latter to make the presentation more similaitps [21] and System C[8].

5To eliminate the assumption, we could instead treat eachtitmas a

pair of a function value and an associated object. This @mbrgposes no
technical difficulty, but we follow the\ ;s encoding for simplicity.

numberz, that is stored in the heay, at location?,. In

the false-branctx is negated on line 6, producing a boolean
g that is stored in the heals at location/,.. System!D
combines the branches ljgining the heaps:; and X,
producing®; that describes the heap no matter which branch
is taken. The dereference on line 8 retriewésa value of
type {ite Num(x) Num(v) Bool(v)}, as required by the
return type annotation.

In this way, SysteniD syntactically tracks strong updates
to the heap, while reducing subtyping obligations to impli-
cation queries in an ordinary, pure refinement logic [8] that
doesnot model imperative updat@s.

6 Existentials are not problematic as they only appear dusiregking [25].



2.3 Simple Objects

JavaScript's objects exhibit several interesting semanti
properties. Consider the following object initialized it

a single key (also known as field or property). We assume
thatassert is a pre-defined function that aborts when its ar-
gument is falsy; JavaScript does not provide such a functioln
as built-in, but it is trivial to define.

2

3
var x = {"f": 13}; 4
assert (x.f == 1 && x.g == undefined); 5
x.g = 2; delete x.f; 6
assert (x.g == 2 && x.f == undefined);

x.f.g; // raises exception
var k = "h"; x[k] = 3; assert (x[k] == 3);

Notice that when retrieving the non-existenpf’ key from

x, JavaScript returnsndefined as opposed to raising an
exception. Attempting to retrieve a key froumdefined,

or null, however, does raise an exception. Keys can be

Mutability and Dynamic Keys. The combination of nested
refinements and strong updates allows us to precisely track
objects with dynamic keys despite the presence of impera-
tive updates. Consider the desugaring of our example above;
we omit the assertions for clarity.

let _x

_ ref (ref {"f": 1}) in
X

set (_deref (_deref _x)) "g" 2;

_x := del (_deref (_deref _x)) "f'";

let _k = "h" in

_x := set (_deref (_deref _x))
(coerceToStr (deref _k)) 3;

The allocation on line 1 adds three bindings to the type
environment — d:{v = upd(empty, “£”,1)}, ptr:Reft,

and _obj:Ref (', where ¢ and ¢’ are fresh locations —
and produces the heap, = (¢'+ ptr) @ (£~ d). No-

tice that the dictionary is stored via an additional level
of indirection to facilitate the encoding dfide-effecting
JavaScript object operations. The object extension on line

added or removed to objects, and can even be arbitrary, adds?’: {v = upd(d, “g”,2)} to the type environment and

dynamically-computedhlues, not just string literals, that are
converted to strings if necessary. Dynamic keys are pes@asi

strongly updates the heap &, 2 (¢’ ptr) @ (£~ d').
The deletion on line 3 and the extension on line 5 (through a

— objects are commonly used as hash tables with unknowndymmiC key) have similar effects on the static heap, thereb

sets of keys — but they are quite challenging to track inside
a static type system.

Nested Refinements. To support dynamic keys, we adopt
the System D primitives [8] for (functional) dictionary ape
ations, shown in the first four lines of the fil®jects.dref
(Figure 3). The primitive function applicatioget d k re-
trieves the keyk from dictionary d, where sel(d, k) de-
scribes the exact binding as a value in the refinement logic;
set d k y produces a new dictionary that extentiaith a
binding for k&, shadowing previous bindings, if any, where
upd(d, k,y) describes the new dictionardel d k pro-
duces a new dictionary with a binding removed, using the
logical symbolbot (distinct from all source-level values)
to denote its absence; am@m d k indicates the presence
or absence of a bhinding, where we write the abbreviation
has(d, k) = sel(d, k) # bot.

The key innovation ohested refinemenia System D
allows syntactic type termé&/ (like function types) to be
written within refinement formulas using an uninterpreted
“has-type” predicater :: U, while staying within the de-
cidable McCarthy theory of arrays [27]. The has-type pred-
icate allows System D to describe dictionaries that map
dynamickeys toarbitrary valued] For example, we write
{Dict(v) A sel(v,k) : Bool -» Bool} to describe a dictio-
naryd with key k that binds a boolean-to-boolean function,
and{v = upd(d, “g”,4)} to describe a dictionary’ that is
just like d but with an additional binding. We refer the reader
to [€8] for the technical development of nested refinements.

7 Prior approaches such a5 [5] were limited to dynamic keytsstiose first-
order (non-function) values.

statically verifying the assertions.

2.4 Function Types

In order to fully understand the challenges of JavaScript
objects, we must first pause to take a closer look at function
types. The function types we have seen so far —nfgate
and the primitives irbasics.dref — have not mentioned
heaps, because their inputs and outputs are scalar values.
However, JavaScript objects are reference values, and are
passed to and returned from functions through the heap.
Thus, to account for heaps and side-effects, a Sysizm
function type has the following form.

V[Z;Z;F] x:T1/i]1 ~>T2/22

This type describes a function that, given an argument of
typeT; in a calling context that satisfies the input heap type
31, produces an output value of type and a modified
heap typeS,. A function type can be parameterized by
sequences ofype variablesA, location variablesL, and
heap variables?. A heap types is like a heap environment

3 but maps locations to binder-type pairs rather than values
(e.9.(¢ » y:T) rather than(¢ — v)); the binders are useful
for relating heaps across function boundaries. The binder
x of the input type, as well as all of the binders in the
input heapy;, are in scope in the outputorld 75 /3,.

We often omit binders when they are not referred to. To
match the structure of function types, function applicasio
must instantiate type, location, and heap variables. Hewev
our implementation infers instantiations in almost allesas
using standard local type inference techniglies (§ 6). When
we write DJS examples in the sequel, we omit instantiations



val set :: (* d:Dict — — y:Top — {v=upd(d,k,y)} *)

val del :: (% d:Dict — k:Str - {v=upd(d,k,bot)} *)

val has :: (* d:Dict — k:Str - {v iff has(d,k)} *)

val get :: (* d:Dict — k:Str — {ite has(d,k) (v =sel(d,k)) (v =undefined)} *)

val setPropObj :: (* (w:Ref, k:Str, y:Top)/(xz w~ (d:Dict,2)) — {v=y}/(x—(d{v=upd(d,k,y)},z)) *)
val delPropObj :: (* (z:Ref, k:Str)/(zw (d:Dict,)) — Bool/(x (d':{v = upd(d,k,bot)},i)) *)
val hasPropObj :: (* (x:Ref, k:Str)/(zw (d:Dict,z)) — {v iff ObjHas(d,k,cur,i)}/same *)
val getPropObj :: (¥ (x:Ref, k:Str)/(zw (d:Dict,z))
— {ite ObjHas(d,k,cur,z) (v = ObjSel(d,k,cur,i)) (v =undefined)}/same *)

val getldxArr :: (¥ VA. (x:Ref, i:Int)/(z~ (a:Arr(A),z))

— {ite -packed(a) (v:= Av Undef(v)) (ite (0<i<len(a)) (v A) (Undef(v)))}/same *)
val getLenArr :: (¥ VA. (x:Ref, k:{v= “length”})/(z ~ (a:Arr(A),z))

— {ite packed(a) (v =len(a)) Int(v)}/same *)
val getPropArr :: (* VA. (x:Ref, k:{Str(v) Av+ “length”})/(z ~ (a:Arr(A),z))

— {ite HeapHas(H,i,k) (v = HeapSel(H,z,k)) (v =undefined)}/same *)

val getElem :: (and (type getPropObj) (type getIdxArr) (type getLenArr) (type getPropArr))

val setldxArr :: (¥ VA. (x:Ref, i:Int, y:A)/(xz+~ (a:Arr(A),))
> {v=y}/(x~(a:{v= Arr(A) A arrSet(v,a,i)},&)) *)

Figure 3. Excerpt fromobjects.dref

at applications wherever our current implementation mfer This link is set when the base object is created and cannot
them. We sweeten function type syntax with some sugar: be changed or accessed by the prodﬂalmhen trying to
retrieve a keyk not stored in an object itself, JavaScript
transitively searches thprototype chairof x until it either
findsk or it reaches the root of the object hierarchy without
finding k. The prototype chain does not play a role in the
semantics of key update, addition, or deleffn.
* In an input world, a reference binding Ref without a For example, consider the initially empty objedtild
location introduces a location variahlethat is quantified created by the functiobeget (described in the sequel) with
by the type, and: (a value of typeRef L) can be used as  prototype objecparent. The prototype of object literals,

* When used as an output heap, the tokeme refers
to the sequence of locations in the corresponding input
heap, where each binding records that the final value is
exactly equal to the initial value.

a location in heaps to refer to this variable Further, like parent, is the object stored iMbject.prototype
the dotted variable introduces a location parameter, (note that the“prototype” key of Object is not the
corresponding to the prototype of same as its prototype object). Thus, all keyparent and

* A heap variableH is implicitly added to a function type ~ Object.prototype are transitively accessible vinild.
when it contains none, andl is added to both the input

and output heafsIn this case, the toketur refers toH . var parent = {"last": " Doe"};
var child = beget(parent);

For example, compare the type fiisPropObj (Figure 3) child.first = "John";
followed by its expansion. assert (child.first + child.last == "John Doe");

(z: Ref, k:Str)/(z v (d: Dict, &) e E"?iz"hin;h}im ==ttff;);t,,) falsey
assert (child.hasOwnProper as == false);
- {viff ObjHas(d,k, cur,z)}[same perty
VL,L' H. (z:Ref L, k:Str) | H & (L = (d: Dict, L))
— {viff ObjHas(d,k,H,L")}/H & (L~ (d':{v =d},L"))

The JavaScript operatar in x tests for the presence &f
anywherealong the prototype chain af whereas the native
functionObject .prototype.hasOwnProperty tests only

) the “own” object itself. Keys routinely resolve through pro
2.5 Prototype-Based Objects totypes, so a static type system must precisely track them.
JavaScript sports a special form of inheritance, where each

base object is equipped with a link to jxototype object 9Many implementations, however, do expose the prototypenaftgectx
with a non-standaré . __proto__ property. We discuss this further[in § 7.

8 This variable corresponds to the “frame” from separatigidd16]. 10This is not true in ES5 with the addition of setters, as diseds &Y.




Unfortunately, we cannot encode prototypes directly waithi

Let us return to the example of theild, parent and

the framework of refinement types and strong update, as thegrandpa prototype chain to understand how unrolling cap-
semantics of transitively traversing mutable and unbodnde tures the transitive lookup. The DJS key membership test on
prototype hierarchies is beyond the reach of decidabl¢; firs the left desugars to Systelid as follows.

order reasoning.

Shallow and Deep Heaps. We solve this problem by syn-
tactically reducing reasoning about prototype-basedabbje

k in child ‘ ‘hasPropObj (deref _child) (deref _k)

to the refinement logic. Our key insight is to decompose The result of the function call has the following type.

the heap into a “shallow” part, the bounded portion of the . '
» part, {Ulff Oijas(dl,k, {((2 > <dQ,€3))7 (63 > <d3,€4))7H},(2)}

which is the potentially unbounded portion which we can \ya expand this type by unrollingbjHas

heap for which we have explicit locations, and a “deep

represent by uninterpreted heap variabtesWe explicitly
track prototype links in the “shallow” heap by using bind-
ings of the form(¢ — (d,¢’})), where the prototype of the
object at/ is stored att’. We cannot track prototype links
explicitly in the “deep” heap, so instead vemmarizen-

to the following.
{v iff has(d1,k) Vv has(d2,k) v has(ds,k) v HeapHas(H,{l4,k)}

The first three disjuncts correspond to looking for the key in
the shallow heap, and the last is the uninterpreted predicat

formation about deep prototype chains by using the abstractthat summarizes whether the key exists in the deep heap.

(uninterpreted) heap predicat®apHas(H, ¢, k) to encode
the proposition that the object stored at location H tran-

sitively has the key, and the abstract (uninterpreted) heap | child[k] ‘

function HeapSel(H, ¢, k) to represent the corresponding
value retrieved by lookup.

As an example, recall theéhild object and its prototype
parent. Suppose that the prototype pérent is an un-
known objectgrandpa, rather thanObject.prototype
as written. If child, parent, and grandpa are stored
at locations?y, /5, and ¢35 with underlying “own” dic-
tionary valuesd;, d», and ds, then we write the heap
{21 = <d1,£2>,£2 = <d2,£3>,€3 = <d3,€4>,H} — Wwe use
set notation to abbreviate the concatenation of heap kgsdin
with @. Despite not knowing what value is the prototype of
grandpa, We name its locatioi, that is somewhere in the
deep part of the heaf.

Key Membership and Lookup. When describing simple
objects, we used the original System D primitivesi and

Similarly, key lookup in DJS is desugared as follows.

getPropObj (deref _child) (deref _k)

We unroll the type of the Systeth expression as follows.

{if has(di1,k) then v = sel(d,k) else
if has(dz2,k) then v = sel(d2,k) else
if has(ds,k) then v = sel(ds, k) else
ite HeapHas(H,{4,k) (v = HeapSel(H,{4,%)) Undef (v)}

Thus, our technique of decomposing the heap into shallow
and deep parts, followed by heap unrolling, capturestie
act semantics of prototype-based object operations modulo
the unknown portion of the heap. Thus, Syst@hprecisely
tracks objects in the presence of mutation and prototypes.

Additional Primitives. The new update and deletion prim-
itives setPropObj anddelProp0bj (Figure 3) affect only

get) to desugar key membership and lookup operations. But the “own” object, since the prototype chain does not patrtici

in fact, to account for the transitive semantics of key mem-

bership and lookup facilitated by prototype links, Systém
uses the new primitivelsasProp0bj andgetProp0bj de-
fined inobjects.dref (Figure 3). These primitives differ
from their purely functional System D counterparts in two
ways: each operation goes throughegerenceto a dictio-
nary on the heap, and the abstract predicéléd{as and
ObjSel are used in place dfas andsel. These abstract pred-
icates are defined over tlagsjoint unionof the shallow and

deep heaps and, intuitively, summarize whether an object

transitively has a key and, if so, the value it binds.

Transitive Semantics via Unrolling. We encode the tran-

pate in the semantics. We model native JavaScript functions
like Object.prototype.hasOwnProperty with type an-
notations in the filprelude. js (Figure 4). Notice that the
function type for objects (the first in the intersection) cke
only the “own” object for the given key.

Constructors. JavaScript provides the expression form
new Foo(args) as a second way afonstructingobjects,

in addition to object literals whose prototypes are set to
Object.prototype. The semantics are straightforward,
but quite different than the traditionakw syntax suggests.
Here, ifFoo is any function (object), then a fresh, empty ob-
ject is created with prototype objeEbo . prototype, and

sitive lookup semantics in the abstract predicates by decom Foo is called with the new object bound tchis (along
posing the predicates into shallow and deep disjuncts.in pa with the remaining arguments) to finish its initialization.

ticular, we define the predicates bgrolling the shallow part
of the heap by chasing prototype links until we “bottom out”
with uninterpreted predicates for the deep heap.

We desugar constructors anew with standard objects and
functions (following A ;s [21]) without adding any special
System!D constructs or primitive functions.
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var __hasOwn

/*: (this: Ref, k:Str)/(this — (d: Dict, this)) — {v iff has(

A VA. (this:Ref, k:Str)/(this — (a:Arr(A),this)) - {v

function Object() { ... }; Object.prototype = {"hasOwnP

/*: YA. (this:Ref, x:A)[(this — (a:Arr(A), th

var __push

A VA. (this:Ref, i:Int)[(this = (a: Arr(A), this)) — {ite packed(a) (v iff 0<i<len(a)) Bool(v)}/same

— Int/(this — (a':{v = Arr(A) A arrSize(v,a,1)}, this)) */ "#extern";

var __pop = /*: VA. (this:Ref, x:A)/(this — (a: Arr(A), this))

— {ite packed(a) (v A) (v:=Av Undef(v))}

| (this = (a’:{v : Arr(A) A arrSize(v,a,-1)}, this)) */ "#extern";
function Array() { ... }; Array.prototype = {"push": __

d,k)}/same
iff k= ‘“length”}/same */ "#extern";
-}

roperty": __hasOwn, "constructor": Object,

is))

push, "pop": __pop, "constructor": Array, ...

Figure 4. Excerpt fromprelude. js

Inheritance. Several inheritance relationships, including

challenges as they are commonly used both as finite tuples

ones that simulate traditional classes, can be encoded withas well as unbounded collections.

the construction mechanism, as shown in the popular book
JavaScript: The Good ParfdQ]. Here, we examine thero-
totypal patterna minimal abstraction which wraps construc-

tion to avoid the unusual syntax and semantics that leads

[17, "hi", truel;
arr[3] = 3; arr.push(4);

assert (arr.length == 5 && arr[5]

var arr

undefined) ;

to common errors; we discuss the resfin & 6. The function
beget (the basis fobObject . createin ES5) returns a fresh
empty object with prototype.

/*: YL. o:Ref [ (o (d: Dict, o))
- Ref L/(Lw~ ({v=-empty},o)) ® (o~ same) */
function beget(o) {
/*: #ctor this:Ref — {v=this} */
function F() { return this; };
F.prototype = o;
return new /*:Lx/ F();

The #ctor on line 4 instructs desugaring to: initialize the
function object with a“prototype” key that stores an
empty object literal (since it will be called as a construyto
and expand the type annotation as follows to require that
this initially be empty, as is common for all constructors.

this: Ref | (this ~ ({v = empty}, this)) - {v = this} | same

The assignment on line 6 strongly updéaies . prototype
(overwriting its initial empty object) with the argumeat
Thus, the object constructed (at locatiéh on line 7 has
prototypeo, sobeget has the ascribed type. In most cases,
new can be used without a location annotation and a fresh
one is chosen. In this case, we annotate line 7 Wiffrom

the type obeget), which our implementation does not infer
because there is no input corresponding to

2.6 Arrays

As for any object, retrieving a non-existent key returns
undefined rather than raising an “out-of-bounds” excep-
tion. Like other objects, arrays are extensible simply by
writing “past the end.” Array literals objects have proto-
typeArray.prototype, which includes gush (resp.pop)
function for adding an element to (resp. removing an ele-
ment from) the end of an array.

Loops are used to iterate over arrays of unknown size. But
since lookups may retutindef ined, it is important to track
when an access is “in-bounds.” JavaScript bestows upon
arrays an unusu&llength” property, rather than a method,
to help. Reading it returns the largest integer key of thayarr
which is not necessarily its “size” because it may contain
“holes” or even non-integer keys. Furthermore, assigning a
numbem to the “length” of an array eithetruncatesit if
n is less than its current length, extendst (by padding
with holes) if it is greater. Despite the unusual semantics,
programmers commonly use arrays as if they are traditional
“packed” arrays with integer “indices” zero to “size” minus
one. The type system must reconcile this discrepancy.

Array Types. We introduce a new syntactic type term
Arr(T) and maintain the following four properties for ev-
ery valuea that satisfies the has-type predicate Arr(T).
We refer to strings that doot coerce to integers as “safe,”
and we use an uninterpreted predicaife to describe such
strings €.9.safe( “f00” ) whereas-safe(“17”)).

The other workhorse data structure of JavaScript are array&1) @ contains the speciallength” key.

which are really just objects with integer “indices” conest
to ordinary string keys. However, arrays pose severalytrick

(A2) All other “own” keys of a are (strings that coerce to)

integers.



(A3) For all integers, eithera maps the key to a value of
typeT, or it has no binding fot.

(A4) All inherited keys ofa are safei(e. non-integer) strings.
An array can have arbitrary objects in its prototype chain,

so to ensure (A4), we require that non-array objects bind
only safe strings. This sharp distinction between between a

In particular, the updated array is packed if: (1) the
original arraya is packed; and (2) the updated indeis
either within the bounds aof (in which case, the length of
a’ is the same as) or just past the end (so the length of
a’ is one greater tham). In similar fashion, we specify the
remaining primitives for update and deletion to maintaim th
array invariants, and the ones for key membership to use

ray objects (that bind integer keys) and non-array objects them, but we do not show them[in Figufe 3.

(that bind safe string keys) allows Systéto avoid rea-

Inprelude. js (Figure 4), we use precise types to model

soning about string coercions, and does not significantly the nativepush and pop methods ofArray.prototype

limit expressiveness because programs typically conform t
this division anywaE To enforce this restriction, the type
for keys manipulated by primitives iobjects.dref and
prelude. jsis actuallySafeStr, rather tharbtr as shownin

Figure 3 anfFigure]4, whefeStr = { Str(v) Asafe(v)}.
Packed Arrays. Arraysa that additionally satisfy the unin-

terpreted predicatgacked (a) enjoy the following property,
wherelen(a) is an uninterpreted function symbol.

(A5) For all integerg, if i is between zero antdn(a) minus
one, theru mapsi to a value of typd'. Otherwiseq has
no binding for:.

Tuple Arrays. Using additional predicates, Systetd

gives precise types to array literals, which are often used

as finite tuples in idiomatic code. For example, we can de-
scribe a pair of integers with the typer = Arr(Int) A
packed(v) Alen(v) = 2} and aheterogeneousair with {v ::
Arr(Top) A packed(v) A len(v) = 2 A Str(sel(v, “0”)) A

(which maintain packedness, as above), as well as the be-
havior of0bject .prototype.hasOwnProperty On arrays

(the last two cases of the intersection type). Thus, the pre-
cise dependent types we ascribe to array-manipulating oper
ations maintain invariants (A1) through (A5) and allow DJS
to precisely track array operations.

Desugaring. It may seem that we need to use separate
primitive functions for array and non-array object opera-
tions, even though they are syntactically indistinguisb @b
JavaScript. Nevertheless, we are able to desugar DJS based
purely on expression syntax (amdt type information) by
unifying key lookup within a single primitivgetElem and
giving it a type that is théntersectionof the (three) array
lookup primitives and the (one) non-array lookup primitive
getPropObj. We definegetElen in [Figure 3, where we
specify the intersection type usingd andtype as syntac-

tic sugar to refer to the previous type annotations. We de-
fine similar unified primitives fosetElem, hasElem, and

Bool(sel(v, “17))}. Thus, the technique of nested refine- 4 1g1en (not shown in[Figure|3). Desugaring uniformly

ments allows us to smoothly reason about arrays both asyangjates object operations to these unified general primi
packed homogenous collections and as heterogenous tuplesjyes and type checking of function calls ensures that the

Array Primitives. We define several array-manipulating
primitives in objects.dref (some of which we show
in [Figure 3) that maintain and use the array invariants
above. For key lookup on arrays, we define three primi-
tives: getIdxArr looks for the integer key on the own
objecta and ignores the prototype chain @because (A4)
guarantees that will not inherit 4, and returns a value sub-
ject to the properties (A3) and (A5) that govern its integer
key bindingsgetLenArr handles the special case when the
string keyk is “length”, which (A1) guarantees is bound
by @, and returns the the true length of the array only if it is
packed; angzetPropArr deals with all other (safe) string
keys k by reading from the prototype chain of the array
(re-using the heap unrolling mechanism) ignoring its own
bindings because of (A2).

For array updates, we defisetIdxArr that uses the fol-
lowing macros to preserve packedness (A5) when possibl

arrSet(a’,a,i) 2 if 0 < i < len(a) then arrSize(a’, a,0) else
if i = len(a) then arrSize(a’, a, 1) else true

arrSize(a’,a,n) 2 packed(a) =
(packed(a') A len(a’) = len(a) +n)

o~ oo b w NDe

1\we discuss an alternative approacfiii § 7.

appropriate cases of the intersection type apply.

2.7 Collections

As discussed ip 8 2,2, strong updates are sound only for ref-
erences that point texactly oneobject, which is far too re-
strictive as real programs manipulate collections of disjec

In this section, we describgeak referencem DJS to refer

to multiple objects, a facility that enables programminthwi
arrays of mutable objects as well as recursive types.

Weak References. In the following example, we iterate
over an array of passenger objects and compute the sum
of their weights; we use a default valuex_weight when

a passenger does not list his weight (ignore the unfamiliar
annotations for now).

/%: (Lpass — frzn) — same */

for (i=0; i < passengers.length; i++) {
var p = passengers[i];
/*: #thaw p */
if (p.weight) { sum +=
else { sum +=
/*: #freeze p */

p.weight; %}
max_weight; }




We could describe the arragssengers with the typeRef ¢
for a location?. However, this type is not very useful as it
denotes an array of references tsiragleobject.

Weak Locations. To refer to anarbitrary number(zero
or more) objects of the same type, we adopt the Alias
Types [32] solution, which categorizes some locations as
weakto describe an arbitrary number of locations that satisfy
the same type, and syntactically ensures that weak location
are weakly updated. 4
We introduce a new kind of heap bindiig ~ (T,¢')), 5
wherel is a weak location, all objects that might reside ther&
satisfyT", and/’ is the strong location of the prototype of all *
objects that reside at locatidnThere isno heap binder for
weak locations since there is not a single value to describez
In our example, we can use@pm > (Tpass, Lop))
to describe passenger objects, whégg is the location
of Object.prototype and T}, iS the dictionary type
{Dict(v)Ahas(v, “weight”) = Num(sel(v, “weight”))}. 14
If we assign the type{v = Arr(Ref (pass) A packed(v)}, s
to passengers, thenp has typeReprass, and thus each 16
(desugared) use af is a dictionary of typeT,,ss. This *7
type is quite unsatisfying, however, because the condition
establishes that along the then-branghdoespossess the

11

12

13

Recursive Types. We reuse the weak location mecha-
nism to describe recursive data structures. Consider the
following adapted from the SunSpider [34] benchmark
access-binary-trees. js, annotated in DJS.

/*: #define Ty, {“i”:Num, “l”,“r” :Reflz,,,} */
/*.' #weak (Etn ’_><Ttn~,étnp>) */
/*: #ctor (this:Ref, left, right: Ref Uy, item:Num)
/(/Ttnwfrzn) — Rcfgtn/sarrLc */
function TreeNode(left, right, item) {
this.1 left; this.r = right; this.i = item;
/*: #freeze this */
return this;
}
/*: this:Rcme — Num */
TreeNode.prototype.itemCheck = function £() {
// thaw/freeze annotations inferred
if (this.l == null) return this.item;
else { return this.i
+ f.apply(this.1)
- f.apply(this.r); %

The source-level macro on line 1 introducEs, to abbre-

key and therefore should be assigned the more precise typgjiate the type offreeNodes, using traditional record type

{Num(sel(d, “weight”))}.

Thaw / Freeze. To solve this problem, we adopt a mecha-
nism found in derivatives of Alias Types.g.[2,/12,14| 31])
that allows a weak location to bemporarily treated as
strong. A weak locatiorf is said to befrozenif all refer-
encesRef ¢ use the location only at its weak (invariant) type.
The type system cathaw a location, producing a strong
referenceRef /), (with a fresh name) that can be used to
strongly update the type of the cell. While a location is

syntax instead of the underlying McCarthy operators. Line
2 defines the weak location farreeNodes, using the pre-
dictable locatiorY,,,, created by desugaring for the object
TreeNode.prototype. The constructor annotation itself
declares that the return type is a reference to one of these
recursive objects, which Systetd verifies by checking
that on line 6 the appropriate fields are added to the strong,
initially-empty objectthis before it is frozen and returned.

thawed, the type system prohibits the use of weak referencesRecursive Traversal. There are two differences compared

to the location, and does not allow further thaw operations.
When the thawed (strong) reference is no longer needed

to the original version of temCheck, which cannot be type

checked in DJS. First, we name the function being defined

the type system checks that the original type has been re-(notice thef on line 11), a JavaScript facility for recursive

stored,re-freezeghe location, and discards the thawed lo-

definitions. Second, we write. apply (this.r) instead of

cation. Soundness of the approach depends on the invarithis.r.itemCheck() as in the original, where the native
ant that each weak location has at most one correspondinglavaScript functiorpply allows a caller to explicitly sup-

thawed location at a time.

In our example, we do not need to temporarily violate
the type ofp, but the thaw/freeze mechanism does help
us relate the two accesses to. The thaw stateannotation
above the loop declares that before each iteration of the loo
(including the first one), the locatiof),..; must be frozen.
The thaw annotation on line 4 changes the type @b a
strong reference to a fresh thawed locatfenwhich stores
a particular dictionary on the heap (hamed with a binder)
that is retrieved by both subsequent uses.dfhus, we can

ply a receiver argument. The trouble with the original call
is that it goes through the heap (in particular, the protetyp
chain of this) to resolve the recursive function being de-
fined. This function will be stored in a strong object, and we
have no facility €.g. mu-types) for strong objects with re-
cursive types; our only mechanism is for weak objects. If we
write £ . apply (this.r), however, the recursive functian

is syntactically manifest, and we can translate the dedimiti

with a call to the standardlix primitive (Figure 1). I 85,

we describe how we handle a limited formafply that is

relate the key membership test to the lookup, and track thatsufficient for our idiomatic recursive definitions in DJS. We

p.weight produces a number. The freeze annotation on line
7 restores the invariant required before the next iteratids
describe this technique formally[in § 4.

expect that we can add a more powerful mechanism for re-
cursive types that supports the original code as writteh, bu
we leave this to future work.



2.8 Rest of the Paper ars expressions into A-normal form. We use tuple syntax

We have now completed our tour of Dependent JavaScript. (V0; e 17’7”) as sugar for the dictionary with fields”
Next, we formally define the syntax of Systeil in 3 through“n” bound to the component values.
and the type system 4. In, 8 5, we present the syntax Types and Formulas. Values in SystemD are described

of DJS and its desugaring to Systéi. We discuss our by refinement typesf the form{z|p} wherez may appear
implementation and resultsin § 6, directions for futurekvor  free in the formulap/4 andexistential typedz:T. S where

in[87, and related work in § 8. x may appear free ii§. Existentials are created during type
checking, and, by convention (rather than introducing more
3. Syntax and Semantics of Systenb syntactic categories), do not appear in programs. The lan-
We now introduce the formal syntax of values, expressions, guage ofrefinement formulamcludes predicates, such as
and types of SystenD, defined irf Figure]s. _the equality _and d|<_:t|(_)nary predicéies, and the usgal log-
ical connectives. Similar to the syntax for expressioneapl
Values. Valueswv include variablese, constants:, lamb- we use(Ty, ..., T,) as sugar for the dictionary type with

das Az. e, (functional) dictionariesy; ++ vz ~ wv3, and  fields “0” through“n” with the corresponding types.
run-time heap locations. The set of constants includes

nary {}, null, undefined, NaN, etc) and the primitve tiate variables, we distinguish between strong and weak lo-
functions frombasics.dref andobjects.dref (typeof, cation constants anda, and strong and weak location vari-

get, getElem, etc). Logical valuesy are all values and ap- ~ ablesL andL. Strong locationg and weak locationé can
plications of primitive function symbolg’, such as addition ~ P€ constants or variables. We useto range over arbitrary

+ and dictionary selectiosel, to logical values. location constants antll for arbitrary location variables.
Expressions. Expressions include values, functionappli- ~ 1YP€ Terms and Type PredicatesAs in System D, we use
cation, if-expressions, and let-bindings. The ascriptam an uninterpretetias-type predicate :: U in formulas to de-

e as T allows source-level type annotations. Since function SCribe values that have complex types, representetyisy
types will be parameterized by type, location, and heap vari termsU, which includes function types, type variables, null,
ables, the syntax of function application requires thas¢ne ~'€ference, and array types. A reference type names a strong
be instantiated. Reference operations include referdfie a O Weak location in the heap. [n 8.4, we discussed how
cation, dereference, and update, and the run-time seraantic function types are parameterized by sequences of type, lo-
maintains a separate heap that maps locations to values. Th&ation, and heap variables, and describe input and output

expressiomewobj ¢ v v’ stores the value at a fresh lo- worlds (type-heap pairs). At thgt point in the presentation,
cationr — where the namé is a compile-time abstraction ~We had only seen strong locations, so arrows were param-
of a set of run-time location names that includes with eterized with strong location variablds Since SystenmD

its prototype link set ta’, which should be a location. The includes weak locations as well, function types are parame-
thaw ¢ v operation converts a weak reference to a strong terized by arbitrary location variablédg and also include an
strong onefreeze ¢ 6 v converts a strong reference to a explicitweak heapl. We have not shown any examples that

weak one, where thaw staéeis used by the type system abstract over weak locations in this paper.

for bookkeeping. An expressionz : e labels the enclosed Heap Types. A heap typeS is an unordered set dfeap
expression, and a break expressiarak Quz v terminates  yariables  andheap bindingsh concatenated with the
execution of the innermost expression labededwithin the operator. We syntactically require that each heap haslgxact
function currently being evaluated and produces the result 5o heap variable, so we write a heap type as th&ﬁaiﬂ),
If no such labeled expression is found, evaluation becomes,yhere 7 is the “deep” part for which we have no informa-
stuck. Label and break expressions are included to tr@nslat {5 and/ is the “shallow” part for which have precise lo-
thg control flow opera_tions of DJS. Exceptions are arbitrary ation information. The heap bindir(g — =:T)) represents
objects that can be raised and handled as usual. the fact that the value at locatighhas typeT”; the binder
_The operational semantics is standard, based;gnwith . refers to this value in the types of other heap bindings.
minor differences. For example, we make prototype links e binding(¢ ~ (z:T",¢')) additionally records a proto-
manifest in the syntax of heaps (to facilitate_ he_ap un_rgllin type link #. The binding(? ~ ) records the currerthaw
in the type system), whereags stores them inside objects  giatenf weak locatior?, to help maintain the invariant that it
in a distinguished'__proto_" field. We refer the reader to o< at most one thawed location at a time.
[21] for the full details.
We use an A-normal expression syntax so that we need*?The presentation in|[8] required that the binderhérere, we allow the

only define substitution of values (not arbitrary expres- Pinder to be arbitrary, but usewhen it is convenient, Also, unlike in the
previous presentation, we eliminate the stratificatiomken polymorphic

sions) into types. \_Ne use a more ge_neral Syntax_ for exam-and monomorphic types: in Systém, polymorphism is expressed with the
ples throughout this paper, and our implementation desug-type parameters of function types.




Values v ou= x| ¢ | vittvam s | Azee | 1

Expressions e = v | [T;W;E] vive | ifvthenejelsees | letz=e1 in ey | easT
| ref fv | derefv | wvi:=v2 | newobjlwvv' | freezelOv | thaw/lv
| @z:e | break @Qre | throwe | trye;catch(z)ez | tryei finally es
Types S, T == {z|p} | =:T. S
Formulas p,q == Pw) | w=U | HeapHas(H,l,w) | pAq | pvqg | -p
Logical Values w = v | F(w) | HeapSel(H,{,w)
Syntactic Type Terms U == V[AMH]|Y/z:Ti /S -W | A | Null | Reft | Refl | Arr(T)
Heap Bindings ho w= (ea:T) | (U (T ) | U-0) | hohy | @
Weak Heap Bindings U i= (U= (T0) | VoW, |
Worlds W == Tg/f]z x,y,z € Identifiers A,B € TypeVariables
Heaps > := (H, iL) a € LocationConstants H ¢ HeapVariables
Strong Locations ¢ == a | L r € DynamicHeapLocations L € LocationVariables
Weak Locations ¢ = a | L F ¢ LogicalFunctionSymbols P e LogicalPredicateSymbols
Thaw States 6 == frzn | thwd/{ m u= 0| ( M == L | L

c € ValueConstants o { true,false,null,undefined, 1,2, “hanna”, (==), !, typeof, get,getElem, fix }

Figure 5. Syntax of System !D

Uninterpreted Heap Symbols. To describe invariants about  conditional branch; a polymorphic variable introduced by a

the deep part of a heap, SystéB introduces two unin-  function type; or the description of a weak location (which

terpretedheap symbolsThe predicateHeapHas(H, ¢, k) does not change flow-sensitively), namely, that every dbjec

represents the fact that the chain of objectsHnstart- stored at/ satisfies typel’ and has prototype link. A

ing with ¢ has the keyk. Similarly, the function symbol  heap environmerit is just like a heap type, except a strong

HeapSel(H, ¢, k) refers to the value retrieved when looking location? binds the value it stores (as opposed to thgpe

up keyk in the heapH starting with/. of v). A label environmen§ binding records the world that
the expression labele@z is expected to satisfy.

4. Type Checking

In this section, we present the well-formedness, typind, an
subtyping relations of SystenD. The type system reuses We highlight a few aspects of the largely straightforward
the System D! [8] subtyping algorithm to factor subtyping Well-formedness relations, defined iff in Appendix A.
obligations between a first-order SMT solver and syntactic
subtyping rules. The novel technical developments are: the
formulation of flow-sensitive heap types in a dependent set-
ting; the use of uninterpreted heap symbols to regain preci-
sion in the presence of imperative, prototype-based ahject
the encoding of array primitives to support idiomatic use of Heap Types. Locations in a heap typ& must either be
JavaScript arrays; and the use of refinement types to assignocation constants or location variables bound by the type
precise types to JavaScript operators. environment, and may not be bound multiple times. All heap

Environments. Type checking uses several environments. Pinders may refer to each other. Thus, the values in a heap
can be regarded as a dependent tuple.

4.1 Well-Formedness

Types, Formulas, and Logical Values.We require that
types bewell-formedwithin the current type environment,
where formulas are boolean propositions and mention only
variables that are currently in scope.

' s= g|[la:T |Tp|DA|TM|TH Function Types. Checking that a function type is well-

| T,({~(T.0)) formed proceeds in several steps. First, the polymorphic
¥ == (H,h) variables are added to the environment. Second, the weak
h == @ |hiohy | Uv) ]| (L (v,0)) ] (£~ 0) heapV is checked. Next, the locations @fare added to the
Q = g |Qaz:(T/Y) environment, and input typ#; is checked. Then, the input

heap types; is checked in an environment extended with
A type environmenf binding records either: the derived the inputbindet:. Finally, the procedurBinders collects all
type for a variable; a formulato track control flow alonga  binders from the input heap to be added to the environment,



Subtyping Value Typing ;3% QroaT

[S-REFINEMENT] [S-ExisTS] [T-VAR]
yfresh T.ply/z]=gqly/z]  T,a:T+ Sic S [T-Constl I(z) =8
'+ {z|p} = {z|q¢} '+ 32:7.5, £ 5, ;3 Qr e = ty(e) ;8 Qr = {y|ly=a}

Implication StaticLoc(r) =m_ m ¢ dom(X) [T-Lod]

;3 Qrr = {z|lz=rArzxz: Refm}

T [I-CNF] [T-EXTEND]
=P ;35 QF (v1, ve, v3) = (Dict, Str, T)
[I-VALID] [I-IMPSYN] , , [; 3 QrF v ++v2 —> w3 = {z]|x =01 ++v2 > v3}
Valid([T'] = p) Valid([I] = w=U") TrU <U
[T-Fun]
I'=p IF'sw:U

U=V[AMH| /T [S1>Ws TrU Q=0

Syntactlc Subtyplng Snapshot(il) = (EZg, 21) Fl = F,Z,M7 ﬁ7 \I’7IZT17EZ§

F1; E1;Q1i—€ll TQ/ZQ F1I—T2/22|=W2;7T

Ui = V@@E] ‘I’/I:Tl/(va}l) - W I3 Qr Adz.e = {yly=Az.eny = U}
Ua =V[AM;H] W [2:To [ (H, h2) > W2
F'-TocTy D,o:Torhe c hyym D,z [ho] - 7W1 © Wo  World Satisfaction ‘F»— T/ = W; r‘
Trt <l '-TcS TrYedr =[]
T Arr(T) < Arr(T) Tr A< A T+ Ref< Ref¢ I'-T/S & S/%;
'~ Null <: Ref¢ T+~ Refl<: Refl Figure 7. Value type checking for System !D

Figure 6. Subtyping for System D Arrays are invariant in their type parameter, as usual, but

R can be related with additional predicates. For examiple;
so that the output world’ /X, can refer to them and, thus, ~ Arr(Int) A len(v) = 2} is a subtype of v = Arr(Int)}.

express precise relationships with the input heap. o .
Heaps. The world subtyping judgmenit+ Ty /(H, h1) c

4.2 Subtyping Ty /(H, hs) (in[Appendix A) checks thal’ is a subtype of
Several relations, defined[in Figurie 6, comprise subtyping. 72 and that the heaps agree on the “deep” garfThen, it

) L ) _ . checks that the structure of the “shallow” parts match (mod-
Subtyping, Implication, and Syntactic Subtyping.As in ;5 hermutation of bindings, checked by theperator) and
System D, subtyping on refinement types reduces to implica- oo 105 5 substitutianof binders fromi, to &, . Finally, the

tign Qf refinem.ent formulas,. which are discha}rged by a com- heap bindings, which can be though of as dependent tuples,
bination of uninterpreted, first-order reasoning and synta .. ambedded as formulas and checked by implication.
tic subtyping. If the SMT solver alone cannot discharge an

implication obligation (I-\ALID), the formula is rearranged 4.3 Value Typing
into conjunctive normal form (1-8F), and goals of the form Lo ol . v
w = U are discharged by a combination of uninterpreted rea- Thg_value typing judgment; Q.'_ o T )_

. . . : verifies that the value has typeT in the given environ
soning and syn_tact|c subtyping (MPSyN). We vynte [7] ments. Since values do not produce any effects, this judg-
for the embeddingf a type as a formula, a straightforward .

N : ; . ment doesot produce an output heap environment. Each
.def|n|yon [8] that lifts to env.lronm_ent@“ﬂ and heap bind- primitive constant has a type, denoted by(c), thatis used
”f‘gs[[.hﬂ- Ourtreatment of eX|s.tent|aI types fc_>||ows the algo- by T-CoNsT. In our implementation, the standard prelude
rithmic (decidable) approach in [25]. In particular, whem o (basics.dref, objects.dref, andprelude . dref) cCOM-
the left side of an obligation, the existential binding islad prisety(c) The rules T-WR and T-BXTEND are standard
to the environment; there iso support for existentials on o 17 ¢ rule assigns run-time location(which appears

Ehet.”?ht' The v;/ay I?hwtr]tlflh tyrlJe checking mtro?huclesﬂems- during evaluation, but not in source programs) a reference
entials guarantees that they always appear on e feft. type corresponding to its compile-time location, using the

References and Arrays. As in Alias Types|[32], we en-  mappingStaticLoc. The rule T-FuN uses an empty label en-
force the invariant that distinct strong locations do nasl vironment to type check function bodies, so that break ex-
so references to them aneverrelated by subtyping. Incon-  pressions cannot cross function boundaries. The procedure
trast, weak locations describe zero or more locations, andSnapshot strips all of the binders from the input heap type

it is safe to treahull as a subtype ofnyweak location. $3; to add to the type environment and produces a heap envi-
That is, weak references amallablebut strong ones are not.  ronmentZ; for type checking the body. Dually, to check that



the resulting worldl; /X, satisfiesiV,, the world satisfac-  the possibility of null-dereference exceptions), we cleoos
tion relation (along with its helper, heap satisfactiorfijrod allow null references to facilitate idiomatic programming.
in[Appendix A) checks that all bindings have the appropriate Therefore, we modify the input type for the object primitve
structure (modulo permutation of bindings, related bythe N objects.dref to allow anull argument. For exam-

relation) and that the values k¥, satisfy the types ifi/. ple, consider the updated input type farsPropObj below,
whereT? = {T'(v)vv = null}. Notice that we add the pred-
4.4 Expression Typing icatex # null to theoutputtype, because iiasProp0bj

evaluates without raising an exception, theis guaranteed

The expression typing judgmeit %; Q v v = T/3 to be nonaull. In this way, SysteniD precisely tracks the

(Figure 8) verifies that the evaluation of expressiopro- iy ariants of thawed objects passengers from[E2.7).
duces a value of typ& and a new heap environment’.

Aside from the rules for label and break expressions, label (z:Ref?, k:Str) [ (z — (d: Dict, z))
environmentd) play no interesting role. We consider sev- — {z # null A (v iff ObjHas(d,k, cur,t))}/same

eral sets of typing rules in turn.

Imperative Operations. In System!D, we require thagll ] o ) )
imperative operations go through strong locations. Aiern ~ Function Application.  The T-App rule does quite a bit
tively, we could define analogs of the following rules for ©f heavy lifting to check the applicatiofi’; m; ] vy v,.
weak locations, but we choose not to since we provide a The proceduréreshen generates fresh binders for the out-
mechanism for temporariljhawing weak locations any- ~ Put heap type so that the output heap bindings at differ-
way. The rules T-RF, T-DEREF, and T-STREF manipu- ent call sites do not collide. The number of type, location,
late strong locations that bind “bare” values with no pro- &nd heap parameters must match the number of type, loca-
totype link. To check the reference allocatieas ¢ v, the ~ tion, and heap variables of the function typevgf Further-
rule T-REF ensures that is not already bound in the heap, More, the premis&  [m/M] ensures that the list of loca-
and then adds a binding that records exactly the value be-tions provides strong (resp. weak) locations for strongpire
ing stored. The rule T-BREFchecks that the given value is weak) variables, and that the list contains no duplicat_es '.[0
a reference to a location on the heap, and then retrieves the¢énsure the soundness of strong updates [32]. The sulstituti
stored value; this is the imperative analog to the “selfigjin ~ Of parameters for polymorphic variables proceeds in three
T-VAR rule. The rule T-8TREFstrongly updates a heap lo- ~ Steps. First, the_typ<_e variable$ are mstantlat_ed Wlth the
cation. The rule T-MwOBJ stores the value, in the heap ~ tYPe parameters’ using the procedurinst, which instan-

at location?; along witha prototype link to the locatiof, tiates type variables inside has-type predicates. Se¢bed,
that v, refers to. Although no typing rules manipulate lo- location variables\/ are replaced with the paramet@isby
cations with prototype links, several primitive functions ordinary substitution. Third, the heap variablésre instan-

(e.g.getElem, setElem, etc). tiated with the parameteis using a procedurélinst that
. substitutes heap environment bindings for heap variables.
Thaw / Freeze. To safely allow a weak location to be  The substitution of heaps presents two complicationst,Firs

treatedtemporarilyas strong, SystetD ensures that has  HeqpHas and HeapSel may refer to arbitrary heaps rather

at most one correspondinhawed location at a time; if than just heap variables, as required. Themetypes(and
there is none, we sais frozen The rule T-THAW thaws  pre-formulaspre-heapsetc) are unrolled to types using the

¢ to a strong locatiorf (which we syntactically require be  procedureUnroll, discussed shortly. Second, since the do-
distinct from all other thawed locations fﬁ)’ and Updates mains of the heap parameters may Over|ap’ well-formedness
the heap environment with thaw statewd ¢ to track the  checks are required to ensure that locations are not bound
correspondence. Subtyping allowsl 1 weak references, so  mutiple times after instantiation. After these subsiins,

the output type iaull if the original referenceis; otherwise, T = ¥ checks that the environment contains all heap bind-
itis a reference td. Finally, the new heap also binds a value  jngs required by the weak heap of the function type.

z of typeT’, the invariant for all values stored 4tand the From this point, the rest of the rule is fairly familiar.
output type introduces aexistentialso thatz is in scope  First, the argument typ@, and current heaf are checked

in the new heap. The rule TREEZE serves two purposes, to satisfy the input worldly, /3, . If so, the substitution

to merge a strong locatiohinto a weak (frozen) locatioa 7 maps binders from the input heap to the corresponding
and tore-freezea thawed (strong) locatiohthat originated  gnes in the current heap. Finally, the substitution for heap
from £, as long as the heap value stored/atatisfies the  and argument binders is applied to the output world, and its

invariant required by. Compared to the presentation|in [2], heap bindings are collected usifigapshot and added to the
we have combined freeze and re-freeze into a sifige ze output type using existentials.

expression that includes an explicit thaw state ) ) o

The result of thawing a weak location éithera strong ~ Heap Symbol Unrolling. After heap instantiation, pre-
reference onull. Although we could statically require that types contain symbols of the forfeapHas(%,¢,v) and
all strong references be nan:ll before use (to rule out  HeapHas(X, ¢, v), which must be unrolled to eliminate heap



Expression Typing ‘1‘; 5 Qren T/

Légdom(X) TI; S QroaT IS Qro s {yly=zReft] T=Xo@ (U~
[T-REF] [T-DEREA
;3 Qrref lov = {z|x: RefL} /X @ (L v) ;3 QF derefv = {y|ly=v}/2
;3 Qv = {y|y: Ref£} Li¢dom(E) I8 Qrop =T
0 Qrog = T ;3 Qrog = {y|y: Refla} X =30 (Lo~ (v2,03))
Y=o (o) X =%Ng@ (L) Y=o (6~ (v1,la))
[T-SETREFA 7 7 [T-NEwOBJ]
[ Qrori=ve : {z|x=v2} /2 I; X5 Q+ newobj ¢4 v vg = S2 /%
) ;% Qv Refl  W(l)=(T,0)
Iy 8 Qros {x|z = Ref} W) =(T,¢) ¥ =% ® (£~ frzn)
LYoo (U~0)o(U~ () 6= frznor¢ = thwd ¢ Y =%o® (£ thud £) ® (£~ (z,{'))
% Qr0 =T X' =%y (¢~ frzn) S ={y|ite (v=null) (y =null) (y = Ref{)}
[T-FREEZE] = " 7 [T-THAW]
I; 3; QF freeze £ 6 v == SafeRef (/% ;3 Qr thaw fo = J2:T. S/
I Qv T ;% QrexT/X IS Qren S/Y T'wScT TwT
[T-VAL] [T-As] 7 [T-Sus]
;% Qro =T/ I QreasT =TS ;% Qrex TS
;5 Qro =S Titruthy(v); 33 Qrer = Th /3 ;% Qrer = Th /3,
o T, falsy(v); 35 Qrex 1 Ta /S T/Y =T /X1 uT:/%s Dyz:Th; 315 Qr ez 2 To /Yo TrTo/3 L
-IF -LET]
[T-17] T; 3; Qr if vthene; elsees = T/Z' I, Qrletz=eriney = 1o /Yo [ ]
[T-APH

0% Qro o {y|y=V[A;M; H] \I//m:Tll/f]u > Wi IS Qrowg = T
I'~[T/A] T+ [m/M] Tr[S/H] Wi, =Freshen(Wis)
(T11, %41, W15, ¥") = Unroll(HInst(LInst(TInst((Th1, %11, Wia, ¥), A, T), M,m), H,X))
Yy TrWh TeV TrT/SeTH/20; 1 Wis=(Ti2,2i2) 7 =n[va/z]  Snapshot(n'%12) = (2:5,%12)
;% Qr [T;m; 3] v vz = 32:8. 7' Tha [ Do

Unroll(HeapHas((H,h),¢,k)) = UnrollHas(H,h,¢, k) UnrollHas(H, h,o,k) = false
Unroll(¢(HeapSel((H,h),£,k))) = UnrollSel(y, H,h, ¢, k) UnrollHas(H, h,¢,k) = HeapHas(H,{,k)
UnrollHas(H,h® (£ = (d,?')),0,k) = has(d,k) v UnrollHas(H,h,¢',k) UnrollSel(+, H,h,0,k) = undefined
UnroliSel (v, H,h & (£ (d,€')),6,k) = if has(d, k) then (sel(d,k))  UnroliSel(v, H,h,£,k) = (HeapSel(H,¢,k))

else Y (HeapSel(H, ¢, k))

Figure 8. Expression type checking for System !D

constraints from these symbols. The proceduneoll re- guantified This ensures that existentials only appear on the
cursively walks pre-formulas, pre-types, and pre-heapls an left side of subtyping obligations. For example, the join of
applies UnrollHas and UnrollSel, which unroll heaps by  (3z1:T3. Top/ (¢~ x1)) and (3x2:Ts. Top/ (L~ x3)) IS
following prototype links within heap bindings, thus pre- (Jy:{Ti(v) v T2(v)}. Top/ (£~ y)).
cisely matching the semantics of object key membership and . . .
lookup. We write the location for the root of the prototype Exceptions and Labels. We omitthese rules fro 8,
hierarchy. We use the notatian(p) to refer to aformula but they are standard. The TABEL rule for @_x : e binds

' @z to an expected world? in the label environmenf)’

contexty, a formula with a hole, filled wittp. used to checle, and the T-BREAK rule for break Qz e’
Existentials. We have seen that T#pand T-THAW con- checks that’ satisfies the worl@’(Qz).

veniently use existentials binders into scope; BflLdoes
the same to describe the variablghat goes out of scope
after the body expression is checked. Alternatively, the Many standardstuck states arenot stuck in JavaScript: a
more traditional approachke(g.[8]) requires that the vari-  function can be applied with any number of arguments; an
able be eliminatede(g. via subsumption), but using exis- operator can be used with any values because of implicit
tentials follows the standard implementation strategy] [25 coercion; and, all property lookups succeed (possibly pro-
more closely. The TH rule uses goin operator (not shown)  ducingundefined). Nonetheless, several (non-exceptional)
that combines the output worlds of the branches by rearrang-stuck states remain: applying a non-function value; and re-
ing existentials to ensure that the resulting worlgisnex- trieving a property for a non-object value. A progress state

4.5 Type Soundness



ment for DJS would state that well-typed programs do not

get stuck and can only fail with except|0ns due to retrieving
a property fromundefined or null
We expect that SystetD satisfies progress and preser-

vation theorems, but we have not yet proven them. The pro-

cess will likely be tedious but not require new proof tech-
nigues. Unlike System D, which introduced the problem-
atic nestingof syntactic types inside uninterpreted formulas,

System!D does not introduce any new mechanisms in the

refinement logic. Furthermore, several variations of Alias

Types [28, 32, 37], even in a dependent setting [31], have (/x:t+/1=])=
been proven sound, and we expect to re-use their techniques

to prove the soundness of Systdin

5. Desugaring DJS to SystentD

In[Figure 9, we present the explicitly-typed abstract synta
of DJS along with desugaring rulése ) = e that translate
DJS expressions to SystemD expressions. Most of the
desugaring rules followh ;5 [21] closely, so we limit our

discussion to the aspects most relevant to DJS; we refer the
reader to their work for more details. We use the metavari-

ablel < [T;m;¥] to range over instantiation parameters for
function application.

Objects. We usepro(e) = getProp ({e), “prototype”)

to set the prototypes of fresh object and array literalgistra
lated tonewobj which creates values with prototype links.
Our implementation inserts a fresh location if none is pro-
vided. The instantiation parameters are usually inferngd b
the type checke[ (§ 6).

Function Application. The rules DS-BNCCALL and
DS-METHCALL desugar “direct calls” and “method calls”,
where’e?! 2 getElem (e, “_code_.”). Notice that non-

receiver arguments are packed into a single “arguments”

tuple. We writewindow for the “global object” supplied as
the receiver for direct calls. JavaScript provides twoveati
functionsapply and call in Function.prototype that
allow the caller to explicitly supply the receiver argument
We do not provide general suppagiply andcall in DJS,

because they require mechanisms beyond the scope of ou

(already-large) type system; for example, the latter atscep

an arbitrary number of arguments. The primary benefit of { assert(e) )) =

(non-constructor) functions as objects in JavaScript & th
they inheritapply andcall from Function.prototype,

but since we do not support them, we sacrifice little ex-
pressiveness if the type system treats every non-construct
function as acalarfunction value, rather than an object with
the function stored irf__code_". Furthermore, we can then
support the limited use afpply required for our recursive
function idioms[ 8 2.7 using the rule DSpALY that syn-

13We can provide the stronger guarantees that only bound keystaieved
and only nonaull objects are accessed (thus ruling out the possibility
of null dereference exceptions) simply by changing the types afabbj
primitives appropriately.

c)= (x)=deref x  (e1=e2) ={e1):=(e2)

varx =e; ¢ ) = let _x = ref a, {e) in ()

[*: 1% [ efex] ) = [x:1x[getElem ({e1), {e2))

[: T+ [ esles] = es) = o : Ix] setElem (fer), (ez), (es))

[#:1 % [deleteei[es] ) =/*:1%/delElem ({e1)), (e2))

[*:1%]ezines ) =[x:1+/hasElem ({e:), (e2))

() 0x[{eer} )= [DS-0BJLIT]
newobj £ {{exo)) — - } (pro(Object))

[DS-ARRLIT]

(
(
<(
(
(
(

(evo)) ++

newobj £ {“0” = (eo)) ++

<(/>e:]>e/e(e1, ceey en) >>:
[+ T+ ] (&)’ (window, ((er), ..

(/+:1%]e[e')(es, ..., ) ) =

let obj = (e)) in
let m = getElem (obj, (e’)) in

=} (pro(Array))
[DS-FuNcCALL]

5 (ea)))

[DS-METHCALL]

[x:1x[m;(obj, ({e1), ..., {ea)))
{/*:1x]e.apply(es, ..., en) ) = [DS-APPLY]
[x: 1] {e); ((er), ((e2) - (ea)))
{ function F(X) /*:F#ctor T+ [/ {e} )= [DS-CTOR]
let f = A(this, arguments).
let (_xo, ...) = (ref as, (get arguments “0”), ...) in

Qreturn : {e) in
let p = newobj arproto {} (pro(Object)) in
let d ={ “__code.” = f as (T); “prototype” =p } in
newobj ar d (pro(Function))

{new /* : lnew I * [ e(e1, ..., ) ) = [DS-NEW]
let foo = ((e)) in
let 0bj = newobj lnew {} (foo “prototype”) in
[*:1x[ foo; (obj, ({e1), ..., (ea)))
{ /*: T */while (econa) { €boay } )) = [DS-WHILE]
@break : letrec loop : T = A().
if (econa) then ((evoay);loop ())
else undefined in loop ()
{ return e )) = break Qreturn (e) [DS-ReTURN]
{ break )) = break @break undefined [DS-BREAK]
§( [*:#thaw Le x /) =thaw { (e)) [DS-THAW]
( /*:#freeze lOex | ) = freeze £ 0 (e) [DS-FREEZE]
{e) as {v = true} [DS-ASSERT

Figure 9. Desugaring DJS to SystelD (selected rules)

tactically looks for “apply” and explicitly sets the receiver.
Because the type systems prohibits (non-constructor)func
tions from being used as objects, there is no danger that the
apply be “hijacked” by overwriting the‘apply” property.

Functions and Construction. DS-CToR uses fresh loca-
tionsar andar,,,,, for a constructor function object and its
“prototype” object used when constructing objects (DS-
NEW); our implementation chooses the predictable locations



Adapted Benchmark Un Ann  Queries Time
JS: The Good Parts

prototypal 18 36 731 2

pseudoclassical 15 23 706 2

functional 19 43 862 8

parts 11 20 605 3
SunSpider

string-fasta 10 18 263 1

access-binary-trees 34 50 2389 23

access-nbody 129 201 4225 39
V8

splay 17 36 571 1
Google Closure Library

typeOf 15 31 1975 52
Other

negate 9 9 296 1

passengers 9 19 310 3

counter 16 24 272 1

dispatch 4 8 219 1
Totals 306 518 13424 137

Figure 10. Benchmarks (Un: LOC without annotations;
Ann; LOC with annotations; Queries: Number of Z3 queries;
Time: Running time in seconds)

1F0bj and1FooProto. The function body is labeled to fa-
cilitate how DS-RETURN desugargeturn statements. We
omit a similar rule for recursive (non-constructor) fucts.
The syntax of construction mentions a locatipn,, for the
new object and instantiations for the application, all ofatth
is usually inferred by the type checkgr (8§ 6).

Loops. Looping constructs desugar to recursive functions
(we write letrec as syntactic sugar for the standard en-
coding usingfix). As such, a (function type) annotation
describes the invariants that hold before and after each it-
eration. A label around the desugared loop facilitates how
DS-BREAK desugardreak statements; we elide the simi-
lar mechanism fotontinue.

6. Evaluation
In this section, we describe our implementation, the bench-

Local Inference. Function definitions require explicit type
annotations, and we emplaydirectional type checkin{29]
techniques to infer types for local expressions. At a fuoncti
application, we infer missing type and location parameters
by “greedily” matching the types of arguments against any
Arr(T) and Ref L type terms in the the declared input
type and input heap. Because these type terms are invariant
in their parameters, the greedy choice is always the right
one. For a function type with exactly one heap variakile
(like all the ones we have encountered) and input heap type
(H, ﬁ), we infer the corresponding heap argument by simply
collecting all locations in the current heap environmeat th
do not match the explicit location bindings ih. In our
benchmarks, we are able to omit most type and location
arguments and all heap arguments.

6.2 Benchmarks

To demonstrate the expressiveness of DJS, we have an-
notated and checked several small examples — inspired
by JavaScript: The Good PartilQ], Google Closure Li-
brary [18], and the SunSpider |34] and V8[19] benchmarks
— that exercise a variety of invariants, besides those demon
strated by previous examples.g. negate, passengers,

etc). We also ported theounter anddispatch examples
from System D|[B] to DJS to demonstrate the nesting of
function types inside objects with dynamic kelys. Figure 10
summarizes our results, where for each example: “Un” is the
number of (non-whitespace, non-comment) lines of code
in the unannotatedbenchmark; “Ann” is the lines of code

in the annotated DJS version (including comments because
they contain DJS annotations); “Time” is the running time
rounded to the nearest second; and “Queries” is the number
of validity queries issued to Z3 during type checking.

Expressiveness. We highlight some of the features of DJS
that our benchmarks leverage. Besides the prototypalpatte
discussed if 8§ 2]5, Crockford [10] presents three additiona
inheritance patterns using JavaScript’s constructionh@aec

marks we have annotated and type checked so far thatnism. Each of these examples relies on the support for im-
demonstrate the expressiveness of DJS, and identify $everaperative, prototype-based objects in DJS.

ways for future work to improve the tool.

6.1

We have implemented a type checker for DJS, available at
ravichugh.com/nested, that is currently approximately
6600 (non-whitespace, non-comment) lines of OCaml code.
We borrow the) ;5 [21] JavaScript parser, use their desug-
aring as a starting point for our own, and use the Z3 SMT
solver [11] to discharge logical validity queries. We sfeci
the SystemD primitive functions in the filedasics.dref
andobjects.dref, and JavaScript built-in functions like
Object.prototype.hasOwnProperty in prelude.js
(desugared tprelude.dref). These three files comprise

Implementation

The behavior of theype0f function is like thetypeof
operator except that it returns the more informative result
“null” for null and “array” for arrays; the operator re-
turns “object” in both cases. The type specification for
type0f depends on the ability to express intersections of
function types in DJS, and verifying it requires controkflo
tracking in the presence of mutation as well as a precise
specification for the native (ES5) functiattiray . isArray,
which we model irprelude. js.

ThemakeCumulative functioninstring-fasta. jsit-
erates over an object with an unknown number of keys that
all store integers, and sums them in place within the object.
While iterating over the keys of the object, the functionaise

a standard prelude included with every desugared DJS pro-a variable to store the key from tipeeviousiteration, a sub-

gram for type checking.

tle invariant that DJS is able to express by describing the


ravichugh.com/nested

heap before and after each iteration. Compared to the orig-programmer to annotate a variable declaratian i = /x:
inal version, we allow the bindings to store arbitrary value T * / e and we propagat€ to functions that refer ta.
and use a tag-test to sum only the integer bindings. To spec-
ify the original version requires universally quantified-fo
mulas, which DJS avoids to retain decidable type checking.
The splay benchmark defines the following interesting
tree node constructor. Rather than initializing each “own”

Loops. Because loops desugar to functions, they require a
heap type annotation (like for arbitrary closures) to diéscr
invariants that hold before and after every iteration. Werin
heap types for basic patterns like the following.

object withnull left and right subtrees, the constructor's | /«: (&i — {Int(v) Ai>0}) @ (&sum > Num)
prototype object stores the defaults. ® (&ns + Ref l,)

® (Lo~ ({v = Arr(Num) A packed(v)},Lap)) */
function Node(k,v) { this.k = k; this.v = v; } for (i=0; i < ns.length; i++) { sum += ns[i]; }
Node.prototype.left = null;
Node.prototype.right = null; Thaw/ Freeze. Every weak reference must first be thawed

before access, which quickly becomes burdensome. As a
After construction, howeveKodes are often extended with ~ simple aid, we surround an access to a weak reference with
explicit subtrees. Using the flexibility of refinements,vee a  thaw and freeze operations, which is sufficient for simple

sign eachNode a type with the predicateas(v, “left”) = cases involving reads and weak updates. For more complex
sel(v, “left”) = Refl, wherel is the weak location that invariants, like the relationshipetweeraccesses to a weak
describeNodes, to ensure that retrieving thdeft” key reference (as in theassengers example fron] §217), a
produces anotheétode regardless of whether it is stored on  single thaw and freeze pair must surrolrathaccesses. In

the object or not (and similarly foiright”). the future, we plan to insert these operations at basic block

Our largest example isccess-nbody, which defines a  and function boundaries in the style of [31] so that objects
constructor functionBodySystem that creates a container are tracked with strong references as long as possible.
object to store an array dfody objects. The prototypes
of both constructors are augmented with methods, and the
thaw/freeze mechanism is heavily used while iterating over
the array oBody objects to read and write their fields.

Untampered Natives. Functions that use JavaScript prim-
itive functions likeObject . prototype.hasOwnProperty

and Array.prototype.push and expect thermot to be
overwritten, must explicitly constrain their input heaps a
such. In most cases, programmers expect natives to remain
“untampered,” so desugaring could augment all function
As|Figure 10 shows, our annotated benchmarks are approXtypes with these constraints.

imately 1.7 times as large (70% overhead) as their unanno- ]

tated versions on average. In our experience, a significantConstructor Prototypes. The purpose of a constructoiis
majority of the annotation burden is boilerplate — unre- 0 allow |t_smstancest0|nher|tthe proper_tlesoﬁrototype,
lated to the interesting typing invariants — that fall inket ~ Put functions likeuseC that use such an instance must then
following five patterns. Our implementation includes pre- explicitly list the type ofC. prototype.

liminary support for several patterns by tracking a limited
amount of type information during desugaring (that require

6.3 Annotation Burden

/*: #define Tc {Dict(v) A } */
/*: #ctor this: Ref [ (this = (Emp,acpro))

no changes to type checking), which has already signifi- = {v = this} | (this = (Tc, acpro)) */
cantly reduced the annotation overhead. There is plenty of| function c() { ...; return this; }
room for further improvements in future work, however. C.prototype.f = /*: Ty */ ...;

. . C.prototype.g = /*: Ty, */ ...;
Closures. If a function refers to a variable from an outer J

scope, its heap type must explicitly list its location anplety /*: x:Ref | (x = (To,acpro)) ®

In the following example, the desugarer uses the predietabl (acpro = (T (sel(v, “£7)) A Ty(sel(v, “g”)), Lop))
locations&pi and &e when desugaringi ande, and the — Top/same */

function type must contain the binding fopi. function useC(x) { ... x.f ... }

var pi = 3.14, e = 2.718; This is a predictable pattern that should be easy to incorpo-
/*: Top[(&pim n:Num) — Num/same */ rate into desugaring, though we have not yet done so.
function getPi() { return pi; }

6.4 Performance

To ease this burden, we collect the free variables in eachThe running time of our type checker is acceptable for small
function definition and automatically add the correspogdin examples, but less so as the number of queries to the SMT
heap bindings that are missing. In situations where we can-solver increases. We have not yet spent much effort to im-
not insert a suitably precise type for a location, we alloa/ th prove performance, but we have implemented a few opti-



mizations that have already reduced the number of SMT  The eval statement allows a string to be parsed and
gueries. First, even though desugaring works perfectly wel executed, which is useful but dangerous if misused. Since
withoutany type information, we use DJS type annotations DJS is flow-sensitive, we can constraital with heap
to translate object and array operations to specific primi- invariants before and after the statement, and then perform
tives, where possible, rather than the more general @gs (  staged type checkirig the style of [¥] at run-time.
getPropObj andgetIdxArr rather thargetElem) so that ES5 introduces optional per-object and per-property at-
type checking has fewer cases to try, and we insert type andtributes (for example, to prevent modifications or deletjon
location parameters so that they need not be inferred. Secthat can likely be incorporated into our encoding of dictio-
ond, we modify the T-¥R rule, which normally assigns the  naries. One benefit of such an extension is that the type sys-
“selfified” type{v = z} to variablez that is already bound in ~ tem could reason more precisely abatnichobjects are in a
T". Although this precision is crucial, the variahl@ften has prototype chain. For example, we could then allow non-array
a simple syntactic typee(g. Ref ¢) that is “hidden” behind objects to bind unsafe strings as long as we prevent them
the equality. Instead, if(z) is of the form{v =: U A p}, we from appearing in the prototype chain of arrays, thus weak-
assign{v = U A p Av = z} so that subsequent typing rules ening the distinction we impose between array and non-array
cansyntacticallylook for U rather than going through addi-  objects[[§ 2.6). A second benefit is that native objects could
tional SMT queries as in the general case [8]. We expect thatbe marked as unmodifiable, statically enforcing the pattern
syntactically handling more common cases will further im- they are usually “untampered” as discussed in § 6.
prove performance. For example, even though the dynamic ES5 getters and setters interpose on object reads and
keys are crucial in certain situations, many examples use ob writes. Since this is a deep change to the semantics of ob-
ject types with finite and fixed key names, which the type ject operations (invoking arbitrary functions), addinggeal
checker should be able to handle with far fewer queries to support for these will likely be heavyweight. Interesting|
the SMT solver than in the currentimplementation. one can think of our treatment of the special arfayngth”
property [§ 2.p) as a built-in getter/setter.
. Each function has an implicitrguments array that binds
7. Conclusion and Future Work all parameters supplied by the caller, regardless of howyman
In this paper, we have shown how to scale up prior work formals the function defines. Current ES6 proposals include
on System D — a type system for dynamic languages in a a modified version, where aexplicit parameter can bind
functional setting — to the real-world JavaScript setting — a variable number of argumenkeyondthose named by
with imperative updates, prototype-based objects, armysarr  formals, similar in style to Python.
— through a combination of strong updates and prototype = Thex instanceof Foo operator checks whether or not
chain unrolling. We have demonstrated that our new system,Foo . prototype is somewheralong the prototype chain of
System!D, is expressive enough to support the invariants x. We could add a primitive to match these semantics.
from a series of small but varied examples drawn from ex-  Scalar values can be explicitly coerced by wrapper func-
isting JavaScript benchmarks. We have found that the full tions, such a8oolean, in addition to the implicit coercion
range of features in DJS are indeed required, but that manywe have discussed.
examples fall into patterns that do not simultaneous esgerci
all features. Therefore, we believe that future work ondesu  Undesirable Features. The last three features we dis-
aring and on type checking can treat common cases speciallycuss regularly compete for the title of worst among several
in order to reduce the annotation burden and running time, “warts” in the languageg(.g. [1C]) that lead to confusing
and fall back to the full expressiveness of the system when code and hard-to-detect bugs. Incidentally, yg transla-
necessary. We believe that Dependent JavaScript is the mostions of all three are straightforward and can be supported i
promising approach, to date, for supporting real-world dy- DJS, but we see no reason to given their demerits.
namic languages like JavaScript. The with statement adds the fields of an object to the
current scope of a block, allowing them to be accessed with-
Features for Future Work. DJS already supports a large out qualification. There is hardly a good reason to use this
subset of JavaScript that can be used for projects wherefeature, and it is banned in ES5 “strict” mode.
all the code is controllede(g.server-side applications), and All var declarations are implicitly lifted to the top of
future work on integrating with run-time environments abul  the enclosing function, resulting in “function scope” rath
allow DJS code to run alongside full untyped JavaScript. than lexical scope. Although simple to detect wheir-
Next, we describe several features that we currently do notlifting kicks in, we opt for the latter. ES6 will likely add
support, in addition to general use &ply andcall as an explicitlet binding form that is not subject to lifting. In

discussed in §J5. DJS,var is essentially the newet form, but we stick with
To allow mutation of prototype links via the non-standard the traditional syntax for familiarity.
“_proto_” property, we could add getproto expression For a “method call’x. f (y), the receiver is supplied

to the language and detect cycles during heap unrolling. for the this argument to the function, but for a “direct



call” x(y), JavaScript implicitly supplies the global object Typed Subsets of JavaScript.Several (syntactic) type sys-
for this, masking common errors. We choose to statically tems for various JavaScript subsets have been proposed.
reject direct calls to functions that requireais parameter. ~ Among the earliest is [35], which identifies silent erroratth
result from implicit type coercion and the fact that Jav@&cr
returnsundefined when trying to look up a non-existent
8. Related Work key from an object. The approach in [4] distinguishes be-
In this section, we discuss topics related to types for imper tweenpotentialanddefinitekeys, similar to the reservation
ative dynamic languages, and hence strong updates and inand sealed discussed above; this general approach has been
heritance. The reader may refer|to [8] for background on the extended with flow-sensitivity and polymorphism|[39]. The
challenging idioms of even functional dynamic languages notion ofrecency typessimilar to Alias Types, was applied
and the solution that nested refinements provide. to JavaScript inL[23], in which typing environments, in ad-
dition to heap types, are flow-sensitive. Prototype support
Location Sensitive Types. The way we handle reference in [23] is limited to the finite number of prototype links
types draws from the approachalias Typeg32], in which tracked by the type system, whereas teap symbolsn
strong updates are enabled by describing reference typessystem!D enable reasoning abogntire prototype hierar-
with abstract location names and by factoring reasoning int chies. Unlike SysteniD, all of the above systems provide
a flow-insensitive tying environment and a flow-sensitive global type inference; our system does not have principal
heap.Low-level liquid type¢31] employs their approach in  types, so we can only provide local type inference [29]. AD-
the setting of a first-order language with dependenttypes. | safety [30] is a type system for ADsafe, a JavaScript sand-
contrast, our setting includes higher-order functions, @ur box, that restricts access to some fields, tracking strings p
formulation of heap types gives variable names to unknown cisely [20] to describe sets of field names. Although expres-
heaps to reason about prototypes and gives nanasteap  sive enough to check ADsafe, which heavily uses large ob-
values, which enables the specification of precise relation ject literals, they do not support strong update and so danno
ships between values afifferentheaps; the heap binders reason about object extension. Unlike SystBrhmone of the

of [31] allow only relationships between values irsiagle above systems include dependent types, which are required

heap to be described. to express truly dynamic object keys and precise control-
The original Alias Types work also includes support for flow based invariants.

weak referencethat point to zero or more values, for which Recent work on JavaScript verification uses separation

strong updates are not sound. Several subsequent propodoegic [16] to track precise flow-sensitive invariants. They

als [2,18,13] 14, 31, 33] allow strong updates to weak ref- support only first-order programs, and the expressiverfess o
erences under certain circumstances to support temporarytheir logic takes them beyond automatic verification, thus
invariant violations. We adapt thihaw/freezemechanism  requiring properties to be manually proved.

from [2] and [31] with mostly cosmetic changes. JavaScript Semantics. We chose the JavaScript “semantics-

Prototype Inheritance. Unlike early class-based languages, PY-transiation” ofA;s [21] since it targets a conventional

such as Smalltalk and C++, the (untyped) language Self al-core language th_at has k_Jeen _convenient fo_r our study. An
lows objects to be extended after creation and feature pro_alternate semantics _[26] inherits unconventional aspafcts

totype, or delegation, inheritance. Static typing didois ~ the language specification [244.§."scope objects”), which
for class-based languagesd. [1]) explicitly preclude ob- complicates the formulation of static reasoning.

ject extension to retain soundness in the preseneeidth
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A. Type Checking: Additional Definitions
A.1 Well-Formedness
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A.2 World Subtyping

World Subtyping
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A.3 Heap Satisfaction
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