
ar
X

iv
:1

11
2.

41
06

v2
 [

cs
.P

L]
 1

6
A

pr
 2

01
2

Dependent Types for JavaScript

Ravi Chugh

University of California, San Diego

rchugh@cs.ucsd.edu

David Herman

Mozilla Research

dherman@mozilla.com

Ranjit Jhala

University of California, San Diego

jhala@cs.ucsd.edu

Abstract
We present Dependent JavaScript (DJS), a statically-typed
dialect of the imperative, object-oriented, dynamic language.
DJS supports the particularly challenging features such as
run-time type-tests, higher-order functions, extensibleob-
jects, prototype inheritance, and arrays through a combina-
tion of nested refinement types, strong updatesto the heap,
andheap unrollingto precisely track prototype hierarchies.
With our implementation of DJS, we demonstrate that the
type system is expressive enough to reason about a variety
of tricky idioms found in small examples drawn from several
sources, including the popular bookJavaScript: The Good
Partsand the SunSpider benchmark suite.

1. Introduction
Dynamic languages like JavaScript, Python, and Ruby are
widely popular for building both client and server applica-
tions, in large part because they provide powerful sets of
features — run-time type tests, mutable variables, extensi-
ble objects, and higher-order functions. But as applications
grow, the lack of static typing makes it difficult to achieve
reliability, security, maintainability, and performance. In re-
sponse, several authors have proposed type systems which
provide static checking for various subsets of dynamic lan-
guages [5, 15, 22, 23, 30, 36].

Recently, we developed System D [8], a core calculus
for dynamic languages that supports the above dynamic id-
ioms but in a purely functional setting. The main insight in
System D is todependentlytype all values with formulas
drawn from an SMT-decidable refinement logic. We use an
SMT solver to reason about the properties it tracks well,
namely, control-flow invariants and dictionaries with dy-
namic keys that bind scalar values. But to describe dynamic
keys that bind rich values like functions, System D encodes
function types as logical terms andneststhe typing relation
as an uninterpreted predicate within the logic. By dividing
work between syntactic subtyping and SMT-based validity
checking, the calculus supports fully automatic checking of
dynamic features like run-time type tests, value-indexed dic-
tionaries, higher-order functions, and polymorphism.

In this paper, we scale up the System D calculus to
Dependent JavaScript (abbreviated to DJS), an explicitly

typed dialect of a real-world, imperative, object-oriented,
dynamic language. We bridge the vast gap between System D
and JavaScript in three steps.

Step 1: Imperative Updates.The types of variables in
JavaScript are routinely “changed” either by assignment or
by incrementally adding or removing fields to objects bound
to variables. The presence of mutation makes it challenging
to assign precise types to variables, and the standard method
of assigning a single “invariant” reference type that overap-
proximates all values held by the variable is useless in the
JavaScript setting. We overcome this challenge by extending
our calculus withflow-sensitive heap types(in the style of
[2, 12, 14, 31, 32]) which allow the system to precisely track
the heap location each variable refers to as well as alias-
ing relationships, thereby enablingstrong updatesthrough
mutable variables. Our formulation of flow-sensitive heaps
combined with higher-order functions and refinement types
is novel, and allows DJS to express precise pre- and post-
conditions of heaps, as in separation logic [16].

Step 2: Prototype Inheritance. Each JavaScript object
maintains an implicit link to the “prototype” object from
which it derives. To resolve a key lookup from an object at
run-time, JavaScripttransitively follows its prototype links
until either the key is found or the root is reached without
success. Thus, unlike in class-based languages, inheritance
relationships arecomputedat run-time rather than provided
as declarative specifications. The semantics of prototypesis
challenging for static typing, because to track the type of a
key binding, the system must statically reason about a po-
tentially unbounded number of prototype links! In DJS, we
solve this problem with a novel decomposition of the heap
into a “shallow” part, for which we precisely track a finite
number of prototype links, and a “deep” part, for which we
do not have precise information, represented abstractly via
a logical heap variable. Weunroll prototype hierarchies in
shallow heaps to precisely model the semantics of object op-
erations, and we useuninterpreted heap predicatesto reason
abstractly about deep parts. In this way, we reduce the rea-
soning about unbounded, imperative, prototype hierarchies
to the underlying decidable, first-order, refinement logic.

Step 3: Arrays. JavaScript arrays are simply objects whose
keys are string representations of integers. Arrays are com-

http://arxiv.org/abs/1112.4106v2

monly used both asheterogenoustuples (that have a fixed
number of elements of different types) as well ashomoge-
nouscollections (that have an unbounded number of ele-
ments of the same type). The overloaded use of arrays, to-
gether with the fact that arrays are otherwise syntactically
indistinguishable and have the same prototype-based seman-
tics as non-array objects, makes it hard to statically reason
about the very different ways in which they are used. In DJS,
we use nested refinements to address the problem neatly by
uniformly encoding tuples and collections with refinement
predicates, and by usingintersectiontypes that simultane-
ous encode the semantics of tuples, collections, and objects.

Expressiveness of DJS.We demonstrate the expressive-
ness of DJS by using our implementation1 to check a
variety of properties found in small but subtle examples
drawn from a variety of sources, including the popular book
JavaScript: The Good Parts[10] and the SunSpider bench-
mark suite [34]. Our experiments show that several exam-
ples simultaneouslyrequire the gamut of features in DJS,
but that many examples conform to recurring patterns that
rely on particular aspects of the type system. We identify
several ways in which future work can handle these patterns
more specifically in order to reduce the annotation burden
and performance for common cases, while falling back to
the full expressiveness of DJS in general. Thus, we believe
that DJS provides a significant step towards truly retrofitting
JavaScript with a practical type system.

2. Overview
Let us begin with an informal overview of the semantics
of JavaScript. We will emphasize the aspects that are the
most distinctive and challenging from the perspective of type
system design, and describe the key insights in our work that
overcome these challenges.

JavaScript Semantics by Desugaring.Many corner cases
of JavaScript are clarified byλJS [21], a syntax-directed
translation, ordesugaring, of JavaScript programs to a
mostly-standard lambda-calculus with explicit references.
As λJS is a core language with well-understood semantics
and proof techniques, the translation paves a path to a typed
dialect of JavaScript: define a type system for the core lan-
guage and then type check desugared JavaScript programs.

We take this path by developing System!D (pronounced
“D-ref”), a new calculus based onλJS . Although the oper-
ational semantics of System!D is straightforward, thedy-
namic features of the language ensure that building a type
system expressive enough to support desugared JavaScript
idioms is not. We solve this problem by scaling the purely
functional technique of nested refinement types up to the im-
perative, object-oriented, setting of real-world JavaScript.

Terminology. JavaScript has a long history and an evolv-
ing specification. In this paper, we say “JavaScript” to

1 Available atravichugh.com/nested .

roughly mean ECMAScript Edition 3, the standard version
of the language for more than a decade [24]. We say ES5
to refer to Edition 5 of the language,2 recently released by
the JavaScript standards committee [9]. We say ES6 to refer
to features proposed for the next version of the language,
scheduled to be finalized within the next one or two years.
Dependent JavaScript (DJS) includes a large set of core fea-
tures common to all editions.

2.1 Base Types, Operators, and Control Flow

Consider the following function adapted from [8] and anno-
tated in DJS. A function type annotation is written just above
the definition inside a JavaScript comment demarcated by an
additional: character. We typeset annotations in math mode
for clarity, but the ASCII versions parsed by our type checker
are quite similar.

/*: x ∶Top → {ν ∣ ite Num(x) Num(ν) Bool(ν)} */

function negate(x) {

if (typeof x == "number") { return 0 - x; }

else { return !x; } }

Thetypeof operator is a facility used pervasively to direct
control flow based on the run-time “tag” of a value. If the
input tonegate is a number, so is the return value. If not, the
function uses an interesting feature of JavaScript, namely,
that all values have a boolean interpretation. The values
false, null, undefined, the empty string“”, 0, and the
“not-a-number” valueNaN are consideredfalsy, and evaluate
tofalsewhen used in a boolean context; all other values are
truthy. The operator! inverts “truthiness,” so the else branch
returns a boolean no matter what the type ofx is. The ability
to treat arbitrary values as booleans is commonly used, for
example, to guard against non-null values.

The negate function demonstrates that even simple
JavaScript programs depend heavily on sophisticated control-
flow based reasoning. Syntactic type systems are capable of
tracking control flow to a limited degree [22, 36], but none
can handle complex invariants like the relationship between
the input and output ofnegate. To have any chance of cap-
turing such invariants, types must be able todependon other
program values. Powerful dependent type systems like Coq
can express extremely rich invariants, but are too heavy-
weight for our goals since they require the programmer to
discharge type checking obligations interactively.

Refinement Types. We adopt a more lightweight mecha-
nism calledrefinement typesthat has been previously ap-
plied to purely functional dynamic languages [5, 8]. We
demonstrate that refinement types afford us the expressive-
ness needed to precisely track control-flow invariants in the
JavaScript setting and, unlike more powerful dependent sys-
tems, without sacrificing decidable type checking. In partic-
ular, once the programmer has written type annotations for

2 Edition 4 was never standardized.

ravichugh.com/nested

val typeof :: (* x ∶Top → {ν = tag(x)} *)

val ! :: (* x ∶Top → {ν iff falsy(x)} *)

val (||) :: (* x ∶Top → y ∶Top → {ite falsy(x) (ν = y) (ν = x)} *)

val (&&) :: (* x ∶Top → y ∶Top → {ite truthy(x) (ν = y) (ν = x)} *)

val (===) :: (* x ∶Top → y ∶{tag(ν) = tag(x)} → {ite (x = NaN ∨ y = NaN) (ν = false) (ν iff x = y)} *)

val (==) :: (* x ∶Top → y ∶Top → {Bool(ν) ∧ (tag(x) = tag(y) ⇒ ν iff (x = y ∧ x ≠ NaN))} *)

val (+) :: (* x ∶Str → y ∶Str → Str *)

val (+) :: (* x ∶Num → y ∶Num → {Num(ν) ∧ ((Int(x) ∧ Int(y)) ⇒ (Int(ν) ∧ ν = x + y))} *)

val fix :: (* ∀A. (A → A) → A *)

Figure 1. Excerpt frombasics.dref

function definitions, type checking is carried out automat-
ically via a combination of syntactic subtyping and SMT-
based [11] logical validity checking.

In System!D, every value is described by a refinement
type of the form{ν ∣p}, read “ν such thatp”, where p
is a formula that can mentionν. For example, 3 can be
given the type{ν ∣ tag(ν) = “number”} andtrue the type
{ν ∣ tag(ν) = “boolean”}, where tag is an uninterpreted
function symbol in the refinement logic,nota function in the
programming language. We use the following abbreviations
to make the refinement binder implicit and the types concise.

{p}
○

= {ν ∣ p} Num(x)
○

= tag(x) = “number”

Top(x)
○

= true Bool(x)
○

= tag(x) = “boolean”

T
○

= {T (ν)} Str(x)
○

= tag(x) = “string”

if p then q1 else q2
○

= ite p q1 q2
○

= (p⇒ q1) ∧ (¬p⇒ q2)

x iff p
○

= ite p (x = true) (x = false)

falsy(x)
○

= x ∈ {false ∨ null ∨ undefined ∨ “” ∨ 0 ∨ NaN}

truthy(x)
○

= ¬falsy(x)

Primitives. We use refinements to assign precise, and
sometimes exact, types to System!D primitive functions,
defined in the filebasics.dref (Figure 1). Notice that
typeof returns the tag of its input. Some examples beyond
ones we have already seen includetag(null) = “object”

and tag(undefined) = “undefined”. The type of the
negation operator! inverts “truthiness.” The types of the op-
erators&& and|| are interesting, because as in JavaScript,
they do not necessarily return booleans. The “guard” opera-
tor && returns its second operand if the first is truthy, which
enables the idiomif (x && x.f) { ... } that checks
whether the objectx and its“f” field are non-null. Dually,
the “default” operator|| returns its second operand if the
first is falsy, which enables the idiomx = x || default

to specify a default value. The+ operator is specified as an
intersectionof function types and captures the fact that it
performs both string concatenation and numerical addition,
but doesnot type check expressions like3 + “hi” that rely
on theimplicit coercionin JavaScript. We choose types for
System!D primitives that prohibit implicit coercions since
they often lead to subtle programming errors.

Equality. JavaScript provides two equality operators:==

implicitly coerces the second operand if its tag differs from
the first, and strict equality=== does not perform any coer-
cion.3 To avoid reasoning about implicit coercions, we give a
relatively weaker type to==, where the boolean result relates
its operandsonly if they have the same tag.

Integers. JavaScript provides a single number type that has
no minimum or maximum value. However, programmers
and optimizing JIT compilers [38] often distinguish integers
from arbitrary numbers. In System!D, we describe integers
with the abbreviationInt(x) ○= Num(x) ∧ integer(x). We
introduce the uninterpreted predicateinteger(x) in the types
of integer literals, and functions like+ propagate “integer-
ness” where possible. Furthermore, numeric functions use
the (decidable) theory of linear arithmetic to precisely reason
about integers, which is important for dealing with arrays.

Tracking Control Flow. System!D precisely tracks con-
trol flow by recording that the guard of an if-expression is
truthy (resp. falsy) while checking the then-branch (resp.
else-branch), enabling System!D to verify the annotation
for negate as follows. Because of the call totypeof,
System!D tracks thatNum(x) holds along the then-branch,
sox can be safely passed to the subtraction operator which
produces a number as required. For the else-branch, System!D
records that¬Num(x). The negation operator, which can be
applied to any value, produces a value of type{ν iff ¬falsy(x)}
which is a subtype ofBool . Thus, both branches satisfy the
specification provided by the programmer.

2.2 Imperative Updates

JavaScript is an imperative language where variables can
be reassigned arbitrary values. Consider the DJS function
also_negate in Figure 2 that is likenegate but first as-
signs the eventual result in the variablex, and its translation
to System!D on the right (ignore the comments for now).

Several aspects of the translation warrant attention. First,
since the formal parameterx, like all JavaScript variables,
is mutable, the translation of the function body begins with
an explicit referencecell _x initialized with x, and each

3 Every value exceptNaN is strictly equal to itself.

function also_negate(x) {

if (typeof x == "number")

x = 0 - x;

else

x = !x;

return x;

}

 let also_negate = fun x -> (* Γ1 = ∅; Σ1 = ∅ *)

 let _x = ref x in (* Γ2 = x ∶Top; Σ2 = (ℓx ↦ x) *)

 if typeof (deref _x) == "number" then (* Γ3 = Γ2, x ∶Ref ℓx; Σ3 = Σ2 *)

 _x := 0 - (deref _x) (* Γ4 = Γ3,Num(x); Σ4 = ∃x4 ∶Num. (ℓx ↦ x4) *)

 else

 _x := !(deref _x) (* Γ6 = Γ3,¬Num(x); Σ6 = ∃x6 ∶{ν iff falsy(x)}. (ℓx ↦ x6) *)
 ; (* Γ7 = Γ3; Σ7 = ∃x

′ ∶{iteNum(x)Num(ν)Bool(ν)}. (ℓx ↦ x′) *)

 deref _x in (* Γ8 = Γ3; Σ8 = Σ7 *)

 let _also_negate = ref {"__code__": also_negate}

Figure 2. DJS functionalso negate; Desugared to System!D; Verifying x ∶Top → {ite Num(x) Num(ν) Bool(ν)}

read of x is desugared to a dereference of_x.4 Second,
notice that scalar constants like0 andtrue and operators
like typeof and== are translated directly to correspond-
ing ones in System!D. Third, notice that each assignment to
the JavaScript variablex translates to a set reference (i.e.as-
signment) operation to update the contents of the heap cell.
Finally, since every JavaScript function is actually an object,
the translation stores the function value in a distinguished
“ code ” field, which we assume is inaccessible to source
programs.5 For System!D to verify thatalso_negate sat-
isfies the specification, it must precisely reason about heap
updates in addition to control-flow as before.

Reference Types. The traditional way to handle references
in theλ-calculus [28] is to (a) assign a reference cell some
typeRef T , (b) require that only values of typeT be stored in
it, and then (c) conclude that dereferences produce values of
typeT . This approach supports so-calledweak updates, be-
cause even if a stored value satisfies a stronger typeS than
T (i.e. if S is a subtype ofT), subsequent dereferences pro-
duce values of the original, weaker typeT . Put another way,
this approach requires that the type assigned to a reference
cell be a supertype of all the values written to the cell. Un-
fortunately, weak updates would preclude System!D from
verifying also_negate. The initialization of_x on line 2
stores the parameterx which has typeTop, so_x would be
assigned typeRef Top. The assignments on lines 4 and 6
type check because the updated values satisfy the trivial type
Top, but the dereference on line 8 produces a value with type
Top, which doesnot satisfy the specified return type. Thus,
we need a way to reason more precisely about heap updates.

Strong Updates. Allowing assignment tochangethe type
of a reference is calledstrong update, which is sound only
when a reference is guaranteed to point to asingle heap
cell and when there accesses through otheraliasesthat re-
fer to the same cell. TheAlias Typesapproach [32] provides

4 Presentations of imperative languages often model assignable variables
directly rather than with explicit references. Both approaches are equivalent
in expressiveness as well as challenges for type checking; we choose the
latter to make the presentation more similar toλJS [21] and System D [8].
5 To eliminate the assumption, we could instead treat each function as a
pair of a function value and an associated object. This approach poses no
technical difficulty, but we follow theλJS encoding for simplicity.

a means of managing these concerns. Rather thanRef T , a
reference type is writtenRef ℓ, whereℓ is the (compile-time)
name of a location in the heap, and a separate (compile-
time) heap maps locations to types, for example,(ℓ ↦ T).
Strong updates are realized by allowing heaps to change
flow-sensitively, and the aliasing problem is mitigated by
maintaining the invariant that distinct location namesℓ and
ℓ′ do not alias. System!D employs this approach by using a
type environmentΓ that grows and shrinks as usual during
type checking but remains flow-insensitive, and aheap envi-
ronmentΣ that can be strongly updated per program point.

Figure 2 shows how System!D checks the desugared
version ofalso_negate. The figure shows, at each linei,
the type environmentΓi used to check the expression on the
line, and the heap environmentΣi that existsafter checking
the expression. After starting with the empty heapΣ1 = ∅,
the allocation on line 2 creates a fresh locationℓx in the new
heapΣ2

○

= Σ1 ⊕ (ℓx ↦ x) and adds x ∶Ref ℓx to the type
environment. We use the symbol⊕ to construct unordered
sets of heap bindings. To exploit the precision of dependent
types, we map locations tovalues rather than types (i.e.
(ℓ↦ x) rather than(ℓ↦ Top)).

When checking the if-expression guard on line 3, the
deference retrieves the initial valuex from the heapΣ2, so as
a result of the tag-test, System!D addsNum(x) to the type
environmentΓ4 along the true-branch and¬Num(x) to Γ6

along the false-branch. In the true-branch, the subtraction
on line 4 is well-typed becauseNum(x), and produces a
numberx4 that is stored in the heapΣ4 at locationℓx. In
the false-branch,x is negated on line 6, producing a boolean
x6 that is stored in the heapΣ6 at locationℓx. System!D
combines the branches byjoining the heapsΣ4 and Σ6,
producingΣ7 that describes the heap no matter which branch
is taken. The dereference on line 8 retrievesx′, a value of
type{ite Num(x) Num(ν) Bool(ν)}, as required by the
return type annotation.

In this way, System!D syntactically tracks strong updates
to the heap, while reducing subtyping obligations to impli-
cation queries in an ordinary, pure refinement logic [8] that
doesnot model imperative updates.6

6 Existentials are not problematic as they only appear duringchecking [25].

2.3 Simple Objects

JavaScript’s objects exhibit several interesting semantic
properties. Consider the following object initialized with
a single key (also known as field or property). We assume
thatassert is a pre-defined function that aborts when its ar-
gument is falsy; JavaScript does not provide such a function
as built-in, but it is trivial to define.

var x = {"f": 1};

assert (x.f == 1 && x.g == undefined);

x.g = 2; delete x.f;

assert (x.g == 2 && x.f == undefined);

x.f.g; // raises exception

var k = "h"; x[k] = 3; assert (x[k] == 3);

Notice that when retrieving the non-existent“g” key from
x, JavaScript returnsundefined as opposed to raising an
exception. Attempting to retrieve a key fromundefined,
or null, however, does raise an exception. Keys can be
added or removed to objects, and can even be arbitrary
dynamically-computedvalues, not just string literals, that are
converted to strings if necessary. Dynamic keys are pervasive
— objects are commonly used as hash tables with unknown
sets of keys — but they are quite challenging to track inside
a static type system.

Nested Refinements.To support dynamic keys, we adopt
the System D primitives [8] for (functional) dictionary oper-
ations, shown in the first four lines of the fileobjects.dref
(Figure 3). The primitive function applicationget d k re-
trieves the keyk from dictionaryd, where sel(d, k) de-
scribes the exact binding as a value in the refinement logic;
set d k y produces a new dictionary that extendsd with a
binding for k, shadowing previous bindings, if any, where
upd(d, k, y) describes the new dictionary;del d k pro-
duces a new dictionary with a binding removed, using the
logical symbolbot (distinct from all source-level values)
to denote its absence; andmem d k indicates the presence
or absence of a binding, where we write the abbreviation
has(d, k)

○

= sel(d, k) ≠ bot .
The key innovation ofnested refinementsin System D

allows syntactic type termsU (like function types) to be
written within refinement formulas using an uninterpreted
“has-type” predicatex ∶∶ U , while staying within the de-
cidable McCarthy theory of arrays [27]. The has-type pred-
icate allows System D to describe dictionaries that map
dynamickeys toarbitrary values.7 For example, we write
{Dict(ν) ∧ sel(ν, k) ∶∶ Bool → Bool} to describe a dictio-
naryd with key k that binds a boolean-to-boolean function,
and{ν = upd(d,“g”,4)} to describe a dictionaryd′ that is
just liked but with an additional binding. We refer the reader
to [8] for the technical development of nested refinements.

7 Prior approaches such as [5] were limited to dynamic keys that store first-
order (non-function) values.

Mutability and Dynamic Keys. The combination of nested
refinements and strong updates allows us to precisely track
objects with dynamic keys despite the presence of impera-
tive updates. Consider the desugaring of our example above;
we omit the assertions for clarity.

 let _x = ref (ref {"f": 1}) in

 _x := set (_deref (_deref _x)) "g" 2;

 _x := del (_deref (_deref _x)) "f";

 let _k = "h" in

 _x := set (_deref (_deref _x))

 (coerceToStr (deref _k)) 3;

The allocation on line 1 adds three bindings to the type
environment — d ∶{ν = upd(empty ,“f”,1)}, ptr ∶Ref ℓ,
and obj ∶Ref ℓ′, where ℓ and ℓ′ are fresh locations —
and produces the heapΣ1

○

= (ℓ′ ↦ ptr) ⊕ (ℓ↦ d). No-
tice that the dictionary is stored via an additional level
of indirection to facilitate the encoding ofside-effecting
JavaScript object operations. The object extension on line
2 addsd′ ∶{ν = upd(d,“g”,2)} to the type environment and
strongly updates the heap toΣ2

○

= (ℓ′ ↦ ptr) ⊕ (ℓ↦ d′).
The deletion on line 3 and the extension on line 5 (through a
dynamic key) have similar effects on the static heap, thereby
statically verifying the assertions.

2.4 Function Types

In order to fully understand the challenges of JavaScript
objects, we must first pause to take a closer look at function
types. The function types we have seen so far — fornegate

and the primitives inbasics.dref — have not mentioned
heaps, because their inputs and outputs are scalar values.

However, JavaScript objects are reference values, and are
passed to and returned from functions through the heap.
Thus, to account for heaps and side-effects, a System!D
function type has the following form.

∀[A;L;H] x ∶T1/Σ̂1 → T2 /Σ̂2

This type describes a function that, given an argument of
typeT1 in a calling context that satisfies the input heap type
Σ̂1, produces an output value of typeT2 and a modified
heap typeΣ̂2. A function type can be parameterized by
sequences oftype variablesA, location variablesL, and
heap variablesH . A heap typêΣ is like a heap environment
Σ but maps locations to binder-type pairs rather than values
(e.g.(ℓ ↦ y ∶T) rather than(ℓ ↦ v)); the binders are useful
for relating heaps across function boundaries. The binder
x of the input type, as well as all of the binders in the
input heapΣ̂1, are in scope in the outputworld T2/Σ̂2.
We often omit binders when they are not referred to. To
match the structure of function types, function applications
must instantiate type, location, and heap variables. However,
our implementation infers instantiations in almost all cases
using standard local type inference techniques (§ 6). When
we write DJS examples in the sequel, we omit instantiations

val set :: (* d ∶Dict → k ∶Str → y ∶Top → {ν = upd(d, k, y)} *)

val del :: (* d ∶Dict → k ∶Str → {ν = upd(d, k, bot)} *)

val has :: (* d ∶Dict → k ∶Str → {ν iff has(d, k)} *)

val get :: (* d ∶Dict → k ∶Str → {ite has(d, k) (ν = sel(d, k)) (ν = undefined)} *)

val setPropObj :: (* (x ∶Ref , k ∶Str , y ∶Top)/(x↦ ⟨d ∶Dict, ẋ⟩) → {ν = y}/(x ↦ ⟨d′ ∶{ν = upd(d, k, y)}, ẋ⟩) *)

val delPropObj :: (* (x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict, ẋ⟩) → Bool /(x↦ ⟨d′ ∶{ν = upd(d, k, bot)}, ẋ⟩) *)

val hasPropObj :: (* (x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict, ẋ⟩) → {ν iff ObjHas(d, k, cur , ẋ)}/same *)

val getPropObj :: (* (x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict, ẋ⟩)
→ {ite ObjHas(d, k, cur , ẋ) (ν = ObjSel(d, k, cur , ẋ)) (ν = undefined)}/same *)

val getIdxArr :: (* ∀A. (x ∶Ref , i ∶Int)/(x ↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ite ¬packed(a) (ν ∶∶ A ∨Undef (ν)) (ite (0 ≤ i < len(a)) (ν ∶∶ A) (Undef (ν)))}/same *)

val getLenArr :: (* ∀A. (x ∶Ref , k ∶{ν = “length”})/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ite packed(a) (ν = len(a)) Int(ν)}/same *)

val getPropArr :: (* ∀A. (x ∶Ref , k ∶{Str(ν) ∧ ν ≠ “length”})/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ite HeapHas(H, ẋ, k) (ν = HeapSel(H, ẋ, k)) (ν = undefined)}/same *)

val getElem :: (and (type getPropObj) (type getIdxArr) (type getLenArr) (type getPropArr))

val setIdxArr :: (* ∀A. (x ∶Ref , i ∶Int, y ∶A)/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ν = y}/(x ↦ ⟨a′ ∶{ν ∶∶ Arr(A) ∧ arrSet(ν, a, i)}, ẋ⟩) *)

Figure 3. Excerpt fromobjects.dref

at applications wherever our current implementation infers
them. We sweeten function type syntax with some sugar:

• When used as an output heap, the tokensame refers
to the sequence of locations in the corresponding input
heap, where each binding records that the final value is
exactly equal to the initial value.

• In an input world, a reference bindingx ∶Ref without a
location introduces a location variableL that is quantified
by the type, andx (a value of typeRef L) can be used as
a location in heaps to refer to this variableL. Further,
the dotted variablėx introduces a location parameter,
corresponding to the prototype ofx.

• A heap variableH is implicitly added to a function type
when it contains none, andH is added to both the input
and output heaps.8 In this case, the tokencur refers toH .

For example, compare the type forhasPropObj (Figure 3)
followed by its expansion.

(x ∶Ref , k ∶Str)/(x ↦ ⟨d ∶Dict, ẋ⟩)

→ {ν iff ObjHas(d, k, cur , ẋ)}/same

∀L,L′,H. (x ∶Ref L, k ∶Str)/H ⊕ (L↦ ⟨d ∶Dict,L
′⟩)

→ {ν iff ObjHas(d, k,H,L′)}/H ⊕ (L↦ ⟨d′ ∶{ν = d},L′⟩)

2.5 Prototype-Based Objects

JavaScript sports a special form of inheritance, where each
base object is equipped with a link to itsprototype object.

8 This variable corresponds to the “frame” from separation logic [16].

This link is set when the base object is created and cannot
be changed or accessed by the program.9 When trying to
retrieve a keyk not stored in an objectx itself, JavaScript
transitivelysearches theprototype chainof x until it either
findsk or it reaches the root of the object hierarchy without
finding k. The prototype chain does not play a role in the
semantics of key update, addition, or deletion.10

For example, consider the initially empty objectchild

created by the functionbeget (described in the sequel) with
prototype objectparent. The prototype of object literals,
like parent, is the object stored inObject.prototype
(note that the“prototype” key of Object is not the
same as its prototype object). Thus, all keys inparent and
Object.prototype are transitively accessible viachild.

var parent = {"last": " Doe"};

var child = beget(parent);

child.first = "John";

assert (child.first + child.last == "John Doe");

assert ("last" in child == true);

assert (child.hasOwnProperty("last") == false);

The JavaScript operatork in x tests for the presence ofk
anywherealong the prototype chain ofx, whereas the native
functionObject.prototype.hasOwnProperty tests only
the “own” object itself. Keys routinely resolve through pro-
totypes, so a static type system must precisely track them.

9 Many implementations, however, do expose the prototype of an objectx
with a non-standardx. proto property. We discuss this further in § 7.
10This is not true in ES5 with the addition of setters, as discussed in § 7.

Unfortunately, we cannot encode prototypes directly within
the framework of refinement types and strong update, as the
semantics of transitively traversing mutable and unbounded
prototype hierarchies is beyond the reach of decidable, first-
order reasoning.

Shallow and Deep Heaps.We solve this problem by syn-
tactically reducing reasoning about prototype-based objects
to the refinement logic. Our key insight is to decompose
the heap into a “shallow” part, the bounded portion of the
heap for which we have explicit locations, and a “deep” part,
which is the potentially unbounded portion which we can
represent by uninterpreted heap variablesH . We explicitly
track prototype links in the “shallow” heap by using bind-
ings of the form(ℓ ↦ ⟨d, ℓ′⟩), where the prototype of the
object atℓ is stored atℓ′. We cannot track prototype links
explicitly in the “deep” heap, so instead wesummarizein-
formation about deep prototype chains by using the abstract
(uninterpreted) heap predicateHeapHas(H,ℓ, k) to encode
the proposition that the object stored at locationℓ in H tran-
sitivelyhas the keyk, and the abstract (uninterpreted) heap
function HeapSel(H,ℓ, k) to represent the corresponding
value retrieved by lookup.

As an example, recall thechild object and its prototype
parent. Suppose that the prototype ofparent is an un-
known objectgrandpa, rather thanObject.prototype
as written. If child, parent, and grandpa are stored
at locationsℓ1, ℓ2, and ℓ3 with underlying “own” dic-
tionary valuesd1, d2, and d3, then we write the heap
{ℓ1 ↦ ⟨d1, ℓ2⟩, ℓ2 ↦ ⟨d2, ℓ3⟩, ℓ3 ↦ ⟨d3, ℓ4⟩,H} — we use
set notation to abbreviate the concatenation of heap bindings
with ⊕. Despite not knowing what value is the prototype of
grandpa, we name its locationℓ4 that is somewhere in the
deep part of the heapH .

Key Membership and Lookup. When describing simple
objects, we used the original System D primitives (mem and
get) to desugar key membership and lookup operations. But
in fact, to account for the transitive semantics of key mem-
bership and lookup facilitated by prototype links, System!D
uses the new primitiveshasPropObj andgetPropObj de-
fined in objects.dref (Figure 3). These primitives differ
from their purely functional System D counterparts in two
ways: each operation goes through areferenceto a dictio-
nary on the heap, and the abstract predicatesObjHas and
ObjSel are used in place ofhas andsel . These abstract pred-
icates are defined over thedisjoint unionof the shallow and
deep heaps and, intuitively, summarize whether an object
transitively has a key and, if so, the value it binds.

Transitive Semantics via Unrolling. We encode the tran-
sitive lookup semantics in the abstract predicates by decom-
posing the predicates into shallow and deep disjuncts. In par-
ticular, we define the predicates byunrolling the shallow part
of the heap by chasing prototype links until we “bottom out”
with uninterpreted predicates for the deep heap.

Let us return to the example of thechild, parent and
grandpa prototype chain to understand how unrolling cap-
tures the transitive lookup. The DJS key membership test on
the left desugars to System!D as follows.

k in child hasPropObj (deref _child) (deref _k)

The result of the function call has the following type.

{ν iff ObjHas(d1,k,{(ℓ2 ↦ ⟨d2, ℓ3⟩), (ℓ3 ↦ ⟨d3, ℓ4⟩),H}, ℓ2)}

We expand this type by unrollingObjHas to the following.

{ν iff has(d1,k) ∨ has(d2,k) ∨ has(d3,k) ∨HeapHas(H,ℓ4,k)}

The first three disjuncts correspond to looking for the key in
the shallow heap, and the last is the uninterpreted predicate
that summarizes whether the key exists in the deep heap.
Similarly, key lookup in DJS is desugared as follows.

child[k] getPropObj (deref _child) (deref _k)

We unroll the type of the System!D expression as follows.

{if has(d1,k) then ν = sel(d1,k) else

if has(d2,k) then ν = sel(d2,k) else

if has(d3,k) then ν = sel(d3,k) else

ite HeapHas(H,ℓ4,k) (ν = HeapSel(H,ℓ4,k)) Undef (ν)}

Thus, our technique of decomposing the heap into shallow
and deep parts, followed by heap unrolling, captures theex-
act semantics of prototype-based object operations modulo
the unknown portion of the heap. Thus, System!D precisely
tracks objects in the presence of mutation and prototypes.

Additional Primitives. The new update and deletion prim-
itives setPropObj anddelPropObj (Figure 3) affect only
the “own” object, since the prototype chain does not partici-
pate in the semantics. We model native JavaScript functions
like Object.prototype.hasOwnProperty with type an-
notations in the fileprelude.js (Figure 4). Notice that the
function type for objects (the first in the intersection) checks
only the “own” object for the given key.

Constructors. JavaScript provides the expression form
new Foo(args) as a second way ofconstructingobjects,
in addition to object literals whose prototypes are set to
Object.prototype. The semantics are straightforward,
but quite different than the traditionalnew syntax suggests.
Here, ifFoo is any function (object), then a fresh, empty ob-
ject is created with prototype objectFoo.prototype, and
Foo is called with the new object bound tothis (along
with the remaining arguments) to finish its initialization.
We desugar constructors andnew with standard objects and
functions (followingλJS [21]) without adding any special
System!D constructs or primitive functions.

var __hasOwn =

/*: (this ∶Ref , k ∶Str)/(this ↦ ⟨d ∶Dict, ˙this⟩) → {ν iff has(d, k)}/same

∧ ∀A. (this ∶Ref , i ∶Int)/(this ↦ ⟨a ∶Arr(A), ˙this⟩) → {ite packed(a) (ν iff 0 ≤ i < len(a)) Bool(ν)}/same

∧ ∀A. (this ∶Ref , k ∶Str)/(this ↦ ⟨a ∶Arr(A), ˙this⟩) → {ν iff k = “length”}/same */ "#extern";

function Object() { ... }; Object.prototype = {"hasOwnProperty": __hasOwn, "constructor": Object, ... };

var __push = /*: ∀A. (this ∶Ref , x ∶A)/(this ↦ ⟨a ∶Arr(A), ˙this⟩)

→ Int /(this ↦ ⟨a′ ∶{ν ∶∶ Arr(A) ∧ arrSize(ν, a,1)}, ˙this⟩) */ "#extern";

var __pop = /*: ∀A. (this ∶Ref , x ∶A)/(this ↦ ⟨a ∶Arr(A), ˙this⟩)
→ {ite packed(a) (ν ∶∶ A) (ν ∶∶ A ∨Undef (ν))}

/ (this ↦ ⟨a′ ∶{ν ∶∶ Arr(A) ∧ arrSize(ν, a,−1)}, ˙this⟩) */ "#extern";

function Array() { ... }; Array.prototype = {"push": __push, "pop": __pop, "constructor": Array, ... };

Figure 4. Excerpt fromprelude.js

Inheritance. Several inheritance relationships, including
ones that simulate traditional classes, can be encoded with
the construction mechanism, as shown in the popular book
JavaScript: The Good Parts[10]. Here, we examine thepro-
totypal pattern, a minimal abstraction which wraps construc-
tion to avoid the unusual syntax and semantics that leads
to common errors; we discuss the rest in § 6. The function
beget (the basis forObject.create in ES5) returns a fresh
empty object with prototypeo.

 /*: ∀L. o ∶Ref /(o↦ ⟨d ∶Dict, ȯ⟩)
 → Ref L/(L↦ ⟨{ν = empty}, o⟩)⊕ (o ↦ same) */

 function beget(o) {

 /*: #ctor this ∶Ref → {ν = this} */

 function F() { return this; };

 F.prototype = o;

 return new /*:L*/ F(); }

The #ctor on line 4 instructs desugaring to: initialize the
function object with a“prototype” key that stores an
empty object literal (since it will be called as a constructor);
and expand the type annotation as follows to require that
this initially be empty, as is common for all constructors.

this ∶Ref /(this ↦ ⟨{ν = empty}, ˙this⟩)→ {ν = this}/same

The assignment on line 6 strongly updatesFoo.prototype

(overwriting its initial empty object) with the argumento.
Thus, the object constructed (at locationL) on line 7 has
prototypeo, sobeget has the ascribed type. In most cases,
new can be used without a location annotation and a fresh
one is chosen. In this case, we annotate line 7 withL (from
the type ofbeget), which our implementation does not infer
because there is no input corresponding toL.

2.6 Arrays

The other workhorse data structure of JavaScript are arrays,
which are really just objects with integer “indices” converted
to ordinary string keys. However, arrays pose several tricky

challenges as they are commonly used both as finite tuples
as well as unbounded collections.

var arr = [17, "hi", true];

arr[3] = 3; arr.push(4);

assert (arr.length == 5 && arr[5] == undefined);

As for any object, retrieving a non-existent key returns
undefined rather than raising an “out-of-bounds” excep-
tion. Like other objects, arrays are extensible simply by
writing “past the end.” Array literals objects have proto-
typeArray.prototype, which includes apush (resp.pop)
function for adding an element to (resp. removing an ele-
ment from) the end of an array.

Loops are used to iterate over arrays of unknown size. But
since lookups may returnundefined, it is important to track
when an access is “in-bounds.” JavaScript bestows upon
arrays an unusual“length” property, rather than a method,
to help. Reading it returns the largest integer key of the array,
which is not necessarily its “size” because it may contain
“holes” or even non-integer keys. Furthermore, assigning a
numbern to the“length” of an array eithertruncatesit if
n is less than its current length, orextendsit (by padding
with holes) if it is greater. Despite the unusual semantics,
programmers commonly use arrays as if they are traditional
“packed” arrays with integer “indices” zero to “size” minus
one. The type system must reconcile this discrepancy.

Array Types. We introduce a new syntactic type term
Arr(T) and maintain the following four properties for ev-
ery valuea that satisfies the has-type predicatea ∶∶ Arr(T).
We refer to strings that donot coerce to integers as “safe,”
and we use an uninterpreted predicatesafe to describe such
strings (e.g.safe(“foo”) whereas¬safe(“17”)).

(A1) a contains the special“length” key.

(A2) All other “own” keys of a are (strings that coerce to)
integers.

(A3) For all integersi, eithera maps the keyi to a value of
typeT , or it has no binding fori.

(A4) All inherited keys ofa are safe (i.e.non-integer) strings.

An array can have arbitrary objects in its prototype chain,
so to ensure (A4), we require thatall non-array objects bind
only safe strings. This sharp distinction between between ar-
ray objects (that bind integer keys) and non-array objects
(that bind safe string keys) allows System!D to avoid rea-
soning about string coercions, and does not significantly
limit expressiveness because programs typically conform to
this division anyway.11 To enforce this restriction, the type
for keys manipulated by primitives inobjects.dref and
prelude.js is actuallySafeStr , rather thanStr as shown in
Figure 3 and Figure 4, whereSafeStr ○= {Str(ν)∧safe(ν)}.

Packed Arrays. Arraysa that additionally satisfy the unin-
terpreted predicatepacked(a) enjoy the following property,
wherelen(a) is an uninterpreted function symbol.

(A5) For all integersi, if i is between zero andlen(a) minus
one, thena mapsi to a value of typeT . Otherwise,a has
no binding fori.

Tuple Arrays. Using additional predicates, System!D
gives precise types to array literals, which are often used
as finite tuples in idiomatic code. For example, we can de-
scribe a pair of integers with the type{ν ∶∶ Arr(Int) ∧
packed(ν)∧ len(ν) = 2} and aheterogeneouspair with{ν ∶∶
Arr(Top) ∧ packed(ν) ∧ len(ν) = 2 ∧ Str(sel(ν,“0”)) ∧
Bool(sel(ν,“1”))}. Thus, the technique of nested refine-
ments allows us to smoothly reason about arrays both as
packed homogenous collections and as heterogenous tuples.

Array Primitives. We define several array-manipulating
primitives in objects.dref (some of which we show
in Figure 3) that maintain and use the array invariants
above. For key lookup on arrays, we define three primi-
tives: getIdxArr looks for the integer keyi on the own
objecta and ignores the prototype chain ofa because (A4)
guarantees thata will not inherit i, and returns a value sub-
ject to the properties (A3) and (A5) that govern its integer
key bindings;getLenArr handles the special case when the
string keyk is “length”, which (A1) guarantees is bound
by a, and returns the the true length of the array only if it is
packed; andgetPropArr deals with all other (safe) string
keys k by reading from the prototype chain of the array
(re-using the heap unrolling mechanism) ignoring its own
bindings because of (A2).

For array updates, we definesetIdxArr that uses the fol-
lowing macros to preserve packedness (A5) when possible.

arrSet(a
′

, a, i)
○

= if 0 ≤ i < len(a) then arrSize(a
′

, a,0) else

if i = len(a) then arrSize(a′, a,1) else true

arrSize(a′, a,n)
○

= packed(a)⇒

(packed(a
′

) ∧ len(a
′

) = len(a) + n)

11We discuss an alternative approach in § 7.

In particular, the updated arraya′ is packed if: (1) the
original arraya is packed; and (2) the updated indexi is
either within the bounds ofa (in which case, the length of
a′ is the same asa) or just past the end (so the length of
a′ is one greater thana). In similar fashion, we specify the
remaining primitives for update and deletion to maintain the
array invariants, and the ones for key membership to use
them, but we do not show them in Figure 3.

In prelude.js (Figure 4), we use precise types to model
the nativepush and pop methods ofArray.prototype
(which maintain packedness, as above), as well as the be-
havior ofObject.prototype.hasOwnPropertyon arrays
(the last two cases of the intersection type). Thus, the pre-
cise dependent types we ascribe to array-manipulating oper-
ations maintain invariants (A1) through (A5) and allow DJS
to precisely track array operations.

Desugaring. It may seem that we need to use separate
primitive functions for array and non-array object opera-
tions, even though they are syntactically indistinguishable in
JavaScript. Nevertheless, we are able to desugar DJS based
purely on expression syntax (andnot type information) by
unifying key lookup within a single primitivegetElem and
giving it a type that is theintersectionof the (three) array
lookup primitives and the (one) non-array lookup primitive
getPropObj. We definegetElem in Figure 3, where we
specify the intersection type usingand andtype as syntac-
tic sugar to refer to the previous type annotations. We de-
fine similar unified primitives forsetElem, hasElem, and
delElem (not shown in Figure 3). Desugaring uniformly
translates object operations to these unified general primi-
tives, and type checking of function calls ensures that the
appropriate cases of the intersection type apply.

2.7 Collections

As discussed in § 2.2, strong updates are sound only for ref-
erences that point toexactly oneobject, which is far too re-
strictive as real programs manipulate collections of objects.
In this section, we describeweak referencesin DJS to refer
to multiple objects, a facility that enables programming with
arrays of mutable objects as well as recursive types.

Weak References. In the following example, we iterate
over an array of passenger objects and compute the sum
of their weights; we use a default valuemax_weight when
a passenger does not list his weight (ignore the unfamiliar
annotations for now).

 /*: (ℓ̃pass ↦ frzn) → same */

 for (i=0; i < passengers.length; i++) {

 var p = passengers[i];

 /*: #thaw p */

 if (p.weight) { sum += p.weight; }

 else { sum += max_weight; }

 /*: #freeze p */

 }

We could describe the arraypassengerswith the typeRef ℓ
for a locationℓ. However, this type is not very useful as it
denotes an array of references to asingleobject.

Weak Locations. To refer to anarbitrary number(zero
or more) objects of the same type, we adopt the Alias
Types [32] solution, which categorizes some locations as
weakto describe an arbitrary number of locations that satisfy
the same type, and syntactically ensures that weak locations
are weakly updated.

We introduce a new kind of heap binding(ℓ̃ ↦ ⟨T, ℓ′⟩),
whereℓ̃ is a weak location, all objects that might reside there
satisfyT , andℓ′ is the strong location of the prototype of all
objects that reside at locatioñℓ. There isno heap binder for
weak locations since there is not a single value to describe.

In our example, we can use(ℓ̃pass ↦ ⟨Tpass , ℓop⟩)
to describe passenger objects, whereℓop is the location
of Object.prototype and Tpass is the dictionary type
{Dict(ν)∧has(ν,“weight”) ⇒ Num(sel(ν,“weight”))}.
If we assign the type{ν ∶∶ Arr(Ref ℓ̃pass) ∧ packed(ν)},
to passengers, thenp has typeRef ℓ̃pass , and thus each
(desugared) use ofp is a dictionary of typeTpass . This
type is quite unsatisfying, however, because the conditional
establishes that along the then-branch,p doespossess the
key and therefore should be assigned the more precise type
{Num(sel(d,“weight”))}.

Thaw / Freeze. To solve this problem, we adopt a mecha-
nism found in derivatives of Alias Types (e.g.[2, 12, 14, 31])
that allows a weak location to betemporarily treated as
strong. A weak locatioñℓ is said to befrozen if all refer-
encesRef ℓ̃ use the location only at its weak (invariant) type.
The type system canthaw a location, producing a strong
referenceRef ℓk (with a fresh name) that can be used to
strongly update the type of the cell. While a location is
thawed, the type system prohibits the use of weak references
to the location, and does not allow further thaw operations.
When the thawed (strong) reference is no longer needed,
the type system checks that the original type has been re-
stored,re-freezesthe location, and discards the thawed lo-
cation. Soundness of the approach depends on the invari-
ant that each weak location has at most one corresponding
thawed location at a time.

In our example, we do not need to temporarily violate
the type ofp, but the thaw/freeze mechanism does help
us relate the two accesses top. The thaw stateannotation
above the loop declares that before each iteration of the loop
(including the first one), the locatioñℓpass must be frozen.
The thaw annotation on line 4 changes the type ofp to a
strong reference to a fresh thawed locationℓ1, which stores
a particular dictionary on the heap (named with a binder)
that is retrieved by both subsequent uses ofp. Thus, we can
relate the key membership test to the lookup, and track that
p.weight produces a number. The freeze annotation on line
7 restores the invariant required before the next iteration. We
describe this technique formally in § 4.

Recursive Types. We reuse the weak location mecha-
nism to describe recursive data structures. Consider the
following adapted from the SunSpider [34] benchmark
access-binary-trees.js, annotated in DJS.

 /*: #define Ttn {“i” ∶Num,“l”,“r” ∶Ref ℓ̃tn} */

 /*: #weak (ℓ̃tn ↦ ⟨Ttn, ℓtnp⟩) */

 /*: #ctor (this ∶Ref , left , right ∶Ref ℓ̃tn, item ∶Num)

 /(ℓ̃tn ↦ frzn) → Ref ℓ̃tn /same */

 function TreeNode(left, right, item) {

 this.l = left; this.r = right; this.i = item;

 /*: #freeze this */

 return this;

 }

 /*: this ∶Ref ℓ̃tn → Num */

 TreeNode.prototype.itemCheck = function f() {

 // thaw/freeze annotations inferred

 if (this.l == null) return this.item;

 else { return this.i

 + f.apply(this.l)

 - f.apply(this.r); }

 }

The source-level macro on line 1 introducesTtn to abbre-
viate the type ofTreeNodes, using traditional record type
syntax instead of the underlying McCarthy operators. Line
2 defines the weak location forTreeNodes, using the pre-
dictable locationℓtnp created by desugaring for the object
TreeNode.prototype. The constructor annotation itself
declares that the return type is a reference to one of these
recursive objects, which System!D verifies by checking
that on line 6 the appropriate fields are added to the strong,
initially-empty objectthis before it is frozen and returned.

Recursive Traversal. There are two differences compared
to the original version ofitemCheck, which cannot be type
checked in DJS. First, we name the function being defined
(notice thef on line 11), a JavaScript facility for recursive
definitions. Second, we writef.apply(this.r) instead of
this.r.itemCheck() as in the original, where the native
JavaScript functionapply allows a caller to explicitly sup-
ply a receiver argument. The trouble with the original call
is that it goes through the heap (in particular, the prototype
chain ofthis) to resolve the recursive function being de-
fined. This function will be stored in a strong object, and we
have no facility (e.g.mu-types) for strong objects with re-
cursive types; our only mechanism is for weak objects. If we
write f.apply(this.r), however, the recursive functionf
is syntactically manifest, and we can translate the definition
with a call to the standardfix primitive (Figure 1). In § 5,
we describe how we handle a limited form ofapply that is
sufficient for our idiomatic recursive definitions in DJS. We
expect that we can add a more powerful mechanism for re-
cursive types that supports the original code as written, but
we leave this to future work.

2.8 Rest of the Paper

We have now completed our tour of Dependent JavaScript.
Next, we formally define the syntax of System!D in § 3
and the type system in § 4. In, § 5, we present the syntax
of DJS and its desugaring to System!D. We discuss our
implementation and results in § 6, directions for future work
in § 7, and related work in § 8.

3. Syntax and Semantics of System!D
We now introduce the formal syntax of values, expressions,
and types of System!D, defined in Figure 5.

Values. Valuesv include variablesx, constantsc, lamb-
dasλx. e, (functional) dictionariesv1 ++ v2 ↦ v3, and
run-time heap locationsr. The set of constantsc includes
base values (numbers, booleans, strings, the empty dictio-
nary {}, null, undefined, NaN, etc.) and the primitive
functions frombasics.dref andobjects.dref (typeof,
get, getElem, etc.). Logical valuesw are all values and ap-
plications of primitive function symbolsF , such as addition
+ and dictionary selectionsel , to logical values.

Expressions. Expressionse include values, function appli-
cation, if-expressions, and let-bindings. The ascriptionform
e as T allows source-level type annotations. Since function
types will be parameterized by type, location, and heap vari-
ables, the syntax of function application requires that these
be instantiated. Reference operations include reference allo-
cation, dereference, and update, and the run-time semantics
maintains a separate heap that maps locations to values. The
expressionnewobj ℓ v v′ stores the valuev at a fresh lo-
cationr — where the nameℓ is a compile-time abstraction
of a set of run-time location names that includesr – with
its prototype link set tov′, which should be a location. The
thaw ℓ v operation converts a weak reference to a strong
strong one;freeze ℓ̃ θ v converts a strong reference to a
weak one, where thaw stateθ is used by the type system
for bookkeeping. An expression@x ∶ e labels the enclosed
expression, and a break expressionbreak @x v terminates
execution of the innermost expression labeled@x within the
function currently being evaluated and produces the resultv.
If no such labeled expression is found, evaluation becomes
stuck. Label and break expressions are included to translate
the control flow operations of DJS. Exceptions are arbitrary
objects that can be raised and handled as usual.

The operational semantics is standard, based onλJS with
minor differences. For example, we make prototype links
manifest in the syntax of heaps (to facilitate heap unrolling
in the type system), whereasλJS stores them inside objects
in a distinguished“ proto ” field. We refer the reader to
[21] for the full details.

We use an A-normal expression syntax so that we need
only define substitution of values (not arbitrary expres-
sions) into types. We use a more general syntax for exam-
ples throughout this paper, and our implementation desug-

ars expressions into A-normal form. We use tuple syntax
(v0, . . ., vn) as sugar for the dictionary with fields“0”
through“n” bound to the component values.

Types and Formulas. Values in System!D are described
by refinement typesof the form{x ∣p} wherex may appear
free in the formulap,12 andexistential types∃x ∶T . S where
x may appear free inS. Existentials are created during type
checking, and, by convention (rather than introducing more
syntactic categories), do not appear in programs. The lan-
guage ofrefinement formulasincludes predicatesP , such as
the equality and dictionary predicatehas , and the usual log-
ical connectives. Similar to the syntax for expression tuples,
we use(T1, . . ., Tn) as sugar for the dictionary type with
fields“0” through“n” with the corresponding types.

Locations. To track which locations can be used to instan-
tiate variables, we distinguish between strong and weak lo-
cation constantsa andã, and strong and weak location vari-
ablesL andL̃. Strong locationsℓ and weak locations̃ℓ can
be constants or variables. We usem to range over arbitrary
location constants andM for arbitrary location variables.

Type Terms and Type Predicates.As in System D, we use
an uninterpretedhas-type predicatew ∶∶ U in formulas to de-
scribe values that have complex types, represented bytype
termsU , which includes function types, type variables, null,
reference, and array types. A reference type names a strong
or weak location in the heap. In § 2.4, we discussed how
function types are parameterized by sequences of type, lo-
cation, and heap variables, and describe input and output
worlds (type-heap pairs). At that point in the presentation,
we had only seen strong locations, so arrows were param-
eterized with strong location variablesL. Since System!D
includes weak locations as well, function types are parame-
terized by arbitrary location variablesM and also include an
explicit weak heapΨ. We have not shown any examples that
abstract over weak locations in this paper.

Heap Types. A heap typeΣ̂ is an unordered set ofheap
variablesH andheap bindingŝh concatenated with the⊕
operator. We syntactically require that each heap has exactly
one heap variable, so we write a heap type as the pair(H, ĥ),
whereH is the “deep” part for which we have no informa-
tion andĥ is the “shallow” part for which have precise lo-
cation information. The heap binding(ℓ ↦ x ∶T) represents
the fact that the value at locationℓ has typeT ; the binder
x refers to this value in the types of other heap bindings.
The binding(ℓ ↦ ⟨x ∶T , ℓ′⟩) additionally records a proto-
type link ℓ′. The binding(ℓ̃ ↦ θ) records the currentthaw
stateof weak locatioñℓ, to help maintain the invariant that it
has at most one thawed location at a time.

12The presentation in [8] required that the binder beν; here, we allow the
binder to be arbitrary, but useν when it is convenient. Also, unlike in the
previous presentation, we eliminate the stratification between polymorphic
and monomorphic types; in System!D, polymorphism is expressed with the
type parameters of function types.

Values v ∶∶= x ∣ c ∣ v1 ++ v2 ↦ v3 ∣ λx. e ∣ r

Expressions e ∶∶= v ∣ [T ;m;Σ] v1 v2 ∣ if v then e1 else e2 ∣ let x = e1 in e2 ∣ e as T

∣ ref ℓ v ∣ deref v ∣ v1 ∶= v2 ∣ newobj ℓ v v′ ∣ freeze ℓ̃ θ v ∣ thaw ℓ v

∣ @x ∶ e ∣ break @x e ∣ throw e ∣ try e1 catch (x) e2 ∣ try e1 finally e2

Types S,T ∶∶= {x ∣ p} ∣ ∃x ∶T. S

Formulas p, q ∶∶= P (w) ∣ w ∶∶ U ∣ HeapHas(H,ℓ,w) ∣ p ∧ q ∣ p ∨ q ∣ ¬p

Logical Values w ∶∶= v ∣ F (w) ∣ HeapSel(H,ℓ,w)

Syntactic Type Terms U ∶∶= ∀[A;M ;H] Ψ/x ∶T1/Σ̂1 →W ∣ A ∣ Null ∣ Ref ℓ ∣ Ref ℓ̃ ∣ Arr(T)

Heap Bindings ĥ ∶∶= (ℓ ↦ x ∶T) ∣ (ℓ ↦ ⟨x ∶T, ℓ′⟩) ∣ (ℓ̃ ↦ θ) ∣ ĥ1 ⊕ ĥ2 ∣ ∅

Weak Heap Bindings Ψ ∶∶= (ℓ̃ ↦ ⟨T, ℓ⟩) ∣ Ψ1 ⊕Ψ2 ∣ ∅

Worlds W ∶∶= T2/Σ̂2 x, y, z ∈ Identifiers A,B ∈ TypeVariables

Heaps Σ̂ ∶∶= (H, ĥ) a ∈ LocationConstants H ∈ HeapVariables

Strong Locations ℓ ∶∶= a ∣ L r ∈ DynamicHeapLocations L ∈ LocationVariables

Weak Locations ℓ̃ ∶∶= ã ∣ L̃ F ∈ LogicalFunctionSymbols P ∈ LogicalPredicateSymbols

Thaw States θ ∶∶= frzn ∣ thwd ℓ m ∶∶= ℓ ∣ ℓ̃ M ∶∶= L ∣ L̃

c ∈ ValueConstants ⊃ { true,false,null,undefined,1,2,“hanna”,(==),!,typeof,get,getElem,fix }

Figure 5. Syntax of System !D

Uninterpreted Heap Symbols.To describe invariants about
the deep part of a heap, System!D introduces two unin-
terpretedheap symbols. The predicateHeapHas(H,ℓ, k)
represents the fact that the chain of objects inH start-
ing with ℓ has the keyk. Similarly, the function symbol
HeapSel(H,ℓ, k) refers to the value retrieved when looking
up keyk in the heapH starting withℓ.

4. Type Checking
In this section, we present the well-formedness, typing, and
subtyping relations of System!D. The type system reuses
the System D [8] subtyping algorithm to factor subtyping
obligations between a first-order SMT solver and syntactic
subtyping rules. The novel technical developments are: the
formulation of flow-sensitive heap types in a dependent set-
ting; the use of uninterpreted heap symbols to regain preci-
sion in the presence of imperative, prototype-based objects;
the encoding of array primitives to support idiomatic use of
JavaScript arrays; and the use of refinement types to assign
precise types to JavaScript operators.

Environments. Type checking uses several environments.

Γ ∶∶= ∅ ∣ Γ, x ∶T ∣ Γ, p ∣ Γ,A ∣ Γ,M ∣ Γ,H

∣ Γ, (ℓ̃ ↦ ⟨T, ℓ⟩)

Σ ∶∶= (H,h)

h ∶∶= ∅ ∣ h1 ⊕ h2 ∣ (ℓ ↦ v) ∣ (ℓ↦ ⟨v, ℓ′⟩) ∣ (ℓ̃ ↦ θ)

Ω ∶∶= ∅ ∣ Ω,@x ∶(T /Σ)

A type environmentΓ binding records either: the derived
type for a variable; a formulap to track control flow along a

conditional branch; a polymorphic variable introduced by a
function type; or the description of a weak location (which
does not change flow-sensitively), namely, that every object
stored atℓ̃ satisfies typeT and has prototype linkℓ. A
heap environmentΣ is just like a heap type, except a strong
locationℓ binds the valuev it stores (as opposed to thetype
of v). A label environmentΩ binding records the world that
the expression labeled@x is expected to satisfy.

4.1 Well-Formedness

We highlight a few aspects of the largely straightforward
well-formedness relations, defined in in Appendix A.

Types, Formulas, and Logical Values.We require that
types bewell-formedwithin the current type environment,
where formulas are boolean propositions and mention only
variables that are currently in scope.

Heap Types. Locations in a heap typêΣ must either be
location constants or location variables bound by the type
environment, and may not be bound multiple times. All heap
binders may refer to each other. Thus, the values in a heap
can be regarded as a dependent tuple.

Function Types. Checking that a function type is well-
formed proceeds in several steps. First, the polymorphic
variables are added to the environment. Second, the weak
heapΨ is checked. Next, the locations ofΨ are added to the
environment, and input typeT1 is checked. Then, the input
heap typeΣ̂1 is checked in an environment extended with
the input binderx. Finally, the procedureBinders collects all
binders from the input heap to be added to the environment,

Subtyping Γ ⊢ T1 ⊑ T2

[S-REFINEMENT]

y fresh Γ, p[y/x]⇒ q[y/x]

Γ ⊢ {x ∣ p} ⊑ {x ∣ q}

[S-EXISTS]

Γ, x ∶T ⊢ S1 ⊑ S2

Γ ⊢ ∃x ∶T. S1 ⊑ S2

Implication Γ⇒ p

CNF(p) = ∧i (pi ⇒ Qi) ∀i. ∃q ∈ Qi. Γ, pi ⇒ q

Γ⇒ p
[I-CNF]

[I-VALID]

Valid(JΓK ⇒ p)

Γ⇒ p

[I-I MPSYN]

Valid(JΓK ⇒ w ∶∶ U ′) Γ ⊢ U ′ <∶ U

Γ⇒ w ∶∶ U

Syntactic Subtyping Γ ⊢ U1 <∶ U2

U1 = ∀[A;M ;H] Ψ/x ∶T1/(H, ĥ1)→W1

U2 = ∀[A;M ;H] Ψ/x ∶T2/(H, ĥ2)→W2

Γ ⊢ T2 ⊑ T1 Γ, x ∶T2 ⊢ ĥ2 ⊑ ĥ1; π Γ, x ∶T2, Jĥ2K ⊢ πW1 ⊑ W2

Γ ⊢ U1 <∶ U2

Γ ⊢ Arr(T) <∶ Arr(T) Γ ⊢ A <∶ A Γ ⊢ Ref ℓ <∶ Ref ℓ

Γ ⊢ Null <∶ Ref ℓ̃ Γ ⊢ Ref ℓ̃ <∶ Ref ℓ̃

Figure 6. Subtyping for System !D

so that the output worldT2/Σ̂2 can refer to them and, thus,
express precise relationships with the input heap.

4.2 Subtyping

Several relations, defined in Figure 6, comprise subtyping.

Subtyping, Implication, and Syntactic Subtyping.As in
System D, subtyping on refinement types reduces to implica-
tion of refinement formulas, which are discharged by a com-
bination of uninterpreted, first-order reasoning and syntac-
tic subtyping. If the SMT solver alone cannot discharge an
implication obligation (I-VALID), the formula is rearranged
into conjunctive normal form (I-CNF), and goals of the form
w ∶∶ U are discharged by a combination of uninterpreted rea-
soning and syntactic subtyping (I-IMPSYN). We write JT K
for theembeddingof a type as a formula, a straightforward
definition [8] that lifts to environmentsJΓK and heap bind-
ingsJĥK. Our treatment of existential types follows the algo-
rithmic (decidable) approach in [25]. In particular, when on
the left side of an obligation, the existential binding is added
to the environment; there isno support for existentials on
the right. The way in which type checking introduces exis-
tentials guarantees that they always appear on the left.

References and Arrays. As in Alias Types [32], we en-
force the invariant that distinct strong locations do not alias,
so references to them areneverrelated by subtyping. In con-
trast, weak locations describe zero or more locations, and
it is safe to treatnull as a subtype ofany weak location.
That is, weak references arenullablebut strong ones are not.

Value Typing Γ; Σ; Ω ⊢ v ∶∶ T

[T-CONST]

Γ; Σ; Ω ⊢ c ∶∶ ty(c)

[T-VAR]

Γ(x) = S

Γ; Σ; Ω ⊢ x ∶∶ {y ∣ y = x}

StaticLoc(r) =m m ∈ dom(Σ)

Γ; Σ; Ω ⊢ r ∶∶ {x ∣x = r ∧ x ∶∶ Ref m}
[T-L OC]

[T-EXTEND]

Γ; Σ; Ω ⊢ (v1, v2, v3) ∶∶ (Dict , Str , T)

Γ; Σ; Ω ⊢ v1 ++ v2 ↦ v3 ∶∶ {x ∣x = v1 ++ v2 ↦ v3}

[T-FUN]

U = ∀[A;M ;H] Ψ/x ∶T1/Σ̂1 →W2 Γ ⊢ U Ω1 = ∅

Snapshot(Σ̂1) = (z ∶S,Σ1) Γ1 = Γ,A,M,H,Ψ, x ∶T1, z ∶S
Γ1; Σ1; Ω1 ⊢ e ∶∶ T2/Σ2 Γ1 ⊢ T2/Σ2 ⊧ W2; π

Γ; Σ; Ω ⊢ λx. e ∶∶ {y ∣ y = λx. e ∧ y ∶∶ U}

World Satisfaction Γ ⊢ T /Σ ⊧ W ; π

Γ ⊢ T ⊑ S Γ ⊢ Σ ⊧ Σ̂; π Γ⇒ πJΣ̂K

Γ ⊢ T /Σ ⊧ S /Σ̂; π′

Figure 7. Value type checking for System !D

Arrays are invariant in their type parameter, as usual, but
can be related with additional predicates. For example,{ν ∶∶
Arr(Int) ∧ len(ν) = 2} is a subtype of{ν ∶∶ Arr(Int)}.

Heaps. The world subtyping judgmentΓ ⊢ T1/(H, ĥ1) ⊑
T1/(H, ĥ2) (in Appendix A) checks thatT1 is a subtype of
T2 and that the heaps agree on the “deep” partH . Then, it
checks that the structure of the “shallow” parts match (mod-
ulo permutation of bindings, checked by the≡ operator) and
creates a substitutionπ of binders from̂h2 to ĥ1. Finally, the
heap bindings, which can be though of as dependent tuples,
are embedded as formulas and checked by implication.

4.3 Value Typing

The value typing judgmentΓ; Σ; Ω ⊢ v ∶∶ T (Figure 7)
verifies that the valuev has typeT in the given environ-
ments. Since values do not produce any effects, this judg-
ment doesnot produce an output heap environment. Each
primitive constantc has a type, denoted byty(c), that is used
by T-CONST. In our implementation, the standard prelude
(basics.dref,objects.dref, andprelude.dref) com-
prisety(c). The rules T-VAR and T-EXTEND are standard.
The T-LOC rule assigns run-time locationr (which appears
during evaluation, but not in source programs) a reference
type corresponding to its compile-time location, using the
mappingStaticLoc. The rule T-FUN uses an empty label en-
vironment to type check function bodies, so that break ex-
pressions cannot cross function boundaries. The procedure
Snapshot strips all of the binders from the input heap type
Σ̂1 to add to the type environment and produces a heap envi-
ronmentΣ1 for type checking the body. Dually, to check that

the resulting worldT2/Σ2 satisfiesW2, the world satisfac-
tion relation (along with its helper, heap satisfaction, defined
in Appendix A) checks that all bindings have the appropriate
structure (modulo permutation of bindings, related by the≡
relation) and that the values inΣ2 satisfy the types inW2.

4.4 Expression Typing

The expression typing judgmentΓ; Σ; Ω ⊢ v ∶∶ T /Σ′

(Figure 8) verifies that the evaluation of expressione pro-
duces a value of typeT and a new heap environmentΣ′.
Aside from the rules for label and break expressions, label
environmentsΩ play no interesting role. We consider sev-
eral sets of typing rules in turn.

Imperative Operations. In System!D, we require thatall
imperative operations go through strong locations. Alterna-
tively, we could define analogs of the following rules for
weak locations, but we choose not to since we provide a
mechanism for temporarilythawing weak locations any-
way. The rules T-REF, T-DEREF, and T-SETREF manipu-
late strong locations that bind “bare” values with no pro-
totype link. To check the reference allocationref ℓ v, the
rule T-REF ensures thatℓ is not already bound in the heap,
and then adds a binding that records exactly the value be-
ing stored. The rule T-DEREFchecks that the given value is
a reference to a location on the heap, and then retrieves the
stored value; this is the imperative analog to the “selfifying”
T-VAR rule. The rule T-SETREFstrongly updates a heap lo-
cation. The rule T-NEWOBJ stores the valuev1 in the heap
at locationℓ1 along witha prototype link to the locationℓ2
that v2 refers to. Although no typing rules manipulate lo-
cations with prototype links, several primitive functionsdo
(e.g.getElem, setElem, etc.).

Thaw / Freeze. To safely allow a weak locatioñℓ to be
treatedtemporarilyas strong, System!D ensures that̃ℓ has
at most one correspondingthawed location at a time; if
there is none, we saỹℓ is frozen. The rule T-THAW thaws
ℓ̃ to a strong locationℓ (which we syntactically require be
distinct from all other thawed locations for̃ℓ) and updates
the heap environment with thaw statethwd ℓ to track the
correspondence. Subtyping allowsnullweak references, so
the output type isnull if the original reference is; otherwise,
it is a reference toℓ. Finally, the new heap also binds a value
x of typeT , the invariant for all values stored atℓ̃, and the
output type introduces anexistentialso thatx is in scope
in the new heap. The rule T-FREEZE serves two purposes,
to merge a strong locationℓ into a weak (frozen) locatioñℓ
and tore-freezea thawed (strong) locationℓ that originated
from ℓ̃, as long as the heap value stored atℓ satisfies the
invariant required bỹℓ. Compared to the presentation in [2],
we have combined freeze and re-freeze into a singlefreeze

expression that includes an explicit thaw stateθ.
The result of thawing a weak location iseither a strong

reference ornull. Although we could statically require that
all strong references be non-null before use (to rule out

the possibility of null-dereference exceptions), we choose to
allow null references to facilitate idiomatic programming.
Therefore, we modify the input type for the object primitives
in objects.dref to allow a null argument. For exam-
ple, consider the updated input type forhasPropObj below,
whereT ? ○= {T (ν)∨ν = null}. Notice that we add the pred-
icatex ≠ null to theoutput type, because ifhasPropObj
evaluates without raising an exception, thenx is guaranteed
to be non-null. In this way, System!D precisely tracks the
invariants of thawed objects (cf. passengers from § 2.7).

(x ∶Ref ?, k ∶Str)/(x↦ ⟨d ∶Dict, ẋ⟩)

→ {x ≠ null ∧ (ν iff ObjHas(d, k, cur , ẋ))}/same

Function Application. The T-APP rule does quite a bit
of heavy lifting to check the application[T ;m;Σ] v1 v2.
The procedureFreshen generates fresh binders for the out-
put heap type so that the output heap bindings at differ-
ent call sites do not collide. The number of type, location,
and heap parameters must match the number of type, loca-
tion, and heap variables of the function type ofv1. Further-
more, the premiseΓ ⊢ [m/M] ensures that the list of loca-
tions provides strong (resp. weak) locations for strong (resp.
weak) variables, and that the list contains no duplicates to
ensure the soundness of strong updates [32]. The substitution
of parameters for polymorphic variables proceeds in three
steps. First, the type variablesA are instantiated with the
type parametersT using the procedureInst, which instan-
tiates type variables inside has-type predicates. Second,the
location variablesM are replaced with the parametersm by
ordinary substitution. Third, the heap variablesH are instan-
tiated with the parametersΣ using a procedureHInst that
substitutes heap environment bindings for heap variables.
The substitution of heaps presents two complications. First,
HeapHas andHeapSel may refer to arbitrary heaps rather
than just heap variables, as required. Thesepre-types(and
pre-formulas, pre-heaps, etc.) are unrolled to types using the
procedureUnroll, discussed shortly. Second, since the do-
mains of the heap parameters may overlap, well-formedness
checks are required to ensure that locations are not bound
multiple times after instantiation. After these substitutions,
Γ ⊧ Ψ checks that the environment contains all heap bind-
ings required by the weak heap of the function type.

From this point, the rest of the rule is fairly familiar.
First, the argument typeT2 and current heapΣ are checked
to satisfy the input worldT ′

11
/Σ̂′

11
. If so, the substitution

π maps binders from the input heap to the corresponding
ones in the current heapΣ. Finally, the substitution for heap
and argument binders is applied to the output world, and its
heap bindings are collected usingSnapshot and added to the
output type using existentials.

Heap Symbol Unrolling. After heap instantiation, pre-
types contain symbols of the formHeapHas(Σ, ℓ, v) and
HeapHas(Σ, ℓ, v), which must be unrolled to eliminate heap

Expression Typing Γ; Σ; Ω ⊢ e ∶∶ T /Σ′

[T-REF]
ℓ ∉ dom(Σ) Γ; Σ; Ω ⊢ v ∶∶ T

Γ; Σ; Ω ⊢ ref ℓ v ∶∶ {x ∣x ∶∶ Ref ℓ}/Σ⊕ (ℓ ↦ v)

Γ; Σ; Ω ⊢ v ∶∶ {y ∣ y ∶∶ Ref ℓ} Σ ≡ Σ0 ⊕ (ℓ ↦ v
′)

Γ; Σ; Ω ⊢ deref v ∶∶ {y ∣ y = v}/Σ
[T-DEREF]

[T-SETREF]

Γ; Σ; Ω ⊢ v1 ∶∶ {y ∣ y ∶∶ Ref ℓ}
Γ; Σ; Ω ⊢ v2 ∶∶ T

Σ ≡ Σ0 ⊕ (ℓ↦ v) Σ
′

= Σ0 ⊕ (ℓ ↦ v2)

Γ; Σ; Ω ⊢ v1 ∶= v2 ∶∶ {x ∣x = v2}/Σ
′

ℓ1 ∉ dom(Σ) Γ; Σ; Ω ⊢ v1 ∶∶ T
Γ; Σ; Ω ⊢ v2 ∶∶ {y ∣ y ∶∶ Ref ℓ2} Σ ≡ Σ0 ⊕ (ℓ2 ↦ ⟨v2, ℓ3⟩)

Σ
′

= Σ⊕ (ℓ1 ↦ ⟨v1, ℓ2⟩)

Γ; Σ; Ω ⊢ newobj ℓ1 v1 v2 ∶∶ S2/Σ
′

[T-NEWOBJ]

[T-FREEZE]

Γ; Σ; Ω ⊢ v ∶∶ {x ∣x ∶∶ Ref ℓ} Ψ(ℓ̃) = (T, ℓ′)

Σ ≡ Σ0 ⊕ (ℓ̃ ↦ θ)⊕ (ℓ ↦ ⟨v′, ℓ′⟩) θ = frzn or θ = thwd ℓ
Γ; Σ; Ω ⊢ v′ ∶∶ T Σ

′

= Σ0 ⊕ (ℓ̃ ↦ frzn)

Γ; Σ; Ω ⊢ freeze ℓ̃ θ v ∶∶ SafeRef ℓ̃/Σ
′

Γ; Σ; Ω ⊢ v ∶∶ Ref ℓ̃ Ψ(ℓ̃) = (T, ℓ′)

Σ ≡ Σ0 ⊕ (ℓ̃ ↦ frzn)

Σ
′

= Σ0 ⊕ (ℓ̃ ↦ thwd ℓ)⊕ (ℓ ↦ ⟨x, ℓ
′

⟩)
S = {y ∣ ite (v = null) (y = null) (y ∶∶ Ref ℓ)}

Γ; Σ; Ω ⊢ thaw ℓ v ∶∶ ∃x ∶T. S /Σ
′

[T-THAW]

[T-VAL]
Γ; Σ; Ω ⊢ v ∶∶ T

Γ; Σ; Ω ⊢ v ∶∶ T /Σ

Γ; Σ; Ω ⊢ e ∶∶ T /Σ

Γ; Σ; Ω ⊢ e as T ∶∶ T /Σ
[T-A S]

Γ; Σ; Ω ⊢ e ∶∶ S /Σ′ Γ ⊢ S ⊑ T Γ ⊢ T

Γ; Σ; Ω ⊢ e ∶∶ T /Σ′
[T-SUB]

[T-I F]

Γ; Σ; Ω ⊢ v ∶∶ S Γ, truthy(v); Σ; Ω ⊢ e1 ∶∶ T1 /Σ1

Γ, falsy(v); Σ; Ω ⊢ e2 ∶∶ T2 /Σ2 T /Σ′ = T1/Σ1 ⊔ T2 /Σ2

Γ; Σ; Ω ⊢ if v then e1 else e2 ∶∶ T /Σ
′

Γ; Σ; Ω ⊢ e1 ∶∶ T1 /Σ1

Γ, x ∶T1; Σ1; Ω ⊢ e2 ∶∶ T2 /Σ2 Γ ⊢ T2/Σ2

Γ; Σ; Ω ⊢ let x = e1 in e2 ∶∶ T2 /Σ2

[T-L ET]

[T-A PP]

Γ; Σ; Ω ⊢ v1 ∶∶ {y ∣ y ∶∶ ∀[A;M ;H] Ψ/x ∶T11/Σ̂11 →W12} Γ; Σ; Ω ⊢ v2 ∶∶ T2

Γ ⊢ [T /A] Γ ⊢ [m/M] Γ ⊢ [Σ/H] W
′

12 = Freshen(W12)

(T
′

11, Σ̂
′

11,W
′′

12,Ψ
′

) = Unroll(HInst(LInst(TInst((T11, Σ̂11,W
′

12,Ψ),A,T),M,m),H,Σ))

Γ ⊢ Σ̂
′

11 Γ ⊢W ′′

12 Γ ⊧ Ψ
′

Γ ⊢ T2/Σ ⊧ T
′

11 /Σ̂
′

11; π W
′′

12 = (T12, Σ̂12) π
′

= π[v2/x] Snapshot(π′Σ̂12) = (z ∶S,Σ12)

Γ; Σ; Ω ⊢ [T ;m;Σ] v1 v2 ∶∶ ∃z ∶S. π′T12/Σ12

Unroll(HeapHas((H,h), ℓ, k)) = UnrollHas(H,h, ℓ, k) UnrollHas(H,h,○, k) = false

Unroll(ψ(HeapSel((H,h), ℓ, k))) = UnrollSel(ψ,H,h, ℓ, k) UnrollHas(H,h, ℓ, k) = HeapHas(H,ℓ, k)
UnrollHas(H,h⊕ (ℓ ↦ ⟨d, ℓ′⟩), ℓ, k) = has(d, k) ∨UnrollHas(H,h, ℓ′, k) UnrollSel(ψ,H,h,○, k) = undefined

UnrollSel(ψ,H,h⊕ (ℓ ↦ ⟨d, ℓ′⟩), ℓ, k) = if has(d, k) then ψ(sel(d, k)) UnrollSel(ψ,H,h, ℓ, k) = ψ(HeapSel(H,ℓ, k))
else ψ(HeapSel(H,ℓ, k))

Figure 8. Expression type checking for System !D

constraints from these symbols. The procedureUnroll re-
cursively walks pre-formulas, pre-types, and pre-heaps and
appliesUnrollHas and UnrollSel, which unroll heaps by
following prototype links within heap bindings, thus pre-
cisely matching the semantics of object key membership and
lookup. We write the location○ for the root of the prototype
hierarchy. We use the notationψ(p) to refer to aformula
contextψ, a formula with a hole, filled withp.

Existentials. We have seen that T-APPand T-THAW con-
veniently use existentials binders into scope; T-LET does
the same to describe the variablex that goes out of scope
after the body expression is checked. Alternatively, the
more traditional approach (e.g. [8]) requires that the vari-
able be eliminated (e.g. via subsumption), but using exis-
tentials follows the standard implementation strategy [25]
more closely. The T-IF rule uses ajoin operator (not shown)
that combines the output worlds of the branches by rearrang-
ing existentials to ensure that the resulting world isprenex-

quantified. This ensures that existentials only appear on the
left side of subtyping obligations. For example, the join of
(∃x1 ∶T1. Top /(ℓ↦ x1)) and (∃x2 ∶T2. Top /(ℓ↦ x2)) is
(∃y ∶{T1(ν) ∨ T2(ν)}. Top /(ℓ↦ y)).

Exceptions and Labels. We omit these rules from Figure 8,
but they are standard. The T-LABEL rule for @x ∶ e binds
@x to an expected worldW in the label environmentΩ′

used to checke, and the T-BREAK rule for break @x e′

checks thate′ satisfies the worldΩ′(@x).

4.5 Type Soundness

Many standardstuck states arenot stuck in JavaScript: a
function can be applied with any number of arguments; an
operator can be used with any values because of implicit
coercion; and, all property lookups succeed (possibly pro-
ducingundefined). Nonetheless, several (non-exceptional)
stuck states remain: applying a non-function value; and re-
trieving a property for a non-object value. A progress state-

ment for DJS would state that well-typed programs do not
get stuck and can only fail with exceptions due to retrieving
a property fromundefined or null.13

We expect that System!D satisfies progress and preser-
vation theorems, but we have not yet proven them. The pro-
cess will likely be tedious but not require new proof tech-
niques. Unlike System D, which introduced the problem-
aticnestingof syntactic types inside uninterpreted formulas,
System!D does not introduce any new mechanisms in the
refinement logic. Furthermore, several variations of Alias
Types [23, 32, 37], even in a dependent setting [31], have
been proven sound, and we expect to re-use their techniques
to prove the soundness of System!D.

5. Desugaring DJS to System!D
In Figure 9, we present the explicitly-typed abstract syntax
of DJS along with desugaring rules⟪ e ⟫ = e that translate
DJS expressionse to System!D expressionse. Most of the
desugaring rules followλJS [21] closely, so we limit our
discussion to the aspects most relevant to DJS; we refer the
reader to their work for more details. We use the metavari-
ableI ○= [T ;m;Σ] to range over instantiation parameters for
function application.

Objects. We usepro(e) ○= getProp (⟪e⟫, “prototype”)
to set the prototypes of fresh object and array literals, trans-
lated tonewobj which creates values with prototype links.
Our implementation inserts a fresh location if none is pro-
vided. The instantiation parameters are usually inferred by
the type checker (§ 6).

Function Application. The rules DS-FUNCCALL and
DS-METHCALL desugar “direct calls” and “method calls”,
where2e7 ○= getElem (e, “ code ”). Notice that non-
receiver arguments are packed into a single “arguments”
tuple. We writewindow for the “global object” supplied as
the receiver for direct calls. JavaScript provides two native
functionsapply and call in Function.prototype that
allow the caller to explicitly supply the receiver argument.
We do not provide general supportapply andcall in DJS,
because they require mechanisms beyond the scope of our
(already-large) type system; for example, the latter accepts
an arbitrary number of arguments. The primary benefit of
(non-constructor) functions as objects in JavaScript is that
they inheritapply andcall from Function.prototype,
but since we do not support them, we sacrifice little ex-
pressiveness if the type system treats every non-constructor
function as ascalarfunction value, rather than an object with
the function stored in“ code ”. Furthermore, we can then
support the limited use ofapply required for our recursive
function idioms § 2.7 using the rule DS-APPLY that syn-

13We can provide the stronger guarantees that only bound keys are retrieved
and only non-null objects are accessed (thus ruling out the possibility
of null dereference exceptions) simply by changing the types of object
primitives appropriately.

⟪ c ⟫ = c ⟪ x ⟫ = deref x ⟪ e1 = e2 ⟫ = ⟪e1⟫ ∶= ⟪e2⟫

⟪ var x = e; e′ ⟫ = let x = ref ax ⟪e⟫ in ⟪e
′⟫

⟪ /∗ ∶ I ∗ / e1[e2] ⟫ = /∗ ∶ I ∗ / getElem (⟪e1⟫, ⟪e2⟫)

⟪ /∗ ∶ I ∗ / e1[e2] = e3 ⟫ = /∗ ∶ I ∗/ setElem (⟪e1⟫, ⟪e2⟫, ⟪e3⟫)

⟪ /∗ ∶ I ∗ / delete e1[e2] ⟫ = /∗ ∶ I ∗ / delElem (⟪e1⟫, ⟪e2⟫)

⟪ /∗ ∶ I ∗ / e2 in e1 ⟫ = /∗ ∶ I ∗ / hasElem (⟪e1⟫, ⟪e2⟫)

⟪ /∗ ∶ ℓ ∗ / { ek ∶ev } ⟫ = [DS-OBJL IT]

newobj ℓ {⟪ek0⟫↦ ⟪ev0⟫ ++ ⋯ } (pro(Object))

⟪ /∗ ∶ ℓ ∗ / [e] ⟫ = [DS-ARRL IT]

newobj ℓ {“0” ↦ ⟪e0⟫ ++ ⋯ } (pro(Array))

⟪ /∗ ∶ I ∗ / e(e1, . . . , en) ⟫ = [DS-FUNCCALL]

/∗ ∶ I ∗ / 2⟪e⟫7 (window, (⟪e1⟫, . . ., ⟪en⟫))

⟪ /∗ ∶ I ∗ / e[e′](e1, . . . , en) ⟫ = [DS-METHCALL]

let obj = ⟪e⟫ in
letm = getElem (obj , ⟪e′⟫) in
/∗ ∶ I ∗ / 2m7 (obj , (⟪e1⟫, . . ., ⟪en⟫))

⟪ /∗ ∶ I ∗ / e.apply(e1 , . . . , en) ⟫ = [DS-APPLY]

/∗ ∶ I ∗ / 2⟪e⟫7 (⟪e1⟫, (⟪e2⟫, . . ., ⟪en⟫))

⟪ function F(x) /∗ ∶#ctor T ∗ / { e } ⟫ = [DS-CTOR]

let f = λ(this,arguments).
let (x0, . . .) = (ref ax0

(get arguments “0”), . . .) in
@return ∶ ⟪e⟫ in

let p = newobj aFproto {} (pro(Object)) in
let d = { “ code ” = f as ⟪T⟫; “prototype” = p } in
newobj aF d (pro(Function))

⟪ new /∗ ∶ ℓnew I ∗ / e(e1, . . . , en) ⟫ = [DS-NEW]

let foo = ⟪e⟫ in
let obj = newobj ℓnew {} (foo “prototype”) in
/∗ ∶ I ∗ / 2foo7 (obj , (⟪e1⟫, . . ., ⟪en⟫))

⟪ /∗ ∶ T ∗ / while (econd) { ebody } ⟫ = [DS-WHILE]

@break ∶ letrec loop ∶∶ T = λ().
if ⟪econd⟫ then (⟪ebody⟫; loop ())
else undefined in loop ()

⟪ return e ⟫ = break @return ⟪e⟫ [DS-RETURN]

⟪ break ⟫ = break @break undefined [DS-BREAK]

⟪ /∗ ∶#thaw ℓ e ∗ / ⟫ = thaw ℓ ⟪e⟫ [DS-THAW]

⟪ /∗ ∶#freeze ~ℓ θ e ∗ / ⟫ = freeze ℓ̃ θ ⟪e⟫ [DS-FREEZE]

⟪ assert(e) ⟫ = ⟪e⟫ as {ν = true} [DS-ASSERT]

Figure 9. Desugaring DJS to System!D (selected rules)

tactically looks for“apply” and explicitly sets the receiver.
Because the type systems prohibits (non-constructor) func-
tions from being used as objects, there is no danger that the
apply be “hijacked” by overwriting the“apply” property.

Functions and Construction. DS-CTOR uses fresh loca-
tionsaF andaFproto

for a constructor function object and its
“prototype” object used when constructing objects (DS-
NEW); our implementation chooses the predictable locations

Adapted Benchmark Un Ann Queries Time
JS: The Good Parts
prototypal 18 36 731 2
pseudoclassical 15 23 706 2
functional 19 43 862 8
parts 11 20 605 3

SunSpider
string-fasta 10 18 263 1
access-binary-trees 34 50 2389 23
access-nbody 129 201 4225 39

V8
splay 17 36 571 1

Google Closure Library
typeOf 15 31 1975 52

Other
negate 9 9 296 1
passengers 9 19 310 3
counter 16 24 272 1
dispatch 4 8 219 1

Totals 306 518 13424 137

Figure 10. Benchmarks (Un: LOC without annotations;
Ann: LOC with annotations; Queries: Number of Z3 queries;
Time: Running time in seconds)

lFObj andlFooProto. The function body is labeled to fa-
cilitate how DS-RETURN desugarsreturn statements. We
omit a similar rule for recursive (non-constructor) functions.
The syntax of construction mentions a locationℓnew for the
new object and instantiations for the application, all of which
is usually inferred by the type checker (§ 6).

Loops. Looping constructs desugar to recursive functions
(we write letrec as syntactic sugar for the standard en-
coding usingfix). As such, a (function type) annotation
describes the invariants that hold before and after each it-
eration. A label around the desugared loop facilitates how
DS-BREAK desugarsbreak statements; we elide the simi-
lar mechanism forcontinue.

6. Evaluation
In this section, we describe our implementation, the bench-
marks we have annotated and type checked so far that
demonstrate the expressiveness of DJS, and identify several
ways for future work to improve the tool.

6.1 Implementation

We have implemented a type checker for DJS, available at
ravichugh.com/nested, that is currently approximately
6600 (non-whitespace, non-comment) lines of OCaml code.
We borrow theλJS [21] JavaScript parser, use their desug-
aring as a starting point for our own, and use the Z3 SMT
solver [11] to discharge logical validity queries. We specify
the System!D primitive functions in the filesbasics.dref
andobjects.dref, and JavaScript built-in functions like
Object.prototype.hasOwnProperty in prelude.js

(desugared toprelude.dref). These three files comprise
a standard prelude included with every desugared DJS pro-
gram for type checking.

Local Inference. Function definitions require explicit type
annotations, and we employbidirectional type checking[29]
techniques to infer types for local expressions. At a function
application, we infer missing type and location parameters
by “greedily” matching the types of arguments against any
Arr(T) and Ref L type terms in the the declared input
type and input heap. Because these type terms are invariant
in their parameters, the greedy choice is always the right
one. For a function type with exactly one heap variableH

(like all the ones we have encountered) and input heap type
(H, ĥ), we infer the corresponding heap argument by simply
collecting all locations in the current heap environment that
do not match the explicit location bindings in̂h. In our
benchmarks, we are able to omit most type and location
arguments and all heap arguments.

6.2 Benchmarks

To demonstrate the expressiveness of DJS, we have an-
notated and checked several small examples — inspired
by JavaScript: The Good Parts[10], Google Closure Li-
brary [18], and the SunSpider [34] and V8 [19] benchmarks
— that exercise a variety of invariants, besides those demon-
strated by previous examples (e.g. negate, passengers,
etc.). We also ported thecounter anddispatch examples
from System D [8] to DJS to demonstrate the nesting of
function types inside objects with dynamic keys. Figure 10
summarizes our results, where for each example: “Un” is the
number of (non-whitespace, non-comment) lines of code
in the unannotatedbenchmark; “Ann” is the lines of code
in the annotated DJS version (including comments because
they contain DJS annotations); “Time” is the running time
rounded to the nearest second; and “Queries” is the number
of validity queries issued to Z3 during type checking.

Expressiveness. We highlight some of the features of DJS
that our benchmarks leverage. Besides the prototypal pattern
discussed in § 2.5, Crockford [10] presents three additional
inheritance patterns using JavaScript’s construction mecha-
nism. Each of these examples relies on the support for im-
perative, prototype-based objects in DJS.

The behavior of thetypeOf function is like thetypeof
operator except that it returns the more informative result
“null” for null and“array” for arrays; the operator re-
turns “object” in both cases. The type specification for
typeOf depends on the ability to express intersections of
function types in DJS, and verifying it requires control-flow
tracking in the presence of mutation as well as a precise
specification for the native (ES5) functionArray.isArray,
which we model inprelude.js.

ThemakeCumulative function instring-fasta.js it-
erates over an object with an unknown number of keys that
all store integers, and sums them in place within the object.
While iterating over the keys of the object, the function uses
a variable to store the key from thepreviousiteration, a sub-
tle invariant that DJS is able to express by describing the

ravichugh.com/nested

heap before and after each iteration. Compared to the orig-
inal version, we allow the bindings to store arbitrary values
and use a tag-test to sum only the integer bindings. To spec-
ify the original version requires universally quantified for-
mulas, which DJS avoids to retain decidable type checking.

The splay benchmark defines the following interesting
tree node constructor. Rather than initializing each “own”
object with null left and right subtrees, the constructor’s
prototype object stores the defaults.

function Node(k,v) { this.k = k; this.v = v; }

Node.prototype.left = null;

Node.prototype.right = null;

After construction, however,Nodes are often extended with
explicit subtrees. Using the flexibility of refinements, we as-
sign eachNode a type with the predicatehas(ν,“left”)⇒
sel(ν,“left”) ∶∶ Ref ℓ̃, whereℓ̃ is the weak location that
describesNodes, to ensure that retrieving the“left” key
produces anotherNode regardless of whether it is stored on
the object or not (and similarly for“right”).

Our largest example isaccess-nbody, which defines a
constructor functionNBodySystem that creates a container
object to store an array ofBody objects. The prototypes
of both constructors are augmented with methods, and the
thaw/freeze mechanism is heavily used while iterating over
the array ofBody objects to read and write their fields.

6.3 Annotation Burden

As Figure 10 shows, our annotated benchmarks are approx-
imately 1.7 times as large (70% overhead) as their unanno-
tated versions on average. In our experience, a significant
majority of the annotation burden is boilerplate — unre-
lated to the interesting typing invariants — that fall into the
following five patterns. Our implementation includes pre-
liminary support for several patterns by tracking a limited
amount of type information during desugaring (that require
no changes to type checking), which has already signifi-
cantly reduced the annotation overhead. There is plenty of
room for further improvements in future work, however.

Closures. If a function refers to a variable from an outer
scope, its heap type must explicitly list its location and type.
In the following example, the desugarer uses the predictable
locations&pi and&e when desugaringpi ande, and the
function type must contain the binding for&pi.

var pi = 3.14, e = 2.718;

/*: Top /(&pi ↦ n ∶Num) → Num /same */

function getPi() { return pi; }

To ease this burden, we collect the free variables in each
function definition and automatically add the corresponding
heap bindings that are missing. In situations where we can-
not insert a suitably precise type for a location, we allow the

programmer to annotate a variable declarationvar i = /∗ ∶
T ∗ / e and we propagateT to functions that refer toi.

Loops. Because loops desugar to functions, they require a
heap type annotation (like for arbitrary closures) to describe
invariants that hold before and after every iteration. We infer
heap types for basic patterns like the following.

/*: (&i↦ {Int(ν) ∧ i ≥ 0})⊕ (&sum↦ Num)
⊕ (&ns↦ Ref ℓa)
⊕ (ℓa ↦ ⟨{ν ∶∶ Arr(Num) ∧ packed(ν)}, ℓap⟩) */

for (i=0; i < ns.length; i++) { sum += ns[i]; }

Thaw / Freeze. Every weak reference must first be thawed
before access, which quickly becomes burdensome. As a
simple aid, we surround an access to a weak reference with
thaw and freeze operations, which is sufficient for simple
cases involving reads and weak updates. For more complex
invariants, like the relationshipbetweenaccesses to a weak
reference (as in thepassengers example from § 2.7), a
single thaw and freeze pair must surroundbothaccesses. In
the future, we plan to insert these operations at basic block
and function boundaries in the style of [31] so that objects
are tracked with strong references as long as possible.

Untampered Natives. Functions that use JavaScript prim-
itive functions likeObject.prototype.hasOwnProperty
and Array.prototype.push and expect themnot to be
overwritten, must explicitly constrain their input heaps as
such. In most cases, programmers expect natives to remain
“untampered,” so desugaring could augment all function
types with these constraints.

Constructor Prototypes. The purpose of a constructorC is
to allow its instances to inherit the properties ofC.prototype,
but functions likeuseC that use such an instance must then
explicitly list the type ofC.prototype.

/*: #define TC {Dict(ν) ∧⋯ } */

/*: #ctor this ∶Ref /(this ↦ ⟨Emp, aCpro⟩)
→ {ν = this}/(this ↦ ⟨TC , aCpro⟩) */

function C() { ...; return this; }

C.prototype.f = /*: Tf */ ...;

C.prototype.g = /*: Tg */ ...;

/*: x ∶Ref /(x ↦ ⟨TC , aCpro⟩)⊕
(aCpro ↦ ⟨Tf(sel(ν,“f”)) ∧ Tg(sel(ν,“g”)), ℓop⟩)

→ Top /same */

function useC(x) { ... x.f ... }

This is a predictable pattern that should be easy to incorpo-
rate into desugaring, though we have not yet done so.

6.4 Performance

The running time of our type checker is acceptable for small
examples, but less so as the number of queries to the SMT
solver increases. We have not yet spent much effort to im-
prove performance, but we have implemented a few opti-

mizations that have already reduced the number of SMT
queries. First, even though desugaring works perfectly well
withoutany type information, we use DJS type annotations
to translate object and array operations to specific primi-
tives, where possible, rather than the more general ones (e.g.
getPropObj andgetIdxArr rather thangetElem) so that
type checking has fewer cases to try, and we insert type and
location parameters so that they need not be inferred. Sec-
ond, we modify the T-VAR rule, which normally assigns the
“selfified” type{ν = x} to variablex that is already bound in
Γ. Although this precision is crucial, the variablex often has
a simple syntactic type (e.g.Ref ℓ) that is “hidden” behind
the equality. Instead, ifΓ(x) is of the form{ν ∶∶ U ∧ p}, we
assign{ν ∶∶ U ∧ p ∧ ν = x} so that subsequent typing rules
cansyntacticallylook forU rather than going through addi-
tional SMT queries as in the general case [8]. We expect that
syntactically handling more common cases will further im-
prove performance. For example, even though the dynamic
keys are crucial in certain situations, many examples use ob-
ject types with finite and fixed key names, which the type
checker should be able to handle with far fewer queries to
the SMT solver than in the current implementation.

7. Conclusion and Future Work
In this paper, we have shown how to scale up prior work
on System D — a type system for dynamic languages in a
functional setting — to the real-world JavaScript setting —
with imperative updates, prototype-based objects, and arrays
— through a combination of strong updates and prototype
chain unrolling. We have demonstrated that our new system,
System!D, is expressive enough to support the invariants
from a series of small but varied examples drawn from ex-
isting JavaScript benchmarks. We have found that the full
range of features in DJS are indeed required, but that many
examples fall into patterns that do not simultaneous exercise
all features. Therefore, we believe that future work on desug-
aring and on type checking can treat common cases specially
in order to reduce the annotation burden and running time,
and fall back to the full expressiveness of the system when
necessary. We believe that Dependent JavaScript is the most
promising approach, to date, for supporting real-world dy-
namic languages like JavaScript.

Features for Future Work. DJS already supports a large
subset of JavaScript that can be used for projects where
all the code is controlled (e.g.server-side applications), and
future work on integrating with run-time environments could
allow DJS code to run alongside full untyped JavaScript.
Next, we describe several features that we currently do not
support, in addition to general use ofapply andcall as
discussed in § 5.

To allow mutation of prototype links via the non-standard
“ proto ” property, we could add asetproto expression
to the language and detect cycles during heap unrolling.

The eval statement allows a string to be parsed and
executed, which is useful but dangerous if misused. Since
DJS is flow-sensitive, we can constrainteval with heap
invariants before and after the statement, and then perform
staged type checkingin the style of [7] at run-time.

ES5 introduces optional per-object and per-property at-
tributes (for example, to prevent modifications or deletions)
that can likely be incorporated into our encoding of dictio-
naries. One benefit of such an extension is that the type sys-
tem could reason more precisely aboutwhichobjects are in a
prototype chain. For example, we could then allow non-array
objects to bind unsafe strings as long as we prevent them
from appearing in the prototype chain of arrays, thus weak-
ening the distinction we impose between array and non-array
objects (§ 2.6). A second benefit is that native objects could
be marked as unmodifiable, statically enforcing the pattern
they are usually “untampered” as discussed in § 6.

ES5 getters and setters interpose on object reads and
writes. Since this is a deep change to the semantics of ob-
ject operations (invoking arbitrary functions), adding general
support for these will likely be heavyweight. Interestingly,
one can think of our treatment of the special array“length”

property (§ 2.6) as a built-in getter/setter.
Each function has an implicitargumentsarray that binds

all parameters supplied by the caller, regardless of how many
formals the function defines. Current ES6 proposals include
a modified version, where anexplicit parameter can bind
a variable number of argumentsbeyondthose named by
formals, similar in style to Python.

Thex instanceof Foo operator checks whether or not
Foo.prototype is somewherealong the prototype chain of
x. We could add a primitive to match these semantics.

Scalar values can be explicitly coerced by wrapper func-
tions, such asBoolean, in addition to the implicit coercion
we have discussed.

Undesirable Features. The last three features we dis-
cuss regularly compete for the title of worst among several
“warts” in the language (e.g. [10]) that lead to confusing
code and hard-to-detect bugs. Incidentally, theλJS transla-
tions of all three are straightforward and can be supported in
DJS, but we see no reason to given their demerits.

The with statement adds the fields of an object to the
current scope of a block, allowing them to be accessed with-
out qualification. There is hardly a good reason to use this
feature, and it is banned in ES5 “strict” mode.

All var declarations are implicitly lifted to the top of
the enclosing function, resulting in “function scope” rather
than lexical scope. Although simple to detect whenvar-
lifting kicks in, we opt for the latter. ES6 will likely add
an explicitlet binding form that is not subject to lifting. In
DJS,var is essentially the newlet form, but we stick with
the traditional syntax for familiarity.

For a “method call”x.f(y), the receiverx is supplied
for the this argument to the function, but for a “direct

call” x(y), JavaScript implicitly supplies the global object
for this, masking common errors. We choose to statically
reject direct calls to functions that require athis parameter.

8. Related Work
In this section, we discuss topics related to types for imper-
ative dynamic languages, and hence strong updates and in-
heritance. The reader may refer to [8] for background on the
challenging idioms of even functional dynamic languages
and the solution that nested refinements provide.

Location Sensitive Types.The way we handle reference
types draws from the approach ofAlias Types[32], in which
strong updates are enabled by describing reference types
with abstract location names and by factoring reasoning into
a flow-insensitive tying environment and a flow-sensitive
heap.Low-level liquid types[31] employs their approach in
the setting of a first-order language with dependent types. In
contrast, our setting includes higher-order functions, and our
formulation of heap types gives variable names to unknown
heaps to reason about prototypes and gives names toall heap
values, which enables the specification of precise relation-
ships between values ofdifferent heaps; the heap binders
of [31] allow only relationships between values in asingle
heap to be described.

The original Alias Types work also includes support for
weak referencesthat point to zero or more values, for which
strong updates are not sound. Several subsequent propos-
als [2, 3, 13, 14, 31, 33] allow strong updates to weak ref-
erences under certain circumstances to support temporary
invariant violations. We adapt thethaw/freezemechanism
from [2] and [31] with mostly cosmetic changes.

Prototype Inheritance. Unlike early class-based languages,
such as Smalltalk and C++, the (untyped) language Self al-
lows objects to be extended after creation and feature pro-
totype, or delegation, inheritance. Static typing disciplines
for class-based languages (e.g. [1]) explicitly preclude ob-
ject extension to retain soundness in the presence ofwidth
subtyping, the ability to forget fields of an object. To mit-
igate the tension between object extension and subtyping,
several proposals [6, 17] feature quite a different flavor: the
fields of an object are split into a “reservation” part, which
may be added to an object but cannot be forgotten, and a
“sealed part” that can be manipulated with ordinary sub-
typing. Our approach provides additional precision in two
important respects. First, we precisely track prototype hi-
erarchies, whereas the above approaches flatten them into a
single collection of fields. Second, we avoid the separationof
reservation and sealed fields but still allow subtyping, since
“width subtyping” in System!D is simply logical implica-
tion over refinement formulas; forgetting a field — discard-
ing ahas(d, k) predicate — does not imply that¬has(d, k),
which guards the traversal of the prototype chain.

Typed Subsets of JavaScript.Several (syntactic) type sys-
tems for various JavaScript subsets have been proposed.
Among the earliest is [35], which identifies silent errors that
result from implicit type coercion and the fact that JavaScript
returnsundefined when trying to look up a non-existent
key from an object. The approach in [4] distinguishes be-
tweenpotentialanddefinitekeys, similar to the reservation
and sealed discussed above; this general approach has been
extended with flow-sensitivity and polymorphism [39]. The
notion ofrecency types, similar to Alias Types, was applied
to JavaScript in [23], in which typing environments, in ad-
dition to heap types, are flow-sensitive. Prototype support
in [23] is limited to the finite number of prototype links
tracked by the type system, whereas theheap symbolsin
System!D enable reasoning aboutentire prototype hierar-
chies. Unlike System!D, all of the above systems provide
global type inference; our system does not have principal
types, so we can only provide local type inference [29]. AD-
safety [30] is a type system for ADsafe, a JavaScript sand-
box, that restricts access to some fields, tracking strings pre-
cisely [20] to describe sets of field names. Although expres-
sive enough to check ADsafe, which heavily uses large ob-
ject literals, they do not support strong update and so cannot
reason about object extension. Unlike System!D, none of the
above systems include dependent types, which are required
to express truly dynamic object keys and precise control-
flow based invariants.

Recent work on JavaScript verification uses separation
logic [16] to track precise flow-sensitive invariants. They
support only first-order programs, and the expressiveness of
their logic takes them beyond automatic verification, thus
requiring properties to be manually proved.

JavaScript Semantics. We chose the JavaScript “semantics-
by-translation” ofλJS [21] since it targets a conventional
core language that has been convenient for our study. An
alternate semantics [26] inherits unconventional aspectsof
the language specification [24] (e.g.“scope objects”), which
complicates the formulation of static reasoning.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-

Verlag, 1996.

[2] A. Ahmed, M. Fluet, and G. Morrisett. L3: a linear language
with locations. Fundamenta Informaticae, 77(4):397–449,
June 2007.

[3] A. Aiken, J. Kodumal, J. S. Foster, and T. Terauchi. Checking
and inferring local non-aliasing. InPLDI, 2003.

[4] C. Anderson, S. Drossopoulou, and P. Giannini. Towards Type
Inference for JavaScript. InECOOP, pages 428–452, June
2005.

[5] G. M. Bierman, A. D. Gordon, C. Hritcu, and D. E. Langwor-
thy. Semantic subtyping with an smt solver. InICFP, 2010.

[6] V. Bono and K. Fisher. An imperative, first-order calculus
with object extension. InECOOP, 1998.

[7] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
information flow for javascript. InProceedings of PLDI 2009,
pages 50–62, 2009.

[8] R. Chugh, P. M. Rondon, and R. Jhala. Nested refinements: A
logic for duck typing. InPOPL, 2012.

[9] E. T.-. Committee.http://www.ecmascript.org/community.php.

[10] D. Crockford. JavaScript: The Good Parts. Yahoo! Press,
2008.

[11] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

[12] R. DeLine and M. Fähndrich. Enforcing high-level protocols
in low-level software. InPLDI 01. ACM, 2001.

[13] M. Fahndrich and R. DeLine. Adoption and focus: Practical
linear types for imperative programming. InPLDI. ACM,
2002.

[14] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. InPLDI, 2002.

[15] M. Furr, J. hoon (David) An, J. S. Foster, and M. W. Hicks.
Static type inference for ruby. InSAC, pages 1859–1866,
2009.

[16] P. Gardner, S. Maffeis, and G. D. Smith. Towards a program
logic for javascript. InPOPL, 2012.

[17] P. D. Gianantonio, F. Honsell, and L. Liquori. A lambda
calculus of objects with self-inflicted extension. InOOPSLA,
1998.

[18] Google. Closure library.
https://developers.google.com/closure/library.

[19] Google. V8 benchmark.
http://v8.googlecode.com/svn/data/benchmarks/.

[20] A. Guha, J. G. Politz, and S. Krishnamurthi. Fluid object
types. 2011.

[21] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of
javascript. InECOOP, 2010.

[22] A. Guha, C. Softoiu, and S. Krishnamurthi. Typing local
control and state using flow analysis. InESOP, 2011.

[23] P. Heidegger and P. Thiemann. Recency types for analyzing
scripting languages. InECOOP, 2010.

[24] E. International. ECMAScript Language Specification,
ECMA-262, 3rd ed.1999.

[25] K. W. Knowles and C. Flanagan. Compositional reasoning
and decidable checking for dependent contract types. In
PLPV, pages 27–38, 2009.

[26] S. Maffeis, J. Mitchell, and A. Taly. An operational semantics
for JavaScript. InAPLAS, 2008.

[27] J. McCarthy. Towards a mathematical science of computation.
In IFIP, 1962.

[28] B. C. Pierce.Types and Programming Languages. 2002.

[29] B. C. Pierce and D. N. Turner. Local type inference. InPOPL,
1998.

[30] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi.
Adsafety: type-based verification of javascript sandboxing. In
USENIX Security, 2011.

[31] P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid
types. InPOPL, 2010.

[32] F. Smith, D. Walker, and J. Morrisett. Alias types. InESOP,
2000.

[33] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tanter.
First-class state change in plaid. InOOPSLA, 2011.

[34] SunSpider. Javascript benchmark.
http://www.webkit.org/perf/sunspider/sunspider.html.

[35] P. Thiemann. Towards a type system for analyzing javascript
programs. InESOP, 2005.

[36] S. Tobin-Hochstadt and M. Felleisen. Logical types forun-
typed languages. InICFP, 2010.

[37] D. Walker and J. Morrisett. Alias types for recursive data
structures. 2000.

[38] S. yu Guo and B. Hackett. Fast and precise hybrid type
inference for javascript. InPLDI, 2012.

[39] T. Zhao. Polymorphic type inference for scripting languages
with object extensions. InDLS, 2011.

A. Type Checking: Additional Definitions
A.1 Well-Formedness

Well-Formed Types Γ ⊢ T

Γ, x ∶Top ⊢ p

Γ ⊢ {x ∣ p}

Γ ⊢ T Γ, x ∶Top ⊢ S

Γ ⊢ ∃x ∶T. S

Well-Formed Formulas (selected rules) Γ ⊢ p

Γ ⊢ w Γ ⊢ U

Γ ⊢ w ∶∶ U

Γ; Σ ⊢ w

Γ; Σ ⊢ P (w)

H ∈ Γ Γ ⊢ ℓ Γ ⊢ w

Γ ⊢ HeapHas(H,ℓ,w)

Well-Formed Locations Γ ⊢m

Γ ⊢ a Γ ⊢ ã

M ∈ Γ

Γ ⊢M

Well-Formed Type Terms Γ ⊢ U

Γ1 = Γ,A,M,H Γ1 ⊢ Ψ Γ2 = Γ1,Ψ Γ2 ⊢ T1

Γ3 = Γ2, x ∶Top Γ3 ⊢ Σ̂1 Σ̂1 = (H
′

, ĥ)

Γ4 = Γ3,H
′

,Binders(ĥ) Γ4 ⊢ T2 Γ4 ⊢ Σ̂2

Γ ⊢ ∀[A;M ;H] Ψ/x ∶T1/Σ̂1 → T2 /Σ̂2

A ∈ Γ

Γ ⊢ A

Γ ⊢ T

Γ ⊢ Arr(T)

Γ ⊢m

Γ ⊢ Ref m Γ ⊢ Null

Well-Formed Weak Heaps Γ ⊢ Ψ

Γ ⊢ ∅

Γ ⊢ Ψ Γ ⊢ ℓ̃ Γ ⊢ T Γ ⊢ ℓ

Γ ⊢ Ψ, (ℓ̃ ↦ ⟨T, ℓ⟩)

Well-Formed Heaps and Heap Bindings Γ ⊢ Σ̂ Γ ⊢ ĥ

H ∈ Γ Γ,Binders(ĥ) ⊢ ĥ

Γ ⊢ (H, ĥ)

Γ ⊢ ℓ Γ ⊢ T

Γ ⊢ (ℓ ↦ x ∶T)

Γ ⊢ ℓ Γ ⊢ T Γ ⊢ ℓ′

Γ ⊢ (ℓ ↦ ⟨x ∶T, ℓ
′

⟩) Γ ⊢ ∅

http://www.ecmascript.org/community.php
https://developers.google.com/closure/library
http://v8.googlecode.com/svn/data/benchmarks/
http://www.webkit.org/perf/sunspider/sunspider.html

Γ ⊢ ℓ̃

Γ ⊢ (ℓ̃ ↦ frzn)

Γ ⊢ ℓ̃ Γ ⊢ ℓ

Γ ⊢ (ℓ̃ ↦ thwd ℓ)

Γ ⊢ ĥ1 Γ ⊢ ĥ2

Γ ⊢ ĥ1 ⊕ ĥ2

A.2 World Subtyping

World Subtyping Γ ⊢ W1 ⊑ W2

Γ ⊢ T1 ⊑ T2 Γ ⊢ ĥ1 ⊑ ĥ2; π Γ, Jĥ1K ⇒ πJĥ2K

Γ ⊢ T1 /(H, ĥ1) ⊑ T2/(H, ĥ2)

Heap Binding Matching Γ ⊢ ĥ1 ⊑ ĥ2; π

Γ ⊢ ∅ ⊑ ∅; []

ĥ1 ≡ ĥ
′

1 ĥ2 ≡ ĥ
′

2 Γ ⊢ ĥ′1 ⊑ ĥ
′

2; π

Γ ⊢ ĥ1 ⊑ ĥ2; π

Γ ⊢ (ℓ̃ ↦ θ) ⊑ (ℓ̃ ↦ θ); []

Γ ⊢ (ℓ ↦ x ∶T) ⊑ (ℓ ↦ y ∶S); [x/y]

Γ ⊢ (ℓ ↦ ⟨x ∶T, ℓ′⟩) ⊑ (ℓ ↦ ⟨y ∶S, ℓ′⟩); [x/y]

A.3 Heap Satisfaction

Heap Satisfaction Γ ⊢ Σ ⊧ Σ̂; π Γ ⊢ h ⊧ ĥ; π

h ≡ h
′

ĥ ≡ ĥ
′

Γ ⊢ h ⊧ ĥ; π

Γ ⊢ (H,h) ⊧ (H, ĥ); π Γ ⊢ ∅ ⊧ ∅; []

Γ ⊢ h ⊧ ĥ; π

Γ ⊢ h⊕ (ℓ ↦ v) ⊧ ĥ⊕ (ℓ ↦ x ∶T); π[v/x]

Γ ⊢ h ⊧ ĥ; π

Γ ⊢ h⊕ (ℓ ↦ ⟨v, ℓ′⟩) ⊧ ĥ⊕ (ℓ ↦ ⟨x ∶T, ℓ′⟩); π[v/x]

Γ ⊢ h ⊧ ĥ; π

Γ ⊢ h⊕ (ℓ̃ ↦ θ) ⊧ ĥ⊕ (ℓ̃ ↦ θ); π

	1 Introduction
	2 Overview
	2.1 Base Types, Operators, and Control Flow
	2.2 Imperative Updates
	2.3 Simple Objects
	2.4 Function Types
	2.5 Prototype-Based Objects
	2.6 Arrays
	2.7 Collections
	2.8 Rest of the Paper

	3 Syntax and Semantics of System !D
	4 Type Checking
	4.1 Well-Formedness
	4.2 Subtyping
	4.3 Value Typing
	4.4 Expression Typing
	4.5 Type Soundness

	5 Desugaring DJS to System !D
	6 Evaluation
	6.1 Implementation
	6.2 Benchmarks
	6.3 Annotation Burden
	6.4 Performance

	7 Conclusion and Future Work
	8 Related Work
	A Type Checking: Additional Definitions
	A.1 Well-Formedness
	A.2 World Subtyping
	A.3 Heap Satisfaction

