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ABSTRACT

Robust distributed systems commonly employ high-level recov-
ery mechanisms enabling the system to recover from a wide va-
riety of problematic environmental conditions such as node fail-
ures, packet drops and link disconnections. Unfortunately, these
recovery mechanisms also effectively mask additional serious de-
sign and implementation errors, disguising them as latent perfor-

mance bugs that severely degrade end-to-end system performance.
These bugs typically go unnoticed due to the challenge of distin-
guishing between a bug and an intermittent environmental condi-
tion that must be tolerated by the system. We present techniques
that can automatically pinpoint latent performance bugs in systems
implementations, in the spirit of recent advances in model checking
by systematic state space exploration. The techniques proceed by
automating the process of conducting random simulations, identi-
fying performance anomalies, and analyzing anomalous executions
to pinpoint the circumstances leading to performance degradation.

By focusing our implementation on the MACE toolkit, MACEPC
can be used to test our implementations directly, without modifi-
cation. We have applied MACEPC to five thoroughly tested and
trusted distributed systems implementations. MACEPC was able to
find significant, previously unknown, long-standing performance
bugs in each of the systems, and led to fixes that significantly im-
proved the end-to-end performance of the systems.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design—Distributed

Systems; D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools
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Performance
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1. INTRODUCTION
It is hard to build correct, high-performance distributed systems.

As with any concurrent setting, the nastiest bugs are those that are
caused by the unexpected temporal interleavings of events. Dis-
tributed settings compound this problem by exploding the number
of interleavings drastically through their node failures, message re-
ordering, etc. Thus, in addition to designing communication proto-
cols and data structures that work in the common case, the devel-
oper must account for the fact that nodes participating in the system
may join, leave or fail at any moment, and that the network sub-
strate may corrupt, reorder, or drop messages sent between nodes.
As a result, the most pernicious problems arise, not from algorith-
mic issues which affect every execution and hence are amenable
to profiling, but from relatively rare corner-case node interactions
or unexpected packet delays or drops. The resulting performance
anomalies are difficult to reproduce, and hence, to find and to fix.

Recently, several authors have proposed techniques to find [7,
13, 29] and debug [6, 17] corner-case correctness problems in dis-
tributed systems. While ensuring the correctness of distributed sys-
tems is a necessity, performance is crucial for these systems and
finding and fixing performance bugs can be as important and chal-
lenging. Specific challenges in performance debugging include:
First, due to the importance of guaranteeing correctness and re-
liability in the face of all possible event interleavings, develop-
ers typically build fail-safes into the system—worst-case recovery
mechanisms that periodically kick in and restore the system to a
consistent and stable configuration. Unfortunately, these recovery
mechanisms sweep serious design and implementation flaws under
the rug, by disguising them as latent performance anomalies that
severely affect the responsiveness, availability, and end-to-end be-
havior of the system. Second, the standard means of debugging
distributed systems is to add code that logs the sequence of events
along each execution. Unfortunately, the amount of logging re-
quired to accurately correlate events across multiple nodes can im-
pact the performance characteristics of a given live or simulated ex-
ecution which makes it hard to use log analysis to find performance
bugs. Third, even if one could generate high fidelity logs with low
overhead, performance problems often only manifest in long ex-
ecutions, not the short correctness violations returned by model
checking [19, 22] or symbolic execution [2, 8]. Thus, to isolate
the performance bug, the programmer must undertake the daunting
task of wading through hundreds of megabytes of logs comprising
tens of thousands of events spread across multiple nodes, manually
tracing the complex communication and control flow.

In this paper, we present the MACE Performance Checker, a tech-
nique that automates the process of finding latent performance bugs
in event-based distributed systems implementations, and automates
the process of isolating the root cause of the error. MACEPC is



based upon the insight that a class of performance bugs manifest
as anomalous executions [5], i.e. executions whose performance is
much worse than the expected performance observed along other
executions. Consequently, we reduce finding performance bugs to
three tasks: (i) determining expected performance of the system,
(ii) finding executions whose performance is much worse than ex-
pected, and (iii) sifting through anomalous executions to pinpoint
circumstances causing the performance degradation.

MACEPC carries out these tasks by marrying state-space explo-
ration with time-based event simulation. First, we show how by
sampling the state space of the unmodified implementation we can
construct Event Duration Distributions (EDDs)—probability dis-
tributions that describe how long each low-level event takes to ex-
ecute. By combining EDDs with a programmer-specified stopping

condition that describes when the desired task is completed, MA-
CEPC is able to develop a profile of the expected system perfor-
mance. Second, we show how to combine systematic testing with
the EDDs to find anomalous executions that take much longer than
expected to reach the stopping condition, i.e., whose performance
deviates significantly from expected performance. Third, we show
how to analyze the executions explored to isolate the root cause of
the performance degradation. We narrow the circumstances with an
algorithm that characterizes the divergence point of an anomalous
execution—the point along the execution such that before the diver-
gence, some alternate execution achieves acceptable performance,
but immediately after the divergence, executions of the system have
bad performance. We then demonstrate how collecting event pro-
files of executions can simplify debugging, by correlating certain
types of events with bad performance. Together, these techniques
can save programmers a substantial amount of time devoted to di-
agnosing and fixing the performance bug.

While the techniques behind MACEPC could be used with other
event-simulators to find performance problems in simulation, we
focus our implementation on the MACE toolkit [12]. MACE is a
language and toolkit for building a broad class of event-based dis-
tributed systems. We have implemented more than ten significant
systems in MACE, most of which were proposed by others. This
set includes distributed hash tables [24, 26, 27], application layer
multicast and file distribution [3,11,14], network measurement ser-
vices [4], and consensus protocols [16] ready to run over the Inter-
net. MACE has been in development for seven years, is publicly
available for download, and has been used by researchers at Purdue,
UCSD, EPFL, Cornell, UT-Austin, UCLA, HP Labs, MSR (Red-
mond, Silicon Valley, and Asia), and a handful of other universities
worldwide in support of their own research and development. MA-
CEPC leverages the MACE toolkit, allowing us to test unmodified,
deployable MACE distributed systems implementations.

Finally, we present results from applying our techniques to five
real, complex distributed systems. We discuss the application of
our tool to the systems, subtle performance bugs we found, and our
solutions. Many of these bugs are instances of correctness bugs
masked by periodic corrective protocols. Importantly, the imple-
mentations were already thoroughly tested and had been run across
the Internet for several years. Further, while we had been aware
of intermittent performance issues and had attempted to diagnose
them on multiple occasions, we were unable to do so without MA-
CEPC. On using MACEPC to Distributed Hash Table (DHT) sys-
tems, we improved the worst case ring stabilization time for a PAS-
TRY [26] implementation by a factor of 50, and in a highly-tuned
BAMBOO [24] implementation we improved both the consitency
and latency of Key-Value lookups by 15-30%.

Figure 1: Motivating Example. An example scenario seen in

our random tree protocol. (1) Nodes A and C initially attempt

to join the tree at node B. (2) Because node A was more fit to

be the root of the tree than node B, node B told node A to be

the root and attempted to join under it. (3) Meanwhile, upon

receiving a Join from node C, node B changes its state to joined

since it accepts a child. Later (6), node B rejects the JoinReply

from node A as it is already joined. This leaves the system in

a state with two trees, corrected only later during the recovery

protocol. Note that if either join completed before the other

began, this bug would not have occurred.

2. BACKGROUND
Our goal is to automatically isolate latent performance bugs that

arise due to corner-case conditions that escaped the developer’s at-
tention during system design and implementation. These bugs are
particularly hard to find and fix because they cannot be easily de-
tected in the presence of recovery code, nor reproduced due to their
infrequency. In particular, we do not aim to automatically discover
algorithmic bottlenecks arising from poor design; these errors are
easier to detect as they hinder every execution’s performance.

As a motivating example, consider the scenario illustrated in Fig-
ure 1 that arose deploying a file distribution application. The appli-
cation used an overlay tree as the basic reliable multicast communi-
cation channel. Under some circumstances, the application stalled
when the overlay tree took too long to stabilize. Upon painstakingly
sifting through logs from system runs we found that network laten-
cies caused unexpected re-ordering of events, disconnecting certain
nodes from the remainder. Later, a recovery protocol restored the
system, triggered by its coarse-grained timeout.

Note that the recovery protocol eventually restores the system to
a consistent state, and hence there is no correctness error, per se.
Moreover, existing correctness checkers like [7, 13, 19, 22], ignore
quantitative system aspects like time, and hence cannot be used to
find latent performance bugs such as the above.

In this section, we first describe the basic system model of a dis-
tributed system execution, suitable for model checking. We then
describe the timed system model, which integrates the timing in-
formation of a time-based simulator with the basic system model.

2.1 Basic System Model
We consider distributed systems implemented as atomic event-

driven state-machines. The entire distributed system therefore com-
prises processes running at the individual nodes together with the
network layer that the nodes use to exchange events.

The execution of an individual node can be viewed as a state ma-
chine that moves from one state to the next by executing the tran-

sition triggered by reception of events. Events typically come from
an application, the network or the timer scheduler. When a node
receives an event, it executes a transition by executing the handler
function registered to receive the callback. The handler is an ar-



bitrary piece of non-blocking code which executes atomically, and
may in turn trigger events asynchronously on other system nodes.

The state of a node is the set of all variables of the state ma-
chine at that node. The state of all nodes together, combined with
the network, timer, and application simulator state comprise the
system state. An execution of the distributed system is an initial

system state and an ordered set of pairs: 〈node, event〉. Intuitively,
the system evolves as follows: at each step, the system triggers
(event) on (node), executing at node the corresponding transition
and taking the entire system into a new state.

2.2 Timed System Model
Our goal is to isolate bugs that adversely affect the end-to-end

performance of a given distributed system, i.e. bugs that adversely
affect the time taken to carry out the tasks for which the system was
built. Thus, we must extend our system model to track the passage
of time, as other time-based simulators do.

In an event driven system, there are two ways in which time ad-
vances. The first is the time that elapses between the sending and
reception of an event. This includes (1) the passage of time (due to
network latency) between the instants a network event is sent and
received, and, (2) the passage of time between the instants a timer
event is scheduled and fires. The second is the time it takes to exe-
cute the transition corresponding to a given event, i.e. to execute the
code of the event’s handler. While our system model requires event
handlers be non-blocking (thus implying they are fast), in prac-
tice they take a non-negligible amount of time. To be consistent, a
node’s time must be updated according to both of these factors.

To account for time, we include a per-node clock, and extend the
notion of an execution as an initial system state and set of tuples:

〈node , event , start , duration〉

ordered by the element start . Intuitively, the system evolves as fol-
lows. At each step, the system picks the next tuple, and updates the
system clock for node to be the maximum of its current value and
start . Next, the system triggers event on node , thereby executing
at node the corresponding transition. At the end of the transition,
the node system clock is incremented by duration and thus the
whole system moves to a new state.

For simplicity, in the initial state assume all nodes share the same
start time. We define the system time as the average node time
across all the system’s nodes. We define the running time as the
difference between the system time and the start time. To formal-
ize the notion of performance we require that the developer provide
a stopping condition, a predicate over the system state that is true
once the end-to-end task is accomplished. In the motivating exam-
ple above, our stopping condition is that the system form a spanning
tree across all nodes. Thus, the performance of a particular execu-
tion is formalized as the execution time—the running time when
the system satisfies the stopping condition.

3. ALGORITHM
We now present our algorithm that uses developer-specified, high-

level stopping conditions to find performance bugs. Figure 2 shows
the three phases of the algorithm: (1) Training, including both (a)

Event Duration Training, where we determine the CPU time of
each type of (atomic) event-transition, and (b) Performance Train-

ing, where we use the event durations to determine the “normal” ex-
ecution time; (2) Anomaly Detection, where we search the space of
behaviors to find poor performing executions, i.e. whose execution
time is significantly higher than normal; and finally, (3) Anomaly

Analysis, including both (a) Divergence Detection, where we an-
alyze the anomalous execution to determine the divergence point,
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Figure 2: System Architecture. First, MACEPC is trained on

the unmodified system: a synthetic set of event duration dis-

tributions (EDD) are used to create realistic EDD, which are

then used to sample the execution space to learn what an “aver-

age” execution is. Next, the system and EDD are input into the

Explorer algorithm, and it continues until an anomalous execu-

tion is found. Finally, our anomaly analysis algorithm locates

the most similar “average” execution, and updates the event

frequencies, reporting any correlations to execution time. At

this point, any debugging tool or user process can be used to

compare the two executions until the source of the bug is found.

narrowing the search for the performance degradation cause, and
(b) Frequency Correlation, where we determine if certain event be-
haviors are related to the performance degradation.

3.1 Ingredients
We start by presenting the key ingredients of our technique, the

notion of an event duration distribution, and the two procedures
Simulator and Explorer that are used across multiple phases.

Event Duration Distributions. For the purpose of simulation, we
represent the time taken to handle each event type (e.g. the time
taken to execute a transition or deliver a message) with a probability
distribution generated from actual executions of the system. We
call these the event duration distributions (EDD). There are three
main advantages EDDs offer over the naive approach of using raw
execution times observed during simulation.

Repeatability: After each event, the simulator determines the event
duration by randomly sampling the event’s distribution. By record-
ing the sequence of random numbers used for sampling, we en-
sure execution repeatability with exactly the same execution time,
regardless of variability in events’ actual time. Consequently,
even after subsequently modified code—e.g., to add logging, per-



form time-intensive testing, etc.—the performance observed by
the simulator remains the same as the original, unmodified code.

Coverage: EDD sampling allows exploration of executions with
event timing combinations never seen in a single run. This al-
lows the simulator to explore more variations in timing behavior,
including potentially hard-to-find corner cases.

Malleability: Timing distributions for each event enable exploring
“what if” scenarios with event times, by changing the distribution
for events to see the effects on average execution duration. This
allows speculatively evaluating effects of different algorithms,
buffering strategies, etc., without actual implementations.

We could construct similar distributions for network latency and
bandwidth observed on a particular real-world topology. Currently
we take a simpler approach of randomized latencies (cf. Section 4).

Algorithm 1 Simulator

Input: System S

Input: Stopping condition C

Input: Set EDD of timing distributions
events : 〈node, event , start〉 Queue
timedEvents : 〈node, event , start , duration〉 Queue
realTimes : 〈event , realTime〉 Queue
Initialize S and events

while C not satisfied by S do

〈node, event , start〉 = events .pop()
node.time = max(node.time, start)
startTime = RealTime()
Simulate event on node

realTime = RealTime()− startTime

duration = EDD [event ][rand()]
node.time = node.time + duration

timedEvents .push(〈node , event , start , duration〉)
realTimes.push(〈event , realTime〉)

return 〈timedEvents , realTimes〉

Algorithm 1: Simulator implements the core simulation mecha-
nism. This algorithm takes three input parameters: a system to
be simulated, a stopping condition, and a set of EDDs. The al-
gorithm constructs three queues: (i) events , which holds the cur-
rently pending events, (ii) timedEvents , which records the se-
quence of already executed events, and their sampled durations,
(iii) realTimes , which records the sequence of already executed
events, and their real durations. events is initialized with a small
set of events used to bootstrap the system (typically an application
initializing event on each node), and timedEvents and realTimes

are initially empty. Next, the simulator enters a loop in which it
keeps executing pending events until the stopping condition be-
comes true. At each iteration, the algorithm pops the first pend-
ing event (i.e. with the smallest start time) off the events queue.
The node running the chosen event sets its clock to the maximum
of its current clock value and the scheduled start time of the event.
Next, the algorithm records the real time and executes the event at
the chosen node, potentially causing other events to be enqueued
(e.g., in the case where a new timer or network event is sched-
uled). To determine how long the event transition took, the al-
gorithm randomly samples the EDD for the chosen event and as-
signs the result to duration . Further, the chosen node advances
its clock by duration . Next, the algorithm records the event ex-
ecution by adding the tuples 〈node, event , start , duration〉 and
〈event , realTime〉 to the timedEvents and realTimes queues re-
spectively. When the stopping condition is satisfied, the simulation
stops and returns timedEvents and realTimes . Note that we can

trivially ensure there is a pending event by adding a dummy timer
that repeatedly fires at long periods. Similarly, we ensure the simu-
lation terminates by encoding a timeout in the stopping condition.

Algorithm 2 Explorer

Input: System S

Input: Stopping condition C

Input: Set EDD of timing distributions
Input: Integer N

execs : 〈execution〉 Queue
eventTimes : 〈event , realTime〉 Queue
for i = 1 to N do

Reset system
〈ex , times〉 = Simulator(S ,C ,EDD)
Add ex to execs

Add each element of times to eventTimes

return 〈execs , eventTimes〉

Algorithm 2: Explorer implements a search of the space of exe-
cutions, via repeated calls to Simulator. This algorithm takes four
input parameters: a system to be analyzed, a stopping condition,
a set of EDDs, and an integer N corresponding to the number of
executions to be explored. The algorithm constructs two queues:
(i) execs , which holds the explored executions, (ii) eventTimes ,
which holds the recorded times for different events along the ex-
plored executions. Both queues are initially empty. The algo-
rithm iterates N times. In each iteration, it calls Simulator and
adds the returned execution to the execs queue, and each event-
(real)duration tuple to the eventTimes queue. After the loop, it ter-
minates and returns the set of observed executions execs and event-
duration tuples. Between each invocation of Simulator, the algo-
rithm resets the system state, which includes tasks such as clearing
the simulated network of messages, instantiating new nodes for the
next execution, removing scheduled timers, and resetting the ran-
dom number generator state. Since Simulator is randomized, each
invocation of Simulator returns a (possibly) different execution.

Event Duration Independence. Our approach to simulating the
passage of time assumes that within a node, event durations are in-
dependent, i.e. the durations of different events are uncorrelated.
Different EDDs can be provided for nodes, modeling nodes at dif-
ferent speeds, but our implementation does not support temporally
correlated durations (e.g. caused by resource competition from short-
lived background processes). Nevertheless, this simple approach
suffices to explore naturally occurring variations in event orderings
and timings, unearthing many interesting performance bugs. We
leave modeling potential temporal correlations to future work.

Deterministic Replay. A key property of our simulator is deter-
ministic execution replay. By recording each event tuple during the
search phase, the simulator has a path describing the complete ex-
ecution, and can later replay this path by executing each event on
the appropriate node at the time indicated. To provide consistent
executions when replaying a path, the simulator must control all
sources of non-determinism. We address non-determinism in event
orderings by using a simulated source of time, as discussed above.
In addition to the event orderings, real systems often make use of
non-determinism within event handlers for randomized algorithms.
When executing in the simulator, systems should use a determinis-
tic simulated random number generator.

3.2 Finding Performance Bugs
Next, we describe each of the phases of our algorithm.



Phase 1a: Event Duration Training. First, we build EDDs that
describe how long each type of event-transition takes to execute.
To compute these distributions, we pick a value N such that N
random executions “cover” all events (i.e. each event occurs in at
least one of the N executions). If we later determine coverage was
incomplete, we can either increase N and re-train, or substitute a
similar event’s distribution. We define a seed EDD for each event,
where its duration is distributed uniformly over some fixed interval
(such as 1-10ms). Next, we execute the Explorer on the system,
the stopping condition, the seed EDDs, and N . When the search
is complete, we discard the returned set of executions, and use
the 〈event , realTime〉 tuples (returned in realTimes), to compute
EDDs for each event using the cumulative frequency distribution.

Phase 1b: Performance Training. Next, we use the EDDs com-
puted in phase 1a to quantify what should be deemed as anoma-
lous performance. To this end, we determine the “typical” time
it takes the system to carry out its high-level task, i.e. average
time taken to reach the stopping condition. Concretely, we invoke
the Explorer algorithm on the system, the stopping condition, the
EDDs computed in phase 1a and another N . We discard the re-
turned set of event-time tuples and use the returned set of execu-
tions execs to compute the values of the first and third quartiles of
the execution time. We use the definition of “mild outliers” [18]
(Q3 + 1.5× (Q3 −Q1)) to flag anomalous executions.

Phase 2: Anomaly Detection. In phase 2 we explore the space
of behaviors to find executions with poor performance, i.e. whose
execution time is anomalous as computed by phase 1b. Concretely,
we run Explorer with the same parameters as before, except we
use a large N , and terminate the search when we find an execu-
tion that falls outside the bounds determined in phase 1b. The use
of different random number generator implementations allow var-
ious search algorithms to be employed. For example, our prior
work on the MACE Model Checker (MACEMC) [13] used an it-
erative bounded depth-first-search generator for exhaustive testing,
which is impractical when simulating microsecond-granularity tim-
ings. In our experience, a basic randomizing generator is sufficient
to detect many performance bugs. We leave to future work further
exploration of other generators such as a best-first generator.

Phase 3a: Divergence Detection. An anomalous execution can
consist of tens of thousands of events. The prospect of sifting
through all these events to find the performance bug would daunt
the hardiest systems developer. In this phase, we analyze the ex-
ecution to pinpoint the divergence point, the first event along the
execution that leads to stable performance degradation. By doing
so, the developer may skip past execution prefixes which may lead
to good performance, focusing on the remainder.

Divergence detection is an adaptation of the technique for finding
a critical transition pioneered in MACEMC. The insight behind the
algorithm is as follows. Many performance problems are caused by
corner-case race conditions which cause latent performance bugs.
Prior to the race condition occurring in an execution, branching the
execution and following a different path avoiding the race condition
leads to a good execution. Thus we identify prefixes of the execu-
tion which have not experienced the race condition, and narrow
down where the race condition takes place. Our experience indi-
cates that knowing the divergence point can allow the programmer
to ignore large portions of the execution trace: in one case nearly
62% of the 22000 events could be ignored, saving many hours of
debugging time. More precision is not provided by this technique
because what it identifies in the execution is where the race condi-
tion finished being enqueued onto the pending events list, not when
it actually occurs.

Figure 3: We first perform an exponential search (shown above

the anomalous execution) to determine bounds for the diver-

gence point, then a binary search (shown below the anomalous

execution) to isolate the divergence point. Note that to avoid

finding cases which are only slightly non-anomalous, any exe-

cution exceeding Q3 will be considered a performance failure.

As illustrated in Figure 3, we begin by initializing the prefix

length to one event, replaying the portion of the path overlapping
with the prefix, and then performing up to k random walks. If any
of the random walks satisfies the timing constraint the race condi-
tion has not occurred, so we double the prefix length and repeat.
Eventually, we reach a part of the path where none of the k random
executions satisfy the timing constraint, and thus we have lower
and upper bounds on the divergence point. Note that for the timing
constraint we use the third quartile rather than the outlier thresh-
old. Otherwise the analysis will find branches that perform only
slightly under the outlier threshold, distracting rather than enhanc-
ing the debugging. Though this can further decrease the precision
of the analysis, the goal is to confidently identify states which are
safe to ignore. The algorithm’s second phase isolates the diver-
gence point by conducting a binary search of the lower and upper
bounds. The algorithm terminates, producing an execution satis-
fying the timing constraint with the longest common prefix to the
anomalous execution.

Phase 3b: Frequency Correlation. To further simplify the debug-
ging process, we also collect event frequencies and the execution
time for executions simulated during phases 2 and 3a. Computing
this data is straightforward from the eventTimes queue returned
with each execution.

We automatically compute the correlation and scatter plot of
each type of event with the execution time. This information can
quickly direct developers’ attention to the events whose presence
or absence is related to the performance bug. In the three situations
we have applied this technique thus far, after manually discard-
ing event types that are trivially correlated with path length, such
as periodic timer expiration, remaining high correlations were di-
rectly or indirectly related to the bug, drawing developer attention
to important parts of the implementation.

An example of using event frequencies is shown in Figure 4.
This plot is from the motivating example in Figure 1. It shows a
correlation between the event described by "receiving a JoinReply
and sending a Remove message" and the execution time. Had this
tool been available when we first diagnosed this bug, we would
have seen quickly that this event is correlated with longer paths,
which would have helped us find the bug more quickly.

4. IMPLEMENTATION DETAILS
While the techniques behind MACEPC can be applied to arbi-

trary event-driven systems implementations and simulators, our im-
plementation targets systems implemented using the MACE frame-



work [12]. Focusing on MACE significantly simplified the effort
in building MACEPC, particularly given MACEMC as a starting
point. MACE structures each system component as a service im-
plemented using C++ objects. Each service object is structured as
a state machine whose states correspond to valuations of the ob-
ject’s member fields. Each event’s transition is implemented as
an atomically executed, non-blocking C++ method call, which can
asynchronously send events to itself through timers, or non-local
nodes through network messaging. Finally, MACE combines the
high-level service object specifications with “scaffolding code” that
handles event dispatch, serialization, callbacks, timers, etc. to gen-
erate C++ code that is ready to run on live networks.

In the remainder of this section, we describe the necessarily im-
plementation changes to enable the implementation of MACEPC.
Note that unlike many discrete event simulators, the goal of MA-
CEPC is not the accurate simulation of the distributed system, but
instead to be accurate enough to expose interesting performance
bugs. This allows us to keep our event-simulator quite simple.

Scalable Network Simulation

Like other distributed systems simulators, MACEPC must simu-
late network delays. MACEPC seeks a middle-ground between us-
ing a complete network simulator modeling congestion, and using a
simplistic model which only considers access link bandwidth. We
also considered using measured delay distributions as for events,
but found a simple model was sufficient to expose interesting bugs.

The time taken to send a message from a source to a receiver
is computed as the sum of four factors: (i) a propagation delay

fixed based on configuration, that models the delay to transfer data
from source to destination, (ii) a transmission delay that models
the bandwidth between the source and receiver and the number of
simultaneous flows sharing the link, and (iii) a random delay drawn
from a Pareto distribution, to model router queues.

By default, the propagation delay is set to 1ms, and the band-
width between peers at 8000 Kbps. However, each of these is con-
figurable for different node pairs. To simulate the common case
where a node’s first-hop link is the bottleneck, we count the num-
ber of active outgoing flows the node has to all other nodes above
a certain size, and use this value to divide the available bandwidth.
For example, if the bandwidth is configured at 8000 Kbps, and there
are two simultaneous flows, the transmission delay for a message
corresponds to the time it takes to send the message over a 4000
Kbps link. We assume that all flows with a certain threshold num-
ber of bytes in transmission are receiving their “fair share” from
TCP. In particular, we exclude “light” flows from this equation, to
avoid equally penalizing these flows. In our current implementa-
tion, this threshold is set to 300 bytes.

While the above does not perfectly mirror the behavior of net-
works, it allows MACEPC to simulate the network with enough
efficiency and fidelity to unearth tricky performance bugs. We also
validated that MACEPC could find a known topology-specific bug
by configuring the latencies accordingly across system nodes.

Time-based Simulation

Since we were adapted MACEMC to build MACEPC, we had to
add time to its execution model. In doing so, a pending event queue
was added in place of querying simulators for possible events at
each step. This modification had a dramatic effect on simulation
complexity, enabling MACEPC to run simulations at much larger
scale than is practical using MACEMC.

Random Number Generators

All non-determinism in the implementations is mapped to calls
to the MACE random number generator library, including selec-
tion of which event to execute. As a result, we can explore differ-

ent search techniques for the state space by implementing different
random number generators. When we first developed MACEPC,
it used the default MACEMC random number generator that con-
ducted a bounded depth-first-search. However, the degree of ran-
domness in simulating microsecond level times rendered the search
ineffective. Next, we explored a search technique which emulated
the other random number generator by picking a fixed number of
random candidates to explore in every step rather than an exhaus-
tive search. This was more practical, but added complexity with-
out providing any sort of guarantees about coverage. Currently,
we use a uniform random number generator, which provides state
space sampling rather than exhaustive search. We leave as future
work using a best-first random number generator that intentionally
pushes the system into poor performing states.

Preparing a System for MACEPC

Finally, to use MACEPC to find performance bugs, the user must
write: (i) one or more “test harnesses" or driver applications that
are used by MACEPC to execute initialize and execute the appli-
cation, and (ii) a stopping condition that is used by MACEPC to
determine when the system has completed its task. For example, to
find performance anomalies in a file distribution system, the user
could write (i) a driver application in which one node publishes the
file and the other nodes request the file, and (ii) a stopping condition
that holds when each (receiver) node has finished downloading the
file. The compiled driver application is linked with the MACE sys-
tem object files and simulator specific MACE libraries for message
queuing and delivery, system time, timer scheduling and random
number generation, and MACEPC uses the resulting system to find
performance bugs.

5. EXPERIENCES
We ran MACEPC on MACE implementations of BULLET

′ [14],
PASTRY [26], BAMBOO [24], CHORD [27], and a random tree pro-
tocol (RANDTREE) as described below, and found significant, pre-
viously unsolved performance issues with each. The following ex-
amples are intended to give an understanding of the types of bugs
we were able to find and the utility of the tool. We try to describe
only enough of the system being executed to understand the bugs
described and the stopping conditions used.

All the systems we evaluated have been extensively tested in
live runs, and PASTRY, BAMBOO, CHORD, and RANDTREE were
tested for correctness using MACEMC. The BULLET

′ implementa-
tion, though not checked with MACEMC, was significantly perfor-
mance tuned as a major differentiator relative to contemporaneous
systems.

The experiments below were run in a variety of network configu-
rations. MACEPC ran on a single machine with an Intel Core2Duo
processor at 3GHz with 4GB of RAM. RANDTREE was tested at
small scale and yielded fast executions. BAMBOO was tested on 20-
40 nodes, and the remaining systems were tested in configurations
of 40-100 nodes. Note that it is impractical to perform any kind
of exhaustive search using standard model checking techniques on
systems of this size. Executions run in MACEPC took anywhere
from 8 seconds to 3 minutes. This execution time is highly variable
based on two primary factors: (1) the length of a path reaching the
stopping condition, and (2) the per-event processing in MACEPC.
For some systems, such as PASTRY, the stopping condition, a per-
event processing task, has a complexity of O(n2 log n) for n nodes,
so paths take much longer to explore as the size of the configuration
grows.

The time spent searching for anomalous executions varied de-
pending on the number of paths MACEPC had to search before



finding an anomaly, but the bugs we found appeared relatively early.
The longest part of MACEPC execution was the divergence detec-
tion phase, which has to run O(k log s) steps, where k is the num-
ber of random paths at each step (a parameter impacting the error),
and s is the depth of the divergence point. Anomaly analysis ranged
from 1 hour to 22 hours to run. Though 22 hours is on the long side,
the search was unattended, and did allow us to ignore nearly 62%
of the 22000 events in the anomalous execution.

5.1 BULLET
′

BULLET
′ is a mesh-based, peer-to-peer file distribution protocol

similar in functionality to BITTORRENT [1]. Each node contacts a
source node, receives a set of initial peers to join, and then begins
downloading a file in parallel from other nodes. Before discussing
the bugs we found, there are a few relevant implementation de-
tails to discuss. First, BULLET

′ uses two transports – one for data
and a second for control messages. The data transport is config-
ured to only buffer one block’s worth of data at a time, while the
control transport is configured to buffer an unbounded number of
messages. The TCP transport in MACE has the ability to buffer
messages so that it can send them asynchronously without using
service resources. Limiting the buffer length allows BULLET

′ to
quickly react to changing network conditions and application re-
quests, since buffered messages cannot be cancelled. BULLET

′ ac-
tively detects when message blocks will not fit in the queue, and
schedules a timer to send them later. However, “Diff” messages, or
those that inform a peer about blocks a node possesses, are also sent
over the data transport, and are not similarly protected against a full
buffer. Second, BULLET

′ is structured on top of RANSUB [15], a
gossip protocol that periodically delivers a changing random subset
of mesh participants to each node.

Stopping Condition. The stopping condition for BULLET
′ is sim-

ple – all nodes should complete downloading the file.

Anomalies. In the first experiment with BULLET
′, we used a setup

of 100 nodes downloading a 20MB file. MACEPC found the first
anomaly after 134 runs, representing an 11 second execution which
exceeded the 9.5 second upper bound (as computed in Section 3.2).
Each execution took approximately 18 seconds of real time, and
terminated in between 56000-57000 simulator steps.

After examining the times that each individual node took in this
execution, we determined that only one slow node limited overall
system performance. Anomaly analysis showed that the discrep-
ancy was based on the timing of one particular message the slow
node sent to one of its peers. Upon further investigation, we real-
ized that in the “good” execution, the slow node’s message caused
a Diff to be sent to it successfully, which happened to contain infor-
mation about two blocks that were never successfully sent by any
other node. The slow node was then able to request these blocks
from this peer and complete the file download. In the anomalous
execution, the message was timed such that the Diff message sent
from the slow node’s peer was dropped by a full transport. As a
result, the slow node never learned about the two blocks, leaving
it stuck since it did not know about any peers who had the miss-
ing blocks. Eventually, RANSUB delivered a new set of candidate
nodes, and the slow node was able to join one of them and retrieve
the missing blocks. However, waiting on RANSUB was responsible
for the delay, causing the anomalous execution.

The second experiment with BULLET
′ used only a 2MB file, but

MACEPC found the second anomaly in less than 10 executions.
In this case, the anomalous execution took around 5.5 seconds,
whereas a normal execution took no more than 2 seconds of simu-
lated time. To debug this case, we once again examined individual
node completion times to learn that only a few nodes were slow.

The first thing obvious from inspecting the slow nodes’ logs was
that no blocks were received until approximately 5 seconds into the
run, then they quickly retrieved all the blocks. We found that the
node did not acquire any peers for the first 5 seconds. The slow
node did receive a list of candidate peers from the source when it
joined. However, its attempts to join each of them failed because
no candidate could accept another peer. Thus, the node waited 5
seconds for RANSUB to deliver it a set of new peers.

Improvements. To fix our first anomalous condition, we simply
changed Diff messages to be sent over the control transport instead
of the data transport. This eliminated the problem of Diffs being
dropped by the transport, and ensured that all nodes received all
intended Diff messages.

The second performance problem was based on the fact that
when a node is rejected by potential peers, it could have to wait
for RANSUB to deliver it new ones. To overcome this idle time, we
changed the JoinReject message to contain the list of the rejecting
node’s peers. Then, when a node receives the JoinReject message,
it has a set of other nodes it can try to join.

Note that in both cases, the overall system execution was correct.
However, just as corner cases in execution can lead to errors, sim-
ilar corner cases can lead to unexpectedly slow performance. Au-
tomated state space exploration techniques appear to be well suited
to automatically find both types of conditions.

5.2 PASTRY

PASTRY is a well-known Distributed Hash Table (DHT) protocol
that enables nodes to self-organize into a ring structure. Each node
in the ring takes an address in a circular address space, and becomes
responsible for the address space in the immediate vicinity of its
own address. The PASTRY protocol organizes the ring to enable
routing to any address using a path of no more than log(n) hops.

The primary functionality we are concerned with is the stabiliza-
tion of the PASTRY network. PASTRY’s performance can be mea-
sured by how long it takes nodes to finish their self-organization
protocol. This protocol includes two basic components. The ac-

tive join component allows a joining node to connect to an existing
node and follows a protocol to find where in the network it should
insert itself. A node N joins by routing a “join” message to its
closest peer in the address space, who tells N of its address-space
neighbors by sending N its “leafset”. Along the way, it also gath-
ers information about other nodes in the system. This protocol will
execute correctly as long as only one node is joining at a time, and
in the absence of departing nodes.

To handle multiple simultaneous node joins and departures, the
maintenance component periodically exchanges leafset informa-
tion with peers to ensure that each node’s state is accurate. This
protocol component can correct a wide variety of errors, mistakes,
and dropped messages, and therefore mask many performance bugs.

Stopping Condition. The PASTRY stopping condition is the time
all nodes’ routing information has stabilized to a consistent state.
This involves checking both that each node knows its immediate
neighbors (important for correctness and fault tolerance), and that
the routing distance between all pairs of nodes is logarithmic in the
number of nodes.

Anomalies. During the training of PASTRY anomaly conditions,
we stopped the training early. In the first 6 paths, the average exe-
cution times for the 40 pastry nodes (in simulated seconds) were:

(60.0073, 60.0061, 60.0085, 40.0051, 20.0369, 20.0313)

Variations of this magnitude were immediate indicators of a per-
formance problem. We re-ran MACEPC having it save any execu-
tion that took longer than 50 (simulated) seconds. 22 of the first



40 paths took longer than 50 seconds, the longest taking 100.0044
seconds in 8848 simulator steps. All executions were within a sec-
ond of a multiple of 20 seconds, a clue that the execution time was
being dominated by the behavior of a system timer firing every 20
seconds.

Anomalies such as these were not unexpected. In earlier experi-
ments, we had observed that the PASTRY implementation required
either a long stabilization period after first being started, or an ex-
tended stagger-start period where nodes are slowly started over the
first 30 seconds of the experiment. Running MACEMC over PAS-
TRY did not flag these problems because PASTRY was still even-

tually reaching the stopping condition. We also did not attempt to
extensively debug this performance problem in live executions be-
cause of the difficulties of debugging a distributed system, and the
knowledge that we could just wait for it to stabilize before conduct-
ing other experiments using PASTRY.

Anomaly analysis on the longest path indicated that the perfor-
mance had not diverged before step 5681. In both fast and slow
executions, all nodes are trying to join at once. Since the bootstrap
node does not add a joining node until after each joining node has
confirmed that it is finished joining, multiple simultaneous joining
nodes will initially believe they are in a 2-node ring with just them
and the bootstrap node. (Each contacts the bootstrap node, who ini-
tially knows no one. It responds, telling them about just itself, and
does not add them to its leafset until after they confirm they have
finished joining.) Then all nodes nearly simultaneously announce
themselves as new members of this small ring, largely oblivious to
the other recently-arrived nodes.

In the ensuing mayhem of the active join protocol, the nodes
closest in the address space to the bootstrap node are successful,
while the state of other nodes further away depends on the precise
order in which nodes are added and removed from the leafset of the
bootstrap node. Unlucky nodes take one or more executions of the
periodic maintenance protocol to finally correct their state. Each
time the periodic protocol executes, a node will move k neighbors
nearer to their correct position in the ring. If n nodes join simulta-
neously, and n >> k, this can take a very long time.

Improvements. The basic problem is that waiting 20 seconds for
each execution of the periodic protocol is a huge performance penalty
during ring construction. Scheduling the protocol more frequently
would help, at the added cost of higher overhead in the common
case (such fixes are only required during times of high node churn).
An adaptive timer could be used, though its design would likely in-
volve difficult and network-specific tuning parameters.

After exploring a range of options, we settled on the following
solution. The problems essentially occur for nodes who are re-
placed in the bootstrap node’s leafset but know nothing about nodes
near them in the address space. Thus, we notify a node with the cur-
rent leafset when removing it from the leafset. When it receives the
leafset, it will be informed of several nodes which are closer to its
correct place in the ring. This same information would be received
at a later time when the maintenance protocol runs, but at that point
the information will be more out-of-date and less relevant. It is
important that the node get this particular version of the leafset, be-
cause the later version will only contain nodes close to the bootstrap
node, not to the evicted node. After making these improvements,
all execution times varied in length from 1.5-2 (simulated) seconds.

5.3 BAMBOO

BAMBOO is an enhancement to the original PASTRY protocol,
designed to better handle network churn and cause lower network
overheads than the very verbose PASTRY active join protocol. As

such, the performance metrics of interest and the stopping condi-
tion are the same.

BAMBOO accomplishes its lower overhead by shortening the ac-
tive join protocol to only contain information about the leafset,
rather than other information gathered along the way. It also re-
duces the amount of state in the maintenance protocol, thus reduc-
ing overhead while still converging to good routing paths.

We used MACEPC on our BAMBOO implementation and found
three interesting performance bugs. We describe two below:

• BAMBOO keeps track of successors and predecessors, but
does not always know which one a node will be. If there is
a poor balance of node identifiers, a node initially suspected
to be a predecessor could later end up in the successor set.
To accommodate this, there was code in BAMBOO to take a
node pushed out of one set and check to see if it belongs in
the other set. However, a bug caused the variables maintain-
ing the boundary of the set to be updated before checking
to see if the boundary belonged in the other set. Thus, this
caused such nodes to be forgotten, and the problem to be later
corrected by the maintenance protocol.

• Despite this active join change, unusual orders of joining
nodes sometimes cause peers to not learn of each other. Again,
this is because each peer first gathers information, then an-
nounces its liveness. This causes immediate neighbors to
sometimes be wrong until the maintenance protocol executes.
To fix this problem, we added an extra field to the “inform”
message the BAMBOO implementation uses to confirm that
it is alive. This additional field indicates whether the infor-
mant believes it is adjacent to the informed. If any informed
node disagrees with this adjacency information, it triggers
the maintenance protocol early to fill in gaps.

After implementing these fixes, MACEPC was unable to find any
executions which take longer than 1 second. Encouraged by this
improvement, we conducted a real evaluation similar to the one de-
scribed in the BAMBOO paper [24] comparing the original MACE

BAMBOO implementation with our fixed implementation. In this
test, we ran a set of 300 instances of BAMBOO using ModelNet [28]
on a cluster of 5 machines, each with 16 GB of RAM, dual, 64-bit
quad-core Intel Xeon CPUs, and 4 Gigabit Ethernet connections,
running Gentoo Linux 2.6.27. The experiment measures the con-
sistency and latency of BAMBOO routing lookup information as
the median session time of a node ranges from 84 seconds to 672
seconds. To measure consistency, every set of 10 nodes share a
common lookup schedule, and lookups are considered consistent
if a majority of responses indicate the same target node. The re-
sults are shown in Figures 5 and 6. The version produced by fixing
the bugs found using MACEPC allowed us to deliver better con-
sistency, eliminating roughly 15 − 30% of inconsistent lookups,
while also reducing latency by up to 15% under high degrees of
churn. These results demonstrate that the bugs we fix using MA-
CEPC translate to actual improvements in the protocols we test, not
just arcane nuances tickled by rare execution paths.

5.4 CHORD and RANDTREE

We have also applied MACEPC to the MACE implementations
of CHORD and RANDTREE, and have found performance bugs in
each. These include the example bug illustrated in Figure 1. The
CHORD bugs were similar in flavor to the PASTRY bugs, with sim-
ilar solutions. The RANDTREE bugs were similar types of prob-
lems to the one in Figure 1, and caused the recovery protocol to
correct them. The recovery protocol only executes every 10-60
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seconds in a typical installation, since it is only supposed to cor-
rect for network partitions, and not protocol bugs. Thus, the bugs
in RANDTREE were responsible for very slow tree formation when
many nodes join at once, and correcting them allowed these sce-
narios to proceed in under 1 (simulated) second rather than tens of
seconds.

6. LIMITATIONS
While this approach to finding performance bugs has been suc-

cessful and seems quite promising, it is not a panacea. We describe
some limitations of our approach.

First, we run the real system under particular workloads. Thus,
our system can only find performance bugs manifested by those
particular workloads, though the use of randomized simulation al-
lows us to exercise multiple behaviors for each workload.

Second, because our systematic exploration considers executions
based on realistic distributions of event timings under a particular
environment, it will not cover as many code paths as a traditional
model checker [7, 13, 19, 22, 29]. This means it may have to be run
separately under different deployment environments (e.g., different
network conditions, etc.). The alternative approach of considering
all possible performance conditions appears impractical.

Thus, our present implementation has not considered compli-
cated execution search strategies or temporal correlations between
individual event timings, because they have not yet been needed.
The design supports these possibilities, and we anticipate that ad-
ditional performance bugs may be isolated with additional detail.

7. RELATED WORK
MACEPC is related to several techniques for finding errors in

software systems.

Fault Isolation. Our work is related to ideas in the fault isola-
tion literature such as delta debugging [30] which systematically
searches a space of possible faults to isolate the one that triggers
a particular bug. A variant of this idea is predicate switching [31]
which flips branches along a path in order to explore alternate exe-
cutions, thereby isolating the branch that exposes a particular bug.
These techniques focus on correctness problems, and find bugs that
cause well defined “crashes"; in contrast, our work attempts to iso-
late performance problems by finding executions that take anoma-
lously long.

Systematic Execution Exploration. MACEPC is closely related
to tools which find correctness bugs by systematically executing
different paths through unmodified implementations. VERISOFT

views the entire system as several processes communicating through
message queues, semaphores and other IPCs. It schedules these

processes and traps calls that access shared resources. By choosing
the process to execute at each such trap point, the scheduler can ex-
haustively explore all possible interleavings of the processes’ exe-
cutions using a stateless search, thereby finding a variety of errors.
CMC [19], also directly executes the code and explores different
executions by interposing at the OS scheduler level. MODIST [29]
also directly executes the code, and is focused on transparent execu-
tion and checking of fail-stop and divergence errors. CHESS [22]
improves the effectiveness of systematic exploration using itera-
tive context bounding [20] and fair stateless search [21]. JAVAP-
ATHFINDER [10] checks Java programs by interposing at the JVM
level, in a manner analogous to CMC. MACEMC [13] combines
VERISOFT-style stateless search with random walks to find live-

ness bugs. Furthermore, MACEMC uses a binary search over the
erroneous execution to pinpoint the critical transition before which
the system could have recovered to a live state, but after which the
recovery becomes impossible. Our notion of a divergence point is
an adaption that differs in that it is easier to tell whether a state is
dead (i.e. can never recover to a live state) than whether perfor-
mance has degraded. To be conservative, our technique finds the
divergence point when paths begin to show signs of degradation.
All the above ignore time and hence cannot be used to find errors
related to performance anomalies.

Performance Tracking. PIP [23] is a concurrent, complementary
technique for finding bugs in distributed systems. PIP is an annota-
tion language and an expectation checker which can be applied to
executions. PIP provides a way to visualize distributed path-flow
in a system, and to write expectations to validate system paths. By
writing a set of execution validators, the idea is that you can find
performance bugs by looking at any non-validated paths. MACEPC
is easier to use as (i) it does not require a live deployment of the sys-
tem, (ii) it can automatically test a wide variety of executions, and
(iii) it does not require careful manual examination of every possi-
ble distributed path-flow. X-TRACE [25] allows developers to bet-
ter understand the performance of their system by using extensions
to the existing protocol stack to trace the flow of messages across
protocol layers, networks and applications. Like PIP, X-TRACE is
focused on debugging particular live live executions, whereas MA-
CEPC automatically finds executions with anomalous performance.
Finally, TREND-PROF [9] allows users to measure the empirical
computational complexity of implementations by plotting the per-
formance of the system across a range of input sizes. Divergences
in expected behavior can pinpoint bottlenecks in the code e.g. func-
tions whose run-times grow faster than linearly with input size. It
is not clear if such techniques can be adapted to the uncertain envi-
ronment of distributed systems.



8. CONCLUSIONS
We have presented MACEPC, a technique that finds and iso-

lates performance bugs in unmodified distributed systems code by
searching the execution space for executions that perform far worse
than is typical. MACEPC starts by training itself using the run-
times of actual events from real executions. Next, MACEPC uses
the distributions to explore a large number of executions, look-
ing for executions that take abnormally long to complete. Finally,
upon finding an anomalous execution, MACEPC carries out sys-
tematic search for the most similar execution that does not exhibit
the performance bug. The two executions, along with an automat-
ically identified divergence point—the step after which it becomes
impossible for the execution to achieve acceptable performance—
serve dually to direct the developer to a portion of the execution
believed to contain the bug, and to attest that the bug does not oc-
cur before the divergence point. Further, event frequency data is
available to the programmer, and its correlation with performance
can help guide the developer to focus on relevant types of events.
We have applied MACEPC to five mature systems, finding long-
standing performance bugs in each. Relative to running experi-
ments on nodes spread across the Internet, or even on a local-area
network emulator, we have found that our performance checker sig-
nificantly simplifies and speeds the task of performance debugging
and does not require expensive, manually inserted logging that of-
ten obfuscates the underlying bug.
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