
Staged Information Flow for JavaScript ∗

Ravi Chugh Jeffrey A. Meister Ranjit Jhala Sorin Lerner
University of California, San Diego

{rchugh,jmeister,jhala,lerner}@cs.ucsd.edu

Abstract
Modern websites are powered by JavaScript, a flexible dynamic
scripting language that executes in client browsers. A common
paradigm in such websites is to include third-party JavaScript code
in the form of libraries or advertisements. If this code were ma-
licious, it could read sensitive information from the page or write
to the location bar, thus redirecting the user to a malicious page,
from which the entire machine could be compromised. We present
an information-flow based approach for inferring the effects that a
piece of JavaScript has on the website in order to ensure that key
security properties are not violated. To handle dynamically loaded
and generated JavaScript, we propose a framework for staging in-
formation flow properties. Our framework propagates information
flow through the currently known code in order to compute a min-
imal set of syntactic residual checks that are performed on the re-
maining code when it is dynamically loaded. We have implemented
a prototype framework for staging information flow. We describe
our techniques for handling some difficult features of JavaScript
and evaluate our system’s performance on a variety of large real-
world websites. Our experiments show that static information flow
is feasible and efficient for JavaScript, and that our technique al-
lows the enforcement of information-flow policies with almost no
run-time overhead.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Validation; F.3.2 [Seman-
tics of Programming Languages]: Semantics of Programming Lan-
guages – Program analysis

General Terms Languages, Reliability, Verification

Keywords Set Constraints, Flow Analysis, Web Applications,
Confidentiality, Integrity

1. Introduction
JavaScript is a popular scripting language that is the foundation of
Web 2.0 applications like Gmail and Facebook. The popularity of
JavaScript stems from its extremely dynamic nature: libraries can
be downloaded at run time from diverse sources across the web,

∗ This work was supported by NSF CAREER grants CCF-0644306, CCF-
0644361, NSF PDOS grant CNS-0720802, NSF Collaborative grant CCF-
0702603.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

<script src="http://adnetwork.com/insert-ad.js">

<textbox id="SearchBox">
<button id="Search" onclick="doSearch()">

<script type="javascript">
var doSearch = function() {

var searchBox = document.nodes.SearchBox.value;
var searchStr = searchUrl + searchBox;
document.location.set(searchStr);

}
</script>

Figure 1. A snippet of JavaScript based on www.wsj.com. When
the user clicks the Search button, the doSearch function appends
the contents of the SearchBox to a base URL string searchUrl,
and redirects the page to the resulting URL.

objects and code can be sent over the network as raw strings that are
dynamically parsed and executed by the receiver, and all modern
web browsers provide JavaScript APIs that allow scripts executing
on the page to dynamically access and modify the state associated
with the page. Unfortunately, the flexibility comes at a great price:
JavaScript has few protection or information hiding mechanisms,
and consequently, the use of JavaScript has opened up new classes
of security vulnerabilities such as cross-site scripting and code-
injection attacks.

We illustrate the main issues here with a simple and glar-
ing attack found in a study of real-world vulnerabilities carried
out at Google [27]. Figure 1 shows a code snippet adapted from
www.wsj.com. On the first line, the web site inserts an ad by in-
cluding some JavaScript code from an ad agency. This JavaScript
code runs and replaces itself on the web page with the actual ad
(this is a very common way of placing ads on web pages, includ-
ing Google’s AdSense). Below the ad, the sample page contains a
search form with a text box and a search button with an on-click
event handler. The event handler redirects to the search site stored
in a global searchUrl variable (which can be reassigned), with the
contents of the search box appended as a URL parameter.

In practice, first tier ad agencies often delegate to second tier
agencies, which often delegate to third tier agencies, and so on.
In their study, Google found a case where ads from a reputable
and non-malicious American ad agency, after several levels of in-
direction, eventually included JavaScript code from a malicious ad
provider in Russia. In the wsj example, such a malicious JavaScript
snippet could simply write to searchUrl, redirecting the user to
the attacker’s site the next time the search button is clicked. This
malicious site could then exploit a vulnerability in the browser
to compromise the client’s machine. Thus, the attacker can divert
the user to the malicious site, without directly changing the docu-
ment’s location. The Google study reports that almost all web at-
tacks which take over a user’s computer follow this pattern: use

www.wsj.com

JavaScript to change the location bar to redirect to a malicious site
that then exploits a vulnerability in the browser.

Although a browser’s vulnerability is the last nail in the coffin,
the root cause of the problem is that the code that is included for
inserting the ad should not be able to change the location bar, and
the designers of the wsj page certainly never intended to give the
ad code this privilege. Thus, in order to make Web 2.0 applications
secure, the fundamental challenge is to devise a mechanism that
can specify and enforce the designer’s intentions about the effects
that a piece of JavaScript code can have.

In this paper, we propose to formalize these effects using infor-
mation flow. Information flow can capture the fact that a particular
value in the program affects another value in the program. In the
above example with the location bar, the integrity policy that we
would want to enforce is that no value from within any ad should
flow to the location bar, or into any child frame’s location bar. Sim-
ilarly, using information flow, we could specify useful confiden-
tiality properties like the sensitive cookie value of the current page
should not flow to any ad, or information filled in textboxes on the
current page should not flow to any third-party widgets (such as
counters inserted on the page).

Although information flow has been explored in many settings,
the dynamic nature of JavaScript poses a new challenge: because
JavaScript commonly evaluates complex code strings that are built
at run time or read from the network, the entire code is not avail-
able until the JavaScript program is already running. As a result,
techniques for statically checking information flow are not directly
applicable. One solution to this challenge would be to check infor-
mation flow dynamically, but unfortunately this approach has some
significant drawbacks. In addition to adding a possibly large run
time overhead, it would also prevent developers from catching pol-
icy errors early on in the development process.

To address the dynamic nature of JavaScript, we propose in this
paper a framework for staging integrity and confidentiality infor-
mation flow properties. Staging consists of statically computing as
much of the information flow as possible based on the known code,
and leaving the remainder of the computation until more code be-
comes available. Since the residual checking must be performed
within the browser, and must be performed every time new code is
dynamically loaded, we must ensure that the residual checks can be
performed efficiently.

In our staging framework, the heavyweight flow analysis is car-
ried out just once on the server and its results are distilled into suc-
cinct residual checks, that enjoy two properties. First, they soundly
describe the properties that are left to be checked on the remain-
ing code once it becomes known; if each piece of loaded code
passes the residual checks, the top level flow policy is guaranteed
to hold. Second, they obviate the need for flow analysis within the
browser; they are syntactically enforceable and can be efficiently
discharged when the dynamically loaded code is parsed inside the
browser. Thus, by performing the bulk of the analysis statically,
staging allows the enforcement of information flow policies for dy-
namic web applications with almost no run-time overhead. To sum
up, we make the following contributions in this paper.

• We present a framework for staging integrity and confidentiality
information flow properties in JavaScript programs. Section 2
gives an overview of our framework using an illustrative exam-
ple, and Section 3 describes the framework in more detail.

• We present an instantiation of the framework using set inclu-
sion constraints. Section 4 describes how we use set constraints
to capture direct and indirect flows through difficult-to-analyze
features of JavaScript like dynamically created objects, fields,
first-class functions, and prototypes. Our constraint-based flow

<script type="javascript">
var document.settings = {

setBaseUrl = function(s) { this.baseUrl = s },
setVersion = function(i) { this.version = i }

}

var initSettings = function(s, i) {
document.settings.setBaseUrl(s);
document.settings.setVersion(i);

}

initSettings("mysite.com/login.php", 1.0);

var login = function() {
var pwd = document.nodes.PasswordTextBox.value;
if (readCookie("doCheck") && pwd.length < 8) {

document.alert("Password is too short!");
} else {

var user = document.nodes.UsernameTextBox.value;
var params = "u=" + user + "&p=" + pwd;
post(document.settings.baseUrl, params);

}
}
</script>

<text id="UsernameTextBox"> <text id="PasswordTextBox">
<button id="ButtonLogin" onclick="login()">

<div id="AdNode">
<script src="adserver.com/display.js">

</div>

Figure 2. mysite.com with username and password textboxes to
allow logging in. The global function initSettings is intended to
be called once to initialize settings used by the page. The page also
loads a third-party script, which will be evaled when the string is
received from the network.

var z1 = "evil.com"; var z2 = 1.0; initSettings(z1,z2);

Figure 3. A bad network string display.js, returned by
the malicious or compromised adserver.com, which calls
initSettings to overwrite the page’s settings. When the user
clicks the login button, her username and password are sent to
evil.com instead of mysite.com.

analysis of JavaScript code is a contribution by itself, indepen-
dent of the staging framework.

• We evaluate our analysis techniques and our staging framework
on a variety of real-world web sites. In particular, in Section 5
we demonstrate the feasibility of staged information flow by
showing that: (1) our approach scales to the Alexa top 100 [1]
web sites, (2) the residual checks are orders of magnitude faster
than checking the entire program and fast enough to run inside
the client browser, and (3) our analysis is precise enough to
correctly identify flows with a small false positive rate.

2. Overview
We start with an example that motivates our approach of staged
information flow for JavaScript. Consider the web page shown
in Figure 2. In our approach, we separate a web page into two
parts. The first part, which we call the context, is known and in
our example consists of the entire web page except for the last
three lines. The second part, which we call the hole, is loaded
dynamically and is unknown. In our example, the hole is the last

var displayAd;
var appName = document.navigator.appName;
var appVersion = document.navigator.appVersion;
if (appName == "IE" && appVersion < 7) {

displayAd = function() { ... };
} else

displayAd = function() { ... };
}
document.nodes.AdNode.innerHTML = displayAd();

Figure 4. A good network string display.js, which creates
advertisement text depending on the browser detected from the
document.navigator fields, and then displays it in the AdNode
div that the page created for the ad.

three lines of the web page and consists of dynamically loaded
third-party code from adserver.com.
The Context. The context contains some JavaScript code within
<script>...</script> tags. This script defines a global ob-
ject called settings that contains fields baseUrl and version,
and associated setter methods setBaseUrl and setVersion. The
function initSettings calls the setter methods to initialize the
fields of the settings object. The function login reads the pass-
word from the appropriate field of the document and the docu-
ment’s cookie, creates a string comprised of the user’s name and
password, and calls post to send this string to the server whose
URL is stored in settings.baseUrl. The login function is called
asynchronously, on the reception of the event corresponding to the
user clicking the ButtonLogin button. At the point when a user
clicks on the ButtonLogin button, the settings object is already
initialized with mysite.com, the intended destination of the user-
name and password.
The Hole. Suppose that adserver.com is either malicious or
compromised, and sends the JavaScript code shown in Figure 3.
This code calls initSettings with values that cause the baseUrl
field to point to the attacker’s address. Thus, if the user presses
the button after this dynamically added code is evaled, the
user’s name and password will get posted to evil.com instead of
mysite.com.

2.1 Safety via Information Flow
Unfortunately, existing mechanisms are insufficient to prevent this
kind of attack. First, dynamic techniques like stack-based access
control are insufficient in the face of asynchrony and global state.
After the malicious code has set the global settings.baseUrl,
it is no longer on the stack when the click event occurs, and
hence there is nothing on the callstack to suggest that an at-
tack has occurred. Second, JavaScript lacks most language-based,
coarse-grained, information-hiding mechanisms such as private
fields and abstract datatypes. This is a large part of JavaScript’s
appeal for Web 2.0 programming – by eschewing such mecha-
nisms, JavaScript makes it easier to rapidly construct applications
by gluing together trusted and untrusted libraries. Thus, to reconcile
safety with flexibility, we need a fine-grained enforcement mecha-
nism that allows untrusted code access to certain parts of the web-
page, but ensures that critical elements cannot be affected.
Flow Policies. In our approach, the author of the context provides
a flow policy which is a set of pairs of policy elements. A policy
element is a program variable or a hole. Each pair in the policy
represents flow that is disallowed. For our example, the attack
above is possible because the code from the untrusted hole is able
to interfere with a trusted part of the system, namely the URL to
which the messages are sent. To shield the application from such
attacks, the page’s author could provide a policy that prohibits any

variable declared within the hole from affecting the first parameter
of the function post. Formally, we prevent untrusted eval sites
from navigating the page via an integrity policy specified as a pair

(•, document.location)

which states that variables declared within the code loaded at
any eval site must not flow into (i.e., affect) the value of
document.location. Dually, we can prevent secure information
from being read by untrusted holes via a confidentiality policy spec-
ified as a pair

(document.cookie, •)
which states that the value of document.cookie must not flow into
any variable within the code loaded at any eval site.

Given an information flow policy and a complete program, there
are standard techniques (e.g., using type systems [23] or dataflow
analysis [21]), for checking that the program satisfies the policy.
Unfortunately, these techniques cannot be applied in our setting
because of the extremely dynamic nature of JavaScript. At any
time, additional code can be downloaded or dynamically generated
using eval, which executes an arbitrary string as code. One option
is to resort to fully dynamic enforcement of the flow policies. A
second option is to re-analyze the entire application every time a
new piece of code is loaded or evaled. However, both of these
options incur a significant runtime overhead, which may make
certain applications unusable.

2.2 Staged Information Flow
Instead, our approach is to stage the analysis by pre-analyzing the
code from the context using the given policy, in order to compute a
residual policy, which captures the requirements that the hole must
satisfy in order for the entire program to satisfy the flow policy. If
the hole is filled with dynamically loaded code that contains more
holes, then the staging framework recursively checks the residual
policy on the inner holes, and so on.
Stage 1: Computing Residual Policy. Let us see how, for the
example from Figure 2, the context’s code can be used to re-
duce the flow policy that no variable from the hole should flow
into the first parameter of post, into a residual policy that must
be satisfied by the code loaded from adserver.com. To do so
we use a static constraint-based analysis to compute the set of
values that can flow into all known variables that are in the
same scope as the hole and that can affect the first parameter of
post. These include document.settings.baseUrl, the s param-
eter of document.settings.setBaseUrl, and the s parameter of
initSettings. Thus, the residual policy states that no variable
declared in the hole should flow into any of the above variables (in
addition to the first formal of post).
Stage 2: Checking Residual Policy. Once the code is loaded from
adserver.com we can rapidly check it against the residual policy.
The code from Figure 3 violates the residual policy as z1, declared
in the hole, is passed in as the first parameter for initSettings.
Dually, if the code satisfies the residual policy (i.e., if variables
declared in the hole do not flow into variables known to affect the
first parameter of post), then we are guaranteed that the original
information policy holds over the complete system. For example,
suppose that the code that gets loaded for the hole is that shown in
Figure 4. In this case, the hole does not violate the residual policy
as it only reads fields of the document.navigator object, and
hence, we are guaranteed that the page is safe with respect to the
given policy. Thus, the residual policy allows us to quickly check
the hole when it is dynamically filled with code, without the check
being slowed by tracking flows that occur within the context.

Our staged information flow framework can be used to split the
analysis burden across client and server. Along with the develop-
ment of a JavaScript application, the developer will specify the set

of information flow policies that should be enforced on the page.
During the testing cycle, various configurations and controlled li-
braries can be tested against the policy. The remaining residual
checks can then be sent to the client along with the page, and a
modified browser can perform the remaining stages of the analy-
sis, halting execution if the policy is ever violated. We assume that
the residual policies are not tampered with either when transmitted
over the network or within the client browser.

In this setting, residual checks are performed by the client
browser, which means that their efficiency directly affects the
browsing experience. Consequently, to make residual checks as fast
and simple as possible, we have designed our staging framework so
that all residual checks are entirely syntactic, eliminating the need
to do full-scale information flow on the client side.

2.3 Challenges of Analyzing JavaScript
JavaScript poses several challenges in addition to dynamic code
loading and generation.
Functions. First, functions are objects, and hence first-class values
that can be bound to other variables and passed around as param-
eters. For example, all the functions and methods in Figure 2 are
created as anonymous function objects that are bound to the vari-
ables whose names are subsequently used to invoke the functions.
Further, JavaScript programs make heavy use of first-class func-
tions for several reasons, including to attach listeners to events, and
to allow different versions of the same function to be defined based
on run time properties, as shown in the case of the displayAd
function in Figure 4. Thus, any analysis for JavaScript must be
able to handle function values – which rules out the use of the
standard summary-based interprocedural analyses that are used for
first-order languages.
Fields. Second, most variables refer to objects that contain fields.
Unlike statically typed languages like Java, it is difficult to deter-
mine which fields an object has because there are no classes, and
fields can be dynamically added to objects. In essence, objects cor-
respond to dictionaries and fields are simply used as names to look
up in the dictionary. For instance, in our example, in order to be suf-
ficiently precise, the analysis must be able to distinguish between
the different fields of the document object. Thus, any analysis for
JavaScript must be field-sensitive, and not lump together values
flowing into different fields of an object. However, the sensitivity
must be achieved efficiently as each object can have many fields,
thereby making a naı̈ve analysis impossible to scale.
Prototypes. Third, JavaScript eschews classes in favor of a form of
inheritance called prototyping. In essence, each function Foo can be
used as a constructor to create objects: the expression new Foo(. . .)
creates an object and calls the function Foo to initialize the object.
This way of constructing objects also creates an implicit inheritance
chain through the use of a special field called proto. In particular,
each function Foo has a corresponding prototype object that is
implicitly constructed and stored in the field Foo.proto – recall
that functions are objects and can therefore have fields.1 When a
new object o is constructed with the expression new Foo(. . .), the
new object implicitly inherits all the attributes of the proto field of
Foo (that is, the new object essentially inherits from Foo.proto).
This means that on each field read o.f, if f is not a field of o,
then the prototype of the function that created o (in this case, Foo’s
prototype) is used to lookup field f. Since Foo’s prototype is itself
an object, it may also have been created using a function that had
a prototype field. Thus, JavaScript transitively follows the chain of

1 We use proto throughout as shorthand for prototype, which is the
actual field name used in JavaScript. Also, each prototype object has a
constructor field that holds the function value itself. Although we model
this in our implementation, we omit the details for clarity of exposition.

e ::= Expressions:
| c constant
| x variable
| x.f field-read
| e1 op e2 bin-op
| {. . . , f :e, . . .}i object literal
| this this
| funi(thisi, pi){ s } fun-def
| f(e) fun-call
| y.f(e) method-call
| newi f(e) constructor-call

s ::= Statements:
| skip skip
| var x var-def
| x := e assign
| x.f := e field-assign
| s1;s2 sequence
| ifi x then s1 else s2 branch
| whilei x do s while
| return e return
| evali(x) eval

P ::= 2(X×•)∪(•×X) Policies

RP ::= 2X × 2X Res. Policies

Figure 5. Syntax

proto fields until the field being looked up is resolved, or until
the root of the chain is reached without finding the field. Because
the proto field can be read and written at any time, just like any
other field, a JavaScript analysis must carefully track the prototype
objects corresponding to each constructor function, and must track
for each object, the attributes that the object implicitly inherits via
the prototype chain.

3. Framework
We now describe our framework by formalizing the language, the
notions of flow and residual policies, and finally describing how we
stage the information flow analysis.

3.1 Core JavaScript
Figure 5 summarizes the syntax of Core JavaScript, which captures
the essence of JavaScript.
Expressions of Core JavaScript include: basic constants c which
include integers, 0, 1, . . ., strings, etc.; variable reads x; field reads
x.f, where f is a field name; binary operations e1 op e2, where
op includes primitive operations like addition, string concatena-
tion etc.; function declarations, where each function is labeled by
a unique identifier i, and has two formal parameters thisi and pi;
function, method, and constructor calls, where exactly one param-
eter is passed to the callee; objects, which are a sequence of field-
expression bindings; and the this expression.
Statements of Core JavaScript include: variable declarations, vari-
able and field assignments, statement sequencing, branching and
while-loops, and return statements. To model dynamic code load-
ing, we include an eval statement. A statement is open if it con-
tains an eval site, and closed otherwise.
Conventions. We assume, without loss of generality, that the pro-
gram satisfies certain syntactically enforceable conventions. First,
we assume that all functions are declared anonymously, and that
each declaration has a unique label i. Further, each function has
exactly two parameters. The first parameter thisi corresponds to

the object that will be referred to as this inside the body of the
function. We use thisi to model JavaScript’s semantics for this.
The second parameter pi corresponds to the argument passed to the
function. When a function is called directly as f(e), the this vari-
able is set to the global object, and the value that e evaluates to is
passed in as the second parameter. When a function is called indi-
rectly as a method call x.f(e), the object x is passed in as the first
parameter, and the value that e evaluates to is passed as the second
parameter. Second, we assume that each eval statement is uniquely
labeled. Further, we assume that each branch and loop is uniquely
labeled – we will use these labels to compute indirect flows, which
are the flows that occur from the branch value to locations being
assigned in the branch. Third, we assume that each variable is de-
clared, and that all variables are renamed so that local variables in
different scopes have unique names. Fourth, rather than explicitly
modeling the webpage (i.e., encoding the DOM), we assume that
there is an object document in the global namespace that can be
accessed and manipulated via the appropriate fields and methods.

Dynamic Semantics. The dynamic semantics of Core JavaScript
are standard – we refer the reader to [31, 36, 6, 17] for a detailed
formalization via small-step operational semantics.

3.2 Information Flow Policies
Our information flow policies are expressed as sets of pairs, where
each pair represents a must-not-flow requirement. In its most gen-
eral form, such policies would include pairs where each element is
either a variable or the label of an eval site. Although our unstaged
information flow analysis will handle such general flow policies,
these policies make residual checks difficult to perform syntacti-
cally, and require sending a large amount of state across stages.
Consider for example a policy stating that a variable x should not
flow to another variable y, and a context containing a single as-
signment b = a. If the hole executes a = x and b = y, then the
flow policy is violated. Since the hole can add flow between any
variables a and b that it chooses, in the most general case the first
stage must send to the second stage all possible flows of variables
in the context. This would require sending a large amount of data
to the second stage, and would also require performing a full flow
analysis in the client browser.

Thus, to make our policies more amenable to syntactic residual
checks, we restrict ourselves to confidentiality and integrity poli-
cies: confidentiality policies state that sensitive information should
not be leaked, whereas integrity policies state that the attacker can-
not compromise sensitive information. As a result, these policies
include pairs where one element of the pair is a variable and the
other is a hole, which would not allow the problematic policy (x, y)
to be expressed.

Even with this restriction, policies that grant one hole access to
a sensitive variable but not another pose problems for staging. In
particular, consider the case where the client receives a hole that
is allowed to access the sensitive variable. This hole may induce
flow that must be taken into account in the residual checks for
the remaining holes that cannot access the variable. To update the
residual policy would again require a complex computation on the
client. As a result, instead of allowing must-not-flow pairs to be
specific to particular holes, we require that if the policy restricts
access to one hole, it restricts access to all holes.

Policies. Formally, we define a must-not-flow policy as a pair of the
form (x, •), which states the confidentiality policy that the value of
the variable x must not flow to any variable within a hole, or (•, x),
which states the integrity policy that values from variables within
a hole must not flow into x. A policy P is a set of must-not-flow
policies. A residual policy RP is a pair of two sets of variables or
fields MNR and MNW called the a must not read set and must not

SIF(P, s) =
RP ← Stage(P, s)
c← Initialize(s)
do

(s, c)← Execute(c)
while (c 6= EXIT and Check(RP , s) 6= ERR)
if c = EXIT then return SAFE else return ERR

Figure 6. Staged Information Flow Framework

write set respectively. Intuitively, the code loaded at any hole must
not read (resp. write) any variable or field in MNR (resp. MNW).

Even though policies are restricted to variables, notice that we
can stipulate a policy like (x.f, •) (resp. (•, y.g)) by (a) creating a
new variable x′ (resp. y′), (b) adding a new assignment x′ := x.f
(resp. y.g := y′) and, (c) specifying a policy (x′, •) (resp. (•, y′)).
Similarly, to prevent flows from constants we assume that dynami-
cally loaded code is rewritten so that all constants that appear in the
hole are bound to new variables declared within the hole.
Flows. Informally, we say that a variable x flows into y if the value
of y can be affected by the value of x, either directly, via a sequence
of assignments, or indirectly, due to conditional dependences. To
formalize when a flow policy P is violated by a program s we
rewrite the program to Rewrite(P, s), which is an instrumented
version of s that: (1) has auxiliary taint fields that track flows,
and (2) calls a special Core JavaScript function flowDetected()
as soon as a flow is detected during execution from x to a hole,
for some (x, •) ∈ P or from a hole to x, for some (•, x) ∈
P . Figure 7 formalizes the most important cases of the rewriting
function Rewrite. Notice that the rewriting function is recursively
invoked every time an eval is executed.
Flow Policy Satisfaction. We say that a program s violates a
policy P if there is an execution of Rewrite(P, s) along which
the function flowDetected() is called. Otherwise, we say that s
satisfies the policy P .

3.3 Staged Policy Verification

Procedure SIF. Figure 6 formalizes our Staged Information Flow
framework as a procedure SIF that takes as input a policy P and an
open Core JavaScript program s and returns either SAFE indicating
that the policy P was satisfied or ERR indicating that the policy
was violated. At a high level, our framework stages information
flow checking as follows. First, the framework calls Stage with
the top-level policy P and the context s, i.e., the known part of
the program, to compute the flows that occur in the context. Stage
uses the computed flows and the (top-level) policy to pre-compute
and return a residual policy RP that is a projection of the (top-
level) policy to the eval sites. Second, the framework initializes the
variable c with a snapshot of the entire initial state of the executing
program. Third, the framework enters a loop where it invokes
Execute on the snapshot c to run the program until it reaches the
next eval site, or terminates. In the former case, Execute returns
a pair (s, c) where s is the code to be loaded at the next site, and c
is the current snapshot of the program. In the latter case, Execute
returns a triple where c is simply EXIT, indicating the program has
terminated. The loop is repeated until the program terminates or
Check determines that the loaded code s violates the residual policy
RP . After breaking out of the loop, we check if we exited because
the program terminated or, because of some call to Check, returned
ERR. In the former case SIF returns SAFE, and in the latter ERR.
Procedures Stage and Check. The framework is parameterized by
two procedures Stage and Check. Stage takes as input a policy P
and a statement s corresponding to a context, and returns a residual

policy RP corresponding to the projection of P to the eval sites
in s. Check takes as input a residual policy RP and a statement
s corresponding to code loaded in at a hole, and returns ERR or
SAFE.

Soundness. For two programs s, s′ and hole label i, let s[i 7→ s′]
be the closed program obtained by replacing the eval site i in s
with s′ and all other eval sites with skip. To ensure soundness, the
procedures Stage and Check must meet the following requirements
which state that the procedures must overapproximate the flows
that occur in concrete executions.

∀P, s, i, s′. if s[i 7→ s′] violates P

then Check(Stage(P, s), s′) = ERR

∀P, s, i, s′. if Check(Stage(P, s), s′) = SAFE

then Stage(P, s) = Stage(P, s[i 7→ s′])

We can show that if Check and Stage meet the above cri-
teria, then for all policies P and programs s, if P is vio-
lated by s then SIF(P, s) returns ERR. A sketch of the proof
is as follows: assume that P is violated at some point dur-
ing the execution of s, and suppose that at the point of fail-
ure, sites i1 through ik in s had been loaded with s1 through
sk. Thus, we know that s[i1 7→ s1, · · · , ik 7→ sk] violates the
policy, and then by the first property above, we know that
Check(Stage(P, s[i1 7→ s1, · · · , ik−1 7→ sk−1]), sk) = ERR.
Then, using k − 2 applications of the second property above,
we can show that Stage(P, s[i1 7→ s1, · · · , ik−1 7→ sk−1]) =
Stage(P, s), and therefore Check(Stage(P, s), sk) = ERR, which
means that SIF(P, s) would return ERR when it performs the resid-
ual check on sk.

The second condition above enables our framework to compute
the flows and residual policies once, without having to recompute
them each time that a hole is filled. In essence, the conditions on
Stage and Check ensure that the dynamically loaded code does not
induce any new flows for the variables described in the top-level
policy P . If any new flows would be induced by the hole, then
Check would return ERR and execution would be halted.

4. Static Instantiation
We now describe how we have instantiated our framework by
presenting our implementations of Stage and Check. Stage takes a
policy P and program s and returns the residual policy for the eval
sites in s. Check takes a residual policy RP comprising a must-not-
read and must-not-write set, and a statement corresponding to code
to be loaded at a hole, and verifies that the statement satisfies the
residual policy, by verifying that the statement does not read (resp.
write) the variables or fields listed in the must not read (resp. must
not write) sets.

Next, we describe our flow-insensitive, field-sensitive, set-
constraint based instantiation of the procedure Stage. First, we
present the different elements constituting the constraints, con-
stants, constructors, and terms. Second, we describe our syntax-
directed constraint generation procedure. Third, we discuss some
optimizations required to analyze JavaScript with sufficient preci-
sion. Fourth, we show how Stage combines policies and constraints
to compute residual policies.

Set Constraints. A term is either a constraint variable X, a con-
stant, or a constructed term C(t1, . . . , tn), where C is a constructor
of arity n and t1, . . . , tn are terms. A set constraint is a constraint
of the form t1 ⊆ t2, where t1 and t2 are terms. A satisfying solu-
tion for a finite set of constraints maps each constraint variable to a
set of constants and constructed terms, such that all of the inclusion
constraints are satisfied. For details, we refer the reader to [20]. For

SRC(P, z) = DST(P, z) =
if (z, •) ∈ P or if ∃a s.t. a ∈ z.taint and

z is a hole var [((a, •) ∈ P and z is a hole var) or
then [z] else [] ((•, z) ∈ P and a is a hole var)]

then flowDetected()

Rewrite(P, c) = {data :c, taint :I}
Rewrite(P, var x) = var x

Rewrite(P, return x) = return x

Rewrite(P, x) =
{data :x.data,
taint :I + x.taint + SRC(P, x)}

Rewrite(P, x.f) =
{data :x.data.f.data,
taint :I + x.data.f.taint}

Rewrite(P, x op y) =
{data :x.data op y.data,
taint :I + x.taint + y.taint}

Rewrite(P, fun(this, p){ s }) =
{data :fun(this, x, I)Rewrite(P, s),
taint :I}

Rewrite(P, {f1 :x1, . . .}) =
{data :{f1 :{data :x1.data, taint :I + x1.taint}, . . .},
taint :I}

Rewrite(P, x := e) =
var tmp := Rewrite(P, e);
x.data := tmp.data;
x.taint := tmp.taint;
DST(P, x)

Rewrite(P, x.f := e) =
var tmp := Rewrite(P, e);
x.data.f.data := tmp.data;
x.data.f.taint := tmp.taint

Rewrite(P, x := f(z)) =
var tmp := f.data;
x := tmp(this, z, I + f.taint);
DST(P, x)

Rewrite(P, x := y.f(z)) =
x := y.data.f.data(y, z, I + y.data.f.taint);
DST(P, x)

Rewrite(P, s1;s2) =
Rewrite(P, s1);Rewrite(P, s2)

Rewrite(P, ifi x then s1 else s2) =
var tmp := I;
I := I + x.taint;
ifi x.data then Rewrite(P, s1) else Rewrite(P, s2);
I := tmp

Rewrite(P, whilex s do) =
var tmp := I;
I := I + x.taint;
whilex.data Rewrite(P, s) do ;
I := tmp

Rewrite(P, x := evali(y))
var tmp := evali(Rewrite(P, y.data));
x.data := tmp.data;
x.taint := I + tmp.taint + y.taint

Figure 7. Dynamic Information Flow Rewriting. We assume com-
plex expressions are bound to fresh temporary variables. The global
variable I, initially the empty set, stores the set of indirect taints.

two unary constructors C, D, we write the constraint t1 ⊆C,D t2 as
an abbreviation for the pair of constraints t1 ⊆ C(X), D(X) ⊆ t2,
where X is a fresh constraint variable that is distinct from all other
variables.

Statements
Gen(k,XI , skip) = ∅

Gen(k,XI , var x) =
{cx ⊆ Xx} ∪ {Ind(cx) ⊆ Xx}

Gen(k,XI , x := e) =
Gen(k,XI , e) ∪ {Xe ⊆ Xx} ∪ {XI ⊆ Xx}

Gen(k,XI , x.f := e) =
Gen(k,XI , e) ∪
{Xx ⊆ Real(Fldf(Xe, Ω))} ∪ {Xx ⊆ Real(Fldf(XI , Ω))}

Gen(k,XI , s1;s2) =
Gen(k,XI , s1) ∪ Gen(k,XI , s2)

Gen(k,XI , ifi x then s1 else s2) =
Gen(k,Xi, s1) ∪ Gen(k,Xi, s2) ∪
{XI ⊆ Xi} ∪ {Xx ⊆Ind,Ind Xi}

Gen(k,XI , whilei x do s) =
Gen(k,Xi, s) ∪ {XI ⊆ Xi} ∪ {Xx ⊆Ind,Ind Xi}

Gen(k,XI , return e) =
Gen(k,XI , e) ∪ {Xe ⊆ Xretk} ∪ {XI ⊆ Xretk}

Gen(k,XI , evali(e)) = ∅

Expressions
Gen(k,XI , c as e) =
{c ⊆ Xe} ∪ {Ind(c) ⊆ Xe}

Gen(k,XI , x) = ∅

Gen(k,XI , x.f as e) =
{Xx ⊆ Real(Fldf(∅,Xe))} ∪ {Xx ⊆ Pro(Fldf(∅,Xe))}

Gen(k,XI , e1 op e2 as e) =
Gen(k,XI , e1) ∪ Gen(k,XI , e2) ∪
{Xe1 ⊆ Xe} ∪ {Xe2 ⊆ Xe}

Gen(k,XI , {. . . , fj :ej , . . .}i as e) =
(∪jGen(k,XI , ej)) ∪ {Xi ⊆ Xe} ∪
(∪j{Xej ⊆ Xi.fj}) ∪ (∪j{XI ⊆ Xi.fj}) ∪
(∪j{Real(Fldfj (Xi.fj ,Xi.fj)) ⊆ Xi})

Gen(k,XI , this as e) = {thisk ⊆ Xe}
Gen(k,XI , funi(thisi, pi){ s } as e) =

Gen(i,Xindi , s) ∪ {XI ⊆ Xindi} ∪ {Xi ⊆ Xe} ∪
{Fun(Xconsi ,Xthisi ,Xpi ,Xindi ,Xreti) ⊆ Xi} ∪
(∪j{Real(Fldfj (Xprotoi.fj ,Xprotoi.fj)) ⊆ Xprotoi

}) ∪
{Real(Fldproto(Xprotoi

,Xprotoi
)) ⊆ Xi} ∪

{Xconsi ⊆ Real(Fldproto(Xprotoi
, Ω))}

Gen(k,XI , f(e′) as e) =
Gen(k,XI , e′) ∪ {Xf ⊆ Fun(∅,Xog ,Xe′ ,XI ,Xe)}

Gen(k,XI , x.f(e′) as e) =
Gen(k,XI , e′) ∪
{Xx ⊆ Real(Fldf(∅, Fun(∅,Xx,Xe′ ,XI ,Xe)))} ∪
{Xx ⊆ Pro(Fldf(∅, Fun(∅,Xx,Xe′ ,XI ,Xe)))}

Gen(k,XI , newi f(e′) as e) =
Gen(k,XI , e′) ∪ {Xi ⊆ Xe} ∪
(∪j{Real(Fldfj (Xi.fj ,Xi.fj)) ⊆ Xi}) ∪
{Xf ⊆ Fun(Xi,Xi,Xe′ ,XI , Ω)} ∪
{Xi.proto ⊆Real,Pro Xi} ∪ {Xi.proto ⊆Pro,Pro Xi}

Figure 8. Constraint generation

4.1 Constraint Elements
We set up a system of constraints over variables Xe for each sub-
expression e of the program. The constraints use several kinds of
constructors to model various aspects of JavaScript code. The first
two constructors are standard ways of encoding functions and fields
using set constraints [12]. The last three are novel mechanisms re-
quired to capture information flow and the semantics of JavaScript:
they are used to distinguish between fields that are directly con-
tained in an object, fields that are reachable by transitively follow-
ing a prototype chain, values that directly reach a particular point,
and values that indirectly reach a particular point.

1. Function Constructor. JavaScript programs have first class
functions in that functions can be created and passed around like
any other value. We model the flow of function values via a con-
structor Fun() of arity 5. The first argument corresponds to the
objects constructed by the function object, a special feature of
JavaScript that we will describe in the sequel. This argument is
treated as contravariant. The second argument corresponds to the
function’s implicit parameter this. As the argument corresponds
to an input of the function, it is treated as contravariant. The third
argument corresponds to the explicit formal parameter of the func-
tion. As this argument also corresponds to an input of the function,
it is treated as contravariant. The fourth argument corresponds to
an implicit parameter that holds the values corresponding to indi-
rect flows into the points where the function is invoked. This pa-
rameter is used as the initial set of indirect flows into the body of
the function, and as it corresponds to an input, the argument is also
treated is contravariant. The fifth argument corresponds to the re-
turn value, and hence the argument is covariant.

2. Field Constructors. JavaScript programs make heavy use of
fields and any precise analysis must track flows in a field-sensitive
manner. The classical way to model fields is to view them as a pair
of functions: a setter that updates the contents of the field, and a
getter the returns the contents of the field. Following this intuition,
we encode a field f via a a constructor Fldf() of arity 2. The first
parameter corresponds to the set of values written into the field,
i.e., the inputs to the setter, and hence, is treated as contravariant.
The second parameter corresponds to the set of values read from
the field, i.e., the outputs of the getter, and hence, is treated as
covariant. When initializing an object’s fields, we use the same set
variable in both places so that all arguments that flows into the first
argument flow out of the second argument. When writing a field,
we pad the second argument with the set variable Ω, which collects
everything that flows from the field by covariance. When reading
a field, we pad the first argument with the set variable ∅, so that
nothing flows into the field by contravariance.

3. Real and Prototype Flow Constructors. In order to determine
what a field read returns in the presence of prototyping, we must
track, for each object, the values for all fields that can be read
directly from the object or transitively via following its prototype
chain. To distinguish between the fields of an object and the fields
reachable via the prototype chain of an object, we use a special
constructor Real() of arity 1 to wrap the fields that an object
directly contains, and a special constructor Pro() of arity 1 to wrap
the fields that are transitively reachable by following the object’s
prototype chain.

In general, if c can be reached by following the prototype chain
of an expression e, then our constraints will ensure that Pro(c)
flows into Xe. For example, x.f can return the constant c if the
object has a field f that has the value c, or if an object in its
prototype chain has a field f that has the value c. In the former
case, our constraints ensure that the term Real(Fldf(c, c)) flows
into Xx. In the latter case, our constraints ensure that the term
Pro(Fldf(c, c)) flows into Xx.

4. Indirect Flow Constructor. When tracking information flow,
we must track both direct value flows, as well as indirect flows
that arise when assignments take place under particular branch
conditions. However, due to the presence of higher-order functions
and dynamic dispatch, we must take care to separate direct flows
(which affect which functions get executed at a different program
points), from indirect flows (which have no effect on the execution).
To achieve this separation, we use a covariant constructor Ind() of
arity 1 to wrap constants and convert them into ground terms that
participate in indirect flows.

In general, if a constant c directly flows into an expression e,
then the constraints ensure that the term c flows into Xe. If the
constant c indirectly flows into an expression e, however, then our
constraints ensure that Ind(c) flows into Xe. For example, if c
indirectly flows into the expression x.f, then our constraints will
ensure that the term Real(Fldf(Ind(c), Ind(c))) flows into Xx.

4.2 Constraint Generation
Figure 8 shows the constraint generation procedure Gen. The pro-
cedure takes as input a label k corresponding to the identifier of the
function currently being analyzed, a constraint variable XI repre-
senting the indirect flows into the program location being analyzed,
and either e or s, respectively the expression or statement being
analyzed, and it returns as output a set of inclusion constraints.
Gen traverses the AST of the program and generates constraints
between variables of the form Xe for each subexpression e, that
capture the set of values that flow directly or indirectly into e. We
maintain the invariants that: (1) only values wrapped with the Ind()
constructor flow into the indirect flow variables XI , (2) for every
value that directly flows into e, there is a corresponding term that
flows into Xe, and, (3) for every value that is reachable from e after
transitively following the prototype chain rooted at e, there is a cor-
responding term wrapped under Pro() that flows to Xe. Next, we
discuss how constraints are generated for a representative subset of
expressions and statements.
Assignments. For each assignment x := e, we generate constraints
on the subexpression e, and then constraints that capture the direct
flow from e into x as well as the indirect flow from the current loca-
tion’s indirect flow variable into x. Notice that a return statement
is treated as an assignment to the return variable of the function to
which the statement belongs.
Branches. Each branch statement and loop is labeled with a unique
label i that can be generated with a syntactic pass over the source.
For each branch or loop labeled i, we create a new indirect flow
variable Xi. We flow the values in XI and the indirect values from
the expression used in the branch condition into Xi, and then use
Xi as the indirect flow variable when generating the constraints for
the statements that depend on the branch. To preserve the invariant
that indirect flows are wrapped under the Ind() constructor (and
hence, not used to affect computation), we filter flows to wrapped
terms, using Xx ⊆Ind,Ind Xi.
Object Literals. We use the set variable Xi.f to track the contents
of field f of object i. For every field fj , we flow the initial value
ej into the field with the constraint Xej ⊆ Xi.fj , and the current
indirect taint into the field with the constraint XI ⊆ Xi.fj . Finally,
we add the constraint Real(Fldfj (Xi.fj ,Xi.fj)) ⊆ Xi to treat fj

as a field that object i directly contains, where Xi.fj is used as both
the setter and getter for the field.
Fields. For each field x.f read in (resp. written in) an expres-
sion e, we create the appropriate flow constraint between Xx and
Fldf(∅,Xe) (resp. Fldf(Xe, Ω)), which by virtue of the construc-
tor matching and variance, has the effect of flowing the values from
(resp. into) the f field of x into (resp. from) Xe. We must account
for prototype chains when reading and writing to fields. For field

reads from x.f, the result can flow from either the object x (if it has
a field f), or from some object in its prototype chain with a fields
f. To model these semantics, the values returned from reads are the
values from objects that directly flow into x (i.e., Real()-wrapped
terms that flow into Xx) as well as objects that flow into x after
following the prototype chain (i.e., Pro()-wrapped terms that flow
intoXx). For fields writes to x.f, only the actual object itself may be
updated (as opposed to some object along the prototype chain). To
model these semantics, we only carry out the assignment on those
objects that directly reach x, i.e., are wrapped under Real().

Function Definitions. Each anonymous function declaration is la-
beled with a unique label i. For each function i, we create a term
Fun(Xconsi ,Xthisi ,Xpi ,Xindi ,Xreti) corresponding to the func-
tion’s value, and create the appropriate constraints from the con-
straint variables representing the “inputs” Xthisi , Xpi , and Xindi

into the body of the function, and from the return statement of the
function to Xreti . The contravariant argument consi in the first po-
sition of the function term corresponds to the objects constructed by
the function. The last three constraints deal with prototypes. First,
we create a fresh prototype object, namely Xprotoi

, and set up its
fields in the same way we do for object literals. Second, we add the
constraint Real(Fldproto(Xprotoi

,Xprotoi
)) ⊆ Xi that stores the

prototype object in the proto field of the function object. Third,
we add the constraint Xconsi ⊆ Real(Fldproto(Xprotoi

, Ω)), which
has the effect of writing the prototype object into the proto field
of any objects that flow to consi.

Function Calls. For each function call, we generate a constraint
that uses constructor matching to pull out the set of actual functions
reaching the callsite, and uses variance to flow the actuals (both
explicit, and implicit due to indirect flow) into the formals, and the
return out to the callsite respectively [11]. The values flowed in
for the cons and this parameter differ depending on the the three
kinds of function calls.

• For direct calls of the form f(e′), we use ∅ for the constructed
object and the flow variable corresponding to the global object
og for the this parameter.

• For method calls of the form x.f(e′), we use constructor match-
ing in a manner similar to field-reads, to pull out the appropriate
functions that flow to the callsite, and we use the receiver object
x as the this parameter.

• For constructor calls of the form newi f(e′), which create a
fresh object and call f with this bound to the fresh object,
we introduce a new variable Xi that represents the objects cre-
ated at the callsite and set up its fields as we do for object lit-
erals. Next, we use constructor matching to pull out the func-
tions that flow to the callsite, and (via contravariance), flow Xi

into the constructed object parameter and this parameters of
the callees. Finally, the last two constraints “flatten” the con-
structed object’s prototype chain. Intuitively, the constraints add
all fields of an object’s prototype chain into the object directly,
while at the same time keeping track of which fields actually
belong to the object and which do not. To achieve this, we take
each object that flows into the prototype field of the constructed
object (Xi.proto) either directly (i.e., wrapped under Real()) or
via prototype-chains (i.e., wrapped under Pro()), and rewrap
those objects under Pro() and flow them into the constructed
object Xi.

4.3 Analyzing Real JavaScript

Multi-parameter Functions. Functions in JavaScript can be in-
voked with any number of arguments, regardless of how many pa-
rameters the function is defined to accept; missing arguments are

set to undefined and additional arguments are ignored.2 To model
this in the implementation, we define a common set constructor
Funn() that, in addition to cons, this, return, and taint parame-
ters, takes n arguments, where n is the maximum number of ar-
guments across all function definitions and applications in the pro-
gram. When a definition or call in the program uses fewer than n
arguments, we pad the remaining arguments with fresh constraint
variables. We omit these details from the presentation since they
are straightforward.
Iterative Field-Sensitivity. Due to the flexibility of JavaScript
objects, we must assume that every object can have a binding for
every possible static field. However, this naı̈ve approach does not
scale, as the product of object count and field count is often very
large. Instead, we perform an iterative field-sensitive analysis that
tracks fields on a per-object basis as needed. For each object, we
begin by tracking only the fields that we are certain will exist based
on the object definition. After solving the set constraints under
these assumptions, we check whether any objects flow into accesses
of fields that were not being tracked. We add constructed terms
for missing fields as appropriate, and incrementally solve for the
constraints again.
Current Limitations. Tracking reads and writes of dynamic fields,
i.e., array or dictionary lookups, is significantly harder than track-
ing statically known field names. Modeling these accesses with a
Fld> set constructor, where > represents unknown fields, makes
the analysis unscalable, due to large numbers of accesses through
integer fields (for array objects) and complex string expressions that
compute precise names of HTML elements on the page. For the
purposes of our analysis, we make the dynamically checkable as-
sumption that dynamically created field names, i.e., dynamically
created array or hash table indices, do not clash with statically
known field names.

Our current implementation also does not support several other
features of JavaScript, but these can be directly captured within
our constraint-based SIF framework. These include the with state-
ment, which allows its body to be evaluated with a given object’s
fields temporarily brought into scope, and call and apply forms
that allow the programmer to explicitly set the this parameter of a
function call, which can be used to implement closure-based inher-
itance.

4.4 Residual Policy Generation
We now describe how we use our constraint-based flow analysis to
compute residual policies for holes. Recall that the residual policy
comprises a set of must-not read MNR and must-not write MNW
variables and fields. Thus, at a high level, for confidentiality (resp.
integrity) policies, our goal is to find variables to which (resp. from
which) the sensitive information may flow, and then prohibit the
client from reading (resp. writing) those variables.

However, it turns out that several subtleties arise due to the com-
bination of higher-order functions, aliasing and the requirement
that residual policy checking be efficient. We illustrate these issues
using examples that motivate our algorithm for generating residual
policies. For the following examples, suppose we wish to enforce
the confidentiality policy stating that the document’s cookie should
not flow into a hole.
Functions. Intuitively, the residual policy needs to prevent the hole
from reading any variable in the context that is tainted by the
cookie. However, the residual policy must also prevent the hole
from writing certain variables. To illustrate, consider the following
context:

2 Whenever a function is called in JavaScript, the list of actuals provided
is bound to a special variable called arguments available within the body.
We model this behavior in our implementation.

f = function(x) { ... }
f(document.cookie);

That is, the context contains a function f that is called with the
cookie as a parameter. Next, suppose that a hole is filled with:

f = function(x) { post(x); }

That is, the hole redefines the function f with another function that
broadcasts the argument x. If this code is dynamically loaded, it can
overwrite the original “trusted” function f, and a policy violation
will occur if the new function is called from the context. If we could
re-analyze the entire source of the context and the hole at the client,
then we would deduce that the call in the context flows the cookie
into the formal x of the new function defined in the hole. However,
performing client-side flow analysis on the entire code each time a
hole is loaded would make residual policy checking prohibitively
inefficient. Instead, we observe that when a function’s arguments
receive confidential values, we can guarantee confidentiality by
ensuring the function itself is not overwritten by the hole. Thus,
even for confidentiality policies, certain variables, namely those
holding function values whose arguments have been tainted, should
not be written by the hole. Dually, for integrity policies, the residual
policy must also include both must-not-read and must-not-write
sets.
Aliasing. Consider a context that contains the following code snip-
pet, where tmp is not aliased to document:

z = tmp.cookie;

Hence, in the context, the value that flows into z is not sensitive.
Next, suppose that a hole is filled with

tmp = document;
...
post(z);

That is, the hole aliases tmp and document and as a result, the as-
signment in the context can flow the confidential cookie into the
variable z, thereby leaking the confidential information. Again, al-
though re-analyzing the entire source on the client would detect this
leak, it would be prohibitively expensive. One option is to treat the
object x as confidential if x.f is confidential. Thus, we could treat
document as confidential since document.cookie is confidential
and prohibit any hole from reading document. However, this is
far too restrictive as it is perfectly safe and common for the hole
to read document and its non-tainted fields. Instead, when gener-
ating a residual policy, we conservatively assume that once field
f of some object contains confidential information, then all fields
named f contain confidential information, no matter what object
they belong to. For our example, since document.cookie is con-
fidential, we assume that tmp.cookie is confidential, and hence z
is confidential, and so in the residual policy, we prevent the hole
from reading z. Similarly, in this example, we would also prevent
the hole from directly reading any field called cookie. Thus, we
can make the residual policy checking robust and efficient, even in
the presence of aliasing, by unifying the taint information of each
field f across all the objects that contain f, and preventing the hole
from accessing f.

We now describe our constraint-based algorithm that analyzes a
context in order to compute the MNR and MNW sets correspond-
ing to the residual policy. For clarity of exposition, we omit the
indirect, real, and prototype wrappers, and we only describe how
residual policies are generated for confidentiality policies – it is
straightforward to extend the method to integrity policies.
Taint Propagation. To compute the MNR and MNW sets, we
use two new covariant unary constructors NR() and NW(), which
correspond to not-read and not-write taints. We seed the analysis

by adding constraints that flow these new taint constructors into the
variables of the confidentiality policy. In particular:

for each (x, •) in the policy, NR(cx) ⊆ Xx

where cx is a special constant associated with x. We use unary con-
structors with these special constants as arguments so that we can
we can later define filter (i.e., ⊆A,B) constraints. In addition to
the basic flow constraints from Figure 8, which propagate these
taint seeds throughout the context code, we add new constraints
to account for the subtleties described above. In particular, to han-
dle higher-order functions, we contravariantly (resp. covariantly)
propagate the taints from the function arguments (resp. return val-
ues) to function definitions:

for each fun-def labeled i, Xpi ⊆NR,NW Xi

Xpi ⊆NW,NR Xi

Xreti ⊆NR,NR Xi

Xreti ⊆NW,NW Xi

where Xi, Xpi , and Xreti are the constraint variables representing
the flows into the function labeled i, its formal parameter, and its
return value respectively. Finally, to handle aliasing, we unify the
taints across all objects containing a field f by creating a special
variable Xf and generating the following constraints:

for each object labeled i, Xi.f ⊆NR,NR Xf

Xf ⊆NR,NR Xi.f

Xi.f ⊆NW,NW Xf

Xf ⊆NW,NW Xi.f

Residual Policy Generation. To compute the residual policy, we
solve the entire set of constraints, that is, the basic flow constraints
augmented with the constraints above. Intuitively, if a NR() (resp.
NW()) constructor flows into the constraint variable Xx corre-
sponding to the program variable x, then the variable is added to
the MNR (resp. MNW) set of the residual policy. Let S be the
constraint solution. We write S ` t X if the solution S maps
the constraint variable X to a set containing the term t. The must-
not-read and must-not-write sets of the residual policy are defined:

MNR
.
= { x | S ` NR(·) Xx } ∪ (Not-Read-Variables)
{ f | S ` NR(·) Xf } (Not-Read-Fields)

MNW
.
= { x | S ` NW(·) Xx } ∪ (Not-Write-Variables)
{ f | S ` NW(·) Xf } (Not-Write-Fields)

That is, a variable or field must not be read (resp. written) if the not-
read taint (resp. not-write taint) constructor flows to the constraint
variable corresponding to the variable or field.

Residual Policy Checking. To verify that a hole satisfies a residual
policy, we perform a syntactic check that none of the variables or
fields in MNR (resp. MNW) are read (resp. written) in the hole.

5. Evaluation
In this section, we describe experiments (Section 5.1) that validate
three hypotheses about our approach: our information flow analysis
using set constraints scales to real world JavaScript (Section 5.2);
our staged information flow approach creates residual checks that
are much smaller and faster than the full analysis, making them
practical for running on the client side (Section 5.3); and our in-
formation flow analysis is precise enough to track useful properties
(Section 5.4).

5.1 Experiments
We have implemented a static, constraint-based instantiation of the
SIF framework for JavaScript. Our analysis is currently a stan-
dalone tool, not yet integrated within a browser. As a result, we
do not have automatic support for staging when a script is loaded
dynamically. Instead, for the purposes of evaluation, we have im-
plemented a Firefox browser extension that intercepts all dynamic
code loading calls, and inlines the new code in the surrounding
context. The subsequent static analysis proceeds as if the dynamic
content had been there originally. Once our analysis engine is com-
bined with the browser, a dynamically loaded script will instead
trigger the staged analysis.

We use the JSure parser [3] as a front-end to parse JavaScript
source into OCaml abstract syntax trees, over which we generate
constraints. We use the Banshee [20] constraint solver to build and
solve constraints. The Firefox extension is written in approximately
500 lines of JavaScript, the Banshee bindings in 400 lines of C and
OCaml, and the staged information flow tool in about 6,000 lines
of OCaml.

Benchmarks, policies and holes. We used our Firefox extension
to collect the closed-program source for all the web sites from the
Alexa top 100 list [1]. Alexa is a company that tracks web page
traffic, and generates the lists of the most popular 100 web sites by
country and by language. We ran our staging engine on all 100 sites
in the top 100 English pages.

We checked two policies on each web site: (1) a confidentiality
policy stating that the cookie value should not flow into the hole,
and (2) an integrity policy stating that no values from the hole
should flow into the location bar. These policies are general enough
that they apply to any web site, making it easier to systematically
run on all the Alexa web sites.

For each web site, we systematically identified holes as any
scripts originating from a different domain than the site’s. Each
closed-program we collected is a snapshot of whatever JavaScript
executed on that particular run; subsequent visits to the same page
would likely contain different dynamic code to populate the hole.

For each benchmark, we first ran our information flow analysis
on the entire program. We then generated the residual policy for
the holes that we identified, and performed the residual checks on
the code in the hole. This simulated the situation where holes are
not available at the first stage, but are made available at the second
stage.

Summary of results. Of the 100 sites in the Alexa list, 97 had
JavaScript, 64 had holes in them, and of the ones with holes in
them, we were able to parse 63. Our full unstaged analysis suc-
cessfully completed on all 63, and our staged analysis successfully
completed on 62 of these. The one benchmark that our staged anal-
ysis failed on (by running out of memory while generating the
residual policy) is the largest benchmark in the Alexa top 100,
namely wsj with 43,698 lines of JavaScript (which is twice as large
as the next largest benchmark).

5.2 Performance of Unstaged Analysis
Figure 9 plots lines of code vs. running time of the unstaged
full analysis for the cookie confidentiality policy; the plot for the
integrity policy follows similar trends. Our data shows that, for
benchmarks up to 13,000 lines of code (which accounts for about
80% of the benchmarks) the running time does not grow very fast,
and stays under twelve seconds. Nevertheless, these times are too
slow to run on the client side each time that a new hole is filled.
Beyond 13,000 lines of code, even though the running time grows
much faster, our unstaged full analysis still scales to the largest of
JavaScript programs in the Alexa top 100 (76.0 seconds for 43,698
lines of JavaScript). Most of the benchmarks that take over a minute

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Figure 9. Analysis time (seconds) of unstaged analysis for cookie
policy vs. lines of code.

to analyze make heavy use of prototypes. This observation points
to an area of possible performance tuning for future work.

5.3 Performance and Benefits of Staging
Figure 10 shows some of the results from the 62 benchmarks on
which our staged analysis ran. The last line of the table, however,
averages over all benchmarks. The columns in the table are as
follows: “Site and rank” gives the name of the web site and its rank
in the top 100 list; “Total LOC” gives the number of lines of code on
the web site, including the hole, as formatted by our own JavaScript
pretty-printer; “Hole LOC” gives the number of lines of code in the
hole; “Full” gives the time it took to run our unstaged information
flow analysis on the entire JavaScript program; “GenRes” gives the
time it took our analysis to generate the residual checks for the
holes that we identified; “ChkRes” gives the time it took to perform
the residual checks on the code from the holes; “FF” states whether
or not the unstaged information flow analysis found any flow for the
given policy (X indicates flow, × indicates no-flow); “RF” states
whether or not the residual checks found any flow for the given
policy. All times are in seconds.

In general, the time for computing residual policies is on the
same order of magnitude as the time for running the unstaged full
analysis. Even though the residual policy generation uses more
kinds of constraints, it does not always take longer to solve, because
only the context is being analyzed, which is smaller than the entire
code that the unstaged analysis ran on.

Our data shows that all residual checks run under one second,
and most run under one tenth of a second. The residual checks are
performed in a single pass along with parsing, so in fact most of
the time for performing residual checks lies in the parsing, which
must be done anyway. Our current implementation uses a parser
generator that is not optimized for speed, which leaves room for
performance improvements.

As a result, residual checks would add only minimal overhead
to run in a client browser, especially if we further tune the perfor-
mance of our checker. Our data also shows that residual checks are
about two orders of magnitude faster than the full analysis, which
on average runs in 9.9 seconds, and thus would be too slow to run
in a client browser. These observations together point to the benefit
of staging: the full analysis would be too slow to run on the client
browser, but if the developer could run the first stage of the analy-
sis, then the remaining checks are fast enough to be run in the client
browser.

5.4 Precision
In order to assess the precision of our unstaged analysis, we ran-
domly sampled 17 of the benchmarks for the cookie-flow policy,

of which 5 reported that the cookie does not flow into a hole. A
manual inspection of these examples reveals that this is indeed the
case. By looking at the code of the remaining 12 benchmarks, we
determined that 8 of them contained holes that read, and even mod-
ified, the cookie. Many of these sites included scripts from popular
ad services, such as GoogleSyndication and QuantServe, and data
tracking services, like GoogleAnalytics. These services make use
of cookies as a persistent storage for statistics across multiple page
visits.

The reported flow on the remaining 4 benchmarks were false
positives in our unstaged analysis, which were all caused by the
lack of context-sensitivity. For example, if the cookie and an un-
related string both flow into the same function, and this function
flows its argument to its return value, then both strings will flow to
the returning call sites, smearing the actual flows. Techniques for
extending set constraint-based program analysis with context sen-
sitivity would help in this situation.

We evaluate the precision of our staged analysis by comparing
its results (“RF” column in Figure 10) with the unstaged version
(“FF” column). In general, the answer to whether the policy is
violated should be the same in both unstaged and staged modes,
and this is indeed the case for most of our benchmarks.

However, there are several benchmarks on which this is not the
case. For confidentiality policies, there are 4 benchmarks for which
the unstaged analysis finds no flow, but the staged one reports flow.
For integrity, there are 8 such benchmarks. In each of these cases,
the residual analysis reports a spurious flow because of how we
conservatively taint fields when generating residual policies.

As expected, there are no cases in which the unstaged analysis
reports flow but the staged analysis reports no flow.

6. Related Work

Static Information Flow. There is a rich literature on modeling se-
curity properties using information flow [15]. Many of these ideas
are manifested as static language-based techniques for ensuring
that the values of high security values do not flow into low secu-
rity outputs. These include type systems [33, 25], Hoare-logics [5],
and safety (model) checking [30]. Dually, there are techniques for
checking that low-security (i.e., tainted) values do not flow to safety
critical operations. These include the use of type qualifiers [28] and
dataflow analysis [21]. Unfortunately, these techniques work on
closed programs (or require summaries or stubs for missing code),
and further, often rely on underlying structure like types, and hence
cannot be applied directly to JavaScript.

Dynamic Information Flow. Several dynamic techniques for in-
formation flow control have been proposed at the language, operat-
ing system and architecture levels. The type system of [23] allows
the specification and dynamic enforcement of richer flow and ac-
cess control policies including the dynamic creation of principals
and declassification of high-security information. These ideas can-
not yet be applied in our setting as they require a closed system,
written in a statically typed language (Java), and further, annota-
tions must be provided to specify and verify the policies. There are
several projects that use dynamic tainting, either via binary rewrit-
ing [24], at the architecture level [29, 32], or using virtual machines
[8]. We leave the implementation of a dynamic instantiation of our
framework, possibly for enforcing the residual policy checks, as an
avenue for future work. However, we conjecture that dynamically
tracking flows is likely to incur a significant run time overhead, and
hence, is not a likely candidate for client-side deployment. Sev-
eral recent projects [9, 37] propose expressive OS mechanisms for
information flow control. Here the goal is to provide abstractions
that allow application developers to specify policies about where

Site and rank Total Hole Flow from cookie to hole? Flow from hole to location bar?
LOC LOC Full GenRes ChkRes FF RF Full GenRes ChkRes FF RF

3. myspace 22,469 3,484 77.4 27.4 0.52 X X 105.3 37.2 0.52 × ×
4. youtube 7,187 779 3.7 4.4 0.20 × × 3.6 4.8 0.18 × X

10. aol 4,714 255 2.1 2.9 0.06 X X 2.1 3.4 0.06 × ×
13. go 904 60 0.5 0.9 0.03 × × 0.5 0.9 0.03 × ×
15. cnn 15,445 3,472 71.4 18.0 0.52 X X 83.1 30.4 0.54 × X
16. espn.go 7,155 28 4.0 7.0 0.03 × × 4.0 8.2 0.03 × ×
18. flickr 747 713 0.3 0.1 0.12 × × 0.3 0.2 0.12 × ×
24. imdb 556 13 0.3 0.5 0.02 × × 0.3 0.6 0.02 × ×
28. weather 20,104 232 76.8 106.5 0.12 X X 72.5 200.6 0.09 X X
35. foxnews 13,589 70 14.7 30.7 0.10 X X 15.0 50.6 0.04 × ×
42. doubleclick 3,259 1,203 1.5 1.2 0.21 X X 1.4 1.4 0.21 × ×
43. bbc.co.uk 8,639 41 3.9 7.5 0.03 X X 3.9 8.6 0.02 × ×
44. walmart 13,174 101 7.0 22.0 0.09 X X 7.2 55.5 0.07 X X
46. rr 2,545 70 1.1 1.8 0.05 X X 1.1 3.3 0.03 × ×
47. target 10,532 61 4.0 7.0 0.04 X X 4.0 8.1 0.04 × ×
48. netflix 9,879 27 4.4 8.4 0.03 × × 4.5 9.8 0.02 × ×
49. nfl 10,485 170 8.4 16.8 0.03 × × 8.4 21.2 0.03 × ×
57. hulu 14,476 545 25.9 42.1 0.11 X X 28.2 131.4 0.12 × ×
58. verizon.net 3,456 167 1.5 2.1 0.05 X X 1.5 2.4 0.04 × ×
62. disney.go 3,383 6 1.9 3.3 0.03 × × 1.9 3.8 0.02 × ×
63. bestbuy 10,975 3,916 8.2 10.6 0.76 X X 8.7 290.0 0.80 × X
64. msn.foxsports 6,838 490 4.2 7.0 0.14 X X 4.2 16.1 0.18 × X
67. cnet 10,598 242 7.2 22.6 0.17 X X 7.3 29.2 0.06 × ×
71. linkedin 7,964 1,816 3.9 3.4 0.32 × × 3.9 3.6 0.29 X X
75. gamespot 13,041 1,491 11.8 23.6 0.32 X X 11.5 30.6 0.28 × ×
77. veoh 9,742 86 6.5 13.1 0.07 × X 6.6 32.6 0.04 × ×
79. latimes 8,225 55 6.8 9.9 0.04 X X 6.8 11.7 0.03 × X
80. nbc 7,644 74 5.8 8.5 0.04 × × 5.8 10.4 0.04 × ×
87. reuters 4,049 258 1.7 2.4 0.06 X X 1.7 2.6 0.06 × ×
88. imeem 12,050 194 4.6 7.9 0.04 × × 4.6 8.7 0.04 × ×
89. gamefaqs 365 77 0.2 0.3 0.03 × × 0.2 0.3 0.03 × ×
90. tinypic 6,658 64 3.9 6.0 0.03 × × 4.0 6.6 0.03 × ×
92. abcnews.go 14,330 246 9.9 18.0 0.07 × X 9.8 21.4 0.08 × X
99. dailymotion 11,709 379 10.9 19.3 0.08 × X 10.8 30.4 0.08 × ×

100. people 6,152 261 3.4 4.8 0.07 X X 3.4 6.8 0.06 × ×
Average 7,979 597 9.9 14.0 0.13 10.7 28.4 0.12

Figure 10. Sample results from Alexa web sites with holes. Average numbers are for all benchmarks (including those not in the table), and
times reported are in seconds.

data generated by the process should be allowed to flow. These ap-
proaches are too coarse-grained to be applicable to our setting.

Analyzing JavaScript. Several authors have studied the prob-
lem of analyzing JavaScript. Some of the idiosyncratic features of
JavaScript are described in [31], which also presents a type system
for statically checking JavaScript programs. Further, [6] describes
an algorithm for inferring types for JavaScript programs. However,
it is unclear whether JavaScript programs in the wild satisfy the
typing disciplines described in these works. Neither approach deals
with dynamically generated code, and hence cannot directly be ap-
plied to our setting. The interaction of JavaScript and web browsers
is studied in [36], which presents a formal semantics of the inter-
action, and uses it to describe a general framework for dynamically
verifying arbitrary safety properties inside the browser. Gatekeeper
[22] is a static analysis framework for JavaScript that focuses on
performing analysis in a single stage (e.g., on the server). In con-
trast, our primary focus is on developing residual checks that spec-
ify how dynamically loaded code should behave in order for the
system to satisfy high-level flow policies.

Web and Browser Security. Several recent projects have consid-
ered the problem of securing web applications via browser and lan-
guage mechanisms. Many vulnerabilities arise from not appropri-

ately sanitizing user generated content on the server side. Several
server-side tools apply static analysis to determine whether user
generated content has been properly vetted [19, 35, 34]. To en-
sure safety on the client side, one simple and elegant approach is
to only allow previously known and authorized scripts to run on a
web page [18]. Unfortunately, this makes it harder to use dynam-
ically generated third-party content, and hence is not applicable
in our setting. Finally, there have been several proposals for re-
designing the ecosystem within which web-applications are built
and deployed [4, 2, 7]. In essence these approaches advocate that
web-applications be built in higher-level languages like C], Java
and JIF respectively, thereby availing of the protection mechanisms
available in those languages. It remains to be seen whether web-
application developers are willing to trade the flexibility and rapid-
prototyping strengths of JavaScript for the security benefits offered
by strongly typed languages.

Set Constraint-based Program Analysis. Set constraints provide
an expressive framework within which many kinds of program
analyses including points-to analyses [14, 16], type qualifier in-
ference [13], race detection [26], and uncaught exceptions [10].
Our contribution is to show that this expressive framework is espe-
cially suited to capturing the complexities of JavaScript including

fields and higher-order functions, and that after using optimizations
like the optimistic field analysis the resulting analysis scales to the
JavaScript that powers most popular websites.

References
[1] English: Alexa top 100 sites, November 2008. http://www.alexa.

com/.

[2] Google web toolkit, November 2008. http://code.google.com/
webtoolkit/.

[3] Jsure, November 2008. http://www.jsure.org/.

[4] Volta, November 2008. http://live.labs.com/volta.

[5] T. Amtoft and A. Banerjee. Information flow analysis in logical form.
In SAS, pages 100–115, 2004.

[6] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type
inference for javascript. In ECOOP, pages 428–452, 2005.

[7] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng. Secure web application via automatic partitioning. In
SOSP, pages 31–44, 2007.

[8] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding data lifetime via whole system simulation. In USENIX
Security Symposium, pages 321–336, 2004.

[9] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and event
processes in the asbestos operating system. In SOSP. ACM, 2005.

[10] M. Fähndrich and A. Aiken. Program analysis using mixed term and
set constraints. In SAS, pages 114–126, 1997.

[11] M. Fähndrich, J. S. Foster, A. Aiken, and J. Cu. Tracking down
exceptions in standard ml programs. Technical report, EECS
Department, UC Berkeley, 1998.

[12] C. Flanagan and M. Felleisen. Componential set-based analysis.
ACM Trans. Program. Lang. Syst., 21(2):370–416, 1999.

[13] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers.
In PLDI. ACM, 1999.

[14] J. S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for c. In SAS, 2000.

[15] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[16] B. Hardekopf and C. Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In PLDI, 2007.

[17] D. Herman and C. Flanagan. Status report: specifying javascript with
ml. In ML, pages 47–52, 2007.

[18] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In WWW, 2007.

[19] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static analysis tool

for detecting web application vulnerabilities (short paper). In IEEE
Symposium on Security and Privacy, 2006.

[20] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based
analysis toolkit. In SAS, pages 218–234, 2005.

[21] M. S. Lam, M. Martin, V. B. Livshits, and J. Whaley. Securing web
applications with static and dynamic information flow tracking. In
PEPM, pages 3–12, 2008.

[22] B. Livshits and S. Guarnieri. Gatekeeper: Mostly static enforcement
of security and reliability policies for javascript code. Technical
Report MSR-TR-2009-16, Microsoft Research, Feb. 2009.

[23] A. C. Myers. Programming with explicit security policies. In ESOP,
pages 1–4, 2005.

[24] J. Newsome and D. X. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[25] F. Pottier and V. Simonet. Information flow inference for ml. In
POPL, pages 319–330, 2002.

[26] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: context-sensitive
correlation analysis for race detection. In PLDI. ACM, 2006.

[27] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser analysis of web-based
malware. In HotBots, 2007.

[28] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format
string vulnerabilities with type qualifiers. In USENIX Security, 2001.

[29] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS, 2004.

[30] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In SAS, pages 352–367, 2005.

[31] P. Thiemann. Towards a type system for analyzing javascript
programs. In ESOP, pages 408–422, 2005.

[32] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. A. Blome, G. Reis, M. Vachharajani, and D. I. August. Rifle: An
architectural framework for user-centric information-flow security. In
MICRO, 2004.

[33] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In
POPL, 2000.

[34] G. Wassermann and Z. Su. Static detection of cross-site scripting
vulnerabilities. In ICSE, pages 171–180, 2008.

[35] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In POPL, pages 351–363, 2005.

[36] D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript instrumenta-
tion for browser security. In POPL, pages 237–249, 2007.

[37] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing
distributed systems with information flow control. In NSDI, 2008.

http://www.alexa.com/
http://www.alexa.com/
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://www.jsure.org/
http://live.labs.com/volta

	Introduction
	Overview
	Safety via Information Flow
	Staged Information Flow
	Challenges of Analyzing JavaScript

	Framework
	Core JavaScript
	Information Flow Policies
	Staged Policy Verification

	Static Instantiation
	Constraint Elements
	Constraint Generation
	Analyzing Real JavaScript
	Residual Policy Generation

	Evaluation
	Experiments
	Performance of Unstaged Analysis
	Performance and Benefits of Staging
	Precision

	Related Work

