criterion performance measurements

overview

want to understand this report?

head/bad/noloc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.232328835871741e-8 3.26348191176203e-8 3.3056343648438915e-8
Standard deviation 9.851232637781709e-10 1.2046151317545238e-9 1.6738002778701571e-9

Outlying measurements have severe (0.586661655258986%) effect on estimated standard deviation.

head/bad/loc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.028625997066534e-8 8.089824238170393e-8 8.175212287066612e-8
Standard deviation 1.8013163906492962e-9 2.4358528351694863e-9 3.203719034162452e-9

Outlying measurements have moderate (0.4676092782872557%) effect on estimated standard deviation.

head/good/noloc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.756338159650434e-9 8.823872946075667e-9 8.93904621420681e-9
Standard deviation 1.9606351986036923e-10 2.8920588398128427e-10 4.881398246287841e-10

Outlying measurements have severe (0.5498630742794954%) effect on estimated standard deviation.

head/good/loc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.1945467992104107e-8 1.2029662877043155e-8 1.2139004864385782e-8
Standard deviation 2.499738669611164e-10 3.1700033486547307e-10 4.220823391230783e-10

Outlying measurements have moderate (0.43522112509760574%) effect on estimated standard deviation.

loop/bad/noloc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.2576845645516664e-8 3.278926887621527e-8 3.315706255158604e-8
Standard deviation 6.903481780642184e-10 9.649373920866892e-10 1.5402348731956818e-9

Outlying measurements have moderate (0.4722826264689864%) effect on estimated standard deviation.

loop/bad/loc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.0594265114282946e-7 1.0693468711711164e-7 1.0832143559281681e-7
Standard deviation 2.811974805114114e-9 3.815626083775801e-9 5.220951256571829e-9

Outlying measurements have severe (0.5453195721223985%) effect on estimated standard deviation.

loop/good/noloc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.0911581374270278e-8 1.104938984277707e-8 1.1256969959711376e-8
Standard deviation 4.162130038809786e-10 5.703698987181945e-10 8.208984493978659e-10

Outlying measurements have severe (0.7519237854876427%) effect on estimated standard deviation.

loop/good/loc

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.891941745379741e-8 3.931056346971441e-8 3.9724594818681977e-8
Standard deviation 1.0559014317884832e-9 1.3516622466682546e-9 1.7441358009852193e-9

Outlying measurements have severe (0.5495858306238336%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.