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Abstract—Parsers are ubiquitous, but formal reasoning about
the behavior of a parser is challenging. One key challenge is
parsing dependent formats, which are difficult for traditional
techniques to handle because parse values can influence fu-
ture parsing behavior. We present dependent regular gram-
mars, which extend regular languages with data-dependency by
generalizing concatenation to monadic bind. Even this small
tweak adds significant expressive power; for example, conditional
parsing and dependent repetition are both implementable using
monadic bind.

However, it is not obvious how to actually parse dependent
regular grammars. We implement a Brzozowski derivative based
matching algorithm, and we show how many popular parser
combinator functions can be implemented in our library while
retaining the same simplicity as traditional parser combinators.

We implement and formalize these grammars in Coq, as well as
a derivative-based matching algorithm. We prove soundness and
completeness of the derivative operator in the standard way. We
also implement a variety of popular parser combinator functions
and give formal specifications to them. Finally, we implement as
a case study a verified netstring parser, and prove functional
correctness of the parser.

Index Terms—Monadic parser combinators, certified parsing,
Coq, data-dependent parsing, parsing with derivatives.

I. INTRODUCTION

Parsers convert input data (such as networking packets)
into a structured format (such as packet headers). In modern
systems, parsers are the intake component in larger application
pipelines. Downstream applications make use of the structured
output of parsers, and generally assume that the parser is
trustworthy and that the structured output is correct. As a result
parsers are the first line of defense for modern systems. It is
critical that they have strong termination guarantees and that
they are robust to adversarial input.

Despite the ubiquity of parsers, building a correct parser
is a difficult and error-prone task. Formal reasoning about
realistic parsers is challenging for both humans and algorithms.
One common challenge is reasoning about data-dependency, in
which one part of the parse depends on the value of a previous
parse result.

In this work, we extend regular languages with a data-
dependent bind operator, inspired by monadic parser combi-
nators and written as >>=. This operator generalizes the tradi-
tional language concatenation operator and allows previously
parsed values to influence future parse results. Consider as a
motivating example the challenge of filtering, in which a parser
conditionally accepts or rejects if the input does not match a
validation filter function. As we will see in section III, a filter
combinator can be directly written using monadic bind.

The apparently small extension of monadic bind adds sig-
nificant expressive power. With monadic bind, parsers are now
able to directly use a parse value to determine future parsing
behavior. As a consequence dependent regular grammars can
serve as a formal model for many kinds of highly optimized
low-level parsers, which do not fit into traditional formalisms
due to their data-dependent nature.

In this work, we mechanize dependent grammars in Coq.
To actually compute parse values, we implement a matching
algorithm based on Brzozowski derivatives [1]. It surprisingly
retains the simplicity of traditional Brzozowski derivatives,
despite the extra expressiveness of bind. We formalize the
correctness of the derivative and show that it is both sound and
complete with respect to the parsing semantics of dependent
grammars. All proofs in this work are mechanized in Coq
unless otherwise stated.

Contributions: This paper makes the following contri-
butions. We extend regular languages with data-dependent
bind in section III, and we adapt Brzozowski’s derivative to
dependent regular grammars in section III. We show how
to implement various popular parsing combinator functions
using dependent grammars in Coq in section IV. Finally we
implement a certified parser for netstrings in section V.

II. RELATED WORK

Our work extends regular languages with a monadic bind
operator, develops a Brzozowski derivative operator for the
extended languages, and mechanizes the effort in a proof
assistant (Coq).

A. Monadic parser combinators

Monadic parser combinators are a foundational idea drawn
from the functional programming literature [2]–[4]. The key
idea is that parsers are fundamentally stateful functions from
strings to partial parse results, and monads can be used to
implement the stateful nature of parsing. This idea is very
influential; modern parser combinator libraries are around for
most popular languages including Haskell [5], OCaml [6],
C [7], and Rust [8]. Most recently research has focused
on applying classical type-system ideas to parser combinator
libraries, to aid developers in constructing correct parsers [9].
This work extends regular languages with a primitive for
monadic bind inspired by monadic parser combinators.
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B. Dependent parsing

Data-dependent formats have posed a long-standing chal-
lenge to declarative parser generators. Recent work has fo-
cused on extending generalized parsing algorithms [10], the
Earley algorithm [11], and various other parser-generator ap-
proaches [12] with data dependency, by tweaking the declar-
ative algorithm’s underlying data-structure with support for
dependent parsing. Our work also adds data-dependency to
a declarative language (namely regular languages) by adding
monadic bind to regular languages. As a result our work is
strictly less expressive than data-dependent parser generators,
as regular languages are strictly smaller than context-free
languages. However, one drawback to data-dependent parser
generators is that their performance is extremely unintuitive
(indeed, ill-formed grammars can cause them to have nonter-
minating behavior during parsing). Our work does not have
this drawback; since we implement the Brzozowski derivative
as a total function in a proof assistant, it is guaranteed to
terminate. Moreover, to the best of our knowledge, data-
dependent parser generators have not been formalized in a
proof assistant. Our work could serve as such a formalism if
it were generalized to context-free languages by e.g. adding a
fixpoint/recursion grammar primitive.

C. Certified parsing

A long line of work has focused on reasoning about the
output of a parser in a proof assistant.

1) Parsing with derivatives: Derivative-based parsing is a
modern application of Brzozowski derivatives [1], rediscov-
ered in the modern era by [13], [14] and proved efficient
by [15]. While neither of these efforts were done in a proof
assistant, in fact, they were very influential in the theorem-
proving community, because reasoning about the derivative
operator is relatively easy, e.g. [16]–[19].

2) Total parser combinators: Most closely related to our
work is that on total parser combinators within a proof
assistant. There are several unpublished works: a workshop
presentation by McBride and McKinna [20], as well as a blog
post by a user named “Muad’Dib.” [21]. There are also two
recently published results which we discuss in turn.

Certified parser combinators: Danielsson [22] develops a
derivative-based approach for total monadic parsers in Agda.
The key idea is to allow left-recursion for productive core-
cursive parsers. To accomodate this, Danielsson develops a
mixed inductive-coinductive grammar for parser primitives, as
well as tracking the epsilon-interpretations of parsers in their
type indices. Our approach is less expressive (e.g. does not
support left-recursion) but also significantly simpler. One way
to view our work is that we demonstrate that the complexity of
Danielsson’s derivative operator is entirely due to supporting
left-recursion, and not due to data-dependency (i.e. monadic
bind).

Productive parser combinators: In Agda (and ported to
Coq), Allais develops a type system and combinators for en-
forcing that shallowly embedded parser combinator programs
in Gallina always make forward progress [23]. In doing so,

p ::= ∅ | . | p|p | pure v | p >>= f | p∗

Grammar syntax.

PANY

(c :: ϵ,.) ↣ c

PPURE
(s, pl) ↣ v

(s, pl|pr) ↣ v

PALTL
(s, pr) ↣ v

(s, pl|pr) ↣ v

PALTR

(ϵ,pure v) ↣ v

PSTAR0

(ϵ, p∗) ↣ []

PSTARITER
s ̸= ϵ (s, p) ↣ x (s′, p∗) ↣ xs

(s++s′, p∗) ↣ x :: xs

PBIND
(sl, p) ↣ x (sr, f x) ↣ y

(sl ++sr, p >>= f) ↣ y

Grammar semantics.

Fig. 1. Syntax and semantics for dependent grammars.

this work avoids the complexity of coinduction, while still
allowing many forms of recursion. However, because this
effort lives entirely within shallowly-embedded functions, it
does not develop a derivative-based approach. By contrast we
develop a derivative-based approach using a deep embedding
of parsers. It would be interesting to compare the relative
verification effort of using Allais’ shallow combinators vs our
own parsing relation.

3) RockSalt: Our work is directly inspired by Rock-
Salt [24], which uses derivatives to build a verified lexer for
x86 instructions. In particular, we use RockSalt’s formalism as
a starting point for regular languages and extend it by adding
monadic bind.

III. DEPENDENT GRAMMARS

In this section, we present the technical core of this work:
dependent regular grammars and Brzozowski derivatives for
dependent regular grammars.

A. Syntax and semantics

We give the syntax and semantics of dependent grammars
in Figure 1.

We formalize the parsing semantics as a relation between
strings (lists of characters), grammars, and values. We write ϵ
as the empty string, or equivalently, the empty list []; and we
write l++r to mean the list concatenation of two lists l and r.
For a string s, a parser p, and a value v, we write (s, p) ↣ v
to relate s and p to v (i.e. that p parses s to v).

Parsing relation primer: Our parsing relation inference
rules should be read bottom-up: the bottom relation follows
from the preconditions above the line. For example, one of

the rules for alternation is
(s, pl) ↣ v

(s, pl|pr) ↣ v
. In plain English,
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if a grammar pl parses a string s to a value v, then it can be
combined with any other parser pr using | to also parse s to v.
Rules that do not have entries above the line are axioms and
have no preconditions. For example the rule for pure v is

(ϵ,pure v) ↣ v
. In plain English, the parser pure v parses

the empty string ϵ to the value v for all values v.
Overview of grammars: We discuss each of the grammar

syntax forms and their corresponding parsing rules in turn.
Failure: We represent a parser in failure state as ∅. Because

this parser does not parse any values, it does not have any rules
in the parsing relation.

Characters: We represent a grammar for a single character
as .. The parsing relation rule for ., PAny, relates a string with
just one character c to the value c.

Alternation: We represent grammar alternation (traditional
union) between two parsers pl and pr as pl|pr. There are two
parsing relation rules for alternation PAltL and PAltR, one for
each side of the alternation. The left-hand side PAltL says that
if pl parses a string s to a value v, then pl | pr parses s to v
as well. The right-hand side PAltR is analogously defined for
pr.

Iteration: We represent iteration using Kleene star and we
write p∗ to represent the Kleene iteration of a grammar p.
There are two parsing rules for iteration, for zero and non-
zero amounts of repetition, PStar0 and PStarIter. The first
is standard and relates the empty string ϵ to an empty list
for all parsers p. The second rule, PStarIter, is a bit strange
at face value, as it requires that the interior parser p to be
productive and consume a nonempty amount of input. This
restriction is inspired by the classic functional pearl on regex
matching by Harper [25], and Harper also showed that the
restriction does not have an impact on expressiveness for
regular languages as unproductive regexes can be normalized
to an equivalent productive regex. It takes some care to
adapt Harper’s normalization algorithm to dependent regular
grammars, which we do not cover in this work1. In practice
useful grammars are productive and so it does not hinder
expressiveness. Moreover it turns out that this productivity
restriction is important for our formalisms later.

Dependent bind: This rule replaces traditional concatena-
tion with monadic bind. Given a parser p returning values of
type A and a function f from A to parsers returning values
of type B, we write bind as p >>= f , which is a parser that
produces values of type B.2 Because f has access to the result
of p, the grammar it returns can be built from the parse result.

The parsing semantics of p >>= f are the same as traditional
monadic parser combinators. If p parses a prefix sl to a value

1Harper’s normalization algorithm is defined inductively over regular ex-
pressions. In many aspects dependent bind behaves similar to traditional
concatenation, but since the inner function requires an argument, algorithms
need to generate intermediate parse results in a sound way in order to unlock
the right-hand-side of a dependent bind. Later on, we will show how to do
this for a derivative operator by definition of epsilon-interpretation.

2Notice that if we write parser A to mean a parser that returns values of
type A, then f has the classic monadic type f : A → parser B, and bind
has the type of monadic bind: >>=: parser A → (A → parser B) →
parser B.

p @ f = p >>= (λx ⇒ pure (f x))
pl $ pr = pl >>= (λx ⇒ pr >>= (λy ⇒ pure(x, y)))

Fig. 2. Two helper functions for epsilon-interpretation and the derivative,
which respectively define function application onto grammars and traditional
concatenation.

x, and the parser produced by f x parses a suffix sr to a value
y, then p >>= f parses the concatenation sl ++sr to the value
y as well.

Examples: Suppose dig is a parser for a single numeric
digit, and lower parses a lower-case English letter. The
grammar . parses the string “1” to the character ‘1’ by the
PAny rule. The grammar dig | lower parses “a” to the
character ‘a’ by the PAltR rule. The grammar dig∗ parses
“123” to the list [‘1’; ‘2’; ‘3’] by three applications of PStarIter
and one of PStar0.

Dependent filtering: In the introduction, we briefly dis-
cussed a motivating example for dependent parsing: condi-
tional filtering. Now that we have a syntax in hand, we can
define filter in terms of primitive grammars as a monadic bind
followed by either a return or parse failure3:

filter p f = p >>= λx ⇒ if fx then pure x else ∅

Filter is useful for rich semantic validation. For example,
the grammar filter dig (λx ⇒ x >? 0) only parses non-
zero digits. In particular, it parses “1” to 1 by the PBind rule,
but by contrast on the input “0”, the parsing relation becomes
stuck because it requires the derivation of (ϵ, ∅) ↣ v for some
result v. This is not possible because there are no rules for ∅
and so the overall parser does not parse “0”.

Now that we have a syntax and semantics for dependent
grammars, we turn to actually evaluating the parsing relation.
We take an approach inspired by parsing-with-derivatives.

B. Dependent grammar derivatives

There are two key ideas with derivative-based parsing. First,
we inductively define a parser’s evaluation of the empty string
(the parsing analogue of nullability). We term this epsilon-
interpretation and write ∥p∥ϵ to mean the set of values v
(calculated as a list) such that (ϵ, p) ↣ v. Second, we define
a derivative operator over grammars, which takes a grammar
p and a character c, and returns a grammar that parses s to
v for all strings s and values v such that p parses c :: s
to v4. We write this operator as Dc p, which is intentionally
designed to not change the parse results of a grammar (except
by discarding results in case of a parse failure).

We define ∥p∥ϵ as a recursive function over the structure of
p, given in Figure 3. Most of the rules are straightforward and
relatively standard. ∅ and . do not parse the empty string, so
their interpretation is []. Alternation is the list concatenation
of its arguments, and pure v produces just one value v.

3For a Gallina definition of filter, see Figure 10
4Intuitively, the derivative operator is “running” p on just the first character

c of c :: s.
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∥∅∥ϵ = []
∥.∥ϵ = []

∥pl|pr∥ϵ = ∥pl∥ϵ ++ ∥pr∥ϵ
∥pure v∥ϵ = [v]

∥p∗∥ϵ = [[]]
∥p >>= f∥ϵ = concat_map (λx ⇒ ∥f x∥ϵ) ∥p∥ϵ

Fig. 3. Grammar interpretations of empty strings. We use lists (potentially
with duplicates) of parse results to represent values in the parsing relation.

Finite epsilon-interpretation of iteration: The epsilon-
interpretation of Kleene iteration is interesting because tra-
ditional Kleene iteration has a potentially infinite epsilon-
interpretation. For example, the grammar (pure 1)∗ parses
ϵ to 1, ϵϵ to 1, ϵϵϵ to 1, etc. This poses a challenge both
for our Coq implementation (which requires the definition of
epsilon-interpretation to be total), as well as for implementing
a finite derivative function.

This is where our restriction on the productivity of Kleene
iteration comes into play. Because we force iteration to be
productive, in fact, the only possible epsilon-interpretation of
p∗ is []. This is best understood by the following identity
(which we have mechanized in Coq):

Lemma 3.1:

∀s p v,

(∀s v, (s, p) ↣ v =⇒ s ̸= ϵ) =⇒
((s, p∗) ↣ v ⇐⇒ (s, (pure[])|(p $ p∗)) ↣ v),

where $ is traditional concatenation (defined in Figure 2). In
plain English, if a parser p is productive, then p∗ is equivalent
to either parsing ϵ to [] or parsing p and then p∗.

As a consequence, if the input string is empty, we can
collapse the identity to

∀p v,

(∀s v, (s, p) ↣ v =⇒ s ̸= ϵ) =⇒
((ϵ, p∗) ↣ v ⇐⇒ (ϵ,pure[]) ↣ v).

As a result the only possible epsilon-interpretation of p∗ is [].
Epsilon-interpretation of Bind: While bind looks a bit

complicated at its face, in fact, it is exactly the rule for
epsilon-interpretation of concatenation, but specialized to data-
dependent bind.

With a definition of epsilon-interpretation in hand, we can
precisely state its specification:

Lemma 3.2:

∀p v, (ϵ, p) ↣ v ⇐⇒ v ∈ ∥p∥ϵ .

This is a straightforward proof by induction on the grammar
p and inspection of the parse. For example, consider the case of
alternation pl|pr; we have two grammars pl and pr, and from
the inductive hypothesis, we know that ∀v, (ϵ, pl) ↣ v ⇐⇒
v ∈ ∥pl∥ϵ and ∀v, (ϵ, pr) ↣ v ⇐⇒ v ∈ ∥pr∥ϵ . Consider a
parse value v. For the forward direction, suppose (ϵ, pl|pr) ↣
v. By the definition of the semantics of alternation, it must be

Dc ∅ = ∅
Dc . = pure c

Dc pl|pr = Dc pl|Dc pr
Dc pure v = ∅

Dc p∗ = (Dc p) $ p∗

Dc p >>= f = (Dc p >>= f)|
∨

x∈∥p∥ϵ
Dc (f x)

Fig. 4. Brzozowski derivative of dependent grammars.

the case that either (ϵ, pl) ↣ v or (ϵ, pr) ↣ v. In either case,
we know that v must be in ∥pl|pr∥ϵ = ∥pl∥ϵ++ ∥pr∥ϵ from the
inductive hypothesis; so the forward direction is proved. For
the reverse direction, suppose that v is in ∥pl|pr∥ϵ = ∥pl∥ϵ +
+ ∥pr∥ϵ. From the properties of list append, we know that v is
in either ∥pl∥ϵ or ∥pr∥ϵ. 5 In either case, we know that either
(ϵ, pl) ↣ v or (ϵ, pr) ↣ v from the inductive hypothesis, so
we can use either PAltL or PAltR to conclude that (ϵ, pl|pr) ↣
v, and the reverse direction is also proved. Since we have
proved both directions, we can conclude the bidirectional if-
and-only-if: ∀v, (ϵ, pl|pr) ↣ v ⇐⇒ v ∈ ∥pl|pr∥ϵ.

Brzozowski derivatives: We next define a derivative oper-
ator with respect to a character c, written as Dc p for an input
grammar p. This is also defined as a syntax-directed recursive
function over the structure of p, given in Figure 4. The
derivative rules for ∅, ., pure, and alternation are equivalent
to the derivative for traditional regular languages.

Derivative of iteration: In our formulation, the derivative
of Kleene iteration is a bit simpler due again to the productivity
restriction. This is best understood by again appealing to our
iteration identity Lemma 3.1. First, since the parsing semantics
only give meaning to productive interiors of Kleene iteration,
we can assume that the interior parser p of iteration p∗ is
productive. From the definition of Lemma 3.1, we know the
following:

∀s v,

(s, p∗) ↣ v ⇐⇒ (s, (pure[])|(p $ p∗)) ↣ v.

Next we consider the derivative of p∗ with respect to a
character c. By the above logic, we know that:

∀s v,
(s,Dc p∗) ↣ v ⇐⇒ (s,Dc (pure[])|(p $ p∗)) ↣ v.

Since pure v cannot accept input character c, we can further
reduce the right-hand-side of the iff to just p $ p∗:

∀s v,
(s,Dc p∗) ↣ v ⇐⇒ (s,Dc (pure[])|(p $ p∗)) ↣ v

⇐⇒ (s,Dc (p $ p∗)) ↣ v.

Since p must be productive, we further know that the derivative
must apply only to p and not to p∗:

∀s v,
(s,Dc p∗) ↣ v ⇐⇒ (s,Dc (p $ p∗)) ↣ v

⇐⇒ (Dc p) $ p∗.

5Indeed v could be in both lists but the reasoning does not change.
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This is the definition we adopt for the derivative of p∗ (i.e. we
define Dc p∗ = (Dc p) $ p∗).

Derivative of bind: The derivative of dependent bind
p >>= f is a bit trickier than the other cases. If p parses
the empty string ϵ to some value x, then the derivative must
be applied to the resulting parser f x. In this case the resulting
parser is Dc (f x). We lift this reasoning to all possible
epsilon-interpretations of p by leveraging the definition of
epsilon-interpretation and taking the overall alternation over
all x ∈ ∥p∥ϵ. Since ∥p∥ϵ returns a finite list, we know that
this alternation is also finite. However, it’s also possible that
p parses the character, in which case the derivative must be
applied to p. In this case the resulting parser is Dc p >>= f ;
in other words, p parses c and will eventually pass the result
to f in the future. Both of these possibilities are valid, so we
combine them with alternation.

Now that we have a definition of the derivative operator, we
can formally state the correctness of the derivative:

Lemma 3.3:

∀c s p v, (c :: s, p) ↣ v ⇐⇒ (s,Dc p) ↣ v.

This is a classic formulation, equivalent to traditional deriva-
tives. The proof is a bit tricker but is also done by induction
over the grammar p and inspection of the parse. Key to the
proof is the correctness of epsilon-interpretation, which is
necessary for the correctness of the bind case.

C. From derivatives to parsing

Now that we have machinery for Brzozowski derivatives,
we can inductivly lift the derivative operator from a single
character to a list of characters in the standard way. We define
a parse function for a grammar p and a string s by applying
the derivative with respect to s and returning the epsilon-
interpretations of the resulting grammar:

derivs p (c :: s) = derivs (Dc p) s
derivs p ϵ = p
parse p s = ∥derivs p s∥ϵ

The soundness and completeness of this parsing definition
are straightforwardly defined:

Theorem 3.4:

∀s p v, (s, p) ↣ v ⇐⇒ v ∈ parse p s.

While weighty and impactful, this proof follows trivially
from the correctness of the derivative operator and epsilon-
interpretation.

IV. DEPENDENT GRAMMARS IN COQ

We next detail our mechanization and implement a vari-
ety of popular parser combinator functions using dependent
grammars. We first give a primer on Coq’s functional lan-
guage Gallina; readers familiar with Coq can skip forward to
subsection IV-B.

1Inductive nat : Type :=
2| Zero : nat
3| Succ : nat → nat.
4
5Fixpoint add (l: nat) (r: nat) : nat :=
6match l with
7| Zero ⇒ r
8| Succ l’ ⇒ Succ (add l’ r)
9end.
10
11Inductive list : Type → Type :=
12| Nil : forall {A: Type}, list A
13| Cons : forall {A: Type},
14A → list A → list A.
15
16Fixpoint concat {A: Type} (xs: list A)
17: list A → list A :=
18match xs with
19| Nil ⇒
20fun r ⇒ r
21| Cons x xs’ ⇒
22fun r ⇒ Cons x (concat xs’ r)
23end.
24
25Lemma concat_nil :
26forall A (xs: list A),
27concat xs Nil = xs.
28Proof.
29induction xs.
30− trivial.
31− simpl.
32erewrite IHxs.
33trivial.
34Qed.
35
36Inductive vector : Type → nat → Type :=
37| VNil : forall {A: Type}, vector A Zero
38| VCons : forall
39{A: Type} {n: nat}
40(v: A) (vs: vector A n),
41vector A (Succ n).
42
43Definition head_safe {A: Type} {n: nat}
44(vs: vector A (Succ n)) : A :=
45match vs with
46| VCons v _ ⇒ v
47end.

Fig. 5. Unary natural numbers, polymorphic lists, and length-indexed vectors
in Coq. These definitions are all part of the standard library and we provide
them for illustration.

A. Gallina basics

Coq [26] is an interactive theorem prover, which mixes a
dependently-typed functional language (called Gallina) with
support for interactive proofs. We mainly will focus on Gal-
lina, which is similar to the functional subset of OCaml with
two main differences. First, Gallina is both pure and total,
so functions must always terminate and may not have implicit
side effects, such as I/O or mutable references. Second, Gallina
has rich dependent types, in which the return type of a function
can depend on the value of its input argument.

We present some core features of Coq and Gallina by
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example. Consider Figure 5, which defines Peano-style unary
natural numbers, polymorphic lists, and length-indexed vec-
tors. These definitions are all part of Coq’s standard library
and we redefine them for illustrative purposes.

a) Inductive types and recursion: Inductive types are a
core building block of Gallina, analogous to data types in
OCaml, with which the programmer can define a new type
family and constructors for the type. For example, lines 1-
3 define a new inductive type nat for natural numbers as
well as two constructors Zero and Succ for the zero and
successor cases. Zero takes no arguments and so has type
nat, while Succ takes a single nat argument and so has
type nat -> nat.

A key element of Gallina is that it supports pattern matching
on inductive types, as well as a fixpoint primitive for recursion.
For example, lines 5-9 define Peano addition of two nats
by structural induction on the first argument. Because Gallina
functions are total and must terminate, Coq uses a structural
guardedness check to ensure that recursion is productive. The
essense of this check is that recursive function calls always
use structural elements of the input arguments. 6 In addition,
because Gallina functions are total, pattern matches must
consider all possible cases.

b) Indexed types and dependent types: Types in Gallina
can also take arguments; these arguments are known as indices
and the resulting type families are known as indexed types.
Indexed types are a powerful and flexible mechanism, and in
this work, we will use them for both generic programming
and also to encode parser information at the type level. For
example, line 11 defines a new type constructor list of type
Type -> Type, in which the type index is used to determine
the type of elements of the list. 7 Lines 12-14 define two
inductive constructors for lists, Nil and Cons.

Both of these constructors make use of dependent types.
In the case of Nil, line 12 gives Nil the dependent type
of forall {A: Type}, list A, which is a dependent
function from indices A to the list type list A. In other
words, Nil can be applied to any type index A to produce
a new list of A, namely the empty list. Second, because the
declaration of A uses braces (i.e. forall {A: Type}), we
are declaring that the index A is implicit, and asking Coq to
try to infer the index from context. 8

Because the type index A is declared implicit, we can use
both Nil and Cons without explicitly providing the type
index. For example, lines 16-23 define list concatenation of
two lists by structural recursion on the first argument, and
none of the uses of Nil or Cons need to specify the element
type A.

6It turns out that more complicated recursion schemes can also be imple-
mented in Coq, but we will not need them.

7By contrast to traditional statically typed functional languages such as
OCaml and Haskell, Gallina does not distinguish between value-level and
type-level types.

8There are several techniques for manually specifying implicit arguments
but we will not need to do so.

c) Proofs and inversion: Coq also provides support for
proving properties about Gallina functions. Lines 25-34 give
a proof (concat_nil) for the fact that concatenation of
Nil produces the input list. The proof uses tactics, such as
induction, simpl, and erewrite to construct a proof
term. We do not discuss tactics in detail because they are not
part of our contribution; an interested reader can peruse [27].
9

Our tour of Coq concludes with a implementation of length-
indexed vectors and a safe access function. Lines 36-41 define
an inductive type for length-indexed vectors, in which the type
vector A n is indexed by an element type A and a size n.
Similar to lists, vectors are inductively defined by constructors
for the empty and cons cases, but by contrast each case tracks
the length of the vector as a type index. These constraints
are useful because they allow for dependent pattern matching,
in which the type indices for a particular element of a type
constrain the possible constructors used to make the element.
For example, lines 43-47 implement a type-safe operation for
retrieving the head of a vector, provided that the vector is
nonempty. This is done by constraining the input vector vs
to have length Succ n for some value n, by setting the type
of vs to vector A (Succ n) on line 44. Because of this
constrained type, Coq infers that the only possible constructor
for vs is VCons, since VNil requires the length index to
be Zero. As a result the pattern match on lines 45-47 only
needs to consider the VCons case; Coq statically analyzes the
pattern match and infers that the omitted VNil case is dead
code and so does not need to be included.

In interactive proofs, Coq also provides an inversion
tactic, which performs analogous reasoning in the context
of constructing a proof term. For example, in an inter-
active setting, suppose we have a variable vs of type
Vector A (Succ n) in the proof context. If we apply
the tactic inversion vs, Coq will inspect the type of vs
and attempt to infer which inductive constructors must have
been used to generate vs, such that the resulting type is
Vector A (Succ n). In this case, since only the VCons
constructor can build terms of type Vector A (Succ n),
inversion will invert vs and conclude there must exist terms
v and vs’ such that vs = VCons v vs’. This style of
reasoning is very useful because it allows proofs to infer the
case of an inductive by the constraints on the inductive’s type.
We will use it to mechanize the inspection of parse results,
such as the proof step shown in Lemma 3.2.

B. Syntax and Semantics

Next we describe the syntax and semantics for our Coq
implementation of dependent grammars. We use nat and
list to refer to Coq’s standard library nat and list
types (instead of the expository types in Figure 5). Where
possible, we will use Coq’s dependent function syntax to give

9An elegant feature of Coq and Gallina is that proofs and types are identical.
While it is not necessary to understand for the purposes of this work, in fact,
the definition of concat_nil introduces a dependent function from type
indices and lists to equality proofs.
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Inductive parser: Set → Type :=
| pFail : forall {A: Set}, parser A
| pAny : parser ascii
| pAlt : forall {A: Set}

(l: parser A) (r: parser A), parser A
| pPure : forall {A: Set} (a: A), parser A
| pBind : forall {A B: Set}

(p: parser A) (f: forall a: A, parser B),
parser B

| pStar : forall {A: Set}
(p: parser A),
parser (list A).

Fig. 6. Coq inductive type for dependent grammars.

names to variables. For example, we would write the type
of natural number increment, which takes as input a nat n
and produces a nat as forall (n: nat), nat. Through-
out our implementation, we represent characters using Coq’s
ascii type and strings as a list of ascii (i.e. list ascii).
Surprisingly, we do not make use of ascii-specific functions
in either our derivative operator or our epsilon-interpretation
function. This is because we implement specific character
matching as a derived combinator with filter (whereas
traditionally specific character matching is part of the syntax
of the regular language). 10

Syntax: We represent the grammar syntax as an inductive
datatype, given in Figure 6. One twist is that we index the
type family by the return type of the parser. As a result we
can build well-typed parsers by construction. While dependent
programming can be tricky in practice, we found that the
standard type constraints for monadic bind mechanized well.
Using this definition, a parser for pure 1 is defined as
pPure 1. and has type parser nat.

1) Parsing relation: We represent the parsing relation also
as an inductive datatype, but in Prop, Coq’s sort of propo-
sitions. We name this relation Parses, given in Figure 7,
and similar to the big-step semantics, Parses relates lists
of characters and parsers to parse values. With this encoding,
we can prove properties by induction over parses, as well as
inspect the previous parse result by inversion.

2) Derivatives and epsilon interpretation: We implement
the epsilon interpretation function and derivative function as
recursive functions over parsers. The correctness definitions
from before straightforwardly translate to Coq Props. We make
heavy use of parsing relation inversion in our correctness
proofs (which corresponds to inspecting the parse derivation).
We also implement the lifted derivative function and the
parsing function, which are straightforward recursive functions
over lists.

Smart constructors: A key element to performant pars-
ing with derivatives is smart constructors, which perform
correctness-preserving optimizations on the fly. This is useful
because without algebraic simplifications, the derivative oper-

10Of course the implementation of filter does use ascii’s decidable
equality implementation to compare characters.

Inductive Parses :
list ascii →
forall {A: Set},
parser A →
A →
Prop :=

| Any: forall (c: ascii),
Parses (c :: nil) pAny c

| AltL:
forall {A: Set}

(s: list ascii) (l r: parser A) (v: A),
Parses s p v →
Parses s (pAlt l r) v

| AltR:
forall {A: Set}

(s: list ascii) (l r: parser A) (v: A),
Parses s p’ v →
Parses s (pAlt l r) v

| Pure : forall {A: Set} (a: A),
Parses nil (pPure a) a

| Bind:
forall {A B: Set}

(s s’: list ascii) (p: parser A)
(f: A → parser B) (v: A) (v’: B),
Parses s p v →
Parses s’ (f v) v’ →
Parses (s ++ s’) (pBind p f) v’

| StarNone:
forall {A: Set} (p: parser A),

Parses nil (pStar p) nil
| StarIter:
forall {A: Set}

(s s’ : list ascii)
(p: parser A) (v: A) (vs: list A),
Parses s p v →
Parses s’ (pStar p) vs →
s <> nil →
Parses (s ++ s’) (pStar p) (v :: vs).

Fig. 7. Coq inductive type for the parsing relation.

ator can cause an exponential blow-up to the grammar [15].
We implement and prove sound several smart constructors,
which are presented in Figure 8. Where possible, our derivative
implementation uses these smart constructors instead of the
plain grammar constructors.

We implement simplifications for alternation and for bind.
For alternation, we check the arguments to see if either is
pFail; if it is, we return the other argument. For bind i.e.
p >>= f, we optimize if the first argument is either pFail

or pPure. If it is pFail, we know that the overall bind will
never succeed, so we replace it with pFail. If it is pPure v
for some value v, we know that the new parser will be exactly
f v, so we return this. Otherwise we construct a bind as
normal.

Notably missing from these optimizations is a
rule for Kleene star, in particular, the identity
pStar pFail = pFail. In fact, that is because it
is false for our semantics of Kleene star. This is because
pFail has no possible semantic interpretation, whereas
pStar pFail parses the empty string to the empty list.

7



(* Smart constructor for alternation *)
Definition alt {A: Set}

(l r : parser A) : parser A :=
match p, p’ with
| pFail, _ ⇒ p’
| _, pFail ⇒ p
| _, _ ⇒ pAlt p p’
end.

Lemma alt_spec :
forall {A: Set}

(s: list ascii) (p p’: parser A)
(v: A),
Parses s (alt p p’) v ↔
Parses s (pAlt p p’) v.

(* Smart constructor for bind *)
Definition bind {A B: Set}

(p : parser A) (f: A → parser B) : parser B :=
match p with
| pFail ⇒ pFail
| (pPure v) ⇒ f v
| _ ⇒ pBind p f
end.

Lemma bind_spec :
forall {A B: Set}

(s: list ascii) (p: parser A)
(f: A → parser B) (v: B),
Parses s (bind p f) v ↔
Parses s (pBind p f) v.

Fig. 8. Smart constructors for algebraic simplification, as well as their
specifications.

This optimization could be added with an extra precondition
to the semantics of Kleene star in the empty case.

C. Combinators

We next detail a variety of combinators for implementing
useful derived parsers.

1) Basic combinators: First, for our most basic combina-
tors, we implement map and cat in Figure 9 as defined in
Figure 2.

We also provide some notation to make our Coq parsers
easier to read. In particular, we write $ and @ as infix operators
for map and concat and || and >>= as infix operators for
alternation and bind.

We also define two derived binary operators $> and <$,
which parse two grammars and discard one of the results. This
is very useful in practice, for example to recognize characters
that are part of the input but do not contribute to the parse
value.

2) Dependent combinators: Next we implement two de-
pendent combinators presented in Figure 10: filter p f
from the overview, for conditional parsing, and repeat n p,
which runs a parser p n times and produces a list of the parse
results. While repeat is not obviously dependent, because it
takes as input a nat n, we can use it as the argument to bind
e.g. digit >>= fun n => repeat n pAny.

Definition map {A B: Set}
(p: parser A) (f: A → B) : parser B :=
pBind p (fun x ⇒ pPure (f x)).

Definition cat {A B: Set}
(p: parser A) (p’: parser B) : parser (A * B) :=
pBind p (fun l ⇒ map p’ (fun r ⇒ (l, r))).

Infix "$" := (cat) (at level 80).
Infix "@" := (map) (at level 80).
Infix "||" := (pAlt)

(at level 50, left associativity).
Infix ">>=" := (pBind) (at level 80).

Notation "p1 $> p2" :=
(cat p1 p2 @ fun ’(_,x) ⇒ x) (at level 50).

Notation "p1 <$ p2" :=
(cat p1 p2 @ fun ’(x,_) ⇒ x) (at level 50).

Fig. 9. Basic combinators for map and concatenation, as well as some notation
for more concise syntax. In Gallina, the type (A * B) is the type of pairs of
A and B (i.e. the product of A and B).

Definition filter {A: Set}
(p: parser A) (f: A → bool) : parser A :=
p >>= fun a ⇒ if f a then pPure a else pFail.

Lemma filter_spec:
forall {A: Set}

(f: A → bool) (s: list ascii)
(p: parser A) (v : A),
Parses s (filter p f) v →
f v = true.

Fixpoint repeat {A: Set}
(n: nat) (p: parser A) : parser (list A) :=
match n with
| 0 ⇒ pPure nil
| S n’ ⇒

(p $ (repeat n’ p)) @ (fun ’(x, xs) ⇒ x :: xs)
end.

Lemma repeat_spec :
forall {A: Set}

(n: nat) (p: parser A)
(s: list ascii) (vs: list A),
Parses s (repeat n p) vs →
length vs = n.

Fig. 10. Filter and repeat dependent combinators, as well as their specifica-
tions.

We further prove some interesting properties about filter
and repeat. In particular, our lemma filter_spec states
that if filter p f parses a value v, then it must be the case
that f v = true. In addition, if repeat p n produces a
list of results, the resulting list must have length n.

While these facts might seem obviously true from the defi-
nitions of filter and repeat, it’s important to mechanize
specifications for larger proofs. In fact, we will make use of
this repeat specification in our proof of netstring functional
correctness in section V.
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Definition char (c: ascii) :=
filter pAny (fun c’ ⇒ eqb c c’).

Definition many {A: Set}
(p: parser A) : parser (list A) :=
pStar p.

Fixpoint any {A: Set}
(ps: list (parser A)) : parser A :=
match ps with
| nil ⇒ pFail
| p :: ps’ ⇒ p || (any ps’)
end.

Fixpoint sequence {A: Set}
(ps: list (parser A)) : parser (list A) :=
match ps with
| nil ⇒
pPure nil

| p :: ps’ ⇒
(p $ (sequence ps’)) ·(fun ’(x, xs) ⇒ x :: xs)

end.

Fixpoint fold {A B: Set}
(f: A → B → B) (acc: B)
(ps: list (parser A)) : parser B :=
match ps with
| nil ⇒ pPure acc
| p :: ps’ ⇒

(p $ (fold f acc ps’)) @ (fun ’(a, b) ⇒ f a b)
end.

Fig. 11. Popular monadic parser combinators using dependent grammars.

D. Parser combinator utilities

Finally we consider a variety of common monadic parser
combinator utilities that are not necessarily dependent, but
can be implemented in our framework of dependent grammars
because we have access to monadic bind and pure. We discuss
each in turn.

Char: char c accepts just a single character c. We im-
plement this using pAny and filter.

Many: many p accepts 0 or more repetitions of a parser
p and returns a list of the results. This is exactly our definition
of pStar.

Any: any ps takes a list of parsers ps and returns either
the union of all of their parse results, or just the first successful
parse result from the elements of the list. While we don’t have
biased choice, we can support the union over all results. If
the individual parsers of ps are disjoint then the behavior is
equivalent.

Sequence: sequence ps takes a list of parsers ps and
runs each of them in sequence, returning a list of their parse
results. Just as any lifts alternation to a list of parsers,
sequence lifts concatenation to a list of parsers.

Fold: fold f ps base generalizes sequence to an
input combination function f and a base case base. Just as
sequence separates the input parses with concatenation, fold
also uses concatenation to join the parsers together.

Finally, with a library of parsing combinators in hand, we
implement a certified netstring parser.

V. CASE STUDY: CERTIFIED NETSTRINGS

Netstrings [28] are a method of encoding strings in an
easy-to-parse way. Netstrings prefix a string with its length
as a decimal number, wrapping the string with a colon and
terminating it with a comma. Netstrings can also be nested, in
which several elements of a netstring are themselves netstrings.

For example, the string “13:hello, world!,” is a valid net-
string, while the strings “2:long,”, “6:short,” and “invalid” are
not because their interior strings are too long, too short, and
not length-prefixed, respectively. The string “12:2:ab,4:cdef,,”
is an example of a valid nested netstring.

This format is deceptively simple, known as calc-regular
languages in the literature [29], and in fact, it is neither regular
nor context free. We first discuss our implementation of a
netstring parser, and then discuss its specification and the proof
burden.

A. Implementation

We develop a parser for a single level of netstrings in
Figure 12. Notice that while it can parse a nested netstring,
it does not evaluate the validity of the interior length prefixes
(if present), or the well-formedness of the interior separators.
While this is interesting and a key part of the challenge
for calc-regular languages, nested netstrings are not very
well defined without having prior knowledge of the format
structure. For example, should the string “9:ab4:cdef,,” be
rejected? If the interior format is two netstrings, then it should
be rejected because the left-substring is not a valid netstring.
If the interior format is only one netstring (or no interior
netstrings at all), then it should be accepted, as the interior
string is the correct length and well-formed.

More generally, if a particular nesting structure is known
ahead of time, one can develop a valid netstring parser for
that format by reusing the netstring parser presented here.

We define a netstring (with the net_str parser) as a
number followed by a body. To parse a number (num), we
parse zero or more digits into the corresponding decimal
number using helper parsers dig, digs, and a conversion
function digs_2_num. To parse a body, we take as input
a nat n and parse n characters (of any value) between the
netstring separators. This parser returns the interior body as
its parse value.

B. Certification

While this parser is not terribly complicated, its functional
specification is a bit more weighty. Because we are working
within Coq, we can phrase (and prove) a rich functional
specification:

Theorem net_str_spec:
forall (s: list ascii) (v: list ascii),
Parses s net_str v ↔
exists (s’: list ascii),
s = s’ ++ (":" :: v ++ ("," :: nil)) ∧
Parses s’ num (length v).
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Definition dig : parser nat :=
(char "0" @ fun _ ⇒ 0) ||
(char "1" @ fun _ ⇒ 1) ||
(char "2" @ fun _ ⇒ 2) ||
(char "3" @ fun _ ⇒ 3) ||
(char "4" @ fun _ ⇒ 4) ||
(char "5" @ fun _ ⇒ 5) ||
(char "6" @ fun _ ⇒ 6) ||
(char "7" @ fun _ ⇒ 7) ||
(char "8" @ fun _ ⇒ 8) ||
(char "9" @ fun _ ⇒ 9).

Fixpoint digs_2_num (digs: list nat) : nat :=
match digs with
| nil ⇒ 0
| d :: ds ⇒ d + digs_2_num ds * 10
end.

Definition digs : parser (list nat) := pStar dig.

Definition num : parser nat :=
digs @ fun x ⇒ digs_2_num (rev x).

Definition net_str_body (n: nat) :
parser (list ascii) :=

(char ":" $> ((repeat n pAny) <$ char ",")).

Definition net_str : parser (list ascii) :=
num >>= net_str_body.

Fig. 12. Netstring parser implementation.

In plain English, if net_str parses a string s to a body
v, then there must have existed a prefix s’ that parses to the
length of the body v, and the body was exactly wrapped by a
colon and comma. Moreover we phrase this as an if-and-only-
if, so we prove the reverse direction as well (i.e. the net_str
parser will succeed if it has a well-formed body and a numeric
prefix corresponding to the length of the body).

This proof was surprisingly involved. To get it to work, we
had to reuse the repeat specification from section IV, as well
as prove a new lemma about repeat. In particular we proved
that if p always parses a particular number of characters n′,
then repeat n p parses n∗n′ characters. This is necessary
to show that repeat n pAny parses n characters (as pAny
parses one character).

C. Future challenges

We leave open several directions for future work. First,
it would be interesting to extend our netstring parser (and
functional correctness specification) to nested netstrings. Sec-
ond, while we do implement some optimizations in the form
of smart constructors, we do not make a serious attempt to
optimize the implementation. We ran some synthetic bench-
marks and found that vm_computeing our parsing function
took about 60 seconds for a 1024 character netstring. This is
surprisingly tractable but unrealistic for actual parsing appli-
cations. It would be interesting to debug this performance and
experiment with extracting to OCaml, or implementing a more
performant automata model (instead of relying on arbitrary

Gallina functions for the bind operator). Third, our proof
of netstring functional correctness was surprisingly difficult
(given the simplicity of the format). While it was promising
that we could prove such a rich specification at all, it’s unlikely
that our naive proof technique could scale to more complicated
applications of parser combinators. It would be interesting to
adapt the productivity efforts of [9] to a proof assistant, to
reduce the proof burden for more complicated libraries, and to
develop novel proof engineering centered around certification
of parser combinator programs (such as those developed by
Hammer [7]). Finally, another direction is to improve the
expressiveness to forms of left-recursion by incorporating
ideas in [22] and [23]. Both of these techniques require the
end-user to provide extra static annotations in exchange for
the extra expressiveness (by contrast, our technique does not).
It would be interesting to try to incorporate these ideas while
minimizing the extra annotations.
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