SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2007; 37:581-641
Published online 24 October 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.776

An empirical study of Java RE
bytecode programs

Christian Collberg, Ginger Myles*™ and Michael Stepp

Department of Computer Science, University of Arizona, Tucson, AZ 85721, U.S.A.

SUMMARY

We present a study of the static structure of real Java bytecode programs. A total of 1132 Java jar-files
were collected from the Internet and analyzed. In addition to simple counts (number of methods per class,
number of bytecode instructions per method, etc.), structural metrics such as the complexity of control-
flow and inheritance graphs were computed. We believe this study will be valuable in the design of future
programming languages and virtual machine instruction sets, as well as in the efficient implementation of
compilers and other language processors. Copyright © 2006 John Wiley & Sons, Ltd.

Received 18 August 2004; Revised 28 June 2006, Accepted 28 June 2006

KEY WORDS: Java; bytecode; measure; software complexity metrics

1. INTRODUCTION

In a much cited study [1], Knuth examined FORTRAN programs collected from printouts found in a
computing center. Among other things, he found that arithmetic expressions tend to be small, which,
he argued, has consequences for code-generation and optimization algorithms chosen in a compiler.
Similar studies have been carried out for COBOL [2,3], Pascal [4], and APL [5,6] source code.

In this paper we report on a study on the static structure of real Java bytecode programs.
Using information gathered from an automated Google search, we collected a sample of 1132 Java
programs, in the form of jar-files (collections of Java class files). The static structure of these programs
was analyzed automatically using SandMark, a tool which, among other things, performs static
analysis of Java bytecode.

It is our hope that the information gathered and presented here will be of use in a variety of settings.
For example, information about the structure of real programs in one language can be used to design

*Correspondence to: Ginger Myles, Department of Computer Science, University of Arizona, Tucson, AZ 85721, U.S.A.
TE-mail: gmyles@gmail.com

Contract/grant sponsor: National Science Foundation; contract/grant number: 324360
Contract/grant sponsor: Air Force Research Lab; contract/grant number: F33615-02-C-1146

ST WWILEY
Copyright © 2006 John Wiley & Sons, Ltd. 1.. InterScience®

DISCOVER SOMETHING GREAT

582 C. COLLBERG, G. MYLES AND M. STEPP SP E

future languages in the same family. One example is the £inally clause of Java exception handlers.
Special instructions (jsr and ret) were added to Java bytecode to handle this construct efficiently.
These instructions turn out to be a major source of complexity for the Java verifier [7]. If, instead,
the Java bytecode designers had known (from a study of MODULA-3 programs, for example) that the
finally clause is very unusual in real programs, they may have elected to keep j sr/ret out of the
instruction set. This would have simplified the Java bytecode verifier while imposing little overhead on
typical programs?.

There are many types of tools that operate on programs. Compilers are an obvious example, but there
are many software engineering tools which transform programs in order to improve on their structure,
readability, modifiability, etc. Such language processors can benefit from knowing typical and extreme
counts of various aspects of real programs. For example, in our study we have found that while, on
average, a Java class file has 9.0 methods, in the extreme case we found a class with 570 methods.
This information can be used to select appropriate data structures, algorithms, and memory allocation
strategies.

As a further example, we have found that the average Java class has no more than one method that
overrides a method of its superclass. This means that most methods are written ‘from scratch’, and will
not be present in any of the superclasses of that class. Furthermore, it means that most methods written
in a given class are unlikely to be overridden in its subclasses. Thus, aggressive inlining appears to be
a good candidate for optimization. The usual obstacle to inlining in Java is virtual method invocation,
where a single method callsite could have many potential targets. However, given these data, we can see
that often this will not be a problem, because methods are rarely overridden. Combined with the fact
that the average method has 33.2 instructions and is thus quite small, we see that aggressive inlining is
an excellent candidate for optimization. We hope that this study will be useful in providing many other
insights that will facilitate the design of tools to study and improve programs.

Our own research is focused on the protection of software from piracy, tampering, and reverse
engineering, using code obfuscation and software watermarking [8]. Code obfuscation attempts to
introduce confusion in a program to slow down an adversary’s attempts at reverse engineering it.
Software watermarking inserts a copyright notice or customer identification number into a program
to allow the owner to assert their intellectual property rights. An important aspect of these techniques
is stealth. For example, a software watermarking algorithm should not embed a mark by inserting code
that is highly unusual, since that would make it easy to locate and remove. Our study of instruction
frequencies and instruction n-grams directly addresses this concern, by showing us exactly which
instruction sequences are common and which are not. For example, any code that contains the JSR_W
or GOTO_W instructions would be extremely unstealthy, since not a single one of our 1132 test jars
contain either of these instructions. We believe the information presented in this paper will be useful
in developing future evaluation models for the stealth of software protection algorithms.

The remainder of this paper is structured as follows. In Section 2 we describe how our statistics were
gathered. In Section 3 we give a brief overview of Java bytecode. In Sections 4, 5, 6, and 7, we present
application-level, class-level, method-level, and instruction-level statistics, respectively. In Section 8
we discuss related work, and in Section 9 we summarize our findings.

#The £inally clause can be implemented by copying code.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 583
%

Table I. Collected jar-file statistics.

Measure Count

Total number of jar-files 1132
Total size of jar-files (bytes) 198945 317
Total number of class files 102 688
Total number of packages 7682
Total number of classes 90500
Total number of interfaces 12188
Total number of constant pool entries 12538316
Total number of methods 874 115
Total number of fields 422491
Total number of instructions 26 597 868

2. EXPERIMENTAL METHODOLOGY

Table I shows some statistics of the applications that were gathered. Figure | shows an overview of
how our statistics were collected.

To obtain a suitably random set of sample data, we queried the Google search engine using the key-
phrase ‘"index of" jar’. This query was designed to find Web pages that display server directory
listings that contain files with the extension . jar. In the resulting HTML pages we searched for any
<A> tag whose HREF attribute designated a jar-file. These files were then downloaded.

The initial collection of jar-files numbered in excess of 2000. An initial analysis discarded any files
that contained no Java classes, or were structurally invalid. Static statistics were next gathered using
the SandMark tool.

SandMark [9] is a tool developed to aid in the study of software-based software protection
techniques. The tool is implemented in Java and operates on Java bytecode. Included in SandMark
are algorithms for code obfuscation, software watermarking, and software birthmarking. A variety of
static analysis techniques are included to aid in the development of new algorithms and as a means to
study the effectiveness of these algorithms. Examples of such techniques are: class hierarchy, control-
flow, and call graphs; def-use and liveness analysis; stack simulation; forward and backward slicing;
various bytecode diffing algorithms; a bytecode viewer; and a variety of software complexity metrics.

Not all well-formed jar-files could be completely analyzed. In most cases this was because the jar-file
was not self-contained, i.e. it referenced classes that were not in the jar or in the Java standard library.
Missing class files prevent the class hierarchy from being constructed, for example. In these cases
we still computed as many statistics as possible. For example, while an incomplete class hierarchy
prevented us from gathering accurate statistics of class inheritance depth, it still allowed us to gather
control-flow graph (CFG) statistics. Our SandMark tool is also not perfect. In particular, it is known to
build erroneous CFGs for methods with complex subroutine structures (combinations of the jsr and
ret instructions used for Java’s £inally clause). There are few such CFGs in our sample set, so this
problem is unlikely to adversely affect our data.

Owing to our random sampling of jar-files from the Internet, the collection is somewhat
idiosyncratic. We assume that any two jar-files with the same name are in fact the same program, and

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

584 C. COLLBERG, G. MYLES AND M. STEPP SP E

OligoWiz 1.0.1.jar

mosaic.jar oljgoWiz 1.0.3.jar

mysqgl.jar

OligoWiz 1.0.4.jar
OligoWiz 1.0.2.jar
OligoWiz 1.0.5.jar

- Google -

I

% SandMark 3.4.0 (Mystique) - X
File Help

View | Decompile | Quick Protect | Static Birthmark | Dynamic Birthmark_ |
Home r Dynamic Watermarik I Static Watermark r Obfuscate r Optimize ” Diff |

Christian Collbers collberg@cs arizona edu)

SandMark is 3 tesl to watermark, obfuscate, and tarmper-proof Java class files

o Dynauc Watermark will embed & copyright notice or customer identification number into the
FUnNTime SIrUCTures of 3 programn,
SCRIPT <= & Sranc Warmare 2 mark into the Java bytecade itself
& OPAscale realTanges o 10 make it harder to understand
& Cptinuze runs the BLOAT optimizer, 2 dynamic inliner, or a static inliner

& Diff comipares the byrecodes of two jar-files for similarity
& Tew allows you to examine and search Java bytecode.
U ® Decormpizallows vou o decompile the classes ina jar file
& Quick Protectwill help you Obfuscate and Watermark your program automatically.

classesPERpackage.jgr
methodsPERclass.jgr
basicblocksPERmethod. jgr S S A &

Figure 1. Overview of how our statistics were gathered.

keep only one. However, we kept those files whose names indicated that they were different versions
of the same program, as shown by the OligoWiz files in Figure 1. Most likely, these files are very
similar and may contain methods that are identical between versions. It is reasonable to assume that
such redundancy will have somewhat skewed our results. An alternative strategy might have been to
guess (based on the file name) which files are versions of the same program, and keep only the higher-
numbered file. A less random sampling of programs could also have been collected from well-known
repositories of Java code, such as sourceforge .net.

Giving an informative presentation of this type of data turns out to be difficult. In many applications
we will only be interested in fypical values (such as mode or mean) or extreme values (such as min
and max). Such values can easily be presented in tabular form. However, we would also like to be able
to quickly get a general ‘feel’ for the behavior of the data, and this is best presented in a visual form.
The visualization is complicated by the fact that most of our data have sharp ‘spikes’ and long ‘tails’.
That is, one or a few (typically small) values are very common, but there are a small number of large
outliers which by themselves are also interesting. This can be seen, for example, in Figure 30(b) below,
which shows that out of the 801 117 methods in our data, 99% have fewer than two subroutines but one
method has 29 subroutines.

We have chosen to visualize much of our data using binned bar graphs where extremely tall bars are
truncated to allow small values to be visualized. For example, consider the graph in Figure 2 which

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 585
%

Striped bars
have been
truncated

%
&
]
I
[3
®
w

Cumulative
percentage

P Value
MIN: 4
MAX: 26708
AVG: 122.1
MODE: 24
MEDIAN: 65
1 215
SAMPLES: 102688
TOTAL: 12538316

708 ‘%16
v
4
o
=
m
<

o

(=3 o g O —
o No ISECER-RCNCRY =)
IS R o N L =3 (=3
$ [~ N =58 R N N

— X o N oy 9 $ S
0 = 2 U B FNoN (S} w
46789 %% D% %% D 000050005 % 4000, E
2325252 232523020000 02020900, 0.0 0 o, %

0209 %999 %9 20 0 %07 10/, 3 253y, 6,2, 6 92 y PSP A s,
K R R) _09‘530 yg’iogy& QQ
00909 %)

Values have
been binned

Figure 2. Illustration and explanation of the bar graphs used throughout the paper for data visualization.

shows the number of constants in the constant pool of the Java applications we studied. Most of our
graphs will have the same structure. Along the x-axis we show the bins into which our data have been
classified. On top of each bar the actual count and cumulative percentage are shown. Very tall bars are
truncated and shown striped. In a separate table to the top right of the graph we show the total number
of data points, the minimum, maximum, and average x-values, the mode’, the median (the middle
value), and the standard deviation. The SAMPLES value is the total number of items inspected for the
given statistic, and the TOTAL value is the total number of sub-items counted. For example, in the
above graph, the SAMPLES value will be the number of classes analyzed and the TOTAL value will
be the sum of all of the constant pool entries over all of the classes analyzed. The TOTAL value is
only included where appropriate. The FAILED value gives the number of unsuccessful measurements,
when appropriate.

3. THE STRUCTURE OF JAVA BYTECODE PROGRAMS

A Java application consists of a collection of classes and interfaces. Each class or interface is compiled
into a class file. A program consists of a number of class files which are collected together into a jar-file.

8The mode is the most frequently occurring value. This is often—but because of binning not always—the tallest bar of the graph.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

586 C. COLLBERG, G. MYLES AND M. STEPP SP E
&

Magic Number Constant Pool

1 String: "HELLO"
Constant Poo //, Method: "C.M(int)"
e i .onq "
Access Flags // //(Field: int F
This Class LT <
e /l 1
7 , '
Super Class - | Fields !
T T
! |
Name Type i
Interfaces Flags ype - Attributes
[pub] e il’lt
Fields [priv] ||yu c
I
Methods ‘ Methods 4
\ . / i
Attributes Flags ' Name Sig / Attributes

[pub] ' ngn ()int Code ~----- -

Exceptions)

Code -
MaxStack=5, MaxLocals=8
Code []= push,add, store. ..
ExceptionTable[l= ...

Attributes

Figure 3. A view of the Java class file format.

A jar-file is directly executable by a Java virtual machine interpreter. The Java class file stores all
necessary data regarding the class. There is a symbol table (called the Constant Pool) which stores
strings, large literal integers and floats, and names and types of all fields and methods. Each method is
compiled to Java bytecode, a stack-based virtual machine instruction set. Figure 3 shows the structure
of the Java class file format. The JVM is defined by Lindholm and Yellin [10].

The Java bytecodes can manipulate data in several formats: integers (32 bits), longs (64 bits), floats
(32 bits), doubles (64 bits), shorts (16 bits), bytes (8 bits), Booleans (1 bit), chars (16 bit Unicode),
object references (32 bit pointers), and arrays. The Boolean, byte, char, and short types are compiled
down into integers.

Bytecode instructions have variable widths. Simple instructions such as iadd (integer addition) are
one byte wide, while some instructions (such as tableswitch) can be multiple bytes. Each method
can have up to 65536 local variables and formal parameters, called slots. The bytecodes reference
slots by number. For example, the instruction ' iload_3’ pushes the third local variable onto the
stack. In order to access high-numbered slots, a special wide instruction can be used to modify load
and store instructions to use 16-bit indexes. The Java execution stack is 32 bits wide. Longs and doubles
take up two stack entries and two slot numbers.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 587
&

Table II. Notation used to refer to data values in the bytecode.

Notation Explanation

B An 8-bit integer value

S A 16-bit integer value

L A 32-bit integer value

Cp An 8-bit constant pool index

Cs A 16-bit constant pool index

Fp An 8-bit local variable index

Fs A 16-bit local variable index

Cli] The ith constant pool entry

VIi]l The ith variable/formal parameter in the current method

Local variable slots are untyped. In fact, a particular slot can hold different types of data at different
locations in a method. However, regardless of how execution reaches a given location in the method,
the type of data stored in a particular slot at that location will always be the same. A static analysis
known as a stack simulation can compute slot types without executing a method.

Some bytecodes reference data from the class’ constant pool, for example to push large constants
or to invoke methods. Constant pool references are 8 or 16 bits long. To push a reference to a literal
string with constant pool number 4567, the compiler would issue the instruction ' 1dc_w 4567".
If the constant pool number instead fits into a byte (such as 123), the shorter instruction * 1dc 123"
would suffice.

Some information is stored in attributes in the class file. This includes exception table ranges, and
(for debugging) line-number ranges and local variable names.

Table II explains the notation used in Tables III-VI, which give an overview of the JVM instruction
set.

4. PROGRAM-LEVEL STATISTICS

In this and the following three sections we will present the data collected about applications
(this section), classes (Section 5), methods (Section 6), and instructions (Section 7).
Figures 4-7 visualize application-level data about the programs we gathered.

4.1. Packages

Classes in Java are optionally organized into a hierarchy of packages. For example, Java’s String
class is in the package java . lang, and can be referred to as java.lang.String. As can be seen
from Figure 4(a), many Java programs put all classes into the same package. In fact, half of the 1132
applications we gathered have three or fewer packages, and only four have 50 or more.

A package « is counted if there exists some class B such that the fully qualified classname of 8 is
a.fB. Thus, if an application has classes java.packl.Classl and java.pack2.Class2 then java.packl and

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

588 C. COLLBERG, G. MYLES AND M. STEPP SP E

Table III. The first 87 Java bytecode instructions.

Opcode Mnemonic Args Stack Description

0 nop [1=1

1 aconst_null [1= [null] Push null object.

2 iconst_ml [1=[-1] Push —1.

3...8 iconstn [1=[n] Push integer constant n, 0 <n <5.

9...10 lconst.n [1=[n] Push long constant n, 0 <n < 1.

11...13 fconst.n [1=[n] Push float constant n, 0 <n < 2.

14...15 dconst.n [1=[n] Push double constant n, 0 <n < 1.

16 bipush n:B [1=[n] Push 1-byte signed integer.

17 sipush n:S [1= [n] Push 2-byte signed integer.

18 1ldc n:Cp, [1=I[CInll Push item from constant pool.

19 ldcw n:Cs [1= [C[n]] Push item from constant pool.

20 ldc2.w n:Cs [1= [C[n]] Push long/double from constant pool.

21...25 Xload n:Fp [1=1[VInll] X €{i,l.f,d,a}, Load int, long, float, double, object
from local var.

26...29 iloadmn [1=[VIn]] Load local integer var n, 0 <n < 3.

30...33 1lloadwn [1=[V[r]] Load local long varn, 0 <n <3.

34...37 floadmn [1=[VIn]] Load local float var n, 0 <n < 3.

38...41 dloadwn [1=[V[r]] Load local double var n, 0 <n < 3.

42...45 aloadwn [1=[VIn]] Load local object var n, 0 <n < 3.

46...53 Xload [A, I]=[V] X e{ia,la,fa,da,aa,ba,ca,sa}. Push the value V (an
int, long, etc.) stored at index / of array A.

54...58 Xstore n:Fp [Vinll=1] X e{il,f,d,a}, Store int, long, float, double, object
to local var.

59...62 istorewn [Vir]l=1] Store to local integer varn, 0 <n < 3.

63...66 lstoremn [VIn]] =] Store to local long varn, 0 <n <3.

67...70 fstore.n [Vir]l = 1] Store to local float var n, 0 <n < 3.

71...74 dstoremn [VIn]] =] Store to local double var n, 0 <n < 3.

75...78 astore.n [Vir]l = 1] Store to local object var n, 0 <n < 3.

79...86 Xstore [A,I,V]=][] X €{ia,la,fa,da,aa,ba,ca,sa}. Store the value V (an

int, long, etc.) at index / of array A.

Jjava.pack2 would be counted, but java would not. Also, the default or ‘null’ package is counted exactly
once, if there is a class in that package.

Figure 5(a) shows that while a small number of programs have packages with hundreds of classes,
the typical package will have only one, and the average is about 11.8.

Packages can be nested inside of other packages, allowing for the easy creation of unique names.
While it is possible to create a package hierarchy of arbitrary depth, Figure 4(b) shows that the
maximum depth for an application is 8, with an average depth of 3.9.

A Java interface is a special type of class that only contains constant declarations or method
signatures. A class which implements an interface must provide implementations of the methods.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 589

Table IV. Java bytecode instructions 87 to 169.

Opcode Mnemonic Args Stack Description

87 pop [Al=1] Pop top of stack.

88 pop2 [A, B]=1] Pop 2 elements.

89 dup [VI=1[V, V] Duplicate top of stack.

90 dup-x1 [B,V]I=1[V,B,V]

91 dup-x2 [B,C,V]=[V,B,C, V]

92 dup2 [V, W]=[V,W,V, W]

93 dup2_x1 [A, V., W]=> [V, W, A, V, W]

94 dup2_x2 [A,B,V,W]=[V,W,A, B, V,W]

95 swap [A, B] = [B, A] Swap top stack elements.

96...99 Xadd [A, Bl = [R] X efildf}. R=A+B.

100...103 Xsub [A, B] = [R] X e{ildf). R=A—-B.

104...107 Xmul [A, B] = [R] XE(lldf) R=AxB.

108 ...111 Xdiv [A, B]= [R] efilLdf}. R=A/B.

112...115 Xrem [A, Bl = [R] Xe(lldf} R=A%B.

116...119 Xneg [A]= [R] X e{ildf}). R=—A.

120...121 Xshl [A, B] = [R] X e{il]}. R=A << B.

122...123 Xshr [A, B] = [R] X e{i]}. R=A>> B.

124 ...125 Xushr [A, B] = [R] Xel{il]}. R=A>>>B.

126...127 Xand [A, B]= [R] X €{il]}. R=A&B.

128...129 Xor [A, B]= [R] X €{il}. R=A|B.

130...131 Xxor [A, B]= [R] X €{i,l}. R = AxorB.

132 iinc V:Fp.B:B =1 V+=B8B.

133...144 X2y [F]=1[T] Convert F from type X to T of type Y. X €{i,L,f,d}, ¥ €{i,L.f.d}.

145 ...147 i2X [F]=[T] X €{b,c,s}. Convert integer F' to byte, char, or short.

148 lcmp [A, B]=[V] Compare long values. A>B=V=1,A<B=V=—-1,A=
B=V=0.

149,151 Xcmpl [A, B]=[V] Compare float or double values. X €{fd}. A>B=V=1A4<
B=V=-1, A=B=>V=0. A=NaNVB=NaN=V =
-1

150,152 Xcmpg [A, B]=[V] Compare float or double values. X e{fd}. A>B=V=1A<
B=V=-1,A=B=V=0A=NaNVB=NaN=V =1

153...158 ifo L:S [Al=1] o={eq,ne,lt,ge,gt,le}. If A o 0 goto L + pc.

159...164 if_icmpo L:S [A, B]=1] o={eq,ne,lt,ge.gt,le}. If A © B goto L + pc.

165...166 if_acmpo L:S [A, B]=1] o={eq,ne}. A, B are objectrefs. If A ¢ B goto L + pc.

167 goto I:S [1=11 Jump to I + pc.

168 jsr I:S [1=[A] Jump subroutine to instruction / + pc. A = the address of the
instruction after the jsr.

169 ret L:Fyp =1 Return from subroutine. Address in local var L.

Interfaces are often used to compensate for Java’s lack of multiple inheritance. Figure 5(b) shows
that over 70% of Java packages contain O or 1 interface.

4.2. Protection

A Java class can be declared as abstract (it serves only as a superclass to classes which actually
implements its methods) or final (it cannot be extended). These declarations are, however, fairly
unusual. Figures 6(a) and 6(b) show that over 70% of all packages contain no abstract or final classes.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

590 C. COLLBERG, G. MYLES AND M. STEPP SP E

Table V. Java bytecode instructions 170 to 195.

Opcode Mnemonic Args Stack
170 tableswitch D:L], h: Lot K=
JuLongDescrmp through the K :th offset. Else goto D.
171 lookupswitch D:L.n:L,(m, o)" [K]=1]
If, for one of the (m, o) pairs, K = m, then goto o. Else goto D.
172...176 Xreturn [Vli=1]
X €{if,l,d,a}. Return V.
177 return =10
Return from void method.
178 getstatic F:Cs [1=1V]
Push value V of static field F.
179 putstatic F:Cs [Vi=1]
Store value V into static field F.
180 getfield F:Cs [R]=[V]
Push value V of field F in object R.
181 putfield F:Cs [R,V]I=1]
Store value V into field F of object R.
182 invokevirtual P:Cy [R, Ay, Ay, ... 1= 1]
Call virtual method P, with arguments Aq - - - A,, through object reference R.
183 invokespecial P:Cy [R, Ay, Ay, ... 1= 1]
Call private/init/superclass method P, with arguments A - - - A, through object reference R.
184 invokestatic P:Cs [A1, Ay, ... 1= 1]
Call static method P with arguments A - - - Aj.
185 invokeinterface P:Cyn:S [R, Ay, Ap, ... 1= 1]
Call interface method P, with n arguments A - - - A, through object reference R.
187 new T:Cy [1=1[R]
Create a new object R of type T.
188 newarray T:B [C]=[R]
Allocate new array R, element type 7', C elements long.
189 anewarray T:Cs [C]=[A]
Allocate new array A of reference types, element type T, C elements long.
190 arraylength [A] = [L]
Determines the length L of array A.
191 athrow [R]=["]
Throw exception.
192 checkcast C:Cy [R] = [R]
Ensures that R is of type C.
193 instanceof C:Cy [R]=[V]
Push 1 if object R is an instance of class C, else push 0.
194 monitorenter [R] =11
Get lock for object R.
195 monitorexit [R] =11

Release lock for object R.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 591

Table VI. Java bytecode instructions 196 to 201.

Opcode Mnemonic Args Stack
196 wide C:B,1:F; =11
Perform opcode C on variable V [1]. C is one of the load/store instructions.
197 multianewarray T:Cs,D:Cp [d,dp,...]1=[R]
Create new D-dimensional multidimensional array R. dy, d», . . . are the dimension sizes.
198 ifnull L:S [Vi=1]
If V. =null goto L.
199 ifnonnull L:S [Vi=1]
If V #£null goto L.
200 goto_w I:L [1=1
Goto instruction /.
201 jsrw I:L [1=1[A]

Jump subroutine to instruction /. A is the address of the instruction right after the jsr_w.

o
X
S
IS
S
&

MIN: 1

MAX: 74

AVG: 6.8
MODE: 1

400

300

5 % STDDEV:9

3 € SAMPLES: 1132
200 2 > TOTAL: 7682
o
B

100

(a)

9T “%6S
TLT ‘%E8

250

w
2
B
)
w

200

150

100

50

Figure 4. Program-level statistics: (a) number of packages per application; (b) package depth per application.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

592 C. COLLBERG, G. MYLES AND M. STEPP SP E

“%¥8

I
O
=)

MIN: 0
MAX: 310
AVG: 11.8
MODE: 1
MEDIAN: 5
STD DEV: 21
SAMPLES: 7682
TOTAL: 90500

LLOT ‘%L1

8SS ‘%16

w
3
=
&~
=
N
©

2000 MIN: 0

MAX: 160
AVG: 1.6
MODE: 0
MEDIAN: 0
STD DEV: 4
SAMPLES: 7682
TOTAL: 12188

1500

1000

500

vT ‘%66
Ee 1T %66
S |9 %66
‘o] €1°%66
€ ‘%66

&
&
§

STn001

a0
%o

NJ

(b)

Figure 5. Program-level statistics: (a) number of classes per package; (b) number of interfaces per package.

4.3. Inheritance graphs

In addition to a class implementing an interface, a class can also extend another class. In this case
the subclass inherits all of the variables and methods of the class which it extends (the superclass),
thus creating an inheritance relationship. An inheritance graph can be constructed to represent the
superclass/subclass relationship. An inheritance graph is a rooted, directed, acyclic graph where the
nodes are classes and interfaces. There is an edge from node A to node B iff node B directly extends
or implements node A. Thus, classes will have edges to their direct subclasses, and interfaces will
have edges to the classes that implement them and to the interfaces that extend them. In order to make
this a rooted graph, we assert that all interfaces extend the class java.lang.Object (and, hence,
java.lang.Object becomes the root). Using this definition, we can see that node B is reachable
from node A iff it is possible to assign a value of type B to a variable of type A. The inheritance graph

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 593
%

9001 ‘%L8

8TV ‘%T6

=
@
N
w
o)
Q
°

500 MIN: 0
MAX: 37
AVG: 0.6

MODE: 0
MEDIAN: 0
STD DEV: 1

SAMPLES: 7682

TOTAL: 4768

400 -

300 =

‘%56

200 =

©
°
N
[
8

9ELS ‘DL

%0
<@
N
Iy
o)
IS

600 —

400

200

(b)

Figure 6. Program-level statistics: (a) number of abstract classes per package; (b) number of final classes package.

height for a given application is the maximum number of superclasses that any class in the application
has. This will include some but not all of the Java library classes.

Figure 7(a) shows that on average the height of an inheritance graph for an application is 4.5 and
that over 90% of all applications have an inheritance graph with a height of less than 7.

It is important to note that for 303 of our applications, the inheritance graph construction failed due
to the jar-file not being self-contained. This means that some class in the application had a superclass
that was unavailable for analysis, therefore we could not place it correctly in the inheritance graph.
This is typical of applications that rely on external libraries which are not packaged with them.

Figure 7(b) shows the number of classes in each application that extend other classes in the same
application, as opposed to Java library classes. Some classes in each application must directly extend
a Java library class (most often java.lang.Object), but it is interesting to note that only about
one-third (32 899/90 500) extend other classes inside the same application. Table VII shows that most
of the classes in each application extend java.lang.Object directly.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

594 C. COLLBERG, G. MYLES AND M. STEPP SP E

00T *%69
%bT6

981 *

200 MIN: 1

MAX: 10
AVG: 4.5
MODE: 5
MEDIAN: 4
STD DEV: 1
SAMPLES: 1132
FAILED: 303

I
3
=
3

150

100

50

1 ‘%001

o
°
=
[N
9

2
%o

(a)

w
)
B
w)
4
=]

200

150

STD DEV: 67
SAMPLES: 1132

100 TOTAL: 32899

50

(=)

Figure 7. Inheritance graphs: (a) height per application; (b) number of user-class extenders per application.

5. CLASS-LEVEL STATISTICS

In this section we present data regarding the top-level structure of class files. This includes the number,
type/signature, and protection of fields and methods, and the class’ or interface’s position in the
application’s inheritance graph.

5.1. Fields

A Java class can contain data members, called fields. Fields are either class variables (they are declared
static and only one instance exists at runtime) or instance variables (every instantiation of the class
contains a unique copy).

Figures 8—10 show field statistics. In Figure 8(a) we see that 60% of all classes have two or fewer
fields, but in one extreme case a class declared almost a thousand fields. Instance variables are more
common than class variables. On average, a class will contain 2.8 instance variables and 1.6 class
variables, and 44% of all classes have more than one instance variable but only 17% have more than

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 595
%

Table VII. Most common standard classes to be extended by application classes.

Class Count Y%

java.lang.Object 42 629 47.1
user_class 34 805 38.5
java.lang.Exception 1089 1.2
javax.swing.AbstractAction 893 1.0
java.lang.Thread 738 0.8
javax.swing.JPanel 691 0.8
java.lang.RuntimeException 464 0.5
java.awt.event .WindowAdapter 341 0.4
java.awt.Panel 313 0.3
java.awt.event .MouseAdapter 309 0.3
java.util.ListResourceBundle 276 0.3
java.util.EventObject 248 0.3
java.io.FilterInputStream 232 0.3
org.omg.CORBA.portable.ObjectImpl 226 0.2
org.omg.CORBA.SystemException 217 0.2
org.xml.sax.helpers.DefaultHandler 203 0.2
java.awt.Dialog 203 0.2
java.io.FilterOutputStream 202 0.2
java.applet.Applet 202 0.2
java.awt.Canvas 197 0.2
java.io.OutputStream 196 0.2
java.awt.Frame 194 0.2
java.io.IOException 192 0.2
java.io.InputStream 183 0.2
javax.swing.JFrame 149 0.2
javax.swing.JDialog 135 0.1
org.omg.CORBA.UserException 126 0.1
java.lang.Error 120 0.1
java.beans.SimpleBeanInfo 119 0.1
java.awt.event .KeyAdapter 118 0.1
javax.swing.table.AbstractTableModel 104 0.1
java.awt.event.FocusAdapter 101 0.1
java.util.AbstractSet 94 0.1
java.security.Signature 80 0.1
javax.swing.beaninfo.SwingBeanInfo 79 0.1
java.security.GeneralSecurityException 78 0.1
org.xml.sax.SAXException 70 0.1
javax.swing.JComponent 70 0.1
javax.swing.event.InternalFrameAdapter 60 0.1
java.util.Hashtable 57 0.1
java.lang.IllegalArgumentException 56 0.1
java.io.Writer 54 0.1
java.util.AbstractList 51 0.1
java.util.Properties 50 0.1
java.io.Reader 49 0.1

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

a9}
&
o
T
72}
p=
a
Z
<
|72]
0
-
>~
p=
<}
g
=4
o
M
-
3
o
O
J

596

11

100%, 1

AVG: 4.4

MODE: 1
MEDIAN: 2

STD DEV:
SAMPLES: 90500

MIN: 0
MAX: 968
TOTAL: 396816

99%, 1
99%, 5| e
99%, 18
99%, 23 [S

99%, 139 | S
99%, 40
99%, 57|
99%, 94
99%, 97 | 9
99%, 1274 9

99%, 358

98%, 682

98%, 1683

2
‘o

96%, 6216

89%, 1535

87%, 1911

85%, 2411

82%, 2919

79%, 4143

75%, 5217

69%, 7669
60%, 11968 RN NN N NN W]
47%, 22033
23%, 21153 0

3456789 4

12

0

8000
6000 —
4000 —
2000 —

(a)

100%, 1

AVG: 2.8
MODE: 0

MIN: 0
MAX: 742
MEDIAN: 1

STD DEV: 6
SAMPLES: 90500
TOTAL: 248930

99%, 1
99%, 38
99%, 8
99%, 14
99%, 27
99%, 40
99%, 40
99%, 120
99%, 298 o

99%, 829
98%, 3606
94%, 1238
93%, 1371
91%, 2042
89%, 2457
86%, 3533
82%, 4861
T7%, 7128
69%, 11632
56%, 20177
34%, 31039

0

N

()

o
o 0
=3}
Nal N=} v~
Naladt o <t
ZXOWZ > % 99%, 5
£255%ma% ,
3202828 %18
=595L 99%,22
0 s 99%, 80
99%, 13
99%, 20
99%, 35
99%, 63
99%, 76
99%, 1118
99%, 200
99%, 596
98%, 1940
96%, 490
95%, 544
95%, 748
94%, 812
93%, 1092
92%, 1517
90%, 2456
88%, 4442
83%, 10822
71%, 64397
1 1 1 1 Ll
(= (=] (= (= f=}
(=] (=] (=] (=] [=%
(=3 (=] (=3 (= (=1
wy <t N o —

‘9599

0123456789 Yy

(©)

Figure 8. Field declarations in classes: (a) number of fields per class; (b) number of instance variables per class;

(c) number of class (static) variables per class.

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

597

2]
=
<
o~
3
[
Ay
0
a
o
Q
0
<l
>
m
s
<
|59
e}
A
=}
=
7]
—
<
S
=
[
=
m
Z
<

100%, 1

AVG: 1.5
MODE: 0

MEDIAN: 0
STD DEV: 7

99%, 7
99%, 20
99%, 67
99%, 31

99%, 9
99%, 35
99%, 42
99%, 46

99%, 171 o
99%, 240
99%, 551
98%, 1956
96%, 487
96%, 701
95%, 895
94%, 1055
93%, 1499
92%, 2275
90%, 2817

MIN: 0
MAX: 553
SAMPLES: 102688
TOTAL: 152468

(a)

87%, 5579
81%, 11355
70%, 72849

6000
4000 —
2000 —

102688

100%, 1

AVG: 2.6
MODE: 0

MAX: 968
MEDIAN: 1

MIN: 0
STD DEV: 8
SAMPLES:
TOTAL: 270023

99%, 1
99%, 6
99%, 10
99%, 13
99%, 85
99%, 8
99%, 22
99%, 43
99%, 40
99%, 67
99%, 104
99%, 238 §
99%, 900
98%, 3527
95%, 975
94%, 1261
92%, 1795
91%,2314
88%, 3354
85%, 4618
81%, 8079
73%, 12769
60%, 26492
35%, 35966

9 20 o %9 Jy

23456789 QUnuiy

(b)

89%, 4517

84%, 17059

65%, 59481

MIN: 0
MAX: 967

AVG: 1.4
MODE: 0
MEDIAN: 0

STD DEV: 8

SAMPLES: 90500

TOTAL: 126861

99%, 420
98%, 1535
97%, 374
96%, 480
96%, 617
95%, 660
94%, 914
93%, 1390
92%, 2548

100%, 1

99%, 1
99%, 1
99%, 12
99%, 15
99%, 60
99%, 6
99%, 14
99%, 19
99%, 59
99%, 48
99%, 106 N
99%, 163 &

5000 -

4000 =

3000 =

2000 -

1000 -

2.2
szox

050 %

0123456789 4uRy

(©

Figure 9. Field declarations in classes: (a) number of primitive fields per class or interface; (b) number of reference

fields per class or interface; (c) number of final fields per class.

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

598 C. COLLBERG, G. MYLES AND M. STEPP SP E

2o 8
% “_ 10
£2 7
300 - MIN: 0 -
: 100 — < :
£ MAX: 52] = MAX. 6
o AVG:0.0] AVG: 0.0
3 MODE: 0 80 MODE: 0
200 g MEDIAN: 0 1 MEDIAN: 0
Lo STD DEV: 0 60 - 8 STD DEV: 0
g SAMPLES: 90500] :
5 3 MPLES: 5050 | 3 SAMPLES: 90500
8 $3213 & TOTAL: 256

100 40

o o o =y 7 -

o O Nl

SRIF S 20 g 8

b 3 3 SIS

~ w —_ 1 N S

0 -
p B> 0 -

()123456789Q/;’Q@ %, o N R

(a) (b)

Figure 10. Field declarations in classes: (a) number of transient fields per class;
(b) number of volatile fields per class.

one static variable. It is also more common for a class to have fields of reference types rather than
primitive types. On average, a class will have 1.5 fields of primitive type, but 2.6 fields of reference
type.

Fields may also be declared final, transient, or volatile. A final field is one whose value cannot be
altered after it is first assigned in the instance or class initializer. A transient field is one that is not part
of the persistent state of its parent object. A volatile field is one that cannot be internally cached by
the JVM, since it is assumed to be accessed by multiple threads. Figures 9(c), 10(a), and 10(b) report
on the number of final, transient, and volatile fields per class, respectively. We see that 98% of all
classes have no transient fields, 99% have no volatile fields, and more than half of all classes have no
final fields. The rareness of these modifiers makes the outliers in these graphs particularly interesting.
While in general there are very few transient fields, Figure 10(a) shows us that one class had 52 of
them. Also, when we compare Figures 9(b) and 9(c), we see that they have very similar MAX values.
On closer inspection, this is due to a single class in the file ‘kawa-1.7.jar’ which has 968 fields,
all of which are reference types, and only one of which is not final.

Table VIII gives a breakdown of the declared types of fields. Only primitive types and types exported
from the Java standard library are shown. Our data also contained some user defined types with high
usage counts. This is due to idiosyncrasies of our collected programs, such as a program declaring
vast numbers of fields of one of its classes. Table VIII shows that the vast majority of types are ints,
Strings, and booleans. We note that, somewhat surprisingly, java.lang.Class (Java’s notion
of a class) is a frequent field type, and doubles are more frequent than £loats.

5.2. Constant pool

Figure 11 shows the number of entries in the constant pool (the class file’s symbol table) per class.
While small literal integers are stored directly in the bytecode, large integers as well as Strings and
real numbers are, instead, stored in the constant pool. Figures 12—14 show the relative distribution of
literal types.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 599
%

Table VIII. Most common field types.

Field type Count %

int 153861 21.8
java.lang.String 105787 15.0
boolean 44914 6.4
java.lang.Class 24355 34
long 16556 2.3
java.lang.Object 14472 2.0
byte[] 10229 1.4
int [] 8157 1.1
java.util.Vector 7601 1.0
java.util.Hashtable 7095 1.0
short 7048 1.0
byte 6464 0.9
java.lang.String[] 6412 0.9
java.util.Map 5692 0.8
double 5256 0.7
java.util.List [] 4971 0.7
float 3115 0.4
java.io.File 3019 0.4
char (] 2995 0.4
java.math.BigInteger 2782 0.3
java.lang.StringBuffer 2472 0.3
java.sqgl.Connection 2443 0.3
javax.swing.JLabel 2066 0.3
java.util.HashMap 2064 0.3
java.awt.Color 2058 0.3
char 1987 0.3
java.util.ArrayList 1748 0.2

The difference between Figures 14(a) and 14(b) is that ‘string constants’ are user-defined strings,
such as all literal strings that appear in the source code. The ‘UTFS strings’ include all user strings,
but also include strings used internally by the classfile format, as well as the names of all referenced
classes, interfaces, methods, fields, etc. It is interesting to note that UTFS strings comprise over half of
the total constants counted, whereas the sum of all numeric constants is less than 2% of the total.

5.3. Methods

Figures 15-17 give statistics of methods. Of interest is that 73% of all classes have nine or fewer
methods (Figure 15(a)), and that the vast majority of classes have no abstract or native methods
(Figures 15(b) and 16(a)). Almost all classes have at least one virtual method, with an average of
7.7 methods per class (Figure 17(a)). Static methods are quite rare: 80% of all classes have at most one
static method, with an average of 1.3 methods per class (Figure 16(b)).

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

a9}
&
o
T
72}
>
a
Z
<
|72]
2
-
>~
>
o}
g
=4
o
M
-
3
@]
O
J

600

©
%
o 3
L~ k]
o ol
o Tn—Oal
TASACA=— 100%, 3
S S 0
EZSR%RER
=S<0RagE
Q&0
MEmMT
=5 =
99%, 2
99%, 3
99%, 6
99%, 74
99%, 496 o
99%, 164
99%, 225
99%, 357 W
98%, 676
98%, 1035
97%, 1879
95%, 3704
91%, 8054
83%, 22413
61%, 3985
58%, 4090
54%, 4570
49%, 5147
44%, 6020
38%, 7491
31%, 9128
22%, 11057
, 10229
1%, 375
1%, 1147
0%, 61
0%, 286
0%, 11
r T T
(=3 f=3 =3
=3 =3 =3
(=3 (=3 (=3
el S e

67 89 4%
225

()

Figure 11. Number of constant pool entries per class or interface.

%@ S
= L o)
% aS& N

SA—=cOoT== 00%,34)M%v
gagzzad omnlS
=<QF%z5
=gesg
=54
" 90.
s
99%,20{
09%, 6| S
99% 1350
99%, 36 { NS
99%, 89 o
99%, 24 {
99%, 419
99%,29 V9
99%, 22 S
99%, 554 o
99%, 88 §)
99%, 91 8
99%, 273 D
99%, 902 -
98%, 180 M &
98%, 234 m o
97%, 354
97%, 406 . <
97%, 562 m—
96%, 866 -
95%, 1202 -
94%, 1684 «
92%, 3814 -
89%, 91653 -

4000
3000
2000
1000

(a)

98%, 3031
95%, 98232

MIN: 0
MAX: 1033

AVG: 0.3
MODE: 0
MEDIAN: 0

99%, 663

STD DEV:
SAMPLES: 102688

33383

TOTAL:

99%, 102

99%,

100%, 15

99%. 2
99%, 6
99%,32

99%, 16
99%, 2
99%, 1
99%, 1
99%, 3
99%, 6

99%, 16

99%, 64

99%, 19

99%, 68
99%, 28
99%, 68

99%, 92
221

1000

23456789

1

0

(b)

Figure 12. Literal constants in classes: (a) number of integer entries per class or interface; (b) number

of long entries per class or interface.

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 601

‘%66

11¥ ‘%66

=1
)
@
&

200 MIN: 0
MAX: 287
AVG: 0.1

MODE: 0
MEDIAN: 0
STD DEV: 3
SAMPLES: 102688
TOTAL: 7278

150

100

50

%66
T %66
. .91 *9001

\Y
D

2
N

&

N
&
&

‘%L6
S9ET “%86

S81001
SEV ‘%66

500 - MIN: 0
MAX: 1292
E AVG: 0.1
400 MODE: 0
MEDIAN: 0
STD DEV: 5
g SAMPLES: 102688
S TOTAL: 12148

0vT ‘%66

300 -

200 -

LIT
¥9 ‘%66
S8 ‘%66

100 -

012345678

()

Figure 13. Literal constants in classes: (a) number of float entries per class or interface; (b) number
of double entries per class or interface.

5.4. Member protection

Figures 18 and 19 show the frequency of visibility restrictions of class members (fields and methods).
A member can be package private, private, protected, or public. Figure 19(c)
summarizes the information by giving average numbers of members with a particular protection.

5.5. Inheritance

Figure 20 shows information about class inheritance. Figure 20(a) shows the number of immediate
subclasses of a class, i.e. the number of classes that directly extend a particular class. Figure 20(b)
shows the number of classes that directly or indirectly extend a particular class. We found that 97%
of all classes have two or fewer direct subclasses. One of the classes in our collection is extended

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

602 C. COLLBERG, G. MYLES AND M. STEPP

SRE

6€1LY ‘%SY

6VSTI ‘%8S

9169 ‘%19

€0SS “%0L

SYTT ‘p18

MIN:
MAX:
AVG:
MODE:
MEDIAN:
STD DEV:
SAMPLES:
TOTAL:

0
13266
7.1

0

1

73
102688
726412

€ ‘%001

012345¢67

688C1 “%S6

N}

i

MIN: 2

MAX:
AVG:
MODE:
MEDIAN:
STD DEV:
SAMPLES:
TOTAL:

13335
64.1

14

38

101
102688
6582750

(b)

Figure 14. Literal constants in classes: (a) number of string entries per class or interface; (b) number

of UTFS string constants per class.

by 187 classes. In addition, 48% of classes are at depth 1 in the inheritance graph, i.e. they extend
java.lang.Object, the root of the inheritance graph (Figure 20(c)). The average depth of a class
is low (only 2.1), although six of our classes are at depth 30-39. In many cases we failed to build
the inheritance hierarchy due to the program containing references to classes not in the jar-file or the
standard Java library.

Figure 21 shows the same information for interfaces.

Table VII was computed by looking at which classes each application class extended. Every interface
is considered to extend java.lang.Object. Similarly, Table IX looks at which interfaces were

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 603

‘%06

[
28
S
¥
(=)
8
S E
-0

o
O
=
%0
§]
»
©°

STsT

10000 —

8000 —

6000 —

4000 —

2000 —

MIN: 0
MAX: 570
AVG: 9.0
MODE: 2
MEDIAN: 5
STD DEV: 15
SAMPLES: 90500
TOTAL: 814603

881L ‘%ES

6€6S ‘%9

S9¥ ‘%56

0 -

Y000 %9 Y9 05 %0 $0 % 020,709, %,
(@)
=
2B
= N o
R_ 2
ERT
N
5003 §mS S MIN: 0
@ MAX: 123
E 2 AVG: 0.1
400 g MODE: 0
= MEDIAN: 0
300 - I®) STD DEV: 1
E SAMPLES: 90500
TOTAL: 12519
200 -
100 = 8 g8
0 - w
E >

(b)

Figure 15. Method declarations in classes: (a) number of methods per class;
(b) number of abstract methods per class.

extended by other interfaces. There is a bit of ambiguity here, because in Java source code an interface
uses the extends keyword to extend another interface, although technically the interface is really being
implemented. Table X shows which interfaces were implemented by any application class, including
other interfaces.

Method overriding occurs when a method in a class has the same name and signature as a method
in its superclass. This is a technique used to provide a more specialized implementation of a particular
method. Figure 22 shows that the majority of classes have at most one overridden method.

6. METHOD-LEVEL STATISTICS

In this section we present method-level statistics. This includes information about method signatures,
local variables, CFGs, and exception handlers.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

604 C. COLLBERG, G. MYLES AND M. STEPP SP E

o
o
N
=l
(=]
3
100 MIN: 0
1 MAX: 179
god Mg AVG: 0.0
= MODE: 0
10e MEDIAN: 0
60 - - STD DEV: 0
] 8 g ©° SAMPLES: 90500
| R g TOTAL: 1676
40 w W B
| —_ 3
| N3 © =
20 & g 2
| = B =
001 23456 7s 009 % 7 % 2,
7o g o % Jp e,
0
(a)
3000 MIN: 0
2533
: 1.3
: 0
2000 20
: 8
: 90500
- 114225
1000
© =
g8
N3
Z
0
700\’\00
0%

(b)

Figure 16. Method declarations in classes: (a) number of native methods per class;
(b) number of static methods per class.

6.1. Method sizes

Figure 23 shows the sizes in bytes and instructions of bytecode methods. The maximum size allowed
by the JVM is 65 535 bytes, but only one of our methods (63 019 bytes long) approached this limit.

6.2. Local variables and formal parameters

Figure 24 shows the maximum number of slots used by a method. All instance methods will use at
least one slot (for the this parameter). No method used more than 157 slots, indicating that the wide
instruction (used to access up to 65 536 slots) will be rarely used.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 605

%16
£
z
(=]

)
=L o MAX: 569
—_— _ (54 :
150004 = H@° ® AVG: 7.7
] 8 n MODE: 2
] MEDIAN: 4
] STD DEV: 12
10000 2 SAMPLES: 90500
] I TOTAL: 700378
] 83
5000 < 528888 s
18 REREER <
15 N &
o z SRB3R& S
0123456789 QuRuRBraboy %
929 %9 %9 Y9 09 29 5o 99%‘/&0‘99 O‘Jb
00 0
()
o
N
I
Le
g®
]
30007 m 8)
o 1558
1 0.5
20
2000 0
19
: 90500
1 43710
1000 =
(=
(=3
B
3
0 5
%%
9%,

(d)

Figure 17. Method declarations in classes: (a) number of non-static methods per class;
(b) number of final methods per class.

Table XI gives a breakdown of slot types. Note that Java’s short, byte, char, and boolean
types are compiled into integers in the bytecode, and thus will not show up as distinct types. Also, a
slot may contain more than one type within a method, although at any one particular location it must
always have the same type. Table XI shows that ints and St rings make up the majority of slot types.
Only 3.8% of slots contain two types, and only 0.6% contain three types. This indicates that the design
of the JVM could have been simplified by requiring each slot to contain exactly one type throughout
the body of a method, without much adverse effect.

Slots are not explicitly typed in the bytecode. Instead, slot types have to be computed using a static
analysis known as stack simulation. This involves simulating the behavior of each instruction on the
stack and the local variable slots, while following all possible paths of control flow within the method.
A similar algorithm is used in the Java bytecode verifier.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

606

C. COLLBERG, G. MYLES AND M. STEPP

SRE

1SL9Y “%b1S
€6L0T ‘%yL

10000

oo
0
] MIN: 0
E 3 MAX: 743
_ b AVG: 2.0
8000 o3 MODE: 0
] > MEDIAN: 0
6000 — 5. STD DEV: 9
i 533 2 SAMPLES: 90500
4000 SR B TOTAL: 177960
N Do 83
4 O —
() a =
2000
0 -
(@)
~
(>3]
B
~
g
28
10000 5 : MIN: 0
1 2 MAX: 119
] % AVG: 0.9
8000 MODE: 0
1 2 MEDIAN: 0
6000 N STD DEV: 3
] w3 SAMPLES: 90500
ERe 8 TOTAL: 81574
4000 — Svse N
LIV S
4 N _ D Q2 3 o — =l —
QS SRRIJIIFITLLovo © =)
2000 — Ro‘b*P\s\Q&s\\gcoc 8 S
SEA2rLILIARSE ® R
1 o o 3 Z®w o=) [}
0 = o S = —_ S
~ 2 Y I, O & %
2 e R

(b)

Figure 18. Protection of class members: (a) number of package private members per class;
(b) number of private members per class.

Figure 24(b) shows the maximum stack depth required by a method. This is stored as an attribute in
the class file, and could thus be larger then the actual stack size needed at runtime.

The number of slots used by a method in Figure 24(a) includes those slots reserved for method
parameters. Figure 25 breaks out the number of formal parameters per method. This is the number
of parameters, not the number of slots those parameters would consume (i.e. longs and doubles
count as one). As expected, the average is low (1.0), with 90% of all methods having two or
fewer formals. Table XII shows the most common method signatures. The signatures are presented
with the method’s parameter type list first, followed by the method’s return type. So, for example,
a method that takes two integer parameters and returns a String would have a signature of
‘(int, int) java.lang.String’. We have also abstracted away any reference types that do not
appear in the standard Java libraries (i.e. user-defined classes). If a user-defined class is a parameter
or the return type of a method, we replace it with ‘user_class’. One reason that ‘() void’ is so

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 607

SS881 ‘%T9

9L8LE ‘W1
09%6 “%EL

10000 .
4 MAX: 487

8000 —

6000 —

4000 —

2000

1S¥S “%b6L

LL6E ‘BHEY

S9LT “%98

080T ‘%88
10L1 ‘%06
%T6

320

Y01V "%L6
2]
3
o
=]
s3]
<
S

798 ‘%€6

0 -

0123456738

(553
S
B
93
S
E
S

W
r
®
3
8

©
N
N
NG

15000 MIN: 0
MAX: 556

AVG: 7.5

12121 ‘%T6

=
]
=}
o

MEDIAN: 4
© STD DEV: 13
2 SAMPLES: 90500
S TOTAL: 683075

10000

6V6€ ‘%t

5000

(b)

Protection %

Package private 14.7

Private 6.7

Protected 22.2

Public 56.4
(©

Figure 19. Protection of class members: (a) number of protected members per class; (b) number of public methods
per class; (c) average of class members with particular protection.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

608 C. COLLBERG, G. MYLES AND M. STEPP

o
°
=N
o
&
£
G
)

0v ‘%6
T6L1 ‘%96

2000 MIN: 0

MAX: 187
AVG: 0.4
MODE: 0
MEDIAN: 0
STD DEV: 2
SAMPLES: 90500
FAILED: 13724

1500

1000

18L ‘%L6

500 8 -
w o B
0 x o o o
0123456789 4uR2%B a2k 4
@ By
(a)
o
o
S
[=))
2
S
2 e
0007 w2 MIN: 0
;, MAX: 346
EN-RZ AVG: 0.6
4000 z VG 0
MEDIAN: 0
3000 - STD DEV: 5
SAMPLES: 90500
FAILED: 13724
2000 =
o —
1000 5 ggsgs
RS8R
0 O e D ww
KRBT
JEIIONIN
e 99,79
(b)
a
o
F\‘Q
w
-
(39
~
w
MIN: 1
MAX: 10
30000 = AVG: 2.1
] MODE: 1
> MEDIAN: 1
3 STD DEV: 1
20000 g SAMPLES: 90500

FAILED: 14383

10000 € v o =
Pﬁc\og

P

‘\ﬂc\u«

0 (> NN=T -}
1 2 3 4 5 6 7 8 9 4

o

(c)

Figure 20. (a) Number of immediate subclasses per class; (b) total number of subclasses per class;
(c) inheritance depth of a class.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 609

$S06 “%L8
808 ‘%56

500 - MIN: 0
MAX: 69
E AVG: 0.4

400 MODE: 0
MEDIAN: 0
STD DEV: 2
SAMPLES: 12188
FAILED: 1862

300 -

80T ‘%L6

200 -

100 -

©
o ©
© R
]o
© ©
8 9

<

o
S X
o3
%3 =
wn O O

b

200 MIN: 0

MAX: 105
AVG: 0.7
MODE: 0
MEDIAN: 0
STD DEV: 5
SAMPLES: 12188
FAILED: 1862

150

101 “%L6

S8 ‘%66

100

50

o
®
.$
)
9

S B %66
S M9 %66

S8

2 B>
2,708 ,8 2
o 0 Yo %o

()

=
.
® 3
8=
-~ =
(=)
w
=l

2000

1500

1000

500

©

Figure 21. (a) Number of immediate subinterfaces per interface; (b) total number of subinterfaces per interface;
(c) interface extends depth of a class.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

610 C. COLLBERG, G. MYLES AND M. STEPP

SRE

Table IX. Most common standard interfaces to be extended by

application interfaces.

Interface Count %
user_interface 3359 577
org.w3c.dom.html .HTMLElement 676 11.6
java.util.EventListener 362 6.2
java.io.Serializable 251 4.3
org.w3c.dom.Node 225 3.9
java.lang.Cloneable 118 2.0
org.omg.CORBA.Object 96 1.6
java.security.PrivateKey 43 0.7
org.w3c.dom.CharacterData 42 0.7
org.w3c.dom.events.EventTarget 39 0.7
java.security.PublicKey 39 0.7
org.omg.CORBA.portable.IDLEntity 38 0.7
org.omg.CORBA.IDLType 36 0.6
org.w3c.dom.Element 29 0.5
org.w3c.dom.Document 28 0.5
java.rmi.Remote 24 0.4
org.w3c.dom.css.CSSRule 23 0.4
java.security.Key 23 0.4
org.w3c.dom.events.Event 22 0.4
org.w3c.dom.DOMImplementation 22 0.4
org.w3c.dom. Text 21 0.4
org.xml.sax.XMLReader 20 0.3
org.omg.CORBA.IRObject 18 0.3
org.xml.sax.ContentHandler 16 0.3
java.lang.Comparable 16 0.3
javax.crypto.interfaces.DHKey 14 0.2
java.util.Map 12 0.2
java.sqgl.ResultSet 11 0.2
java.util.List 10 0.2
java.sqgl.Connection 9 0.2
java.lang.Runnable 9 0.2
org.w3c.dom.css.CSSValue 8 0.1
org.xml.sax.Locator 7 0.1
org.xml.sax.DTDHandler 7 0.1
java.util.Collection 7 0.1
java.sqgl.ResultSetMetaData 7 0.1
org.xml.sax.ext.LexicalHandler 6 0.1
org.omg.CORBA.DynAny 6 0.1
org.xml.sax.DocumentHandler 5 0.1
org.omg.CORBA.Policy 5 0.1
javax.xml.transform.SourceLocator 5 0.1
java.sql.PreparedStatement 5 0.1
org.w3c.dom.events.UIEvent 4 0.1
org.w3c.dom.events.DocumentEvent 4 0.1

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 611
&

Table X. Most common standard interfaces to be implemented by application classes.

Interface Count Y%
user_interface 21955 559
java.io.Serializable 3534 9.0
java.awt.event .ActionListener 2880 7.3
java.lang.Runnable 1447 3.7
java.lang.Cloneable 1009 2.6
org.omg.CORBA.portable.Streamable 793 2.0
java.awt.event.ItemListener 302 0.8
java.lang.Comparable 266 0.7
java.util.Iterator 262 0.7
java.util.Enumeration 216 0.6
java.util.Comparator 215 0.5
javax.swing.event.ChangelListener 211 0.5
java.awt.event .MouseListener 187 0.5
org.xml.sax.EntityResolver 173 0.4
java.security.PrivilegedAction 145 0.4
org.xml.sax.ErrorHandler 130 0.3
java.security.spec.AlgorithmParameterSpec 130 0.3
java.beans.PropertyChangelistener 114 0.3
java.awt.event .MouseMotionListener 113 0.3
org.xml.sax.ext.LexicalHandler 109 0.3
java.awt.event .KeyListener 109 0.3
org.xml.sax.ContentHandler 100 0.3
javax.swing.event.ListSelectionListener 99 0.3
java.io.Externalizable 99 0.3
java.security.spec.KeySpec 87 0.2
org.xml.sax.DocumentHandler 83 0.2
org.xml.sax.DTDHandler 82 0.2
java.awt.event.AdjustmentListener 81 0.2
javax.sqgl.DataSource 80 0.2
java.awt.event.WindowListener 80 0.2
java.awt.image.ImageObserver 76 0.2
java.awt.image.renderable.RenderedImageFactory 74 0.2
javax.naming.spi.ObjectFactory 72 0.2
java.sqgl.Connection 71 0.2
java.awt.event .FocusListener 71 0.2
org.w3c.dom.NodeList 70 0.2
org.xml.sax.AttributeList 59 0.2
javax.naming.Referenceable 58 0.1
java.io.FilenameFilter 55 0.1
org.xml.sax.Locator 52 0.1
java.util .MapS$SEntry 52 0.1
java.lang.reflect.InvocationHandler 52 0.1
javax.swing.event.DocumentListener 51 0.1
java.awt.event.ComponentListener 50 0.1
org.xml.sax.Attributes 48 0.1
Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

612 C. COLLBERG, G. MYLES AND M. STEPP SP E

‘%68

=
=
R
=
)
=3
3

TSIItL
S6T€ ‘W6

TTST *%S6

4000 MIN: 0
MAX: 107
AVG: 0.7

MODE: 0
MEDIAN: 0
STD DEV: 2

SAMPLES: 90500

TOTAL: 59638
FAILED: 2767

3000

2000

1000 8 =
B g

v SERIR]R

0 S uwm o SIS
0123456738 Q0.9 % 0 %9 0 %0 %

R

Figure 22. Number of method overrides per class.

common is that this is the signature of default constructors, especially that for java.lang.Object,
which must be called in the constructors of all classes that directly extend it.

6.3. CFGs

A method body can be converted into a CFG, where the nodes (the basic blocks) are straight-line
pieces of code. Control always enters the top of the basic block and exits at the bottom, either through
an explicit branch or by falling through to another block. There is an edge from basic block A to basic
block B if control can flow from A to B.

Building CFGs for Java bytecode is not straightforward. A major complication is how to deal with
exception handling. Several instructions in the JVM can throw exceptions implicitly. This includes the
division instructions (which may throw a divide-by-zero exception), and the getfield, putfield,
and invokevirtual instructions (which may throw null-reference exceptions). These changes in
control flow can be represented by adding exception edges to the CFG, which connect a basic block
ending in an exception-throwing instruction to the CFG’s sink node. If every such instruction (which are
very common in real code) is allowed to terminate a basic block, blocks become very small. Since some
analyses can safely ignore implicit exceptions, SandMark supports building the CFGs both with and
without implicit exception edges. The jsr and ret instructions used for Java’s £inally clause
also cause problems. In general, a data flow analysis is necessary in order to correctly build CFGs
in the presence of complex jsr/ret combinations. SandMark currently does not support this and,
as a consequence, will sometimes introduce spurious edges out of blocks ending in ret instructions.
Since there are few such CFGs in our sample set this problem is unlikely to significantly affect our
data.

Figure 26 shows the number of basic blocks per method body (we make the distinction method
body to rule out methods with no instructions, such as native or abstract methods). We can see that
97% of all method bodies have fewer than 100 basic blocks. We can corroborate this information with
Figures 27(a) and 23(b), to see that the average basic block size is 2.0, and that 97% of all method
bodies have fewer than 200 instructions.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

613

2]
=
<
o~
3
[
Ay
0
a
o
Q
0
<l
>
m
s
<
|59
e}
A
=}
=
7]
—
<
S
=
[
=
m
Z
<

o0
o = ..A//.. 0.999
S —=8 oaaa
~85.,.08EG o018
FROEESAS >
S$Z82AE 99%, 2 yooao%%
SEnSe %ﬁ%
253 99%, 14 | NS
99%, 57 { N0
99%, 1|55
99%, 32 { Sl
99%, 87 {55
99%, 46 { S
99%, 44 { S
99%, 113 | Nty
99%, 361 | 5%
99%, 757§ >
99%, 2699 m &
99%, 951 gom%g
99%, 1108 o
99%, 1527 @S
99%, 2551 &
98%, 3782 soo%g
98%, 5811 el
97%, 10596 S
96%, 22146 D
93%, 63392 NN N NN N /oyg
85%, 12881 D)
83%, 15552 o
81%, 18700)
79%, 24206 aoog
76%, 28339 o
73%, 38450)
68%, 51785 £
61%, 76615 NN NN o

52%, 151021 RO
33%, 27793

29%, 32371

25%, 17620
23%, 45479

18%, 100711 ORI C]
5%, 71300

4%, 7584

3%, 14661

1%, 13971

23456789 Gunan

j=3 j=3 j=3 j=3 j=3
(=3 (=3 (=3 (=3 (=3
j=3 (=3 j=3 j=3 j=3
(=3 (=} (=3 (=} (=}
v <t o [\ —

(a)

156

100%, 1

AVG: 33.2
MODE: 3
MEDIAN: 9
STD DEV:

MIN: 1
MAX: 42725

99%, 2
99%, 32
99%, 1
99%, 24
99%, 10
99%, 3
99%, 27

TOTAL: 26597868

SAMPLES: 801117

99%, 96 | °

99%, 71
99%, 320
99%, 8718
99%, 216
99%, 455
99%, 369
99%, 654
99%, 778
99%, 1551 W
99%, 3720
98%, 9045
97%, 31320
93%, 7075
92%, 10059
91%, 11776
90%, 15808
88%, 21440
85%, 29709
81%, 46637
76%, 72423
66%, 140920
49%, 23837
46%, 21379
43%, 28719
40%, 45790
34%, 52415
27%, 76971
18%, 103439
5%, 29170
1%, 13971

80000 —
60000 —
40000 —
20000 —

%9~

123456789 4%

(b)

Figure 23. Method sizes: (a) size in bytes; (b) number of instructions per method body.

As can be seen from Figure 27(a), the average number of instructions in a basic block is very small,
only 2.0, and 98% of all blocks have fewer than six instructions. Figure 28(a) shows the average

out-degree of a basic block node is, predictably, low, only 1.2. Out-degrees higher than two can

only be achieved either when an instruction is inside an exception handler’s try block, or with the
JVM’s tableswitch and lookupswitch instructions. In the first case, edges are added from

each basic block inside a try block to the first basic block of the handler code. Therefore, if a
basic block is inside multiple nested try blocks its out-degree may be high. In the second case,

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

614 C. COLLBERG, G. MYLES AND M. STEPP SP E

W
r
Ra
2
)
LR
)
g MIN: 0
MAX: 157
200000 AVG: 2.9
MODE: 1
MEDIAN: 2
150000 STD DEV: 3
SAMPLES: 801117
100000 TOTAL: 2297561
Nl
S8 vwowws
S
DX E QAN = —
0 DAJ T WO W oo~
% I 0 G 4
22550 sl 2 R
%
(a)
w
[
R
[
R
Na
® MIN: 0
MAX: 262
200000 MAX: 267
MODE: 2
150000 MEDIAN: 2
STD DEV: 2
SAMPLES: 801117
100000
© o ©
o0 =l
50000 S8¥8egeegL08s
PUITRINSREERS
<] I\JLO" \D:sh“I\J“I\J“—‘P N8
0 ;'°_°fc~4>NQ~xocnwom
8 9 LYY % w9 Y
A0 0 % e % P,
0%

(b)

Figure 24. Local variables: (a) number of max locals per method body; (b) number
of max stack weights per method body.

the tableswitch and lookupswitch instructions are Java’s implementation of switch-
statements, which may have many possible branch targets. Higher in-degrees can occur when a try
catch block has many instructions inside it that could potentially trigger the exception. Each of these
instructions will end its block, and have an edge going from it to the handler block. Thus, the in-degree
of the handler block will become large.

Figure 27(b) shows the number of instructions per basic block when implicit exception edges have
not been generated. As can be seen, this increases the average number of instructions per block to 7.7.

A node x in a directed graph G with a single exit node dominates node y in G if every path from
the entry node to y must pass through x. The dominator set of a node y is the set of all nodes which
dominate y. Dominator information is used in code optimizations such as loop identification and code
motion. Figure 29 shows the number of dominator blocks per basic block.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 615
&

Table XI. Most common slot types.

Register type Count %

int 614910 16.2
java.lang.String 365915 9.6
2 types 144 145 3.8
java.lang.Object 76764 2.0
byte[] 50658 1.3
long 49903 1.3
java.lang.Throwable 38046 1.0
double 25541 0.6
3 types 23426 0.6
java.lang.StringBuffer 21716 0.6
java.lang.String[] 20600 0.5
java.util.Iterator 16036 0.4
float 15595 0.4
java.lang.Class 15129 0.4
java.util.Vector 14795 0.4
int [] 14 604 0.4
java.lang.Exception 14 149 0.4
java.io.File 13334 0.4
java.io.InputStream 11686 0.3
java.util.List 11615 0.3
java.lang.ClassNotFoundException 11331 0.3
java.util.Enumeration 10732 0.3
char[] 9534 0.3
java.lang.Object [] 9417 0.2

6.4. Subroutines and exception handlers

Java subroutines are implemented by the instructions j sr and ret. They are chiefly used to implement
the £inally clause of an exception handler. This clause can be reached from multiple locations.
For example, a return instruction within the body of a try block will first jump to the finally
clause before returning from the method. Similarly, before returning from within an exception handler,
the £inally block must be executed. To avoid code duplication (inlining the finally block at every
location from which it could be called) the designers of the JVM added the j sr and ret instructions
to jump to and return from a block of code. This has caused much complication in the design of the
JVM verifier. See, for example, Stata et al. [7]. Figure 30 shows that 98% of methods have no more
than two exception handlers, and 98% of all methods have no subroutines. Figure 30(c) shows that
the average size of a subroutine is 7.5 instructions. The length of a subroutine was computed as the
number of instructions between a jsr’s target and its corresponding ret. Together, our data indicate
that jsr and ret could have been left out of the JVMs instruction set without much code increase
from £inally clauses being implemented by code duplication.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

616 C. COLLBERG, G. MYLES AND M. STEPP SP E

&~ 3 O
S 32
Bpc @
W L
53528
500003 § W W g MIN: 0
1 o
48080 T L
40000 == © MODE: 0
=== % MEDIAN: 1
30000 W W MW 2 STD DEV: |
: : : g SAMPLES: 874115
S TOTAL: 861689
20000 - : : : ©
=== g g8
Q =
10000 - : : : ;IR
O a9 N
=== - 5 = ¢
0- uli=li= X = & »
01 2 3 45 6 7 8 9 4«
0\/90\99

Figure 25. Number of formal parameters per method.

6.5. Interference graphs

An interference graph models the variables and live range interferences of a method. The live ranges
of a local variable are the locations in a method between where the variable is first assigned and where
it is last used. Since method parameters and the ‘this’ reference are in local variable slots, they
are considered to have their first assignment before the first instruction of the method. The graph has
one vertex per local variable and an edge between two vertices when the corresponding variables’
live ranges overlap (or interfere). As an example consider the sample code in Figure 31(a) and the
corresponding interference graph in Figure 31(b). Since the code has 5 variables, the graph has 5 nodes.
The graph has an edge v — vy since variables v; and vy are live at the same time. An interference
graph is often used during the code generation pass of a compiler to perform register allocation.
Two variables with intersecting live ranges cannot be assigned to the same register. Figure 32 shows that
95% of the methods have nine or fewer nodes in their interference graphs. This means that methods
typically will need very few local variable slots. This analysis agrees with the data in Figure 24(a),
which show that methods declare their maximum number of slots to be small.

After examining these data, it appears that the designers of the Java instruction set were wise to make
the typical instruction use only 1 byte to refer to a local variable index. The wide prefix allows such an
instruction to use a 2-byte index, but as we can see this will almost never be necessary. Thus, had the
designers simply made all instructions use 2-byte indices, there would have been much wasted space
in the bytecode.

7. INSTRUCTION-LEVEL STATISTICS

In this section we present information regarding the frequency of individual instructions and patterns of
instructions. We also show the most common subexpressions and constant values found in the bytecode.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 617
&

Table XII. Most common method signatures.

Method signature Count %
()void 120997 13.8
(user_class)void 57762 6.6
() java.lang.String 53047 6.1
() user_class 44098 5.0
(java.lang.String)void 43810 5.0
() boolean 39772 4.5
() int 35064 4.0
(int)void 18959 2.2
(boolean)void 11461 1.3
(user_class)user_class 10332 1.2
(user_class, user_class)void 9652 1.1
(java.lang.String) user_.class 7781 0.9
(java.lang.String) java.lang.String 7777 0.9
(user_class)boolean 6880 0.8
(user_-class) java.lang.Object 6812 0.8
()java.lang.Object 6461 0.7
(java.lang.String) java.lang.Class 6258 0.7
(java.lang.String, java.lang.String)void 5561 0.6
(java.lang.Object)boolean 5373 0.6
(int) int 4776 0.5
(java.lang.Object)void 4697 0.5
(java.awt.event.ActionEvent)void 4479 0.5
(int) user_class 4270 0.5
(int)boolean 4116 0.5
(java.lang.String[])void 4044 0.5
(java.lang.String)boolean 3933 0.4
(int, int)void 3726 0.4
(int) java.lang.String 3473 0.4
()bytell 3380 0.4
() user_class|] 3322 0.4
(user_class, int)void 3251 0.4
()java.util.List 2970 0.3
(user_class, java.lang.String)void 2821 0.3
(byte[])void 2697 0.3
()java.lang.String[] 2292 0.3
(user_class, user_class) user-class 2289 0.3
(int, int) int 2023 0.2
(java.awt.event .MouseEvent)void 2008 0.2
(user_class) int 1998 0.2
(java.lang.String) int 1993 0.2
(user_class)java.lang.String 1951 0.2
() org.omg.CORBA.TypeCode 1941 0.2
(java.lang.String, user_.class)void 1900 0.2
(java.lang.Object) user_class 1873 0.2
Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

618 C. COLLBERG, G. MYLES AND M. STEPP SP E

60000 — MIN: 1
MAX: 10699
AVG: 16.7

MODE: 2

MEDIAN: 4

STD DEV: 63

SAMPLES: 801117

TOTAL: 13416883

40000 —

9291€ ‘%€
09962 ‘%16

20000

Figure 26. Number of basic blocks (in CFGs with implicit exception edges) per method body.

7.1. Instruction counts

There are 200 usable JVM instruction opcodes. Table XIII shows the frequency of each of those
bytecode instructions. The most frequently occurring instruction is aload_0 which is responsible for
pushing the local variable 0, the this reference of non-static methods. Even though this is the most
frequently occurring instruction it only has a frequency of 10%. The invokevirtual instruction
which calls a non-static method is also common, as is getfield, dup, and invokespecial, the
last two being used to implement Java’s new operator. These five instructions account for 33.8% of
all instructions. Our data indicate that the majority of the remaining instructions each occur with a
frequency of at most 1%, and that the j sr_w and goto_w instructions (used for long branches) do not
occur at all.

7.2. Instruction patterns

A k-gram is a contiguous substring of length & which can be comprised of letters, words, or, in our case,
opcodes. The k-gram is based on static analysis of the executable program. To compute the unique set
of k-grams for a method, we slide a window of length k over the static instruction sequence as it is laid
out in the class file.

We computed data for k-grams where k = 2, 3, 4, which is shown in Tables XIV, XV, and XVI,
respectively. These tables show that as the value of k increases the percentages of the most frequently
occurring sequences decrease. For example, the most frequently occurring 2-gram, aload._0,
getfield, has a frequency of only 4.7%. For 3- and 4-grams, the most frequently occurring
sequence is less than 1%. This indicates that these sequences become quite unique for each individual
application.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 619

200000 MIN: 1
MAX: 209
AVG: 2.0
150000 MODE: 1
MEDIAN: 1
STD DEV: 1
SAMPLES: 13416883
100000 TOTAL: 26597868
50000 8883
ES8xg
RO
0 [IR R e NN
> 8 G 4, 2
22900, 05,
KRR
(a)
.
£
N
8D
N
-0
N MIN: 1
R :
600000+ _ =@ R § MAX: 42725
mgg ﬁc":‘ i AVG: 7.7
|2 DR g MODE: 3
S P = MEDIAN: 3
E 53 @ STD DEV: 67
400000 4 8 5 ﬁ:} SAMPLES: 3463565
B§m TOTAL: 26597868
1 §~3°° °
I3RS
§—§ RNeo
— ey - o
200000 Y B T
IS o«@‘OC\Q@\D\D\D\D\OCO\O\D O o
Ma —_— $§§$$$$©©COOOODOCCO NeaN=J o —
] SRS SINIINEINELEL8LLgLg 8
B R S S o Ll TS R
_oatchls-h'\l&\lkowlvl\)—— © S S £ S
TCBERERTEILERBEIRI R LB 2. o
- [l S e lNe e IS N O W
]23456789/0\)0&0{(0\)‘060)0&9/’ 70\1‘00‘)&9/>u>0vd‘ 28,9, /2 %,

Figure 27. Number of instructions per basic block in CFGs (a) with and (b) without implicit exception edges.

7.3. Expressions

Figure 33 shows the size (number of nodes in the tree) and height (length of longest path from root
to leaf) of expression trees in our samples. As reported already by Knuth [1], expressions tend to be
small. We found that 61% of all expressions only have one node.

Expressions are constructed by performing a stack simulation over each method. For each instruction
that will produce a result on the stack the simulator determines which instructions may have put its
operands on the stack. This information is used to build up a dependency graph with instructions and
operands as nodes, and an edge from node a to node b if b is used by a. If the program contains certain

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

a9}
&
o
T
72}
p=
a
Z
<
|72]
0
-
>~
p=
<}
g
=4
o
M
-
3
o
O
J

620

e
E .
89 & aamgp
SnTTTTT 100%, 41 3
« G
ZESaZEE ool
S<QRRE S
SZ2AS 9%, 33N
=0Z 9%, 177d S
99%, 241 W
99%, 322 m SO
99%, 1224V
99%, 196 W
99%, 358 ml)P
99%, 141 8 %9
99%, 434 w7
99%, 883 o
99%, 3026 S
99%, 915 ES
99%, 2183 w
99%, 2600 ~
99%, 9523 O] ©°
99%, 20562 W -
99%, 43050] -
99%, 170455 W3 -
98%, 1989695 MO “
83%, 11171942 w3 -
0%, 15 | =
!
(=}

5000 -

3000 -

2000 -

(a)

100%, 2
99%, 2
99%, 2
99%, 1
99%, 9
99%, 8

99%, 56

99%, 64

99%, 289
99%, 1499 &
99%, 408
99%, 545
99%, 155
99%, 1238 o
99%, 1484
99%, 2705
99%, 4241
99%, 9102
99%, 20892
99%, 3918
99%, 5623
99%, 6310
99%, 9563
99%, 16301
99%, 35498
99%, 8658 N NN NN NN N NN NN NN]
98%, 564832 MO NN N NN W W]
94%, 12643958 MO NN N NN N NN NN W]

AVG: 1.2
MODE: 1

MIN: 0
MAX: 1877
MEDIAN: 1

STD DEV: 2
SAMPLES: 13416883

50000 -
40000 =
30000 =

7022 % % 0

0123456789 QuRuufhny

(b)

Figure 28. CFGs: (a) out-degree of basic block nodes; (b) in-degree of basic block nodes.

in which case they are discarded. The following code

]

types of loops these graphs might have cycles

segment is an example of such a loop:

ICONST 2

0
1
2

ICONST 3

IADD
DUP

3:

IFEQ <1>

4

In this example, the TADD instruction may become its own child. If the branch at offset 4 is taken,
then the result from the first iteration of the TADD will be used as the first operand in the second

iteration of the IADD.

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 621

008599 “%€T
S00929 ‘%LT
SE8ISS ‘plE
6TY61S “%HSE
9LSESY ‘%H6E
YLOSYY “%Th

9EV60Y ‘%St
AN NN 998,192 ‘%59

Q

960879 ‘%6L

MIN: 0
MAX: 10698
AVG: 105.3
MODE: 1
MEDIAN: 11
STD DEV: 437
SAMPLES: 13416883

600000 —

6VT6LY ‘%16

T60T6€ “%T8

400000 —

200000 —

%66
%66
%66
%66

66

SOVY9 ‘%66
L990S ‘%66
8€1TT ‘%66

1685
006€
€891

CIMEARRNEENN NN NN NN NN 95708 ‘%S
— OO W W 9€87S8 ‘% T
CAEEE NN NN 80878 ‘%81
G N NN NNNEEW 00[S1T] ‘%L

3456789

Figure 29. Number of dominator blocks per basic block (in CFGs with implicit exception edges).

In Table XVII we show the most common subexpressions found in our sample method bodies.
Table XVIII explains the abbreviations used. L, for example, represents a local variable, d a double
constant, («¢+«) addition, etc. Since we are counting subexpressions, the same piece of an expression
will be counted more than once. For example, if x and y are local variables, then the expression x+y*2
will generate subexpressions L, L, i, (L*1),and (L+ (L*1i)), each of which will increase the count
of its respective expression class.

To compute subexpressions we convert each expression tree into a string representation, classify
each subexpression into equivalence classes according to Table X VIII, and count each subexpression
individually.

What we see from Table XVII is that, unsurprisingly, local variable references, method calls,
integer constants, and field references make up the bulk of expressions. Somewhat more surprising
is that the expression ((Class)M()) is very frequent. Most likely this is the result of references
to ‘generic’ methods (particularly Java library functions such as java.util.Vector.get())
returning java. lang.Objects which then have to be cast into a more specific type.

7.4. Constant values

Tables XIX, XX, and XXI show the most common literal constants found in the bytecode. Constants
can occur in three different ways: as references to entries in the constant pool (instructions 1dc, 1dc_w,
and 1dc2_w), as arguments to bytecode instructions (bipush n, sipush n, and iinc n,c), or
embedded in special instructions (iconst_n, etc.).

Figure 34 shows the distribution of integer constant values. It is interesting to note that 63% of
all literal integers are 0, powers of two, or powers of two plus/minus one. This has implications for,

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

a9}
&
o
T
%]
p=
a
Z
<
|72]
0
-
>~
p=
<}
g
=4
o
M
-
3
o
O
J

622

o~
=8 9
v =9 N
(=t o= N
STCSSSr T 100%,2|
ZXRORZ >
g 41
S52858z¢8 =
MEmMT o -3 D
Z5% cRScocoR&a N
s cdSeos=aa 100%, 24
S ZROHZZAIA S
b g 0 % N
99%, 1 pmyg Mmmmmmmmu 99%. 3
99%, 5 | *o9 MmmAMnTM 99%, 1{=
99%, 10| ZP 99%, 2=
99%, 33 |V 99%, 24 ~
99%, 320 m 99%, 4 W ©
99%, 141 4 > . 99%, AW
99%, 199 W = = -
9
99%. 356 W = 99%, 89 -
e 99%, 446
99%, 914 - o, MR E NN
99%. 1901 < 9%, 3049 M NN N NN NN NN NNNNY —
99%, 5957 . e 98%, 7924 3 M NN N NN NN NN NN NN ©
98%, 11|13 AN NN NN NNNNNNNN]Y LA I e e
97%, 4997 M N NN NN N NN NN NN — m m m AO# m (=]
91%,72955/ EM A NN NN NN N NN NNN] © -

6000 —
4000 —
2000

=3 9

o . 2% o
A=t~ 100%. 41

£490%54%
5<25°2&5

ZRase o

=5< o8

«n 99%, 61

Jo\qw

99% VM%

99%, 168 N
Owae,NwNm_-l-l-l-l-l-l-l/0

o 73%, 734 o
= 65%, 585 w
59%, 750 ~

51%, 724 ©

43%, 1540 MO
27%,2592 ME NN NN NN NN <
0%, 164 =

0%, 12 o

400 —

(c)

Figure 30. (a) Number of exception handlers per method body; (b) number of subroutines per method body;

(c) number of instructions per subroutine.

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

623

2]
=
<
o~
3
[
Ay
0
a
o
Q
0
<l
>
m
s
<
|59
e}
A
=}
=
7]
—
<
S
=
[
=
m
Z
<

=axa
vo=axb
V3:2><V2

Vi

=vi+w
V5=b><V3

V4

)

(b

(a)

Figure 31. (a) Sample code and (b) corresponding interference graph.

MIN: 0
MAX: 342

74%, 101653
61%, 219542
34%, 244128

AVG: 3.1

MODE: 1
MEDIAN: 2

STD DEV: 4

99%.

SAMPLES: 801117

TOTAL: 2516760

100%, 20
99%, 6
99%, 113
99%, 44
99%, 54
99%, 160
99%, 166
99%, 335
99%, 453

99%, 1409

99%, 4902
. 28411

95%, 8768
94%, 12274
92%, 17245
90%, 24532

87%, 40603
82%, 65441

3%, 30858

100000

50000

23456789 4

1

0

(2)

1

STD DEV: 42
SAMPLES: 801117

100%, 1
99%, 1
99%, 40
99%, 33
99%, 129
99%, 26
99%, 65
99%, 66
99%, 130
99%, 154
99%, 225
99%, 397
99%, 1105 i

99%, 3713
99%, 916
99%, 1227
98%, 1531
98%, 2659

98%, 3368

98%, 5076
97%, 8528
96%, 18972

AVG: 6.2

MIN: 0

MAX: 5694
MODE: 0
TOTAL: 4982823

MEDIAN:

93%, 50679
87%, 7204
86%, 7230
85%, 7297
84%, 36621
80%, 12604
78%, 14375
76%, 79144 EORCECECECE

67%, 22946
64%, 202327 IO]
38%, 312328 MO NN W

50000 -
40000 -
30000 -
20000 -
10000 -

o

o~

0123456789 4wy

(b)

Figure 32. (a) Number of interference graph nodes per method body; (b) number of

interference graph edges per method body.

Softw. Pract. Exper. 2007; 37:581-641

Copyright © 2006 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

624 C. COLLBERG, G. MYLES AND M. STEPP SP E

Table XIII. Instruction frequencies.

Opcode Count % Opcode Count %

aload.0 2672134 100 aaload 108 016 0.4
invokevirtual 2360924 8.9 anewarray 106 780 0.4
dup 1521855 5.7 putstatic 105900 0.4
getfield 1447792 54 astore_l 99436 0.4
invokespecial 1003439 3.8 isub 93 852 0.4
ldc 936 890 35 if_icmplt 89901 0.3
aload.1l 909 356 34 if_icmpne 89452 0.3
aload 876 138 33 iconst.3 85851 0.3
bipush 865 346 3.3 arraylength 81083 0.3
new 665727 2.5 iaload 70687 0.3
iconst._0 634481 24 iconstml 67600 0.3
iload 601 808 2.3 1ldc2w 66717 0.3
putfield 552241 2.1 iconst._4 64 544 0.2
goto 507322 1.9 istore.3 58529 0.2
iconst.1 495114 1.9 istore.2 57750 0.2
aload-2 494 004 1.9 iand 55782 0.2
invokestatic 457014 1.7 instanceof 50049 0.2
getstatic 438851 1.6 if_acmpne 48379 0.2
return 433081 1.6 if_icmpeq 47 866 0.2
astore 395436 1.5 newarray 44390 0.2
sipush 383115 1.4 iconst_5 39857 0.1
areturn 351978 1.3 baload 39482 0.1
aastore 332112 1.2 castore 38065 0.1
aload.3 314398 1.2 istore_l 37068 0.1
invokeinterface 300563 1.1 if_icmpge 35921 0.1
ifeq 286 898 1.1 sastore 30690 0.1
iastore 285979 1.1 ixor 29811 0.1
ldcw 281190 1.1 if_icmple 28212 0.1
pop 270 894 1.0 dimul 27174 0.1
istore 264 341 1.0 iload.o 26 837 0.1
ireturn 259627 1.0 dload 26640 0.1
iload.2 200 600 0.8 lastore 23738 0.1
iload.1 197241 0.7 ifle 23025 0.1
checkcast 193243 0.7 monitorexit 22023 0.1
aconst_null 178499 0.7 Jsr 20074 0.1
iload.3 172 820 0.6 lconst.0 19617 0.1
bastore 171902 0.6 nop 18136 0.1
iadd 171637 0.6 1lload 17515 0.1
ifne 167 878 0.6 ifge 17494 0.1
iconst.2 163348 0.6 1i2b 17432 0.1
athrow 151515 0.6 ishl 17233 0.1
astore.2 144741 0.5 fload 16966 0.1
iinc 132890 0.5 ior 15500 0.1
astore._3 121477 0.5 dishr 15363 0.1
ifnull 121318 0.5 1lcmp 15033 0.1
ifnonnull 110290 0.4 dstore 14261 0.1

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

SRE

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS

625

Table XIII. Continued.

Opcode Count % Opcode Count % Opcode Count %
dup-x1 14202 0.1 fconst.0 4316 0.0 fneg 496 0.0
dmul 14077 0.1 £f24d 4086 0.0 pop2 378 0.0
idiv 13833 0.1 1laload 3781 0.0 fstore.l 374 0.0
if_icmpgt 12477 0.0 dload.-3 3538 0.0 d21 273 0.0
iflt 11944 0.0 1lconst.1 3515 0.0 dup2xl 263 0.0
caload 11871 0.0 dload.2 3286 0.0 1neg 208 0.0
if_acmpeq 11595 00 fload-l 3261 0.0 12f 187 0.0
dastore 11325 0.0 1sub 3212 0.0 dstore.0 168 0.0
astore.0 10400 0.0 fload-2 3130 0.0 dup2x2 164 0.0
tableswitch 10197 0.0 dcmpg 3040 0.0 1lstore.0 159 0.0
land 10047 0.0 dupx2 2984 0.0 drem 55 0.0
monitorenter 9961 0.0 £fdiv 2930 0.0 f21 42 0.0
daload 9782 0.0 saload 2867 0.0 fstore.0 20 0.0
fastore 9708 0.0 ineg 2577 0.0 frem 12 0.0
ret 9670 0.0 multianewarray 2500 0.0 Jjsr.w 0 0.0
dconst_0 9295 0.0 d2f 2402 0.0 gotow 0 0.0
i2l 8832 0.0 freturn 2360 0.0
fstore 8765 0.0 fload.3 2357 0.0
lookupswitch 8738 0.0 1shl 2195 0.0
lload. 1 8723 0.0 fconst.1 2122 0.0
faload 8634 0.0 dload-0 2093 0.0
iushr 8468 0.0 1lload.o 1982 0.0
dadd 8407 0.0 fcmpl 1917 0.0
i2d 8403 0.0 istore.0 1787 0.0
ifgt 7976 0.0 1lstore.3 1727 0.0
fmul 7674 0.0 1mul 1664 0.0
lstore 7512 0.0 1lor 1520 0.0
dup2 7332 0.0 1lstore.2 1475 0.0
lload-2 7125 0.0 f2i 1391 0.0
ddiv 6644 0.0 1shr 1386 0.0
lload-3 6514 0.0 1store.l 1352 0.0
dsub 5882 0.0 fcmpg 1243 0.0
i2c 5839 0.0 dneg 1230 0.0
121 5680 0.0 dstore.3 1215 0.0
dload-1 5548 0.0 1div 1194 0.0
fadd 5515 0.0 1xor 1146 0.0
irem 5508 0.0 dstore.2 1085 0.0
dreturn 5159 0.0 1lushr 993 0.0
dconst_1 5146 0.0 dstore.l 908 0.0
dcmpl 5065 0.0 124 878 0.0
i2f 5003 0.0 swap 849 0.0
lreturn 4935 0.0 fconst.2 839 0.0
ladd 4621 0.0 fstore.3 695 0.0
fsub 4463 0.0 fstore.2 650 0.0
i2s 4338 00 1lrem 539 0.0
d2i 4331 0.0 fload-o0 510 0.0

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

626 C. COLLBERG, G. MYLES AND M. STEPP SP E

Table XIV. Most common 2-grams.

Opcode Count %
aload 0,getfield 1219837 4.7
new, dup 664718 2.6
ldc, invokevirtual 353412 14
invokevirtual, invokevirtual 332487 1.3
dup, bipush 330887 1.3
putfield,aload-0 311038 1.2
iastore, dup 250744 1.0
invokevirtual,aload.0 235924 0.9
dup, sipush 226520 0.9
aload_1, invokevirtual 223958 0.9
aload, invokevirtual 222692 09
getfield, invokevirtual 219107 0.8
aload_0,aload.1 214369 0.8
aastore, dup 208247 0.8
dup, invokespecial 202840 0.8
aload-0, invokevirtual 200872 0.8
invokevirtual, pop 193105 0.7
aload_0, invokespecial 159742 0.6
astore,aload 146309 0.6
bastore, dup 141779 0.5
ldc,aastore 133994 0.5
getfield,aload-0 129300 0.5
invokespecial,aload.0 122168 0.5
ldc, invokespecial 120935 0.5
dup, 1dc 116043 04
invokespecial, athrow 115994 0.4
aload_2, invokevirtual 115394 04
goto,aload-0 115340 04
putfield, return 113044 04
dup, iconst_0 109473 04
invokevirtual, 1ldc 109060 0.4
invokevirtual, return 106765 0.4
invokevirtual, ifeq 103093 04
bipush,bastore 102969 0.4
invokevirtual, astore 100355 04
ifeqg,aload.0 99667 04
bipush, bipush 98715 04
ldc_w, iastore 98376 0.4
iconst_0, ireturn 98199 04
invokevirtual,aload 93325 04
aload_0, new 90040 0.3
anewarray, dup 81992 0.3
dup, aload.0 80579 0.3
aload-0,aload-0 80329 0.3
aload, aload 78718 0.3
Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 627
&

Table XV. Most common 3-grams.

Opcode Count %
new, dup, invokespecial 202836 0.8
aload.0,getfield, invokevirtual 194765 0.8
iastore, dup, bipush 132759 0.5
invokevirtual,aload-0,getfield 125019 0.5
new, dup, 1dc 115036 0.5
aload-0,getfield,aload-0 111950 04
getfield,aload.0,getfield 111002 0.4
iastore, dup, sipush 102667 0.4
bipush,bastore, dup 100197 0.4
invokevirtual, ldc, invokevirtual 98964 04
ldc_w, iastore, dup 97826 0.4
dup, 1dc, invokespecial 91303 04
aload_0,new, dup 90029 04
dup, bipush, bipush 83402 0.3
1dc,aastore, dup 82970 0.3
anewarray,dup, iconst_0 81984 0.3
aastore, dup,bipush 80740 0.3
new, dup,aload-0 80524 0.3
invokevirtual, invokevirtual, invokevirtual 80161 0.3
invokespecial, 1ldc, invokevirtual 69626 0.3
aload.0,getfield,aload.1 68922 0.3
bastore, dup, sipush 67634 0.3
aload.0, invokespecial,aload.0 66723 0.3
dup, sipush, bipush 64736 0.3
aload.0,aload 1,putfield 60661 0.2
bastore, dup, bipush 60580 0.2
goto,aload.0,getfield 60205 0.2
aload.0,aload 0,getfield 58350 0.2
dup, invokespecial, ldc 57764 0.2
dup, sipush, 1dcw 57139 0.2
dup, bipush, ldcw 56309 0.2
aastore,dup, iconst_1 56004 0.2
putfield,aload 0,getfield 55324 0.2
aastore, aastore, dup 55149 0.2
aload.0,getfield, areturn 55073 0.2
ldc, invokevirtual, invokevirtual 53465 0.2
new, dup,aload.l 52185 0.2
1ldc, invokevirtual,aload-0 51342 0.2
invokespecial,putfield,aload.0 50827 0.2
sipush,bipush, bastore 50642 0.2
dup, bipush, 1dc 50439 0.2
dup, iconst_0, 1dc 49992 0.2
aload.0,getfield,getfield 49974 0.2
iconst_0,1ldc,aastore 49056 0.2
sipush, ldc.w, iastore 48252 0.2
Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

628

C. COLLBERG, G. MYLES AND M. STEPP

SRE

Table XVI. Most common 4-grams.

Opcode

aload-0,getfield,aload0,getfield

new, dup, 1dc, invokespecial
new, dup, invokespecial, 1ldc

dup, invokespecial, 1dc, invokevirtual
bipush,bastore, dup, sipush

dup, sipush,bipush, bastore

bastore, dup, sipush, bipush

sipush,bipush, bastore, dup

anewarray, dup, iconst_0, 1dc

dup, iconst_0, 1ldc,aastore
iastore, dup, sipush, ldcw
dup, sipush, ldcw, iastore
ldc_w, iastore, dup, sipush
sipush, ldcw, iastore, dup
iastore, dup, bipush, ldcw
dup,bipush, ldcw, iastore
ldc_w, iastore, dup, bipush
bipush, ldc.w, iastore, dup
dup, bipush, bipush, bastore

bastore, dup, bipush,bipush
bipush,bastore, dup, bipush
bipush,bipush, bastore, dup
aload_0,new,dup, invokespecial

new, dup, new, dup

Count %
95199 04
91302 04
57764 0.2
57239 0.2
50663 0.2
50642 0.2
50642 0.2
50392 0.2
48862 0.2
48697 0.2
48252 0.2
48252 0.2
48198 0.2
47875 0.2
47528 0.2
47528 0.2
47520 0.2
47384 0.2
44682 0.2
44680 0.2
44674 0.2
44209 0.2
43141 0.2
42678 0.2

invokevirtual, ldc, invokevirtual, invokevirtual 42594 0.2

ldc, aastore, aastore, dup 41430 0.2
aastore,aastore, dup, bipush 40443 0.2
dup, 1dc, invokespecial, athrow 40441 0.2
new,dup,aload._0,getfield 36325 0.1
new, dup, invokespecial,putfield 34800 0.1
ldc,aastore,dup, iconst_1 34705 0.1
iconst_0, 1ldc, aastore, dup 34705 0.1
aastore,dup, iconst_1,1ldc 34585 0.1
putfield, aload-0,new, dup 34499 0.1
dup, iconst_1,1dc, aastore 34191 0.1
invokevirtual,aload 0,getfield, invokevirtual 34185 0.1
aload._0,iconst_0,putfield,aload.0 33108 0.1
aload 0,aload.1,putfield, return 32147 0.1
aload._0,aconst_null,putfield,aload.0 31719 0.1
aload 0,getfield,aload 1, invokevirtual 31472 0.1
iconst_2,anewarray,dup, iconst_0 30710 0.1
ldc, invokevirtual,aload 0,getfield 30470 0.1
putfield,aload. 0, iconst_0,putfield 27739 0.1
iastore, dup, bipush, 1dc 26735 0.1
dup, bipush, 1dc, iastore 26735 0.1

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 629

N
I 32
SRR
=558
9 I B,
O\\l@b
=B
6000007 & m W 2 MIN: 0
=l MAX: 105
l=l= K AVG: 0.8
ullnll= N MODE: 0
400000 i o W 0 2 < MEDIAN: 0
R EE - 8 X STD DEV: 1
LR R SAMPLES: 19285712
S
=== L§§§;E%
- o o 0 - O_N
000007 W HEEESS=ZEngEg,
== [N ARNRELgLELLLs
l=l= - W TN eSS
11 SRR SR
m == R S = ==
01 2 %% %% 0 Y 4
R
0
(@)
2\]00
F2x8e
—on SR
00 00 WL 0
OO A
2ZO5E o
0 S oA 3
W N =o
300000 N3 i\i MIN: 1
-1 B S MAX: 1545
E -1-1 IS = AVG: 3.6
400000 o é 3 NS
=11 B3 MEDIAN: 0
300000 - = STD DEV: 10
o SAMPLES: 19285712
Nl
E -1-
2000003 W W W Sg g
B ST o v
LR IR ""\ggggoc =) =)
100000 5 W o o m o= LTI gEc oo
S-1-k- E3 EERL TSN SSS
0 - \l\l %EB%g;w.\jmmg
= P
1234567809 /Qj%;’%? %‘Q 2 9 ;;Q !;(?Qe%e%v%o‘%«s% W,

Figure 33. (a) Height and (b) size of expression trees.

for example, software watermarking algorithms such as that by Cousot and Cousot [11], which hides a
watermark in unusual constants. Figure 34 tells us that in real programs most constants are small (93%
are less than 1000) or very close to powers of two, and hence hiding a mark in unusual constants is
likely to be unstealthy.

7.5. Method calls

Table XXII reports the most frequently called Java library methods. To collect these data, we looked at

every INVOKE instruction to see what method it named. No attempt at method resolution was made.
Figure 35 measures the size of receiver sets of method calls. That is, for a virtual method invocation

o.M () we count the number of methods M () that might potentially be called. This depends on the

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

630 C. COLLBERG, G. MYLES AND M. STEPP SP E

Table XVII. Most common subexpressions.

Expression Count % Expression Count %
L 6574522 349 L.F.F.F 5087 0.0
M() 4119506 219 (L.F+L) 4607 0.0
i 2967193 157 (L.F&i) 4572 0.0
L.F 1366327 73 (M()+1) 4511 0.0
" 1039672 55 (L.F+L.F) 4326 0.0
N 665727 35 (L&l) 4149 0.0
S 438 851 23 ((L+M())+L.FI[]) 4128 0.0
A 153670 0.8 (M()+L) 3997 0.0
L[] 121966 0.6 (L.length-1i) 3994 0.0
((Class)M()) 115363 0.6 ((L>>1i)&i) 3917 0.0
null 95366 0.5 (i*L) 3792 0.0
L.F[] 83259 04 ((L&l)<>1) 3734 0.0
1 67088 04 (L/1) 3689 0.0
L.F.F 54078 03 (L.F>>1) 3654 0.0
L.length 51938 03 (((L+M())+L.F[])+1) 3392 0.0
((Class)L) 49937 03 L.F[].F 3367 0.0
(L+1) 41182 02 SI[1I] 3351 0.0
(L instanceof Class) 39081 0.2 (L.F instanceof Class) 3342 0.0
d 37202 02 ((L>>>1)&1) 3162 0.0
S[] 29776 0.2 (L+L.F) 3051 0.0
(L+L) 24534 0.1 ((Class)LI]) 2995 0.0
(L.F+1) 24296 0.1 (L.F-L) 2977 0.0
L.F.length 23898 0.1 (S[l&i) 2898 0.0
(L-1) 19852 0.1 (L"L) 2818 0.0
f 17746 0.1 (L.F[]l&i) 2773 0.0
((Class)S) 14614 0.1 ((long)L) 2748 0.0
(L-L) 13495 0.1 ((byte)L) 2699 0.0
(L&1) 13436 0.1 (L.F*L.F) 2690 0.0
(L.F-1) 10759 0.1 S.length 2626 0.0
(L>>1) 9050 0.0 (ls&L) 2618 0.0
(Ll&i) 8285 0.0 ((l&L)<>1) 2612 0.0
((Class)L.F) 7715 0.0 ((double)L.F) 2509 0.0
M().F 7518 00 ((Lll&l)<<i) 2473 0.0
(L+M()) 7451 0.0 L.F.FI[] 2437 0.0
(M()-1) 7181 0.0 (L-L.F) 2423 0.0
(L>>>1) 7181 0.0 -(L) 2423 0.0
(M() instanceof Class) 6305 0.0 (L<>1) 2322 0.0
(L<<1i) 6013 0.0 (L&L) 2285 0.0
(L*1) 5818 00 ((L.F>>1i)&1) 2275 0.0
L[] [] 5757 00 sS.F 2214 0.0
(L.F-L.F) 5509 0.0 ((char)L) 2201 0.0
((double)L) 5300 0.0 (s+1) 2132 0.0
(L*L) 5234 0.0 ((float)L) 2129 0.0
L.F[]I[] 5230 0.0 ((int)M()) 2081 0.0
Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 631
&

Table XVIII. Abbreviations used in Table X VII.

null = ACONSTNULL ((1)a) = typecast, T is a primitive
- () = negation type or Class
(a+a) = addition A = create new array
(a-a) = subtraction S = static field

(a*a) = mult F = non-static field
(a/a) = div M() = method call
(a%a) = mod/rem (¢ instanceof k) = instanceof
(&) = and " = string constant
(a]|a) = or £ = float constant
(") = Xxor d = double constant
(a<<a) = left shift 1 = long constant
(a>>a) = signed right shift N = NEW

(a>>>a) = TIUSHR or LUSHR (a<a) = DCMPL or FCMPL
o] = array element (a>a) = DCMPG or FCMPG
o.length = ARRAYLENGTH (a<>ar) = LCMP

i = int constant L = load local variable

static type of o, and the number of methods in type (o) ’s subclasses that override o’s M () . A static
class hierarchy analysis [12] is used to compute the receiver set.

The size of the receiver set has implications for, among other things, code optimization. A virtual
method call that has only one member in its receiver set can be replaced with a direct call. Furthermore,
if, for example, o.M () ’s receiver set is {Classl.M(), Class2.M()}, then to expand o.M ()
inline, the code 1f o instanceof Classl then Classl.M() else Class2.M() has
to be generated. The larger the receiver set, the more type tests will have to be inserted.

To compute receiver sets for an INVOKEVIRTUAL instruction, we first resolve the method
reference. We then gather all of the subclasses of the resolved method’s parent class (including itself)
and for each one look to see whether it contains a non-abstract method with the same name and
signature as the resolved method. If so, we check to see whether the resolved method is accessible
from the given subclass. If this is true, then the INVOKEVIRTUAL instruction could possibly execute
the subclass’ method, and it is added to the receiver set for the INVOKEVIRTUAL instruction.

For an INVOKEINTERFACE instruction, we perform the same test but we look instead at
all implementors of the resolved method’s parent interface. This set will contain all classes
that directly implement the interface, as well as subclasses of those classes, and classes that
implement any subinterfaces of the interface (i.e. anything that could be cast to the interface type).
The INVOKESPECIAL and INVOKESTATIC instructions do not use dynamic method invocation;
the method they will call can always be determined statically. Thus, they all have receiver sets of
size 1.

Since we count only method bodies in the receiver sets, it is possible to have receiver sets of size 0.
This can occur if an abstract class has no subclasses to implement its abstract methods, yet code is
written to call its abstract methods with future subclasses in mind. Similarly, an INVOKEINTERFACE
call may have no receivers if no classes implement the given interface.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

632 C. COLLBERG, G. MYLES AND M. STEPP

SRE

Table XIX. Common integer constants.

Most common int constants

Most common 1ong constants

Value Count % Value Count %

0 634484 20.5 0 19617 29.2
1 611382 19.7 1 3515 5.2
2 165 656 5.3 -1 2320 3.5
3 86253 2.8 1000 1114 1.7
-1 78 187 2.5 287948901175001088 740 1.1
4 65209 2.1 2 722 1.1
8 45619 1.5 255 669 1.0
5 40047 1.3 3 387 0.6
10 31762 1.0 100 347 0.5
255 31249 1.0 5 344 0.5
6 29798 1.0 8388608 343 0.5
7 28356 0.9 4294967295 331 0.5
9 25497 0.8 10 323 0.5
16 24931 0.8 7 304 0.5
32 19401 0.6 71776119061217280 270 0.4
12 17 889 0.6 4 269 0.4
13 17228 0.6 60000 217 0.3
11 15763 0.5 9 199 0.3
15 15008 0.5 541165879422 196 0.3
14 13733 0.4 9223372036854775807 190 0.3
24 13607 0.4 64 182 0.3
20 10844 0.3 9007199254740992 170 0.3
48 9759 0.3 8 167 0.2
17 9513 0.3 -9223372036854775808 160 0.2
63 8963 0.3 500 159 0.2
46 8540 0.3 60 156 0.2
47 8214 0.3 36028797018963968 148 0.2
18 8115 0.3 2147483647 144 0.2
34 8029 0.3 67108864 139 0.2
31 7681 0.2 3600000 134 0.2
64 7602 0.2 17179869184 132 0.2
40 7187 0.2 144115188075855872 132 0.2
21 7044 0.2 140737488355328 130 0.2
100 6984 0.2 1024 129 0.2
45 6970 0.2 10000 125 0.2
23 6860 0.2 137438953504 123 0.2
19 6855 0.2 43980465111040 122 0.2
41 6631 0.2 1099511627776 122 0.2
30 6621 0.2 562949953421312 118 0.2
58 6551 0.2 17592186044416 118 0.2
128 6547 0.2 33554432 117 0.2
22 6510 0.2 268435456 117 0.2
25 6441 0.2 16384 109 0.2

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

SRE

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 633

Table XX. Common real constants.

Most common float constants

Most common double constants

Value Count % Value Count %

0.0 4316 243 0.0 9295 25.0
1.0 2122 120 1.0 5146 13.8
2.0 839 47 2.0 1920 52
0.5 573 32 0.5 1296 35
255.0 319 1.8 100.0 710 1.9
—1.0 311 1.8 10.0 689 1.9
4.0 177 1.0 5.0 585 1.6
100.0 164 09 -Infinity 467 1.3
10.0 151 09 -—-1.0 463 1.2
0.75 146 0.8 1000.0 454 1.2
64.0 124 07 3.0 409 1.1
3.0 124 0.7 3.141592653589793 (mw) 364 1.0
1000.0 114 0.6 NaN 333 0.9
20.0 109 06 4.0 311 0.8
90.0 79 04 0.25 285 0.8
3.1415927 (m) 73 0.4 Infinity 206 0.6
NaN 68 04 8.0 198 0.5
57.29578 (180/7) 68 0.4 1.797693---7E308 (MAX) 182 0.5
50.0 68 04 180.0 162 0.4
6.2831855 (27) 64 04 1.5 156 0.4
6.0 64 04 0.1 152 0.4
3.4028235E38 (MAX) 62 0.3 360.0 145 0.4
1.0E-4 61 03 20.0 120 0.3
180.0 60 0.3 6.283185307179586 (2m) 118 0.3
5.0 58 03 —-2.0 112 0.3
0.85 58 03 0.01 107 0.3
0.1 58 0.3 255.0 105 0.3
0.01 52 03 0.2 104 0.3
—10.0 51 03 6.0 103 0.3
0.0010 47 03 0.6 92 0.2
8.0 45 03 7.0 91 0.2
1.5 45 03 9.0 88 0.2
0.8 45 03 1.25 83 0.2
0.3 45 03 16.0 77 0.2
0.25 45 03 60.0 75 0.2
-Infinity 44 02 31.0 72 0.2
Infinity 44 02 26.0 71 0.2
100000.0 42 0.2 0.75 71 0.2
1.5707964 (m/2) 40 0.2 12.0 69 0.2
0.70710677 (1/4/2) 40 02 0.05 67 02
—100.0 38 02 0.3 66 0.2
200.0 37 02 15.0 65 0.2
65536.0 36 0.2 645.0 64 0.2

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

634 C. COLLBERG, G. MYLES AND M. STEPP

SRE

Table XXI. Most common string constants.

Value Count %
empty string 36456 3.5
"o 9003 0.9
newline 5281 0.5
nyn 4860 0.5
o 4718 0.5
ngn 4540 04
nen 4201 04
ol 4139 04
non 4083 04
o 3885 04
"R 3796 0.4
npn 3663 0.4
"o 3562 0.3
n/mn 3481 0.3
nwn 3113 0.3
"o 3024 0.3
"name" 2725 03
n(n 2561 0.2
"false" 2536 0.2
"true" 2461 0.2
"y 2115 0.2
LR 2093 0.2
"Center" 1931 0.2
non 1699 0.2
"BC" 1658 0.2
"pvQ" 1649 0.2
" 1634 0.2
nign 1450 0.1
"pP->Q" 1373 0.1
"P&Q" 1370 0.1
"java.lang.String" 1314 0.1
"line.separator" 1313 0.1
now 1307 0.1
"W 1237 0.1
n=n 1210 0.1
"shortDescription" 1207 0.1
tab 1159 0.1
nju 1151 0.1
"RvS" 1110 0.1
"null" 1107 0.1
nxn 1084 0.1
Ly 1074 0.1
nn 1046 0.1
"class" 1012 0.1
nTpn 99 0.1

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 635
%

=
a3 B8 8
85 385 3
[) ~ s (=3)
E S £ B 3
EE 8B 3 o
) ... MIN: -9.22337e+18
"R MAX: 9.22337e+18
600004 W W W = <) AVG: 467327912110143.2
0 80 8 0 § MODE: 0
IN-B-B-B-H B g = MEDIAN: 2
g 0 g g N X3 STD DEV: 4.20786e+17
" @ w B SAMPLES: 3167173
400004 @ & © @ = S =
= I = I = = 3 Ao
g O O g o O
1 " 8 8 N 3 =
o 0 g O L 8 7 . :’3
20000 W W W W SIS o 3
25 B TE R RN
z2 25 SEESEFFELE
‘- Lo 2 g uwg 39 3R
0 === 338 e =g
O lo, lo, ly, o Lo L Ly Ly ly Ly Ly Ly ly Ly Ly Ly Ly
‘ 0\/0/0\ ,/00\)), s o ey ey ey ey e e e ey,
) /000 " 0\/ %, ,@)) o, Yo, s e
4 00@ 000%/0@ Y 7Y Y Yy e) Yy
)
(@)
Value Count %0
0 654101 20.7
1 695404 22.0
2 169760 5.4
2" n> 1 205877 6.5

2" —1,n>1 198280 6.3
2"+ 1,n>1 93544 3.0
other 1150207 36.3

(b)

Figure 34. Constant values: (a) distribution of integers (int and long); (b) integers
(int and long) close to powers of two.

Figure 35(a) shows that 88% of all virtual method calls have a receiver set with size at most 2,
with the average size being 4.5. It is interesting to note the large number of methods with a receiver
size between 20 and 29. As can be expected, the average receiver set size is significantly larger for an
interface method call. Figure 35(b) shows an average set size of 16.5.

7.6. Switches

Figure 36(a) measures the number of case labels for each tableswitch and lookupswitch
instruction. We had to treat the tableswitch instruction specially, since it uses a contiguous range
of label values. Not all of the labels in the tableswitch instruction necessarily appeared in the
source code for the program. As a result, some of the branch targets for the cases will be the same as

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

636

C. COLLBERG, G. MYLES AND M. STEPP

SRE

Table XXII. Most common calls to methods in the Java library.

Method Count %

java.lang.StringBuffer.append (String) StringBuffer 340044 15.8
StringBuffer.toString()String 143 985 6.7
StringBuffer.<init> ()void 93 837 4.3
Object.<init>()void 52597 2.4
StringBuffer.<init> (String)void 48408 2.2
String.equals (Object)boolean 46 645 2.2
java.util.Hashtable.put (Object,Object)Object 42 629 2.0
java.io.PrintStream.println (String)void 42594 2.0
StringBuffer.append (int) StringBuffer 31702 1.5
StringBuffer.append (Object) StringBuffer 27284 1.3
String.length() int 25505 1.2
String.valueOf (Object) String 20 146 0.9
java.lang.IllegalArgumentException.<init>(String)void 15737 0.7
StringBuffer.append (char)StringBuffer 15116 0.7
String.substring(int, int)String 14441 0.7
java.util.Vector.size()int 13817 0.6
java.util.Vector.addElement (Object)void 12705 0.6
java.util.Vector.elementAt (int)Object 12087 0.6
java.lang.System.arraycopy (Object, int,Object, int, int) void 11969 0.6
java.util.Iterator.hasNext ()boolean 11891 0.6
String.charAt (int) char 11831 0.5
java.util.Iterator.next ()Object 11800 0.5
java.lang.Integer.<init> (int)void 11658 0.5
java.lang.Throwable.getMessage () String 11216 0.5
java.util.Vector.<init> ()void 10434 0.5
java.util.List.add(Object)boolean 10166 0.5
Object.getClass()java.lang.Class 9641 0.4
java.util.Hashtable.get (Object)Object 9584 0.4
String.equalsIgnoreCase (String)boolean 9391 0.4
java.util.List.size()int 9226 0.4
java.util.Map.put (Object,Object)Object 8830 0.4
java.util.List.get (int)Object 8797 0.4
java.lang.Class.forName (String) java.lang.Class 8641 0.4
java.util.Map.get (Object)Object 8313 0.4
java.awt.Container.add (java.awt.Component) java.awt.Component 8270 0.4
String.substring(int) String 7862 0.4
java.io.PrintWriter.println (String)void 7767 0.4
java.util.Enumeration.nextElement ()Object 7539 0.3
java.lang.Class.getName () String 7288 0.3
String.startsWith(String)boolean 7186 0.3
String.indexOf (String) int 6960 0.3
java.util.ArrayList.<init>()void 6705 0.3
java.lang.Integer.parselnt (String) int 6667 0.3
java.util.Enumeration.hasMoreElements () boolean 6526 0.3
java.lang.NullPointerException.<init> (String)void 6403 0.3

Copyright © 2006 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 637

%
]
N

‘%88

> 0 B
==
Z3 S
g2
TS MIN: 0
50000 2 MAX: 917
AVG: 4.5
MODE: 1
40000 MEDIAN: |
STD DEV: 39
SAMPLES: 2360924
30000 FAILED: 413186
20000
g8 g3
N3 el N} I RN Y S 8 =
O N 5 © N =
10000 S88gs ny® L8
£ LR 43w &H3S°
N we U L= = D3
0 N o o= N | o " [~}
2872072 % 20 0 T,

30000

20000

10000

Figure 35. Number of receiver set sizes per (a) virtual method call (invokevirtual) and
(b) interface method call (invokeinterface).

the default case target. Therefore, when computing the label set size and density of a tableswitch
instruction, we ignore all of the labels whose branch targets are the same as the default case’s target.
The figure shows that the average number of labels per switch is 12.8 and that 89% of the switches
contain fewer than 30 labels.
Figure 36(b) shows the density of switch labels, computed as

number_of _case_arms

ey

max_label — min_label + 1
This measure is important for selecting the most appropriate implementation of switch
statements [13,14]. In the JVM, the tableswitch instruction is used when the density is high and
the lookupswitch is used when the density is low.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

638 C. COLLBERG, G. MYLES AND M. STEPP SP E
&

120€ *%0€
¥89C ‘%t

T0TT *%9S

3000 .0
MAX: 500
AVG: 8.7

MODE: 2

MEDIAN: 4

STD DEV: 18

: 18935

TOTAL: 164325

=
B
[\
foN
~
)

91T ‘%06
g
4

2000

0v6 “%S6
7]
>
£
=)
c
o
7]

1000

0123456789 Yy

S0€6 ‘00T

1500 MIN: 0

MAX: 1
AVG: 0.7
MODE: 1
MEDIAN: 1018
STD DEV: 0
SAMPLES: 18935

1000
1 FAILED: 186

500

B B D o b b b b b b b b b &
? 0% % P % P % U By P Uy U g

(ORI IR IS,
2 9, Gy By Gy Gy 4

G O})

0.8 ;) I I S T P S
50, % 0.% 0,% 0 % 0 % 0 % 0,2 0, % o % 2 &
Y ey e D e Y e Yy Y

(d)

Figure 36. Switching statements: (a) number of case arms in tableswitch and 1lookupswitch; (b) label
density of tableswitch and lookupswitch.

8. RELATED WORK

In a widely cited empirical study, Knuth conducted an analysis of 440 FORTRAN programs [1].
The study was conducted in an attempt to understand how FORTRAN was actually being used by
typical programmers. By understanding how the language was being used, a better compiler could be
designed. Each of the programs were subjected to static analysis in order to count common constructs
such as assignment statements, ifs, gotos, do loops, etc. In addition, dynamic analysis was performed on
25 programs which examined the frequency of the constructs during a single execution of the program.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

SP E AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 639
%

The final analysis studied the effects of various local and global optimizations on the inner loops of
17 programs.

Knuth’s study was the first attempt to understand how programmers actually wrote programs.
Since that initial study, many similar explorations have been conducted for a variety of languages.
Salvadori et al. [3] and Chevance and Heidet [2] both examined the profile of Cobol programs.
Salvadori et al. looked at the static profile of 84 Cobol programs within an industrial environment.
In addition to examining the frequency of specific constructs, they also studied the development
history by recording the number of runs per day and the time interval between the runs. Chevance
and Heidet studied the static nature of Cobol programs through the number of occurrences of source-
level constructs in more than 50 programs. The authors took their study a step further by computing
the frequency of the constructs as the program executed. In this study, for categories of data were
examined: constants, variables, expressions, and statements.

Other than Chevance and Heidet [2], most studies of programmer behavior have concentrated on
the static structure of programs. Of equal importance is to examine how programs change over time.
Collberg et al. [15] showed how to visualize the evolution of a program by taking snapshots of its
development from a CVS repository and presenting these data using a temporal graph-drawing system.

Cook and Lee [4] undertook a static analysis of 264 Pascal programs to gain an understanding
of how the language was being used. The analysis was conducted within 12 different contexts, e.g.
procedures, then-parts, else-parts, for-loops, etc. In addition, they compared their results with those of
other language studies. Cook [16] conducted a static analysis of the instructions used in the system
software on the Lilith computer. An analysis of APL programs was conducted by Saal and Weiss [5,6].

Antonioli and Pilz [17] conducted the first analysis of the Java class file. The goal of their study was
to answer three questions. (1) What is the size of a typical class file? (2) How is the size of the class file
distributed between its different parts? (3) How are the bytecode instructions used? To answer these
questions, they examined six programs with a total of 4016 unique classes. In contrast to the present
study, they examined the size in bytes of each of the five parts of a class file (i.e. header, constant,
class, field, and method). They also examined instruction frequencies to see what percentage of the
instruction set was actually being used. They found that on average only 25% of the instruction set was
used by any one program. Our analysis does not focus on the frequency of a particular instruction per
program but instead looks at the frequency over all programs. Overall, their study is different from ours
in that they were interested in answering a few very specific questions, where our analysis is focused
on obtaining a complete understanding of JVM programs.

Gustedt et al. [18] conducted a study of Java programs that measures the tree width of CFGs. The tree
width is effected by such constructs as goto usage, short-circuit evaluation, multiple exits, break
statements, cont inue statements, and returns. The authors examined both Java API packages as well
as Java applications obtained through Internet searches.

O’Donoghue et al. [19] performed an analysis of Java bytecode bigrams. Their analysis was
performed on 12 benchmark applications. The only similarity between their data and ours is that
we both found aload_0, getfield to be the most frequently occurring bigram. We attribute the
differences to the small sample size used in their study.

One of the byproducts of our analysis is a large repository of publicly available data on Java
programs. Appel [20] maintains a collection of interference graphs which can be used in studying
graph-coloring algorithms. The availability of such repositories is highly useful in the study of compiler
implementation techniques.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

640 C. COLLBERG, G. MYLES AND M. STEPP SP E
&

9. DISCUSSION AND SUMMARY

In this paper we have performed a static analysis of 1132 Java programs obtained from the Internet.
Through the use of SandMark, we were able to analyze the structure of the Java bytecode. Our analysis
ranged from simple counts, such as methods per class, instructions per method, and instructions per
basic block, to structural metrics such as the complexity of CFGs.

Our main goal in conducting the study was to use the data in our research on software protection,
however we believe these data are useful in a variety of settings. These data could be used in the
design of future programming languages and virtual machine instruction sets, as well as in the efficient
implementation of compilers.

It would be interesting to perform a similar study of Java source code. Even though Java bytecode
contains much of the same information as in the source from which it was compiled, some aspects
of the original code are lost. Examples include comments, source code layout, some control structures
(when translated to bytecode, for and while loops may be indistinguishable), some type information
(Booleans are compiled to JVM integers), etc.

Owing to our random sampling of code from the Internet, it is possible that our set of Java jar-
files is somewhat skewed. It would be interesting to further validate our results by comparing against
a different set of programs, such as standard benchmark programs (for example, SpecJVM [21]), or
programs collected from standard source code repositories (for example, sourceforge.net).

We would also welcome studies for other languages. It would be interesting to validate our results
by performing a similar study for MSIL, the bytecode generated from C# programs, since MSIL and
JVM (and C# and Java) share many common features. It would also be interesting to compare our
results with languages very different from Java, such as functional, logic, and procedural languages.
It might then be possible to derive a set of ‘linguistic universals’, programming behaviors that apply
across a range of languages. Such information would be invaluable in the design of future programming
languages.

Our experimental data and the SandMark tool that was used to collect it can be downloaded from
http://sandmark.cs.arizona.edu/download.html.

REFERENCES

Knuth DE. An empirical study of FORTRAN programs. Software—Practice and Experience 1971; 1:105-133.
Chevance RJ, Heidet T. Static profile and dynamic behavior of COBOL programs. SIGPLAN Notices 1978; 13(4):44-57.
Salvadori A, Gordon J, Capstick C. Static profile of COBOL programs. SIGPLAN Notices 1975; 10(8):20-33.
Cook RP, Lee I. A contextual analysis of Pascal programs. Software—Practice and Experience 1982; 12:195-203.
. Saal HJ, Weiss Z. Some properties of APL programs. Proceedings of 7th International Conference on APL. ACM Press:
New York, 1975; 292-297.
Saal HJ, Weiss Z. An empirical study of APL programs. International Journal of Computer Languages 1977; 2(3):47-59.
Stata R, Abadi M. A type system for Java bytecode subroutines. Conference Record of POPL 98: The 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Diego, CA, 1998. ACM Press: New York, 1998;
149-160.
8. Collberg CS, Tomborson C. Watermarking, tamper-proofing, and obfuscation—tools for software protection. /IEEE
Transactions on Software Engineering 2002; 8(8):735-746.
9. Collberg C, Myles M, Huntwork A. SANDMARK—A tool for software protection research. IEEE Magazine of Security
and Privacy 2003; 1(4):40-49.
10. Lindholm T, Yellin F. The Java Virtual Machine Specification (2nd edn). Addison-Wesley: Reading, MA, 1999.

v

N

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641
DOI: 10.1002/spe

AN EMPIRICAL STUDY OF JAVA BYTECODE PROGRAMS 641
&

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.
21.

Cousot P, Cousot R. An abstract interpretation-based framework for software watermarking. Proceedings of the ACM
Conference on Principles of Programming Languages. ACM Press: New York, 2004.

Dean J, Grove D, Chambers C. Optimization of object-oriented programs using static class hierarchy analysis. Proceedings
of the 9th European Conference on Object-Oriented Programming. Springer: Berlin, 1995; 77-101.

Bernstein R. Producing good code for the case statement. Software—Practice and Experience 1985; 15(10):1021-1024.
Kannan S, Proebsting TA. Correction to ‘producing good code for the case statement’. Software—Practice and Experience
1994; 24(2):233.

Collberg C, Kobourov S, Nagra J, Pitts J, Wampler K. A system for graph-based visualization of the evolution of software.
Proceedings of the ACM Symposium on Software Visualization, June 2003. ACM Press: New York, 2003.

Cook RP. An empirical analysis of the Lilith instruction set. [EEE Transactions on Computers 1989; 38(1):156—-158.
Antonioli DN, Pilz M. Analysis of the Java class file format. Technical Report, University of Zurich, 1998. Available at:
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-98/ifi-98.04.ps.gz.

Gustedt J, Mahle OA, Telle JA. The treewidth of Java programs. Proceedings of the 4th International Workshop on
Algorithm Engineering and Experiments (ALENEX) (Lecture Notes in Computer Science, vol. 2409). Springer: Berlin,
2002.

O’Donoghue D, Leddy A, Power J, Waldron J. Bigram analysis of Java bytecode sequences. Proceedings of the 2nd
Workshop on Intermediate Representation Engineering for the Java Virtual Machine. National University of Ireland:
Ireland, 2002; 187-192.

Appel A. Sample graph coloring problems. http://www.cs.princeton.edu/~appel/graphdata/.

SpecJVMO8. http://www.specbench.org/osg/jvm98.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:581-641

DOI: 10.1002/spe

	1 INTRODUCTION
	2 EXPERIMENTAL METHODOLOGY
	3 THE STRUCTURE OF JAVA BYTECODE PROGRAMS
	4 PROGRAM-LEVEL STATISTICS
	4.1 Packages
	4.2 Protection
	4.3 Inheritance graphs

	5 CLASS-LEVEL STATISTICS
	5.1 Fields
	5.2 Constant pool
	5.3 Methods
	5.4 Member protection
	5.5 Inheritance

	6 METHOD-LEVEL STATISTICS
	6.1 Method sizes
	6.2 Local variables and formal parameters
	6.3 CFGs
	6.4 Subroutines and exception handlers
	6.5 Interference graphs

	7 INSTRUCTION-LEVEL STATISTICS
	7.1 Instruction counts
	7.2 Instruction patterns
	7.3 Expressions
	7.4 Constant values
	7.5 Method calls
	7.6 Switches

	8 RELATED WORK
	9 DISCUSSION AND SUMMARY

