
Introductory Computing Students’ Conceptions of Illegal
Student-Student Collaboration

Michael Stepp, Beth Simon
Computer Science and Engineering Dept.

University of California, San Diego
La Jolla, CA

{mstepp, bsimon}@cs.ucsd.edu

ABSTRACT
Academic integrity and cheating are issues of specific importance
in computing courses due to the restricted nature of much of our
assigned work. Additionally, use of valued pedagogical and
professional practices such as pair programming can muddy the
waters when it comes to students’ understandings and experiences
with collaboration. In this study we report on 112 students at the
beginning of a second programming course being asked to
describe a scenario of student-to-student collaboration that
“crosses the line” in terms of what should be allowed in the
course. We find that students describe inappropriate acts
involving sharing of code and sharing of information, with the
former being more prevalent. Additionally, about half of the
scenarios include mitigating circumstances that should not affect
the propriety of those acts. Finally, when presented with other
students’ (often vague) scenarios, students have little consensus
on whether those reflect appropriate or inappropriate
collaborations.

Categories and Subject Descriptors
K.3.2 [Computer Science Education]: Introductory
programming – academic integrity.

General Terms
Human Factors.

Keywords
CS1, Cheating, Plagiarism, Academic Integrity.

1. INTRODUCTION
The academic integrity or collaboration policy for a computer
science course is perhaps more interesting than in other
disciplines, because programming assignments are often
structured in restricted ways. Educators give introductory
programmers straightforward tasks, and encourage them to write
code in one particular style. Furthermore, the compiler catches a
wide range of mistakes, giving greater similarity through enforced
correctness. This greatly reduces the solution space, meaning that

there are far fewer acceptable answers to a programming
assignment than, say, an English essay.

Additionally, a clear and explicit policy is especially important
for beginning students, since they may have little or no
experience in “programming for a grade”. Their previous
experiences in other disciplines collaborating on homework may
have a different “look and feel” than those with a programming
assignment.

Though at first it may seem trivial to create a collaboration policy,
there are many elements to consider. For instance, if Student A
asks Student B for help, should B be allowed to look at A’s code?
Can A look at B’s code? In either case, should the student be
allowed to look at the whole program, or a limited portion? Can
the helper describe the solution, or is she limited to explaining the
high-level concepts involved? How would students know the
difference between those two situations? Is debugging
collaboration considered differently than code-creation
collaboration? Most importantly, how can these various situations
be described in a way that novice students can understand and,
hopefully, apply in their actual programming experiences?

In this paper, we take a different tack from much of the related
literature which asks students to evaluate pre-defined (and expert-
defined) situations. We asked 112 students at the beginning of a
second computing course to invent scenarios regarding
“appropriate” collaboration practices between students. We find
that students discuss a range of practices that generally fall into
two categories regarding sharing of code or information, and that
students are more likely to describe the former. We also find little
consensus in students’ ability to determine the propriety of other
students’ scenarios. Through this exercise, we identify students’
lack of attention to key details when creating scenarios, and
suggest value in both training of students in this area and class
discussion of such scenarios. Our hope is that improved student
ability at creating and evaluating scenarios may make their
collaboration with each other more thoughtful, and perhaps more
in line with local norms. Alternately, such scenarios, as coming
from the student perspective, may be more effective in defining a
collaboration policy that is meaningful and useful for students and
we provide a handout for students to support such discussion.

2. RELATED WORK
[1] studied first year students’ ability to detect plagiarism from
predefined scenarios, in contrast to student-generated ones. In
addition, the students rated 15 scenarios relating to copyright
violation and plagiarism, based on the seriousness of the
infraction. They found students tend to consider some forms of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2004, Milwaukee, Wisconsin, USA.
Copyright 2010 978-1-60558-885-8/10/03...$10.00.

295

plagiarism as more serious than others, and that they would be
more likely to admit to the ones they considered less serious.
Students also had difficulty identifying which scenarios involved
plagiarism and which didn't.

[2] conducted a study of 1206 students and 190 academic staff
asking about four issues (seriousness, penalty, prevalence,
personal history) about 20 different scenarios relating to academic
integrity. For every scenario, the students rated the seriousness as
lower, the penalty as lower, and the prevalence as higher than the
staff did. Staff underestimated the actual prevalence of these acts
(as reported by personal history).

[3] had 103 students at Monash University rate 18 different
scenarios relating to academic integrity violations. Students were
very homogeneous in their views of what counted as academic
integrity violations, but those views did not correspond well with
university policy -- many students rated a variety of policy
violations as acceptable. In this study, novices are not found to
have homogenous views when shown student-described scenarios.

Our work seeks to bring greater authenticity and student reflection
to the "scenario technique” by engaging students in developing
their own collaboration or academic integrity scenarios. We also
seek to develop instructional support in effective discussion and
student application of academic integrity guidelines.

3. METHODOLOGY
3.1 Subjects
Data reported here is from two terms (Winter 2009 (Class A) and
Spring 2009 (Class B)) of a CS1.5 course (2nd 10 weeks) at the
University of California, San Diego. The previous CS1 course
(for students with no prior programming experience) required the
use of pair programming for assignments. Thus, this was students’
nominal first experience programming independently. The same
instructor (Simon) taught both CS1 and CS1.5 (both terms). A
total of 164 students submitted answers but we report on 112
scenarios. We removed 16 student responses because they didn’t
answer the question, and 36 responses from Class A because we
asked them a slightly different question (described below).

3.2 Assignment
Our experiment took the form of a survey presented to the
students in both Class A and B. The exact text of the survey for
Class A is given in Figure 1. Class A had the option of describing
either an appropriate or an inappropriate collaboration scenario
between two students in the class. We chose to focus on
collaboration between students in the class based both on
students’ previous experience in pair programming and our
common “lab culture” -- most students do their programming in a
common room on campus.

For Class B, the assignment changed to exclude the “appropriate”
response option, based on excessive vagueness in those responses
from Class A. Specifically, it stated “[T]he goal of this
description should be to outline the ‘cross over line’ where the
kind of help you might seek from another student in the class is
not allowable or fair.” In addition, we presented 5 situations
generated in Class A (4 “appropriate”, 1 “inappropriate”) to Class
B students to be rated as one or the other. These situations, chosen
for the “less than clear” situations they presented, were:

1. You've been trying to finish your assignment but are stuck on one
of the methods and cant [sic] figure out how to do it. You call
over another student and ask for help and they let you see what
they did for there [sic] method to help you get started. [W35]

2. When it is a bug you have narrowed down where it can be to a
small portion of the code. Just a couple of lines perhaps, or
maybe its [sic] just in one method. This way hopefully you don't
to show your whole code to the other person. [AltW31]

3. When my code does not work, I would ask my friend to give me a
hint. So, when my friend comes by to help me on the code, he and
I would generate a code as we discuss through the process.
[AltW07]

4. Student A is working on his program but he has no idea what to
do, then he asks student B about it. After listening to the
explanation of the assignment and student B's idea of how to do it,
student A is inspired and starts to do his own work without
copying exactly what B tells him. [AltW34]

5. Student A and Student B are both assigned a program. Student A
completes it and it works perfectly. Student B is struggling with
the assignment and asks Student A for help. Student A comes
over and skims the code, gives advice, but not directly telling
Student B what to do. (i.e. "Take another look at your loops") or,
Student A can also draw a diagram or something to help Student
B understand the assignment more clearly. [AltW22]

The purpose of this activity is for everyone in the class to
consider the reasons and value of having rules for what constitutes
legal or "OK" ways of collaborating with other CSE8B students
on programs. This does NOT address interactions with tutors for
CSE8B. On one side, we know that it can be very valuable to get
a "second set of eyes" when going after a difficult bug. It can be
wasteful to spin your wheels forever when you might make
progress much faster with someone else's quick comment. On the
other side, we know that you, as a professional, have an expected
level of personal effort and debugging that you are expected to be
able to perform. This DOES involve struggling and trying to
debug on your own. Additionally, program grades are part of your
assessment in this course, and your personal hard work should be
rewarded fairly. Below, tell us about a debugging scenario you
can imagine encountering in this class and tell us whether
YOU think it should be legal to collaborate with another 8B
student in that scenario (or not).

Figure 1. Assignment posed to Class A (emphasis added)

3.3 Analysis Methodology
The authors developed an initial set of categories by reviewing
the entire data set. Refining the categories led to complete
agreement in coding responses. Based on students’ descriptions of
"inappropriate acts", we found 9 common categories of
inappropriate acts, with a 10th included as "Other" to capture the
remaining. The categories are given by example on the final page.
Every student response fit into at least one inappropriate act
category, but we coded them with as many categories as were
applicable (max: 3).
Of their own accord, some students noted "mitigating
circumstances." Only 55 students included mitigating
circumstances. These are also given by example on the final page.

296

4. RESULTS

4.1 Generated Scenarios
Inappropriate Acts. Figure 2 shows the breakdown of
inappropriate acts as identified from student-generated scenarios
in the two classes. There were two main categories of
inappropriate collaboration, involving either sharing code or
information. Examples of categories are shown on the last page.

Figure 2. Freq. of Inappropriate Acts in Student Scenarios

65% of the inappropriate acts identified in student scenarios
involved sharing of code (dark grey). The grand majority of code
sharing acts (85%) occur "directionally" from a knowledgeable
student to a less knowledgeable student (Copy, Send, View, or
Write “good code”). Relatively few acts described students
working together (often as a holdover from the previous class'
pair programming technique) or having a more knowledgeable
student working in some way with the less knowledgeable
students' code (View or Copy “bad code”).
24% of acts involved sharing of information (light gray) from a
knowledgeable student to one less knowledgeable (Tell, Explain,
Locate or Debug a bug). We classified the remaining 11% of acts
as Other, either because they were too vague to classify or
because they did not reflect two students collaborating (e.g.
"google for some codes" [S01]).

Mitigating Circumstances. Just under half of all students (47%)
also went on to give, as part of their scenario, a notable mitigating
circumstance that might more clearly explicate when an
inappropriate act may occur. The variety of these mitigating
circumstances is interesting in helping to understand the expected
situations in which students may be pressured to cheat.

Table 1. Mitigating Circumstances Frequencies

Mitigating Circumstance Frequency

Stuck 31

Being at Different Places 16

Procrastination 15

Amount of Code 6

Asking Fails 2

Not Exhausting your own Resources 2

We categorized mitigating circumstances into six groups, shown
in Table 1. Examples of the categories are shown on the last
page. Stuck was one of the most common mitigating
circumstances. Additionally, variations on being stuck sometimes
mentioned frustration as a result of being stuck or, specifically, a
student having exhausted their resources (having asked a TA, or
having no TA available) in addition to being stuck. A surprising
and common circumstance involved when two students have
worked "different amounts" or were in "different places" with
respect to completing their code – often cited as an aspect that
makes collaboration inappropriate. We did not code as "different
places" the most common case of one student being "completely
done" with their program, as this was ubiquitous in most
responses (either explicitly or implicitly).

4.2 Student Evaluation of Scenarios
As shown in Figure 3, when asked to evaluate other student-
generated collaboration scenarios, only once was there solid
consensus from students. Again, in this question, we ask students
to say whether acts were “appropriate” rather than "legal" because
we encouraged the students to think for themselves about the
value and consequences of collaborating with others. The
instructor and TA for the course (the authors) both agreed on the
kind of collaborations they could expect to allow in this course.
They agreed with the majority of students on all scenarios except
Scenario 3, where they thought the phrase “he and I would
generate a code” was beyond what was acceptable.

Figure 3. Spring Student Assessment of Provided Scenarios

5. DISCUSSION
Generating Collaboration Policies. Most previous work has
looked at student ability to identify and rate violation of academic
integrity policies and has shown students struggle to appropriately
apply such rules. Might we reach a better outcome if we involved
students in the process more generatively? Here we engage
students in “defining” policy by “consider[ing] the reasons and
value of having rules for what constitutes legal or ‘OK’ ways of
collaborating” as part of consideration of their professional
development and academic value of course assessment.

This process for generating local or course-specific policy has
potential benefit for instructors. Students had, in a previous
course, signed a computing-specific academic integrity statement
which included standard wording on plagiarism and prohibited
specifically “providing, procuring or accepting assignments in
part or in whole” to/from other students, required that code be

297

“student’s original work”, and outlined that “collaboration with
other students to develop, complete, or correct course work is
limited to activities explicitly authorized by the Instructor”.
Recognizing that she lacked a list of “explicitly allowable”
collaboration activities to provide to students, the instructor asked
students to help generate such a list that she would then endorse
for the course.

This process for generating local or course-specific policy has
potential benefit for students. Another consideration is to engage
students in considering the implications of collaboration activities
on their overall learning process, given recognized positive
aspects of collaborations for novice programmers. Part of the
motivation for pair programming in CS1 is to help students
struggle less with getting stuck (especially debugging), and to
develop skills in discussing and evaluating multiple solutions to a
problem specifically as that process positively influences learning
[4]. From this viewpoint, the instructor approved collaboration
decisions (based on the 5 scenarios in Spring and their discussion
in class) help students draw the line in interpreting the phrase
“student’s original work” (e.g., discussion up to a point is valued,
generating code together crosses the line). Viewing others’ code
to help debug is “reasonable collaboration” as long as the amount
of code viewed is small. While these scenarios leave significant
room for improvement, their discussion does allow for reflection
on positive valuation of collaboration targeted at improved
understanding, versus “simple sharing” of code or information.

Code versus information. By instructor standards for this class,
all code sharing activities (except possibly those that have the
more knowledgeable student viewing the less knowledgeable
student’s code, for say restricted debugging) were clearly
inappropriate acts. As clearly inappropriate acts, it is concerning
that so many student responses are of this type, rather than
exploring the more interesting “borderline” cases. Certainly,
discussion of the difference in “tell” and “explain” scenarios
would be quite valuable in class. Students described “Telling” as
a form of “speaking in code”, compared to “explain” which
implied more algorithmic or higher level discussion, and also
often implied more 2-way discussion rather than “dumping” of
information from a knowledgeable source to a less knowledgeable
one. In this class, many cases of “explain” (and also “locate” and
“debug”) were in fact considered allowable by the instructor – or
at least could be with small modifications to the described
scenario (see [S38] on last page).

Often two scenario characteristics applied that made View (bad
code), explain, locate, and debug reasonable: limited scope of
assistance and lack of “use” of knowledgeable student’s “good”
code. Specifically, having a more knowledgeable student view,
explain or work with (in a limited way) a less knowledgeable
student’s code was more likely to be seen as appropriate, valuable
collaboration – compared to engaging the less knowledgeable
student with the “good code”.

Evaluation of Scenarios. Though students achieved little
consensus evaluating each other’s scenarios (replicating reports
when evaluating pre-defined scenarios), we chose those scenarios
for their vagueness and, hence, discussion potential. In future
work, this sort of “peer review” might be a valuable process in
helping students develop better scenarios. Future work would
then be required to see if resultant student-generated scenarios

are, in fact, more likely to be understandable and consistently
evaluated by other students, perhaps even at different institutions.

6. IMPLICATIONS FOR INSTRUCTORS
Developing Skill in Describing and Assessing Collaboration.
From reviewing the scenarios we find that students commonly
lack skill in specifying details of collaboration scenarios to make
them clearly assessable. Often, the degree of interaction and other
important characteristics are missing or muddied. This can leave
open issues for discussion (see below), but makes it difficult to
define explicit, easily-followed rules. If we want students to
accurately follow a set of behaviors, we should consider explicitly
developing their skills in both describing and evaluating such
scenarios. Perhaps introductory computing courses should engage
students in writing detailed scenarios as both a goal in itself and
to provide them greater opportunity to reflect on their behavior.
One might provide students with a set of “sample” scenarios that
are worded too vaguely, then ask each student to “elaborate” both
an appropriate and an inappropriate version of them. Making this
a class assignment could help develop more contextualized,
institutional, or course-specific sets of guidelines.

Class Discussion. Even without adding explicit educational goals
as outlined above, having students generate their own scenarios
regarding collaboration may have value. For an instructor, review
of such responses may highlight common behaviors at your
institution or specific cases where students are clearly mistaken in
understanding local accepted practices. For students, a valuable
class activity could be a discussion of their own results, or even
those provided by students in this study (which may make the
conversation less loaded, especially in small classrooms). The last
page of this paper provides student-generated scenarios as a
starting point for classroom discussion, which we invite
instructors to use verbatim or modify for their own purposes.

7. CONCLUSIONS
In this work we report on the experience of asking students in an
introductory computing class to define their own inappropriate
collaboration scenarios. Results feature the sharing of code and
information as distinct situations. We consider the possibility of
this first experience for future, more comprehensive instructional
processes for improving both collaboration policies and students’
abilities to recognize and evaluate them.

8. REFERENCES
[1] Marshall, S., Garry, M. (2005). How well do students really

understand plagiarism?. In H. Goss (Ed.), Proceedings of the
22nd annual conference of the Australasian Society for
Computers in Learning in Tertiary Education (ASCILITE)
(pp. 457-467). Brisbane, Australia, 4-7 December.

[2] Brimble, M., Stevenson-Clarke, P. (2005), Perceptions of the
prevalence and seriousness of academic dishonesty in
Australian universities, Australian Educational Researcher,
Vol. 32 No.3, pp.19-44.

[3] Dick, M., Sheard, J., and Markham, S. 2001. Is it okay to
cheat? - the views of postgraduate students. SIGCSE Bull.
33, 3 (Sep. 2001), 61-64.

[4] Simon, B., Hanks, B. First Year Students' Impressions of
Pair Programming in CS1. JERIC 7, 4. 2008.

298

Illegal Acts: sharing information
• Tell: One student encounters a failure with his code and seeks

help from surrounding peers. He finds another student who has had
the same failure and that student has identified the defect. The
student asks this student to tell him exactly what it is that he
changed to make it work. [W23]

• Explain: I am working on an assignment that is due in 2 hours
and panicking and just need to do one last part before I finish. I see
my friend in the lab as well and I go over to him and ask him for
some quick help. I notice he is stuck on a part that I finished and he
did the part I need. I tell him we should just explain in words how
we did our own sections in words away from the code and he
agrees. This is crossing the line because it is not friendly debugging
help (which might be ok) but it is actually an unfair help in a crucial
step in completing the code. [S38]

• Locate: Let's say you get an out of bounds error. You don't
know why that is. You can ask your friend for possible reasons, but
if you get your friend to actually go up to your computer and
point out, "your problem is here", that crosses the line. [S32]

• Debug: Asking someone else for help debugging when you
have not exhausted your own resources of finding the bug. [W29]

Illegal Acts: sharing good code
• View: You've been trying to finish your code but are stuck on

one of the methods and can’t figure out how to do it. You call over
another student and ask for help and they let you see what they did
for their method to help you get started. [W35]

• Copy: One individual is having trouble figuring out an
assignment. He has started on it and has been working on it for
awhile, but cannot seem to finish the last part. He asks another
student in the class for help. He copies/pastes the last section to
his program directly from the other student's program. [S07]

• Send: Student A asks student B to debug a code. Student A
gives student B the whole code through e-mail because it's late at
the lab. Student B does debug some of the code, but there is a risk of
student B keeping most of the code for himself. [W44]

• Write: You are having a problem with your code because it is
having an out of bounds error and you are not sure why. You ask a
friend and he fixes the line that is messing up your code. [S17]

Illegal Acts: coding together
• Pair: Student A needs help debugging and Student B realizes

he has made a similar mistake. Both students have completed
their program. They work together to solve the bug but student

B also uses the same code for his own. [W30]

Illegal Acts: sharing bad code
• View: Classmate A has a runtime error on his code and doesn't

know what's wrong. He is about 90% done, and needs someone to
skim over his code to see what he did wrong. He contacts his
friend, classmate B, to check over his code. He sends it to Classmate
B via e-mail, and just asks him to find out what's wrong and email
him back. [W06]

• Copy: A scenario that would not be okay would be if the
debugging involves errors in most parts of the program so that none
of the program is executing. This is because then a peer reviewer
would have to go through and understand all parts of the students
program and would see exactly how they did their work. I think that
would make it too easy and tempting for the reviewer to copy if
they hadn't started working on their project yet. [W33]

Mitigating Circumstances
• Stuck: Student A is finished with the body of the code but when

he/she runs the code the expected result does not occur. Student A
has spent a considerable amount of time trying to figure out
where the bug is and what he/she has done wrong; however, he/she
is unsuccessful in fixing the program. Student A asks Student B for
assistance in locating where the code is going wrong. [S63]

• Different Places: Sally, a good friend of mine, had been
working on her program for a couple of days. When she compiles
her code, everything is alright except for a logic error. She wants
me to check over her code when I haven't even written mine yet.
I should tell her she should look for a tutor for her problems because
I'd be tempted to use some of her code. [S21]

• Procrastination: It’s late at night and the assignment is
due tomorrow, I email a classmate and ask if they can help out by
sending part of the program they made to help me figure out my
error and finish my code. [S60]

• Amount of Code: If someone has a code that is riddled with
errors which they cannot spot and they ask for help it's ok, but as
soon as they start letting the other person rewrite parts of it
beyond a line or two it starts becoming questionable. [S09]

• Asking Fails: Let’s say a person gets stuck on their code for
quite some time. They have been asking for help from fellow
students, and finally the person helping gets frustrated and lets
them see their own code. The person then understood his/her
mistake and used what he/she saw to fix his bug. [S18]

• Not exhausted resources: When you have spent
minimal time examining the problem yourself and ask for help
after like 5 minutes of looking at it. When you know the other
person is already done and maybe willing to help push you in the
right direction. [W34]

Student guide to unfair collaboration scenarios
These scenarios are students’ own words describing possible situations where they might work together in ways that would not be

fair based on university standards and their goals for professional development.
Do you agree with them -- are these inappropriate ways to collaborate? Do they provide enough detail for you to decide?

299

