
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Equality Saturation: Engineering Challenges and Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Michael Benjamin Stepp

Committee in charge:

Professor Sorin Lerner, Chair
Professor Ranjit Jhala
Professor William Griswold
Professor Rajesh Gupta
Professor Todd Millstein

2011

Copyright

Michael Benjamin Stepp, 2011

All rights reserved.

The dissertation of Michael Benjamin Stepp is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2011

iii

DEDICATION

First, I would like to express my gratitude to my advisor Sorin Lerner.

His guidance and encouragement made this research possible.

I offer thanks to my parents for believing in me, and in my abilities. Their

love and support made this academic achievement possible. I am lucky to have

been born to the greatest set of parents anyone could ask for, and I see proof of

that every day.

Finally, I need to thank Amie McElwain, my partner. She has been

endlessly supportive throughout this process and was willing to make compromises

and accommodations so that I could complete my education. She uprooted herself

and relocated to San Diego so that we could be together. I am extremely grateful

for that sacrifice.

iv

EPIGRAPH

Computers are useless. They can only give you answers.

—Pablo Picasso

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . iv

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita and Publications . xiv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1

Chapter 2 Overview . 3
2.1 Representations . 6

2.1.1 Program Expression Graphs 7
2.1.2 Equivalence PEGs 9

2.2 Benefits of our Approach 11
2.2.1 Optimization Order Does Not Matter 11
2.2.2 Global Profitability Heuristics 13
2.2.3 Translation Validation 15

Chapter 3 Frontends . 18
3.1 Language-Independent Components 18
3.2 Java Bytecode . 19
3.3 LLVM Bitcode . 21

Chapter 4 Defining Equality Analyses . 24
4.1 Axioms . 25

4.1.1 Creating Axioms 27
4.2 Complex Analyses . 35

Chapter 5 Axioms . 44
5.1 Arithmetic Axioms . 44
5.2 Constant Value Axioms 45
5.3 Nondomain Axioms . 47

vi

5.4 Language-Specific Axioms 49
5.4.1 Java-specific Axioms 49
5.4.2 LLVM-specific Axioms 50

5.5 Constant Folding . 51
5.6 Domain-Specific Axioms 53

Chapter 6 Side Effects and Linearity . 57
6.1 The problem with effect tokens 58

6.1.1 A Solution: Linear Types 61
6.1.2 Solution 1: PEG to linear PEG conversion 62
6.1.3 Solution 2: Stateful PEG Selection Problem . . . 62

Chapter 7 Optimization . 64
7.1 Local Changes Have Non-Local Effects 65

7.1.1 Loop-based code motion 65
7.1.2 Restructuring the CFG 66
7.1.3 Loop Peeling . 67
7.1.4 Branch Hoisting 70
7.1.5 Limitations of PEGs 71

7.2 Axiom Sets . 72

Chapter 8 The PEG Selection Problem 76
8.1 The PEG Selection Problem 78
8.2 The MIN-SAT Problem 79
8.3 NP-Hardness of the PEG Selection Problem 79
8.4 Reduction from PEG Selection to Pseudo-Boolean 83
8.5 Stateful PEG Selection Problem 86
8.6 Reduction of Stateful PEG Selection to ILP 87
8.7 The PEG Validity Checker 94

Chapter 9 Evaluation: Optimization . 98
9.1 Time and space overhead 98
9.2 Implementing optimizations 100

Chapter 10 Translation Validation . 105
10.1 Translation Validation 105
10.2 Translation Validation in Peggy 106
10.3 Evaluation . 110

10.3.1 Translation Validation in Java 110
10.3.2 Translation Validation in LLVM 110

Chapter 11 Related Work . 114

Chapter 12 Conclusion . 121

vii

Appendix A Java/Soot/PEG conversion . 126

Appendix B LLVM/PEG conversion . 142

Appendix C Axioms and Analyses Used in Peggy 154
C.1 Arithmetic Axioms . 154
C.2 Nondomain Axioms . 158
C.3 Language-Specific Axioms 163

C.3.1 Java-specific Axioms 163
C.3.2 LLVM-specific Axioms 165

C.4 Domain-Specific Axioms 172

Appendix D Axioms used in Figure 9.1 . 174
D.1 Axioms . 174

D.1.1 General-purpose Axioms 174
D.1.2 Domain-specific 178

Bibliography . 183

viii

LIST OF FIGURES

Figure 2.1: Loop-induction-variable strength reduction: (a) shows the ori-
ginal code, and (b) shows the optimized code. 6

Figure 2.2: Loop-induction-variable Strength Reduction using PEGs: (a)
shows the original PEG, (b) shows the EPEG that our engine
produces from the original PEG and (c) shows the optimized
PEG, which results by choosing nodes 6, 8, 10, and 12 from (b). 6

Figure 4.1: An axiom making use of the true node. 25
Figure 4.2: XML grammar for axiom description. 28
Figure 4.3: The XML expression tags that are common to every source

language. 29
Figure 4.4: Example of a cyclic expression. The id of the theta expression

is referenced in the ref, which creates a cycle. 30
Figure 4.5: The expression tags defined for Java. 31
Figure 4.6: The constant expression tags defined for LLVM. 32
Figure 4.7: The non-constant expression tags defined for LLVM. 33
Figure 4.8: Tag-based XML description of an axiom. 34
Figure 4.9: The grammar for the simple XML axiom language. 36
Figure 4.10: The same axiom as in Figure 4.8, in the simple language. 36
Figure 4.11: Grammar for the complex analysis definition language. 38
Figure 4.12: Several useful functions defined in the JavaScript context. . . . 40
Figure 4.13: An example of a complex analysis written in the input format. . 41
Figure 4.14: The source code (a) and PEG (b) for an integer square root

function that will be inlined using Peggy. 42
Figure 4.15: Example of inlining using Peggy. The inliner’s code is in part

(a), the PEG for part (a) is in part (b), and the EPEG during
inlining is in part (c). 43

Figure 6.1: An example of how effect tokens can interact poorly with φ
nodes. Part (a) shows the original source code, part (b) shows
the EPEG for the code during saturation, with 2 axioms applied,
and part (c) shows a potential PEG that could be chosen for
reversion from the EPEG. 59

Figure 6.2: An example of how effect tokens can interact poorly with θ
nodes. Part (a) shows the original source code, part (b) shows
the EPEG for the code during saturation, with 2 axioms applied,
and part (c) shows a potential PEG that could be chosen for
reversion from the EPEG. 60

ix

Figure 7.1: An example of loop-based code motion from simple axiom ap-
plications; (a) the original source code, (b) the original PEG,
(c) the PEG after distributing ∗ through eval1, (d) the PEG
after performing loop-induction-variable strength reduction, (e)
the resulting source code. 65

Figure 7.2: An example of how local changes in the PEG can cause large
changes in the CFG: (a) the original CFG, (b) the original PEG,
(c) the PEG after distributing ∗ through the left-hand φ, (d) the
PEG after distributing ∗ through the bottom φ, (e) the PEG
after constant folding, (f) the resulting CFG. 67

Figure 7.3: An example of axiom-based loop peeling: (a) the original loop,
(b) the PEG for part (a), (c)-(h) intermediate steps of the op-
timization, (i) the final peeled loop, which is equivalent to (h).

. 68
Figure 7.4: An example of branch hoisting: (a) the original program, (b) the

PEG for part (a), (c) the PEG after distributing eval through
φ, (d) the PEG after distributing eval through ∗, (e) the code
resulting from (d). 70

Figure 7.5: Part of an EPEG before and after applying an axiom. The same
axiom can apply an infinite number of times, since it creates new
nodes that will trigger itself. 73

Figure 8.1: An example of the encoding of the expression “(x1 ∨x2)∧ (x2 ∨
x3) ∧ (x1 ∨ x3)”. Part (a) shows the EPEG that is produced
by the encoding, and part (b) shows the PEG that results from
applying the PEG Selection problem to part (a). 81

Figure 8.2: A flowchart of the iterative refinement PEG Selection Process. . 88

Figure 9.1: Optimizations performed by Peggy. Throughout this table we
use the following abbreviations: EQ means “equality”, DS means
“domain-specific”, TRE means “tail-recursion elimination”, SR
means “strength reduction” . 99

Figure 9.2: Runtimes of generated code from Soot and Peggy, normalized
to the runtime of the unoptimized code. The x-axis denotes
the optimization number from Figure 9.1, where “rt” is our
raytracer benchmark and “sp” is the average over the SpecJVM
benchmarks. 102

Figure 10.1: (a) Original code (b) Optimized code (c) Combined EPEG. . . 107
Figure 10.2: (a) Original code (b) Optimized code (c) Combined EPEG. . . 108
Figure 10.3: (a) Original code (b) Optimized code (c) Combined EPEG. . . 109
Figure 10.4: Results of running Peggy’s translation validator on SPEC 2006

benchmarks. The times listed in the “Engine Time” columns
are averages. 111

x

LIST OF TABLES

Table A.1: Translation between bytecode, Soot, and PEG nodes. 127
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 128
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 129
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 130
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 131
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 132
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 133
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 134
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 135
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 136
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 137
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 138
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 139
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 140
Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued 141

Table B.1: Translation between LLVM values and PEG nodes. 142
Table B.1: Translation between LLVM values and PEG nodes, Continued . 143
Table B.1: Translation between LLVM values and PEG nodes, Continued . 144
Table B.1: Translation between LLVM values and PEG nodes, Continued . 145
Table B.2: Translation between LLVM instructions and PEG nodes. 146
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 147
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 148
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 149
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 150
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 151
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 152
Table B.2: Translation between LLVM instructions and PEG nodes, Con-

tinued . 153

xi

ACKNOWLEDGEMENTS

I would like to thank my coauthors of the Peggy system and the publications

based on it, Ross Tate, Zachary Tatlock, and Sorin Lerner. They all worked very

hard to make the idea of Equality Saturation a reality, and none of this work would

be possible without them.

I would also like to thank my committee members. Their guidance and

feedback during my proposal helped steer me in the right direction to reach this

point. Also, their patience and flexibility throughout this entire process is greatly

appreciated.

Chapters 2, 7, 9, 10, 11, and 12 contain material taken from “Equality

Saturation: a New Approach to Optimization”, by Ross Tate, Michael Stepp,

Zachary Tatlock, and Sorin Lerner, which appears in Logical Methods in Computer

Science 2010. The dissertation author was the secondary investigator and author

of this paper.

Chapters 2, 7, 9, 10, 11, and 12 contain material taken from “Equality Sat-

uration: a New Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary

Tatlock, and Sorin Lerner, which appears in Proceedings of the 36th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL

’09). The dissertation author was the secondary investigator and author of this

paper. Some of the material in these chapters is copyright c©2009 by the Associ-

ation for Computing Machinery, Inc. (ACM). Permission to make digital or hard

copies of part or all of this work for personal or classroom use is granted without

fee provided that the copies are not made or distributed for prot or commercial

advantage and that copies bear this notice and the full citation on the rst page in

print or the rst screen in digital media. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permit-

ted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,

requires prior specic permission and/or a fee.

Chapter 10 contains material taken from “Equality-Based Translation Val-

idator for LLVM”, by Michael Stepp, Ross Tate, and Sorin Lerner, which appears

in Proceedings of the 23rd International Conference on Computer Aided Verifica-

xii

tion (CAV 2011). The dissertation author was the primary investigator and author

of this paper.

xiii

VITA AND PUBLICATIONS

2003 B. S. in Computer Science
University of Arizona

2005 M. S. in Computer Science
University of Arizona

2003-2005 Research Assistant
University of Arizona

2006 Internship
Intuit Inc.
San Diego, California

2007 Internship
Google
Kirkland, Washington

2006-2011 Research Assistant
University of California, San Diego

2011 Ph. D. in Computer Science
University of California, San Diego

PUBLICATIONS

Michael Stepp, Ross Tate, and Sorin Lerner. “Equality-Based Translation Valida-
tor for LLVM”. In the 23rd International Conference on Computer Aided Verifi-
cation (CAV 2011)

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. “Equality Satura-
tion: A New Approach to Optimization”, In Logical Methods in Computer Science,
vol 7, issue 1, 2011

Ross Tate, Michael Stepp, and Sorin Lerner. “Generating compiler optimizations
from proofs”. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (POPL ’10), 2010.

Michael Stepp and Beth Simon. “Introductory computing students’ conceptions
of illegal student-student collaboration”. In Proceedings of the 41st ACM technical
symposium on Computer science education (SIGCSE ’10). ACM, New York, NY,
USA, 295-299

xiv

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. “Equality Sat-
uration: a new approach to optimization”. In Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
’09). ACM, 264-276

Christian Collberg, Ginger Myles, and Michael Stepp. “An empirical study of
Java bytecode programs”. In Software: Practice and Experience, volume 37, issue
6, (May 2007), 581-641.

Christian Collberg, Stephen Kobourov, C. Hutcheson, J. Trimble, M. Stepp. “Mon-
itoring Java Programs Using Music”. Technical Report, University of Arizona,
2005.

S. Kobourov, K. Pavlou, J. Cappos, M. Stepp, M. Miles, A. Wixted: “Collabora-
tion with DiamondTouch”. In INTERACT(2005) 986-989

C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, and M.
Stepp. 2004. “Dynamic path-based software watermarking”. In Proceedings of the
ACM SIGPLAN 2004 conference on Programming language design and implemen-
tation (PLDI ’04).

C. Collberg, G. Myles, and M. Stepp. “Cheating Cheating Detectors”. Technical
Report, University of Arizona, 2004.

xv

ABSTRACT OF THE DISSERTATION

Equality Saturation: Engineering Challenges and Applications

by

Michael Benjamin Stepp

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Sorin Lerner, Chair

In this dissertation, I describe the Peggy system for performing program

optimization and translation validation. Peggy is based on the concept of Equality

Saturation, in which axiomatic reasoning is applied to a program to produce ex-

ponentially many equivalent versions of that program, which can then be explored

simultaneously. This is achieved by using a custom intermediate representation

that facilitates mathematical reasoning over programs. I will specifically address

some of the engineering challenges posed by making a working implementation of

the Equality Saturation technique, as well as the major applications to which we

have applied it.

I implemented front-ends for Peggy to convert both Java bytecode pro-

grams and LLVM programs to and from our custom intermediate representation.

I designed and implemented a domain-specific language for writing the axioms

that are used by the Equality Saturation engine. For the purposes of optimiza-

tion, I designed the technique whereby we choose the optimal program from our

representation of exponentially many equivalent programs. I implemented both

our optimization and our translation validation frameworks that use the Equality

xvi

Saturation engine. In addition, I performed experiments showing the effectiveness

of Equality Saturation at both program optimization and translation validation.

xvii

Chapter 1

Introduction

Equality Saturation is a technique developed by Ross Tate, Zachary Tat-

lock, Sorin Lerner, and myself and was first presented in [TSTL09]. It is a method

of exploring a large portion of the space of programs that are equivalent to a partic-

ular input program. This is achieved by first converting the program to a purely

functional form, and then applying equality analyses to it to deduce equivalent

forms for the subexpressions within the program. Every new equivalent subex-

pression that is found greatly increases the number of overall programs that have

been discovered. Once we have finished applying equality analyses, we are left

with a concise representation of exponentially many programs that are equivalent

to the original.

There are two applications for which this technique is especially useful.

Firstly, we can explore the set of equivalent programs to find the one that is optimal

according to some metric. If we then output this program instead of the original,

we have essentially optimized the original program according to that metric. In

this way Equality Saturation can form the basis of a general-purpose program

optimizer. Secondly, we can easily check for the equivalence of two programs by

testing to see if they both exist in the program set that came out of an Equality

Saturation instance. In particular, if we start with two input programs instead

of one, and apply Equality Saturation on them both simultaneously, we can say

they are equivalent if all their nodes are eventually marked equivalent. This allows

Equality Saturation to be used for translation validation.

1

2

In this dissertation, I will discuss my contributions to designing and building

a system based on the Equality Saturation technique, which we call Peggy. A brief

summary of my contributions is as follows. I designed a framework around the main

Equality Saturation engine that allows it to perform program optimizations as

well as translation validation between program pairs. I designed and implemented

the process that solves the PEG Selection Problem, which is an important sub-

problem of program optimization with Equality Saturation. Finally, I evaluated

Equality Saturation experimentally in terms of its effectiveness at both program

optimization and translation validation. To achieve these goals I had to design and

construct the two front-ends we use within Peggy, that allow us to apply Equality

Saturation to both Java bytecode and LLVM bitcode. I also designed the language

for defining the equality analyses that Peggy uses to perform Equality Saturation,

and implemented code to parse them and integrate them into the system.

The rest of this dissertation is organized as follows. Chapter 2 presents a

more detailed overview of the Equality Saturation technique. Chapter 3 describes

the design of the front-ends to the system, which allow it to perform Equality

Saturation on real programs. Chapter 4 describes what equality analyses actually

are, and how we define and represent them. Chapter 5 presents some of the actual

equality analyses used within Peggy, and what they are used for. Chapter 6 talks

about complications that arise due to the intermediate representation we use within

Peggy, and how we handle those complications. Chapter 7 talks about applying

Equality Saturation to the task of optimization of programs. Chapter 8 describes

the PEG Selection Problem, which is an important sub-problem when optimizing

with Equality Saturation. Chapter 9 presents an experimental evaluation of the

effectiveness of using Peggy as an optimization system. Chapter 10 describes how

we use Equality Saturation to perform translation validation on pairs of input

programs. Chapter 11 discusses related work. Finally, Chapter 12 concludes with

a summary of our results.

Chapter 2

Overview

In a traditional compilation system, optimizations are applied sequentially,

with each optimization taking as input the program produced by the previous one.

This approach to compilation has several well-known drawbacks. One of these

drawbacks is that the order in which optimizations are applied affects the quality

of the generated code, a problem commonly known as the phase ordering problem.

Another drawback is that profitability heuristics, which decide whether or not to

apply a given optimization, tend to make their decisions one optimization at a

time, and so it is difficult for these heuristics to account for the effect of future

transformations.

We have designed a new approach for structuring optimizers that addresses

the above limitations of the traditional approach, and also has a variety of other

benefits. Our approach consists of computing a set of optimized versions of the

input program and then selecting the best candidate from this set. The set of candi-

date optimized programs is computed by repeatedly inferring equivalences between

program fragments, thus allowing us to represent the effect of many possible op-

timizations at once. This, in turn, enables the compiler to delay the decision of

whether or not an optimization is profitable until it observes the full ramifications

of that decision. Although related ideas have been explored in the context of super-

optimizers, as Chapter 11 on related work will point out, super-optimizers typically

operate on straight-line code, whereas our approach is meant as a general-purpose

compilation paradigm that can optimize complicated control flow structures.

3

4

At its core, our approach is based on a simple change to the traditional

compilation model: whereas traditional optimizations operate by destructively per-

forming transformations, in our approach optimizations take the form of equality

analyses that simply add equality information to a common intermediate represen-

tation (IR), without losing the original program. Thus, after each equality analysis

runs, both the old program and the new program are represented.

The simplest form of equality analysis looks for ways to instantiate equality

axioms like a ∗ 0 = 0, or a ∗ 4 = a << 2. However, our approach also supports

arbitrarily complicated forms of equality analyses, such as inlining and various

forms of user defined axioms. The flexibility with which equality analyses are

defined makes it easy for compiler writers to port their traditional optimizations

to our equality-based model: optimizations can work as before, except that whereas

the optimization formerly would have performed a transformation, it now simply

records the transformation as an equality.

The main technical challenge that we face in our approach is that the com-

piler’s IR must now use equality information to represent not just one optimized

version of the input program, but multiple versions at once. We address this chal-

lenge through a new IR that compactly represents equality information, and as a

result can simultaneously store multiple optimized versions of the input program.

After a program is converted into our IR, we repeatedly apply equality analyses

to infer new equalities until no more equalities can be inferred, a process known as

saturation. Once saturated with equalities, our IR compactly represents the vari-

ous possible ways of computing the values from the original program modulo the

given set of equality analyses (and modulo some bound in the case where applying

equality analyses leads to unbounded expansion).

Our approach for structuring optimizers is based on the idea of having

optimizations propagate equality information to a common IR that simultaneously

represents multiple optimized versions of the input program. The main challenge

in designing this IR is that it must make equality reasoning effective and efficient.

To make equality reasoning effective, our IR needs to support the same

kind of basic reasoning that one would expect from simple equality axioms like

5

a ∗ (b+ c) = a ∗ b+ a ∗ c, but with more complicated computations such as branch-

es and loops. We have designed a representation for computations called Program

Expression Graphs (PEGs) [TSTL09] that meets these requirements. Similar to

the gated SSA representation [TP95, Hav93], PEGs are referentially transparent,

which intuitively means that the value of an expression depends only on the value

of its constituent expressions, without any side-effects. As has been observed pre-

viously in many contexts, referential transparency makes equality reasoning simple

and effective. However, unlike previous SSA-based representations, PEGs are also

complete, which means that there is no need to maintain any additional repre-

sentation such as a control flow graph (CFG). Completeness makes it easy to use

equality for performing transformations: if two PEG nodes are equal, then we

can pick either one to create a program that computes the same result, without

worrying about the implications on any underlying representation.

In addition to being effective, equality reasoning in our IR must be effi-

cient. The main challenge is that each added equality can potentially double the

number of represented programs, thus making the number of represented programs

exponential in the worst case. To address this challenge, we record equality infor-

mation of PEG nodes by simply merging PEG nodes into equivalence classes. We

call the resulting equivalence graph an Equivalence PEG, or EPEG, and it is this

EPEG representation that we use in our approach. Using equivalence classes allows

EPEGs to efficiently represent exponentially many ways of expressing the input

program, and it also allows the equality saturation engine to efficiently take into

account previously discovered equalities. Among existing IRs, EPEGs are unique

in their ability to represent multiple optimized versions of the input program.

We illustrate the main features of our approach by showing how it can be

used to implement loop-induction-variable strength reduction. The idea behind

this optimization is that if all assignments to a variable i in a loop are increments,

then an expression i * c in the loop (with c being loop invariant) can be replaced

with i, provided all the increments of i in the loop are appropriately scaled by c.

As an example, consider the code snippet from Figure 2.1(a). The use of

i*5 inside the loop can be replaced with i as long as the two increments in the

6

i := 0;

while (...) {

use(i * 5);

i := i + 1;

if (...) {

i := i + 3;

}

}

i := 0;

while (...) {

use(i);

i := i + 5;

if (...) {

i := i + 15;

}

}
(a) (b)

Figure 2.1: Loop-induction-variable strength reduction: (a) shows the original

code, and (b) shows the optimized code.

(b) (c)(a)

0

+

3

1

+

2

3

4

5

* *
50

*

5 0

0

+

3

1

+

2

3

4

5

5
*

5

1 6

7 8

*
53

15

10
C

+

*

B

A

11
+

D

12

*
51

55
+

15

5

+

0

*

5

1

9
θ

θ
θ

θ

δ
δ δ

O
O

O

Oδ

Figure 2.2: Loop-induction-variable Strength Reduction using PEGs: (a) shows

the original PEG, (b) shows the EPEG that our engine produces from the

original PEG and (c) shows the optimized PEG, which results by choosing nodes

6, 8, 10, and 12 from (b).

loop are scaled by 5. The resulting code is shown in Figure 2.1(b).

2.1 Representations

Here we briefly recap the descriptions of the custom intermediate repre-

sentations that we use for performing Equality Saturation. These representations

were originally presented in [TSTL09].

7

2.1.1 Program Expression Graphs

A Program Expression Graph (PEG) is a graph containing: (1) operator

nodes, for example “plus”, “minus”, or any of our built-in nodes for represent-

ing conditionals and loops, and (2) “dataflow” edges that specify where operator

nodes get their arguments from. As an example, consider the “use” statement

in Figure 2.1(a). This is meant as a placeholder for any kind of use of the value

i*5; it is used to mark the specific location inside the loop where we examine

this value. The PEG for the value i*5 is shown in Figure 2.2(a). At the very

top of the PEG we see node 1, which represents the i*5 multiply operation from

inside the loop. Each PEG node represents an operation, with the children nodes

being the arguments to the operation. The links from parents to children are

shown using solid (non-dashed) lines. For example, node 1 represents the mul-

tiplication of node 2 by the constant 5. PEGs follow the notational convention

used in E-graphs [NO79, NO80, DNS05] and Abstract Syntax Trees (ASTs) of

displaying operators above the arguments that flow into them, which is the oppo-

site convention typically used in Dataflow Graphs [CFR+89, AWZ88]. We use the

E-graph/AST orientation because we think of PEGs as recursive expressions.

Node 2 in our PEG represents the value of variable i inside the loop, right

before the first instruction in the loop is executed. We use θ nodes to represent

values that vary inside of a loop. A PEG contains one θ node per variable that is

live in the loop, and a variable’s θ node represents the entire sequence of values

that the variable takes throughout the loop. Intuitively, the left child of a θ

node computes the initial value, whereas the right child computes the value at the

current iteration in terms of the value at the previous iteration. In our example,

the left child of the θ node is the constant 0, representing the initial value of i. The

right child of the θ node uses nodes 3, 4, and 5 to compute the value of i at the

current iteration in terms of the value of i from the previous iteration. The two

plus nodes (nodes 4 and 5) represent the two increments of i in the loop, whereas

the φ node (node 3) represents the merging of the two values of i produced by the

two plus nodes. In traditional SSA, a φ node has only two inputs (the true value

and the false value) and as a result the node itself does not know which of the two

8

inputs to select, relying instead on an explicit control-flow join to know at run-time

which case of the branch was taken. In contrast, our φ nodes are like those in gated

SSA [TP95, Hav93]: they take an additional parameter (the first left-most one)

which is used to select between the second and the third parameter. As a result,

our φ nodes are executable by themselves, and so there is no need to explicitly

encode a control-flow join. Our example doesn’t use the branch condition in an

interesting way, and so we just let δ represent the PEG sub-graph that computes

the branch condition. Furthermore, since this PEG represents the value of i inside

the loop, it does not contain any operators to describe the while-condition, since

this information is only relevant for computing the value of i after the loop has

terminated.

From a more formal point of view, each θ node produces a sequence of

values, one value for each iteration of the loop. The first argument of a θ node is

the value for the first iteration, whereas the second argument is a sequence that

represents the values for the remaining iterations. For example, in Figure 2.2, the

nodes labeled 3 through 5 compute this sequence of remaining values in terms

of the sequence produced by the θ node. In particular, nodes 3, 4 and 5 have

been implicitly lifted to operate on this sequence. The fact that a single θ node

represents the entire sequence of values that a loop produces allows us to represent

that two loops compute the same sequence of values with a single equality between

two θ nodes.

PEGs are well-suited for equality reasoning because all PEG operators, even

those for branches and loops, are mathematical functions with no side effects. As

a result, PEGs are referentially transparent, which allows us to perform the same

kind of equality reasoning that one is familiar with from mathematics. Though

PEGs are related to functional programs, in our work we have used PEGs to

represent intra-procedural imperative code with branches and looping constructs.

Furthermore, even though all PEG operators are pure, PEGs can still represent

programs with state by using heap summary nodes: stateful operations, such as

heap reads and writes, can take a heap as an argument and return a new heap. This

functional representation of stateful programs allows our Peggy compiler to use

9

PEGs to reason about Java programs. The heap summary node can also be used

to encode method/function calls in an intra-procedural setting by simply threading

the heap summary node through special nodes representing method/function calls.

We discuss the heap summary node in more detail in Chapter 6.

2.1.2 Equivalence PEGs

A PEG by itself can only represent a single way of expressing the input

program. To represent multiple optimized versions of the input program, we need

to encode equalities in our representation. To this end, an EPEG is a graph

that groups together PEG nodes that are equal into equivalence classes. As an

example, Figure 2.2(b) shows the EPEG that our engine produces from the PEG of

Figure 2.2(a). We display equalities graphically by adding a dashed edge between

two nodes that have become equal. These dashed edges are only a visualization

mechanism. In reality, PEG nodes that are equal are grouped together into an

equivalence class.

Reasoning in an EPEG is done through the application of optimizations,

which in our approach take the form of equality analyses that add equality infor-

mation to the EPEG. An equality analysis consists of two components: a trigger,

which is an expression pattern stating the kinds of expressions that the analysis is

interested in, and a callback function, which should be invoked when the trigger

pattern is found in the EPEG. The saturation engine continuously monitors all the

triggers simultaneously, and invokes the necessary callbacks when triggers match.

When invoked, a callback function adds the appropriate equalities to the EPEG.

The simplest form of equality analysis consists of instantiating axioms such

as a∗0 = 0. In this case, the trigger would be a∗0, and the callback function would

add the equality a ∗ 0 = 0. Even though the vast majority of our reasoning is done

through such declarative axiom application, our trigger and callback mechanism

is much more general, and has allowed us to implement equality analyses such as

inlining, tail-recursion elimination, and constant folding.

The following three axioms are the equality analyses required to perform

loop-induction-variable strength reduction. They state that multiplication dis-

10

tributes over addition, θ, and φ:

(a+ b) ∗m = a ∗m+ b ∗m (2.1)

θ(a, b) ∗m = θ(a ∗m, b ∗m) (2.2)

φ(a, b, c) ∗m = φ(a, b ∗m, c ∗m) (2.3)

After a program is converted to a PEG, a saturation engine repeatedly

applies equality analyses until either no more equalities can be added, or a bound

is reached on the number of expressions that have been processed by the engine.

Figure 2.2(b) shows the saturated EPEG that results from applying the

above distributivity axioms, along with a simple constant folding equality analysis.

In particular, distributivity is applied four times: axiom (2.2) adds equality edge

A, axiom (2.3) edge B, axiom (2.1) edge C, and axiom (2.1) edge D. Our engine

also applies the constant folding equality analysis to show that 0∗5 = 0, 3∗5 = 15

and 1∗5 = 5. Note that when axiom (2.2) adds edge A, it also adds node 7, which

then enables axiom (2.3). Thus, equality analyses essentially communicate with

each other by propagating equalities through the EPEG. Furthermore, note that

the instantiation of axiom (2.1) adds node 12 to the EPEG, but it does not add

the right child of node 12, namely θ(. . .) ∗ 5, because it is already represented in

the EPEG.

Once saturated with equalities, an EPEG compactly represents multiple

optimized versions of the input program – in fact, it compactly represents all

the programs that could result from applying the optimizations in any order to

the input program. For example, the EPEG in Figure 2.2(b) encodes 128 ways

of expressing the original program (because it encodes 7 independent equalities,

namely the 7 dashed edges). In general, a single EPEG can efficiently represent

exponentially many ways of expressing the input program.

After saturation, a global profitability heuristic can pick which optimized

version of the input program is best. Because this profitability heuristic can in-

spect the entire EPEG at once, it has a global view of the programs produced by

various optimizations, after all other optimizations were also run. In our example,

starting at node 1, by choosing nodes 6, 8, 10, and 12, we can construct the graph

11

in Figure 2.2(c), which corresponds exactly to performing loop-induction-variable

strength reduction in Figure 2.1(b).

More generally, when optimizing an entire function, one has to pick a node

for the equivalence class of the return values and nodes for all equivalence classes

that the return values depend on. There are many plausible heuristics for choosing

nodes in an EPEG. In our Peggy implementation, we have chosen to select nodes

using an Integer Linear Programming (ILP) solver. In particular, we use an ILP

solver and a static cost model for every node to compute the lowest-cost program

that is encoded in the EPEG. In the example from Figure 2.2, the ILP solver picks

the nodes described above. Chapter 8 describes our technique for selecting nodes

in more detail.

2.2 Benefits of our Approach

Our approach of having optimizations add equality information to a com-

mon IR until it is saturated with equalities has a variety of benefits over previous

optimization models.

2.2.1 Optimization Order Does Not Matter

The first benefit of our approach is that it removes the need to think about

optimization ordering. When applying optimizations sequentially, ordering is a

problem because one optimization, say A, may perform some transformation that

will irrevocably prevent another optimization, say B, from triggering, when in fact

running B first would have produced the better outcome. This so-called phase

ordering problem is ubiquitous in compiler design. In our approach, however, the

compiler writer does not need to worry about ordering, because optimizations do

not destructively update the program – they simply add equality information.

Therefore, after an optimization A is applied, the original program is still rep-

resented (along with the transformed program), and so any optimization B that

could have been applied before A is still applicable after A. Thus, there is no way

that applying an optimization A can irrevocably prevent another optimization B

12

from applying, and so there is no way that applying optimizations will lead the

search astray. As a result, compiler writers who use our approach do not need

to worry about the order in which optimizations run. Better yet, because opti-

mizations are allowed to freely interact during equality saturation, without any

consideration for ordering, our approach can discover intricate optimization op-

portunities that compiler writers may not have anticipated, and hence would not

have implemented in a general purpose compiler.

To understand how our approach addresses the phase ordering problem,

consider a simple peephole optimization that transforms i * 5 into i << 2 + i.

On the surface, one may think that this transformation should always be per-

formed if it is applicable – after all, it replaces a multiplication with the much

cheaper shift and add. In reality, however, this peephole optimization may dis-

able other more profitable transformations. The code from Figure 2.1(a) is such

an example: transforming i * 5 to i << 2 + i disables loop-induction-variable

strength reduction, and therefore generates code that is worse than the one from

Figure 2.1(b).

The above example illustrates the phase ordering problem. In systems that

apply optimizations sequentially, the quality of the generated code depends on the

order in which optimizations are applied. Whitfield and Soffa [WS97a] have shown

experimentally that enabling and disabling interactions between optimizations oc-

cur frequently in practice, and furthermore that the patterns of interaction vary

not only from program to program, but also within a single program. Thus, no

one order is best across all compilation.

A common partial solution consists of carefully considering all the possible

interactions between optimizations, possibly with the help of automated tools,

and then coming up with a carefully tuned sequence for running optimizations

that strives to enable most of the beneficial interactions. This technique, however,

puts a heavy burden on the compiler writer, and it also does not account for the

fact that the best order may vary between programs.

At high levels of optimizations, some compilers may even run optimizations

in a loop until no more changes can be made. Even so, if the compiler picks the

13

wrong optimization to start with, then no matter what optimizations are applied

later, in any order, any number of times, the compiler will not be able to reverse

the disabling consequences of the first optimization.

In our approach, the compiler writer does not need to worry about the order

in which optimizations are applied. The previous peephole optimization would be

expressed as the axiom i * 5 = i << 2 + i. However, unlike in a traditional

compilation system, applying this axiom in our approach does not remove the

original program from the representation — it only adds information — and so it

cannot disable other optimizations. Therefore, the code from Figure 2.1(b) would

still be discovered, even if the peephole optimization was run first. In essence, our

approach is able to simultaneously explore all possible sequences of optimizations,

while sharing work that is common across the various sequences.

In addition to reducing the burden on compiler writers, removing the need

to think about optimization ordering has two additional benefits. First, because

optimizations interact freely with no regard to order, our approach often ends up

combining optimizations in unanticipated ways, leading to surprisingly complicated

optimizations given how simple our equality analyses are. Second, it makes it easier

for end-user programmers to add domain-specific axioms to the compiler, because

they don’t have to think about where exactly in the compiler the axiom should be

run, and in what order relative to other optimizations.

2.2.2 Global Profitability Heuristics

The second benefit of our approach is that it enables global profitability

heuristics. Even if there existed a perfect order to run optimizations in, compiler

writers would still have to design profitability heuristics for determining whether

or not to perform certain optimizations such as inlining. Unfortunately, in a tra-

ditional compilation system where optimizations are applied sequentially, each

heuristic decides in isolation whether or not to apply an optimization at a partic-

ular point in the compilation process. The local nature of these heuristics makes

it difficult to take into account the effect of future optimizations.

Since profitability heuristics in traditional compilers tend to be local in

14

nature, it is difficult to take into account the effect of future optimizations. For

example, consider inlining. Although it is straightforward to estimate the direct

cost of inlining (the code-size increase) and the direct benefit of inlining (the savings

from removing the call overhead), it is far more difficult to estimate the poten-

tially larger indirect benefit, namely the additional optimization opportunities that

inlining exposes.

To see how inlining would affect our running example, consider again the

code from Figure 2.1(a), but assume that instead of use(i * 5), there was a call

to a function f, and the use of i*5 occurred inside f. If f is sufficiently large,

a traditional inliner would not inline f, because the code bloat would outweigh

the call-overhead savings. However, a traditional inliner would miss the fact that

it may still be worth inlining f, despite its size, because inlining would expose

the opportunity for loop-induction-variable strength reduction. One solution to

this problem consists of performing an inlining trial [DC94], where the compiler

simulates the inlining transformation, along with the effect of subsequent optimiza-

tions, in order to decide whether or not to actually inline. However, in the face

of multiple inlining decisions (or more generally multiple optimization decisions),

there can be exponentially many possible outcomes, each one of which has to be

compiled separately.

In our approach, on the other hand, inlining simply adds an equality to the

EPEG stating that the call to a given function is equal to its body instantiated

with the actual arguments. The resulting EPEG simultaneously represents the

program where inlining is performed and where it is not. Subsequent optimizations

then operate on both of these programs at the same time. More generally, our

approach can simultaneously explore exponentially many possibilities in parallel,

while sharing the work that is redundant across these various possibilities. In the

above example with inlining, once the EPEG is saturated, a global profitability

heuristic can make a more informed decision as to whether or not to pick the

inlined version, since it will be able to take into account the fact that inlining

enabled loop-induction-variable strength reduction.

Our approach, allows the compiler writer to design profitability heuristics

15

that are global in nature. In particular, rather than choosing whether or not

to apply an optimization locally, these heuristics choose between fully optimized

versions of the input program. Our approach makes this possible by separating

the decision of whether or not a transformation is applicable from the decision of

whether or not it is profitable. Indeed, using an optimization to add an equality

in our approach does not indicate a decision to perform the transformation – the

added equality just represents the option of picking that transformation later. The

actual decision of which transformations to apply is performed by a global heuris-

tic after our IR has been saturated with equalities. This global heuristic simply

chooses among the various optimized versions of the input program that are rep-

resented in the saturated IR, and so it has a global view of all the transformations

that were tried and what programs they generated.

There are many ways to implement this global profitability heuristic, and

in our prototype compiler we have chosen to implement it using an Integer Linear

Programming (ILP) solver. In particular, after our IR has been saturated with

equalities, we use an ILP solver and a static cost model for every node to pick the

lowest-cost program that computes the same result as the original program.

2.2.3 Translation Validation

The third benefit of our approach is that it can be used not only to optimize

programs, but also to prove programs equivalent: intuitively, if during saturation

an equality analysis finds that the return values of two programs are equal, then

the two programs are equivalent. Our approach can therefore be used to perform

translation validation, a technique that consists of automatically checking whether

or not the optimized version of an input program is semantically equivalent to

the original program. For example, we can prove the correctness of optimizations

performed by existing compilers, even if our profitability heuristic would not have

selected those optimizations. In this way, our approach can be used to perform

translation validation for any compiler (not just our own), by checking that each

function in the input program is equivalent to the corresponding optimized function

in the output program.

16

For example, our approach would be able to show that the two program

fragments from Figure 2.1 are equivalent. Furthermore, it would also be able

to validate a compilation run in which i * 5 = i << 2 + i was applied first

to Figure 2.1(a). This shows that we are able to perform translation validation

regardless of what optimized program our own profitability heuristic would choose.

Although our translation validation technique is intraprocedural, we can

use interprocedural equality analyses such as inlining to enable a certain amount

of interprocedural reasoning. This allows us to reason about transformations like

reordering function calls. Chapter 10 discusses translation validation in greater

detail.

Summary

Equality Saturation has many advantages over traditional, linear optimiza-

tion techniques. Not only does it explore a much larger portion of the program

space, but it does so in a way that requires no ordering on the individual opti-

mizations that are applied. Furthermore, it separates the notions of optimization

applicability from optimization profitability, which allows a single global profitabil-

ity heuristic to run after saturation has completed, which can take all possible

programs into consideration.

In the next chapter, we will discuss the starting point of the Peggy pipeline.

Namely, we will describe the front-ends to Peggy, which take programs written in

imperative code and convert them to a representation that we can more easily

manipulate. This allows Peggy to perform Equality Saturation on real, concrete

programs.

Acknowledgements

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER grant CCF-0644306.

This chapter contains material taken from “Equality Saturation: a New

17

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Logical Methods in Computer Science 2010. The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL ’09). The

dissertation author was the secondary investigator and author of this paper.

Chapter 3

Frontends

In order to use Peggy as an optimizer, we must be able to convert code

from an existing programming language into PEGs and EPEGs that Peggy can

manipulate. This requires a separate front-end for each programming language

that is targetted. In this section, we present a detailed description of these front-

ends and how we go about representing these languages in a manner that Peggy

can handle.

3.1 Language-Independent Components

In the Java implementation of Peggy, we represent PEGs using instances

of the class PEGInfo<L,P,R>. This class is abstracted to take 3 generic type

parameters, which allows us to use this same class to represent PEGs for any

source language. The contents of a PEGInfo<L,P,R> instance include an instance

of a CRecursiveExpressionGraph<FlowValue<P,L>>. This is a directed (possibly

cyclic) graph object where every node has ordered outgoing edges, and where the

nodes have labels of type FlowValue<P,L>. The FlowValue is used to represent

the mathematical operator of the node, or the function that the node encodes.

It is similarly abstracted to take 2 type parameters so that a FlowValue will be

suitable to represent any kind of function for any source language. These classes

make up the language-independent portion of our PEG representation.

A FlowValue<P,L> can represent any function of any language, but there

18

19

are also some language-independent functions that are used in PEGs for every

language. For example, θi, evali, passi, and φ are all language-independent op-

erators. Furthermore, since a PEG typically represents an entire function, there

must be a way to represent the input parameters to the function. These include

the method’s formal parameters. For stateful languages, there will also be an

input heap summary node σ that is taken as an input parameter. In Java, non-

static methods have an additional input parameter to represent the this reference.

Aside from the parameters and the language-independent operators, there will be

language-dependent operators. The L and P type parameters are used to specify

the classes used to define the language-dependent operators and input parameters,

respectively. So, a FlowValue<P,L> instance represents either: (1) a language-

dependent operator of type L, (2) a (language-dependent) input parameter of type

P, or (3) one of several pre-defined language-independent operators such as φ.

The CRecursiveExpressionGraph<FlowValue<P,L>> represents the PEG

graph, but more information than that is included in an instance of PEGInfo<L,

P, R>. Specifically, the R type parameter is used to define the return values of

the PEG. In a procedural language like Java, each PEG logically has two return

values. The first is the standard return value of the Java method (where a special

null value is used for void functions). The second is the output heap summary

node, σ. One can imagine languages where the σ return is not needed, or where

additional return values are defined. The R type parameter specifies a class that

will identify the set of all return values defined for the source language. In addition

to the graph, the PEGInfo<L,P,R> contains a mapping from R instances to nodes

of the graph. These special nodes are the ones that compute the return values,

and form the roots of the graph.

3.2 Java Bytecode

The Java programming language was our first target for optimization. Java

is an object-oriented language that is typically compiled down to a machine-

independent intermediate bytecode, in one or more “.class” files. Each Java class

20

produces one class file, and the bytecode instructions within each class file are

stack-based. Each method call gets its own isolated operand stack at runtime, and

a typical bytecode instruction will pop its input operands off the stack and push

its result onto the stack afterward. Each entry in the operand stack is 32 bits wide,

and hence can hold one integer, one float, one opaque reference pointer, or half of a

long integer or double precision float. Similarly, the are a maximum of 65536 local

variable slots per method which can contain the same kind of data as the operand

stack. These slots initially hold the method’s actual parameters, and bytecode

instructions are used to load and store from the local variables. Since there are no

explicit pointers in Java, one cannot get the address of any stack location or local

variable. Hence, aliasing is impossible between local variables and stack locations,

so all local variables and stack positions can be abstracted away when converting

to a PEG.

We use the Soot Java optimization framework [VRHS+99] to parse the Java

bytecode files and manipulate them at the lowest level. Soot is itself written in

Java, which allows easy integration with Peggy, which is also written in Java.

Soot converts the raw bytecode into a stackless 3-address code called Jimple. The

Jimple code contains instructions, which inherit from class soot.jimple.Stmt,

and values, which inherit from class soot.Value. It will also build a CFG of

Stmt’s, which makes translation to the PEG representation much easier.

The Java frontend uses the classes JavaLabel, JavaParameter, and Java-

Return in place of the L, P, and R type parameters mentioned above. The Java-

Parameter class has subclasses to represent formal parameters, the this reference,

and the heap summary node. The JavaReturn class has subclasses to represent

the method’s Java return value, and the output heap summary node. The Java-

Label has several subclasses, all of which are detailed in the translation described in

Appendix A. This table describes how the Java bytecode instructions are translated

to Soot objects, and then how those Soot objects are converted to PEG nodes using

JavaLabel and JavaParameter instances.

There are a few interesting quirks about Java bytecode that we must ad-

dress in our translation. First of all, even though java has several integral primitive

21

types (short, boolean, char, int, byte, long), all of these except for long

are represented as int’s at runtime. This actually makes our representation sim-

pler, since we have fewer distinct types to worry about.

Secondly, the Java language has exception handling, and several of the

Java bytecode instructions may throw exceptions at runtime. For every PEG

node that represents an operation that could potentially throw an exception, the

result of that operator must be a disjoint union. The result of the instruction is

either the normal return value, or a value representing the exception object that

the operator threw. So the INVOKEVIRTUAL operator, for instance, has a type of

(σ,E|V), where σ represents the set of heap summaries, E represents the set of

exception objects, and V represents the set of all first-class Java values. We also

introduce two new operators: IsException[type], which tests a disjoint union

to see if it is an exception value, and RHO EXCEPTION, to extract the exception

value from a disjoint union. Hence, every operator from the table in Appendix A

that has a RHO VALUE on it may also have a RHO EXCEPTION on it. While we can

easily convert exception-handling code to a PEG representation, it is extremely

difficult to revert it back to an exceptional CFG. We do not currently have a

reversion algorithm that supports this, and hence we cannot revert any methods

that contain exception-handling code.

3.3 LLVM Bitcode

The other frontend we currently have implemented is one for the Low-

Level Virtual Machine (LLVM) [llv]. LLVM is a strongly-typed pseudo-assembly

language, where the instructions are implicitly divided into basic blocks that are

in static single-assignment form. LLVM has a fixed type system that includes

integers of any bit-width, 5 different types of floating-point numbers, pointers,

arrays, vectors, C-like structs, functions, and basic blocks (labels). LLVM uses

structural type equivalence, and allows recursive types (but only through pointers).

In LLVM all functions are globally defined. LLVM has global variables and global

aliases, which are simply indirect references to globals.

22

There are a few constructs in LLVM that we cannot represent in a PEG.

First of all, LLVM allows you to take the address of any basic block as a first-class

label value. The only use of this label is as an operand to a Call instruction, when

the function being called is a piece of inline target-dependent assembly code. These

labels cannot be represented in a PEG because their usage in the assembly hides

some of the control flow of the function. Similarly, in LLVM 2.8 there is a new

instruction called IndirectBranch, which takes a different kind of basic block

label as a parameter. However, the former label type is not a first-class value,

and can only be used as an argument to a Call instruction, whereas the latter

is represented as an i8*, and is treated as a general first-class value. Hence, the

IndirectBranch instruction also obscures the normal control flow of the function,

so we cannot represent it in a PEG.

Like Java, LLVM has explicit exception handling. The throw is accom-

plished with the Unwind instruction, which takes no parameters. Hence there is

no exception value associated with the throw, just the change in control flow. The

analog to ’catch’ is the Invoke instruction, which jumps to one of two basic blocks

afterwards, depending on whether the callee terminated normally or whith an ex-

ception. If a function is called with a Call instruction rather than Invoke, then an

Unwind will terminate the callee and the caller, continuing up the call stack until

an Invoke is found. Since LLVM has only one type of exception, it is much simpler

to represent in a PEG and hence simple enough to revert back to a CFG. Hence,

our current implementation does support LLVM functions with exception-handling

behavior.

Unlike for Java, we have no analog of the Soot library to process LLVM

at the lowest level. The LLVM bitcode manipulation code was written directly

into Peggy. An LLVM PEG is represented by an instance of PEGInfo<LLVM-

Label,LLVMParameter,LLVMReturn>. The LLVMParameter class has subclasses to

represent function parameters and the input heap summary node (unlike Java,

there are no objects, and hence no ’this’ reference). The LLVMReturn class has

subclasses to represent the function’s LLVM return value and the output heap

summary value. The LLVMLabel class represents all the operators defined in the

23

tables from Appendix B.

Summary

We have seen how our two target languages – Java and LLVM – are con-

verted from their default representations into a PEG that can be used by the

Equality Saturation engine. We saw how we can represent a PEG from any target

programming language using the same set of classes; namely PEGInfo, FlowValue,

and CRecursiveExpressionGraph. We also saw how we perform the conversion

from Java to PEG and LLVM to PEG. For Java, we leverage the Soot Jimple

representation, which does the work of converting the stack-based bytecode into a

three-address code that is easier to handle. For LLVM, the bitcode is already is

a pseudo-assembly format and already divided into basic blocks, which makes it

easy to convert directly to a PEG.

In the next chapter we will look at how the axioms for the Equality Sat-

uration engine are defined. The axioms, in addition to the PEG provided by the

front-end, comprise the other main input to the engine. The two of them together

define the environment in which the engine runs, and the axioms define the set of

equalities that the engine is able to deduce.

Chapter 4

Defining Equality Analyses

The Equality Saturation engine functions by adding nodes to the EPEG

and finding equivalences between them. This is accomplished through the use

of equality analyses. An equality analysis acts on the EPEG in two phases; the

trigger and the response. In the trigger phase, the analysis looks for a particular

pattern of nodes, edges, and equivalences within the EPEG. In the response phase,

it adds new nodes and equivalences to the EPEG, based on the information from

the trigger phase. For instance, a very simple analysis could look for a ’+’ node

with two children (call them L and R) as its trigger phase, and then in its response

phase it could create a new ’+’ node that points to R and L (order reversed) and

add an equivalence between the ’+’ nodes. This encodes the commutativity of ’+’

in a way that the EPEG can use.

In addition to standard nodes inside the EPEG, there are two special distin-

guished nodes that are used specifically in equality analyses. They are the true and

false nodes. They have no children, and their operator labels represent boolean

true and false, respectively. While simple, these two nodes allow a great deal of

complicated analysis to occur inside the EPEG. For instance, an equality analysis

may now take a node representing a relational operator (such as “≥”) and make it

equivalent to the true node to show that the result of the relational operation is

known to be true. Furthermore, the trigger phase of an equality analysis can use

equivalence-to-true or equivalence-to-false as a predicate over nodes. This allows

complicated constant folding and branch folding to occur. In addition, the true

24

25

call

paramsstrchr

ρσ ρv

σ

p c

T
call

paramsstrchr

read-only

ρσ ρv

σ

p c

T
call

paramsstrchr

read-only

ρσ ρv

σ

p c

(a) (b) (c)

Figure 4.1: An axiom making use of the true node.

and false nodes allow the EPEG to encode and propagate facts about the nodes

that are deduced during saturation.

As an example, consider the PEG in Figure 4.1. Part (a) depicts a function

call to the libc function strchr, which is a read-only function that does not modify

memory. We can add this fact to the EPEG by adding a “read-only” node on top

of the strchr node, and making it equivalent to true, as shown in part (b). The

“read-only” label is then not so much a function label as a predicate label. It

represents the predicate “X is a read-only function”. Then the fact that this is

equivalent to true is an assertion that read-only(strchr) is true. This is useful

because future analyses can now detect this assertion in the EPEG. For instance,

an analysis could encode the fact that any call operator whose function node

has the “read-only” assertion is a read-only call, which means that its input heap

summary node is equivalent to its output heap summary node, as seen in part (c).

4.1 Axioms

The simplest kind of equality analyses are what we call axioms. Axioms

are defined in terms of expressions. An expression is a rooted digraph meant to

resemble a sub-PEG. The nodes of an expression are either operator nodes or meta-

variable nodes. An operator node, like a PEG node, has an operator label and an

ordered list of 0 or more child nodes. A meta-variable node has no children and

no operator label, and is meant to represent “any” EPEG node. Expressions are

used for pattern-matching against groups of EPEG nodes in the trigger phase of

26

an axiom. An operator node E will successfully pattern-match against an EPEG

node N if the following hold: (1) E and N have the same operator label, (2) E and

N have the same number of children, and (3) the n-th child of E pattern-matches

against the n-th child of N , for all n. A meta-variable node can match against

any EPEG node. So in the ’+’ example above, the trigger expression could be an

operator node with a ’+’ label, with two meta-variable nodes as children.

The trigger phase of an axiom is divided into 4 sections, each of which

contains a set of expressions. The first section is the exists, which is a set of

expressions that must “exist”, or successfully pattern-match in the EPEG. Note

that expressions may share meta-variables, and the mapping from meta-variable to

EPEG node is shared across all expressions in the entire axiom. The second section

is the trues, which is a set of expressions that must exist and also be equivalent to

the true node. Similarly, the third section is the falses, which must exist and be

equivalent to the false node. Finally, the invariants are set of expressions that

must exist and match against nodes that are invariant w.r.t. a given loop depth

index i.

The response phase of an axiom only applies if the trigger phase is com-

pletely satisfied. As mentioned before, expressions may share meta-variables. How-

ever, the treatment of meta-variables differs from the trigger phase to the response

phase. In the trigger phase, the meta-variables are introduced and bound by a suc-

cessful match. In the response phase, no new meta-variables may be introduced,

and references to any meta-variables must have been already bound in the trigger

phase.

The response phase is also divided into 4 sections. The first section is the

creates, which is a set of expressions that will be created within the EPEG. Any

operator nodes in a creates expression will be newly-created in the EPEG, and any

meta-variables will be replaced by the EPEG nodes they matched in the trigger

phase. The second section is the trues, which is analogous to the trues section of the

trigger phase. The trues section of the response phase is a set of expressions that

will be created and then made equivalent to the true node. Similarly, the third

section is the falses, which will be created and made equivalent to the false node.

27

Finally, the fourth section is the equalities, which is a set of pairs of expressions.

Each expression in each pair will be created, and then the two resulting EPEG

nodes will be made equivalent.

One important detail about the response phase is the matter of node reuse.

When we say that an expression is “created”, we implicitly mean that it is only

created if necessary. If a set of nodes already exists within the EPEG that com-

pletely matches the set that would be created by an expression, then those nodes

are used and no new ones are created. This optimization is critical to the efficiency

of the equality saturation engine. If duplicate groups of nodes are created, then

any future analysis that is triggered by one will be triggered by the other. This

means that the analysis does double the work and produces yet more duplicate

groups of nodes. This causes a vicious cycle of duplication which will bloat the

EPEG and greatly reduce the useful work done by the saturation engine.

4.1.1 Creating Axioms

Though there are many built-in axioms used within Peggy, it is also possible

to allow the user to define his own axioms. Peggy is designed to be an extensible

compiler, and hence we wish to make the process of adding user-defined axioms as

painless as possible. To this end, I have designed a simple XML-based specification

language to describe the two phases of an axiom. XML was a logical choice for

this language, because it allows for flexibility as well as human-readability. It also

allows the easy creation of cyclic expressions by using ’id’ attributes to refer to

other nodes. The toplevel design of an XML axiom definition is given in Figure 4.2.

The grammar for the expression tags is somewhat domain-specific, since it

must describe operators that are specific to a given source language. However,

there are some common domain-independent tags that are used in every source

language. These common tags are shown in Figure 4.3. In addition to these tags,

there is a common system for referencing other nodes within the XML specification.

Any expression tag may have an optional ’id’ attribute, which allows the user to

assign a unique id string to an expression node. This id may be used later to

reference that node with the <ref id="..."/> tag. The id attribute of a ref tag

28

<rule name=’an arbitrary label for the axiom’>

<trigger >

<!-- All sections of the trigger go in here -->

<exists >

<!-- Expression tags for the "exists" section -->

</exists >

<trues >

<!-- Expression tags for the "trues" section -->

</trues >

<falses >

<!-- Expression tags for the "falses" section -->

</falses >

<invariant index=’a positive integer ’>

<!-- Expression tags for the "invariants" section ,

for the given loop depth index. There can be

one invariant tag for each loop depth index -->

</invariant >

</trigger >

<response >

<!-- All sections of the response go in here -->

<creates >

<!-- Expression tags for the "creates" section -->

</creates >

<trues >

<!-- Expression tags for the "trues" section -->

</trues >

<falses >

<!-- expression tags for the "falses" section -->

</falses >

<equalities >

<!-- pairs of expression tags for

the "equalities" section -->

</equalities >

</response >

</rule >

Figure 4.2: XML grammar for axiom description.

29

<theta index=’###’>

<!-- Represents a theta node.

Expects 2 child expression tags. -->

</theta >

<eval index=’###’>

<!-- Represents an eval node.

Expects 2 child expression tags. -->

</eval >

<pass index=’###’>

<!-- Represents a pass node.

Expects 1 child expression tag. -->

</pass >

<phi >

<!-- Represents a phi node.

Expects 3 child expression tags. -->

</phi >

<ref id=’...’/>

<!-- References an expression that was

defined earlier. The id attribute

is mandatory. This tag can have

no children. -->

<variable/>

<!-- Creates a new meta -variable node.

This tag can have no children. -->

Figure 4.3: The XML expression tags that are common to every source language.

refers to an existing id rather than creating a new one. The scope of an id label is

every expression that is later in the “document ordering” of the XML specification,

within the same axiom. This means any element whose start tag occurs after the

given element’s start tag. This allows for the creation of cyclic expression nodes,

as shown in Figure 4.4.

The expression tags specific to the Java source language are given in Fig-

ure 4.5. In addition to the attributes shown in the figure, every tag may also have

an id attribute, as described above. The op tag may have any of the follow as

the value of its value attribute: primitivecast, cast, arraylength, getfield, getstat-

30

<theta index=’1’ id=’TOP’>

<intconstant value=’0’/>

<op value=’add’>

<ref id=’TOP’/>

<intconstant value=’1’/>

</op >

</theta >

<!-- This expression represents a common

structure seen in a PEG , which is a counter

that starts at 0 and increments by 1 every

iteration.

-->

Figure 4.4: Example of a cyclic expression. The id of the theta expression is

referenced in the ref, which creates a cycle.

icfield, getarray, instanceof, injr, void, add, sub, mul, div, mod, cmpl, cmpg, gte,

gt, lte, lt, eq, ne, and, or, shl, shr, ushr, xor, neg, params, invokestatic, invokevir-

tual, invokeinterface, invokespecial, newarray, newmultiarray, dims, newinstance,

entermonitor, exitmonitor, setarray, setfield, setstaticfield, throw, rho value, or

rho sigma.

The expression tags for the LLVM source language are given in Figures 4.6

and 4.7. In addition to the attributes shown in the figure, every tag may also

have an id attribute, as described above. The op tag may have any of the fol-

low as the value of its value attribute: injr, call, tailcall, invoke, rho value,

rho sigma, rho exception, shufflevector, insertelement, getelementptr, indexes, se-

lect, extractelement, getresult, malloc, free, alloca, volatile load, load, volatile -

store, store, params, unwind, void, returnstructure, vaarg, is exception, insert-

value, extractvalue, and offsets.

This tag-based language gives the ability to specify a new axiom by explic-

itly defining the trigger and response expressions. It is expressive enough to de-

scribe any expression, but it is lacking somewhat in brevity. For example, consider

the axiom in Figure 4.8. This axiom encodes a fact about the relationship be-

tween the extractelement instruction and the insertelememt instruction, which

get and set elements of a vector, respectively. It encodes the fact that an extract

operation can effectively ignore an earlier insert operation, if it is known that the

31

<method name=’...’ class=’...’ signature=’...’/>

<!-- Describes a Java method , for use by operators

like INVOKEVIRTUAL. No children. -->

<field name=’...’ class=’...’ signature=’...’/>

<!-- Describes a Java field , for use by operators

like GETSTATIC. No children. -->

<type value=’...’/>

<!-- Describes a Java type , for use by operators

like CAST. No children. -->

<intconstant value=’...’/>

<!-- Describes a literal int constant. No children. -->

<longconstant value=’...’/>

<!-- Describes a literal long constant. No children. -->

<floatconstant value=’...’/>

<!-- Describes a literal float constant. No children. -->

<doubleconstant value=’...’/>

<!-- Describes a literal double constant. No children. -->

<stringconstant value=’...’/>

<!-- Describes a literal string constant. No children. -->

<nullconstant/>

<!-- Describes the constant null reference. No children. -->

<op value=’...’>

<!-- Describes a simple Java operation , which is

one of the operators defined by the SimpleJavaLabel

class mentioned above. This tag must have the same number of

children as the operator named in the ’value’ attribute.

-->

</op >

Figure 4.5: The expression tags defined for Java.

32

<function name=’...’ signature=’...’/>

<!-- Describes a function header , with the given

name and function signature. No children. -->

<global name=’...’ type=’...’/>

<!-- Describes a global variable , with the given

name and type. No children. -->

<alias name=’...’ type=’...’/>

<!-- Describes an alias value , with the given

name and type. No children. -->

<type value=’...’/>

<!-- Describes an LLVM type. No children. -->

<numeral value=’...’/>

<!-- Describes a numerical value that is not an

LLVM value. For example , the calling convention

id number for the INVOKE instruction will be

a numeral. No children. -->

<undefconstant type=’...’/>

<!-- Describes an undef value with the given type.

No children. -->

<intconstant width=’...’ value=’...’/>

<!-- Describes a literal integer constant , with the

given bit -width and value. No children. -->

<floatconstant value=’...’/>

<!-- Describes a literal float constant , with the

given value. No children. -->

<doubleconstant value=’...’/>

<!-- Describes a literal double constant , with the

given value. No children. -->

<stringconstant value=’...’/>

<!-- Describes a literal string constant (of type [N x i8]).

No children. -->

Figure 4.6: The constant expression tags defined for LLVM.

33

<binop type=’...’>

<!-- Describes a binary operator , where the type is

one of: add , sub , mul , udiv , sdiv , fdiv , urem ,

srem , frem , shl , ashr , ushr , and , or, xor.

Expects 2 children. -->

</binop >

<icmp type=’...’>

<!-- Describes an integer comparison operator , where

the type is one of: eq , ne , ugt , uge , ult , ule ,

sgt , sge , slt , sle. Expects 2 children. -->

</icmp >

<fcmp type=’...’>

<!-- Describes a floating -point comparison operator ,

where the type is one of: false , oeq , ogt , oge ,

olt , ole , one , ord , uno , ueq , ugt , uge , ult ,

ule , une , true. Expects 2 children. -->

</fcmp >

<cast type=’...’>

<!-- Describes a type casting operator , where

the type is one of: trunc , zext , sext , fptoui ,

fptosi , uitofp , sitofp , fptrunc , fpext , ptrtoint ,

inttoptr , bitcast. Expects 2 children. -->

</cast >

<nullconstant >

<type value=’...’/>

<!-- Describes a null constant of a particular type ,

where the type is given by the type tag child. -->

</nullconstant >

<op value=’...’>

<!-- Describes a simple LLVM operation , which is

one of the operators defined by the SimpleLLVMLabel

class mentioned above. This must have the same number of

children as the operator named in the ’value’ attribute.

-->

</op >

Figure 4.7: The non-constant expression tags defined for LLVM.

34

<rule >

<trigger >

<exists >

<op value=’extractelement ’ id=’E’>

<op value=’insertelement ’>

<variable id=’V’/>

<variable/>

<variable id=’I’/>

</op >

<variable id=’J’/>

</op >

</exists >

<falses >

<op value=’eq’>

<ref id=’I’/>

<ref id=’J’/>

</op >

</falses >

</trigger >

<response >

<equalities >

<ref id=’E’/>

<op value=’extractelement ’>

<ref id=’V’/>

<ref id=’J’/>

</op >

</equalities >

</response >

</rule >

Figure 4.8: Tag-based XML description of an axiom.

two operations used different indexes. This is an important axiom for simplifying

vector expressions, and it encodable in the tag-based axiom language, but it is

clearly quite verbose.

Simple Axiom Language. The verbosity of the tag-based language gave

rise to a second axiom specification language that specifically addresses this issue.

It stemmed mostly from the fact that I noticed I was essentially rewriting the

axiom in simpler terms inside the name attribute of the rule tag. For the axiom

from Figure 4.8, I had given it the name string "extract(insert(V, ,I),J) =

extract(V,J), if !eq(I,J)". After some reflection, it became clear that this

35

description was complete, unambiguous, and shorter than the tag-based version.

Hence, it was the basis for a full language of axioms.

The simpler language is still written inside of an XML specification, but

it is just text inside of a new XML tag simpleRule. This allows both the new

and old languages to exist side by side in the same axiom file. Figure 4.9 shows

the grammar for the simple XML axiom language, and Figure 4.10 shows the

same axiom as Figure 4.8, but in the simpler notation. Figure 4.9 also shows the

abbreviated version, the simpleTransform tag. This tag represents a common

case of axioms that have low complexity. Essentially, a transform is an axiom with

one ’exists’ expression and one ’creates’ expression. The axiom then marks the

former and latter expressions equivalent during the response.

The new axiom format is based on a prefix notation for expressions, where

every expression operand is either another expression or a string. The strings

are interpreted in a context-specific manner based on their operator parent. For

instance, the expression “int("32","1")” in LLVM defines an integer constant

where the first string specifies the bit-width of the integer type and the second

string defines the integer’s value. The non-domain operators in the simple lan-

guage are prefixed with a ’%’ character, just to distinguish them from domain

operators (i.e. “%theta-1(...)”). Labels are applied to expressions by pre-

fixing them with “@labelname :”, and referencing them with “@labelname ” as

an operand. Hence we can construct the cyclic expression from Figure 4.4 as

“@TOP:%theta-1(int("32","0"), add(@TOP, int("32","0")))”.

4.2 Complex Analyses

In addition to the simple axioms, our system allows arbitrarily complex

equality analyses as well. These are similar to the axioms in that they still have

a trigger and response phase. They differ in that the trigger may include the 4

sections as described above, but may also contain an arbitrary predicate over the

matched nodes. Also, the trigger may contain “wildcard expressions”, which are

expressions where only the arity is used for pattern-matching, and not the oper-

36

<simpleRule name=’a short description of the axiom ’>

rule := (exists | trues | falses | invariant)+ "==>"

(creates | trues | falses | equalities)+

exists := node

trues := "{" node+ "}"

falses := "!{" node+ "}!"

invariant := "~" [0-9]+ "{" node+ "}" // ex: 1{ ... }
creates := node

equalities := node "=" node

node := "@" ident // label reference

| ("@" ident ":")? op // domain op [with label]

| ("@" ident ":")? nondomain // nondomain op [with label]

| ("@" ident ":")? "*" // metavariable [with label]

op := ident "(" operandlist? ")"

nondomain := nondomain_ident "(" nodelist? ")"

ident := [a-zA-Z0 -9_]+ // identifier

nondomain_ident := "%theta-" [0-9]+ // example: %theta-1

| "%eval-" [0-9]+

| "%pass-" [0-9]+

| "%phi"

nodelist := node ("," node)*

operandlist := operand ("," operand)*

operand := node | string

string := // double-quoted string, allows escape chars

</simpleRule >

<simpleTransform name=’...’>

node "=" node

</simpleTransform >

Figure 4.9: The grammar for the simple XML axiom language.

<simpleRule >

@E:extractelement(insertelement(@V:*, *, @I:*), @J:*)

!{ eq(@I, @J) }!

==>

@E = extractelement(@V , @J)

</simpleRule >

Figure 4.10: The same axiom as in Figure 4.8, in the simple language.

37

ator. Hence, a wildcard expression of arity 2 would match any binary operator.

The operator of a wildcard expression can be examined separately in the arbi-

trary predicate portion. The response phase may make arbitrarily complicated

structures, and may refer to any part of the nodes matched in the trigger phase.

As a simple example, this could allow very elaborate constant folding, such

as the simplification of the Java expression "abcd".concat("efgh"). We could

write the trigger of this analysis to match against a call to the concat method,

where the target (call it T) and the parameter (call it P) of the call are wildcard

expressions of arity 0 (constants with unknown operators). Then in the predicate

portion of the trigger, we can examine the operators of T and P in order to

determine whether or not they are literal strings. If they are, then the response

phase can take their values and compute the concatenation, then create a new

EPEG node for the result and make it equivalent to the return value of the call.

Clearly, these complex analyses are more elaborate than the simple axioms

we have presented so far. As such, they can only be described in a Turing-complete

language. Many of our analyses are written directly in the source code of Peggy, so

both the trigger predicate and the response action can be written directly in Java.

However, this is not convenient for the purposes of extensibility. To that end, I

have designed an input language for defining these types of analyses. The language

is once again based around XML, but it allows the user to include arbitrary Turing-

complete code fragments to define the trigger predicate and the response actions.

The grammar for the analysis definition language is presented in Figure 4.11.

As in the original XML-based axiom language, there is a <trigger> tag and a

<response> tag. The trigger tag allows the same section tags as in the previous

grammar, but it also allows the <match> tag. This tag defines the (optional) arbi-

trary trigger predicate, in the form of a single JavaScript function named “match”.

This function can examine the nodes that matched in the other trigger sections

with arbitrary JavaScript code. The function must return a boolean determining

whether or not the predicate is satisfied. The purpose of this predicate code is to

compute additional restrictions that cannot be expressed through the other trig-

ger tags. The response tag has no subelements, but contains only JavaScript code.

38

<analysis name=’...’>

<trigger >

<!-- Allows same sections as

trigger tag defined above -->

<match >

function match() {

/* Arbitrary JavaScript code */

}

</match >

</trigger >

<response >

function build() {

/* Arbitrary JavaScript code */

}

</response >

</analysis >

Figure 4.11: Grammar for the complex analysis definition language.

This code must be the definition of a single function “build”. The build function

is designed to perform all the response actions of the analysis, by directly creating

nodes and adding equalities to the EPEG. The build function is only called if the

entire trigger phase is satisfied.

The JavaScript code for the match and build functions is run in a spe-

cial context that defines several useful functions for examining and manipulating

the EPEG. A list of these is found in Figure 4.12. By using these functions,

the JavaScript code can compute arbitrarily complex predicates over the nodes

matched in the trigger, and perform arbitrarily complex alterations to the EPEG.

An example of an analysis written in this form is found in Figure 4.13. This

analysis encodes the equivalence: “if C ≥ 0, then A ≥ B ≡ (A ∗ C) ≥ (B ∗ C)”.

This cannot be done in the simple axiom language, since it can only do exact

matches on operators. Hence, we could write this axiom for any specific value of

C, but not for arbitrary non-negative C. Checking the actual value of the integer

can only be done in the arbitrary trigger predicate, as shown in the JavaScript

“match” function in Figure 4.13. This code fetches the node that matches id “C”

and examines its operator to determine whether or not it is a constant integer that

39

is non-negative. The response code then creates an expression for (A∗C) ≥ (B∗C)

and marks it equivalent to the expression for A ≥ B.

Inlining. There is one equality analysis that Peggy can perform which is inter-

procedural as opposed to intra-procedural, and that is function inlining. Inlining

can be encoded as an equality analysis in the following way. The trigger of the

analysis matches against any call node that calls a function that we want to inline.

This must be a function for which we have access to the source code, and hence

can build a PEG for it. The response will build a version of the inlinee’s PEG

into the EPEG. This new PEG will have all of its parameter nodes replaced by

the actual parameters to the original call node, and the input heap summary node

of the new PEG will be replaced by the call’s input heap summary node. Once

the new PEG is built, we mark the PEGs roots equivalent to the call node, and

then we have essentially substituted an entire PEG in for the call. One slight

complication is that the call node logically returns a tuple of (result value, result

heap summary) and uses projection operators (typically ρvalue and ρσ) to get the

individual elements. We can sidestep this issue by having axioms to react with

the projection operators appropriately. We explain this in detail by way of an

example.

Consider the example in Figures 4.14 and 4.15. Figure 4.14 shows the

source code and PEG for an integer square root function. The roots of the PEG

are marked with arrows. Note that the heap root is equal to the heap input

parameter, since this function does not modify the heap at all. Figure 4.15(a)

shows some source code that calls the sqrt function, and we wish to inline this

call in Peggy. Figure 4.15(b) shows the PEG for the code in part (a), and part (c)

shows the resulting EPEG after applying the inlining analysis.

The complete inlining is achieved with 3 axiom applications. The first effec-

tively splices the PEG from Figure 4.14(b) into the EPEG, with the n parameter

replaced by the expression for “a ∗ a + b ∗ b”, and the σ parameter replaced by

the input σ for the call node. There is also an “inlinePair” node, which points

to the two roots of the inlined PEG, and becomes equivalent to the call node.

This equivalence edge is marked with an a©. Since the ρσ node is now effectively

40

Function Description

$(id) Returns the EPEG node that matched

in the trigger with the given id.

getTrue() Returns the true node of the EPEG.

getFalse() Returns the false node of the EPEG.

makeEqual(node,node) Adds a new equivalence between the

given EPEG nodes.

makeEqual(futureNode,node) Creates the future node in the EPEG,

and adds an equality to the other ex-

isting EPEG node.

futureNode(op,childsources) Creates a representation of a new

node to create in the EPEG. The

child sources are various descriptions of

where the node’s children come from.

copySource(node,n) Returns a child source that refers to the

n-th child of an existing EPEG node.

concreteSource(node) Returns a child source that refers to an

existing EPEG node.

futureSource(futureNode) Returns a child source that refers to an-

other soon-to-be-created EPEG node.

futureSource(op,childsources) Returns a child source that refers to an-

other soon-to-be-created EPEG node.

Figure 4.12: Several useful functions defined in the JavaScript context.

41

<analysis name=’[A >= B] == [(A*C) >= (B*C)], if C>=0’>

<trigger >

<exists >

<icmp type=’sge’ id=’AgteB’> <!-- A >= B -->

<variable id=’A’/>

<variable id=’B’/>

</icmp >

<binop type=’mul’ id=’AtimesC ’> <!-- A * C -->

<ref id=’A’/>

<wild id=’C’ value=’1’/>

</binop >

</exists >

<match >

function match() {

var c_op = $("C").getOp();

if (c_op.isDomain () &&

c_op.getDomain ().isConstantValue ()) {

var constant =

c_op.getDomain ().getConstantValueSelf ().getValue ();

return constant.isInteger () &&

!constant.getIntegerSelf ().isNegative ();

}

return false;

}

</match >

</trigger >

<response >

function build() {

var Asrc = copySource($("AgteB"), 0);

var Bsrc = copySource($("AgteB"), 1);

var Csrc = concreteSource($("C"));

var times = $(" AtimesB ").getOp();

var result = futureNode(

$("AgteB").getOp(),

futureSource(futureNode(times , Asrc , Csrc)),

futureSource(futureNode(times , Bsrc , Csrc)));

makeEqual(result , AgteB);

}

</response >

</analysis >

Figure 4.13: An example of a complex analysis written in the input format.

42

int sqrt(int n) {

int i = 0;

while ((i+1)*(i+1)<=n)

i++;

return i;

}

eval1

pass1

0

θ1

1

>

n

+

*

σ

(a) (b)

Figure 4.14: The source code (a) and PEG (b) for an integer square root function

that will be inlined using Peggy.

on top of the inlinePair node, it can activate the second axiom which states

“rho sigma(inlinePair(@A:*,@B:*)) = @B”. Hence the ρσ node becomes equiv-

alent to the σ node, and this equivalence edge is marked with a b©. Similarly, the

third axiom states that “rho value(inlinePair(@A:*,@B:*)) = @A”, and hence

the ρσ node becomes equivalent to the eval1 node, with its equivalence edge marked

with a c©.

This separation of the inlining into 3 axioms has some advantages over

trying to do it in one. First of all, it is helpful to have the second and third axioms

fire independently, since one or the other might not be necessary. If the inlined

function is void, then the return value will not be used, so there will be no ρvalue

node on top of the call node. Similarly, if the heap summary output of the call

is not used, then there would not be a ρσ node. In order to make the inlining into

a single axiom, it would have to match against the ρvalue and ρσ in order to make

them equivalent to the inlinee’s roots. Hence, both would need to be present or else

the axiom would not be triggered. Second, this same technique would generalize

to PEGs that have a different number of roots. This could be useful when trying

to use Peggy to optimize a programming language which supports more than two

return values per function.

43

return sqrt(a*a + b*b);

call

sqrt params

+

*

a b

ρσ ρv

σ

*

call

sqrt params

+

*

a b

ρσ ρv

σ

*

eval1

pass1

0

θ1

1

>

+

*

inlinePair a

b

c

(a) (b) (c)

Figure 4.15: Example of inlining using Peggy. The inliner’s code is in part (a),

the PEG for part (a) is in part (b), and the EPEG during inlining is in part (c).

Summary

In this chapter we described what equality analyses are made of, and de-

scribed a few domain-specific languages for defining them. The simplest type of

analyses are the “axioms”, which have a trigger and a response that can be fully

described by axiom expressions over explicit operators and metavariables. An ar-

bitrarily complicated analysis can be defined using axiom expressions, a trigger

predicate over those expressions, and some arbitrary JavaScript code to describe

the response action.

In the next chapter, we will use the languages we have described here to

enumerate the most important axioms and analyses that are used within Peggy.

These will give a more detailed idea of what kinds of axioms are useful to Equality

Saturation, and how they can interact to deduce useful equalities.

Chapter 5

Axioms

In some ways, Equality Saturation is only as good as the set of axioms that

is used within the engine. In the previous chapter we described what makes up an

axiom, and how we go about defining them. In this chapter, we will look at some

of the actual axioms themselves. This should provide a better idea of exactly how

Peggy performs optimizations in a step-by-step manner. In this chapter we will

describe several categories of axioms and give examples of each. In the interest of

brevity, we will show few examples here, with many more presented in Appendix C.

5.1 Arithmetic Axioms

The first and possibly largest group of axioms we will discuss are the arith-

metic axioms. These encode simple mathematical facts about operations such as

addition, multiplication, comparison operators, etc. Versions of these axioms exist

for both the Java and LLVM targets, but the examples here are taken from the

Java version.

Commutativity: These axioms encode the commutativity of binary operators.

<simpleTransform name=’A+B = B+A’>

add (!!A:*,@B:*) = add(@B,@A)

</simpleTransform >

Distributivity: These axioms encode how some operators distribute over others.

44

45

<simpleTransform name=’A*(B+C) = A*B + A*C’>

mul(@A:*,add(@B:*,@C:*)) = add(mul(@A,@B),mul(@A,@C))

</simpleTransform >

Associativity: These axioms encode the associativity of binary operators.

<simpleTransform name=’A+(B+C) = (A+B)+C’>

add(@A:*,add(@B:*,@C:*)) = add(add(@A,@B),@C)

</simpleTransform >

Relational Equivalence: These axioms relate comparison operators.

<simpleTransform name=’(A < B) == (B > A)’>

lt(@A:*,@B:*) = gt(@B,@A)

</simpleTransform >

Implications: These axioms encode implications about relational operators.

<simpleRule name=’(A > B) => (A >= B)’>

{gt(@A:*,@B:*)}

==>

{gte(@A,@B)}

</simpleRule >

Miscellaneous: These axioms encode other facts about mathematical operators.

<simpleTransform name=’(X*C1)<<C2 = X*(C1<<C2)’>

shl(mul(@X:*,@C1:*),@C2:*) = mul(@X ,shl(@C1 ,@C2))

</simpleTransform >

5.2 Constant Value Axioms

The next set of axioms are those that refer to specific constant values. For

example, we can encode the fact that “0+A = A”. However, we must be careful

with such axioms because they implicitly place type restrictions on some of the

operands. For instance, what version of “0” are we using in the axiom above? In

Java the 0 value could be an int, long, float, or double. In LLVM, there are 224

different integer types, and there is a 0 value defined for all of them. Hence, we

must write our axioms in such a way as to specify the type of the constant values

either implicitly or explicitly. Throughout this section, we will use a running

example of the axiom “∀A, 0 + A = A”.

46

Java Version. The Java version of these axioms only needs to consider four

specific numeric types, so it is easiest just to make special-case axioms for each

type. Since we assume that the PEG is properly typed, the context of the 0 value

implies that both the A operand and the addition itself will have the same type

as the 0 value (at this level, type coercions are explicit, so the addition can only

accept two parameters of the same exact type).

Example:

<simpleTransform name=’A+0=A (int)’>

add(@A:*,int ("0")) = @A

</simpleTransform >

// Anything plus 0 is itself. Analogous rules for long/float/double.

LLVM Version. In LLVM there are over 224 different integer types, so we cannot

do special-casing as before. Instead, we can form this axiom as an analysis, and

use a wildcard operator in place of the constant 0. Then in the trigger predicate,

we can examine the constant value and ensure that it is a constant integer 0. In

essence, we are representing 224 different axioms using one analysis.

Example:

<analysis name=’A+0 = A (integer)’>

<trigger >

<exists >

<binop type=’add’>

<variable id=’A’/>

<wild value=’1’ id=’ZERO’/>

</binop >

</exists >

<match >

function match() {

// ensure that zero points to a constant integer 0

var zero = $("ZERO");

if (zero.getOp().isDomain ()) {

var domain = zero.getOp().getDomain ();

if (domain.isConstantValue ()) {

var cv =

domain.getConstantValueSelf ().getValue ();

return cv.isInteger () &&

cv.getIntegerSelf ().isZero ();

}

}

return false;

}

</match >

</trigger >

<response >

function build() {

makeEqual($("A"), $("ZERO"));

}

</response >

</analysis >

47

In the interest of brevity, we will not present the rest of the one-constant axioms

in this form, but will instead summarize some of them in the table below.

A ∗ 0 = 0, A/1 = A, A ∗ 1 = A,

A− 0 = A, A∧0 = A, A|0 = A, A&0 = 0,

(A < 0) ∧ (B < 0) =⇒ (A ∗B > 0),

(A < 0) ∧ (B < 0) =⇒ (A+B < 0),

(A > 0) ∧ (B > 0) =⇒ (A ∗B > 0),

(A > 0) ∧ (B > 0) =⇒ (A+B > 0),

(A > 0) ∧ (B < 0) =⇒ (A ∗B < 0)

5.3 Nondomain Axioms

There are also several axioms that are completely language-independent, in

that they focus solely on the nondomain operators such as eval, θ, and φ. Many

of these axioms are considered “built-in” and are added to the engine by default,

because they are valid no matter what target language the PEG is representing.

Boolean Axioms: These are axioms that encode facts about boolean logic.

<simpleRule name=’A && false = false’>

@TOP:%and(@A:*, @B:*)

!{@B}!

==>

!{@TOP}!

</simpleRule >

Phi Axioms: These axioms encode facts about the φ operator.

<simpleRule name=’phi(true ,B,C) = B’>

@TOP:%phi(@A:*,@B:*,*)

{@A}

==>

@TOP = @B

</simpleRule >

// If the condition is true, the result is the first child.

Loop Axioms: These axioms encode facts about loop operators.

48

<simpleRule name=’eval(theta(A,B),zero) = A, if A invariant ’>

@TOP:%eval-1(%theta-1(@A:*,@B:*) ,%zero)

~1{@A}

==>

@TOP = @A

</simpleRule >

// Evaluating a loop-varying value at the 0-th iteration gives the initial

value.

Loop Operator Factoring Axioms: These axioms encode how domain opera-

tors can distribute through loop operators.

<simpleRule name=’theta(S1,S2) + B = theta(S1 + eval(B,0), S2 +

shift(B))’>

@TOP:add(%theta-1(@S1:*,@S2:*),@B:*)

==>

@TOP = %theta-1(add(@S1 ,%eval-1(@B ,%zero)), add(@S2 , %shift-1(@B))

)

</simpleRule >

// Addition may distribute through ?theta? as right child.

This axiom describes how the addition operator may distribute through a θ

operator. Essentially, this amounts to applying the ’+’ operator to both the

initial value of the loop and the inductive value of the loop. This requires

modification to the other operand (B) of the + operator, since it previously

may refer to a value that varies inside of the loop. That is the purpose of the

inclusion of the eval and shift operators. For the base case of the θ, we must

take the value of B at its own base case iteration. For the inductive case,

we must evaluate B at the following iteration. If, however, B was already

a loop-invariant value, then both the eval and the shift operators could be

removed since they map all loop-invariant values to themselves.

Even though this axiom is valid for all B operands, it is far less general

than we would like. We would like to have an axiom that allowed: 1) other

operators besides ’+’, 2) the θ operator to be the second child as well as

the first child, and 3) operators with different arities, besides just binary

operators. We can do this, but it requires using an equality analysis rather

than a simple axiom. An example of this is presented in Appendix C.

49

5.4 Language-Specific Axioms

The axioms in this section are language-specific, in that they encode prop-

erties of the language operators that are particular to the target language. For our

current implementation of Peggy, this includes Java-specific axioms and LLVM-

specific axioms.

5.4.1 Java-specific Axioms

These axioms are specific to the Java language. They cover facts about field

access, object manipulation, how Java manipulates the program state, and more.

Field Access Axioms: These axioms encode facts about how Java accesses and

modifies fields of classes.

<simpleTransform name=’get(set(T,F,V),T,F) = V’>

rho_value(getfield(

rho_sigma(setfield(*,@T:*,@F:*,@V:*)),

@T,

@F))

= @V

</simpleTransform >

This axiom states that if you set a field’s value and then immediately fetch

it, it will equal the value stored.

Array Access Axioms: These axioms encode facts about how Java accesses and

modifies arrays and array elements.

<simpleTransform name=’get(set(A,I,V),A,I) = V’>

rho_value(getarray(

rho_sigma(setarray(@SIGMA:*,@A:*,@I:*,@V:*)),

@A,

@I))

= @V

</simpleTransform >

This axiom is analogous to the above field axiom.

50

5.4.2 LLVM-specific Axioms

These axioms are specific to the LLVM language, and encode the semantics

of the various LLVM operators, and facts about how they interact.

Pointer Axioms: These axioms have to do with pointers to memory in LLVM,

and the operations that manipulate them.

<simpleTransform name=’store P (load P) = no -op’>

store(@S:*,@P:*, rho_value(load(@S ,@P,@N:*)),@N) = @S

</simpleTransform >

// Storing the value that was just loaded from the same pointer is a no-op.

<simpleTransform name=’gep(B,0) = B’>

getelementptr(@B:*,@T:*, indexes(int ("32" ,"0"))) = @B

</simpleTransform >

// Pointer arithmetic with offset 0 gives the original pointer.

The second axiom is actually a constant axiom, but it relates to the GET-

ELEMENTPTR operator, which performs opaque pointer arithmetic. Es-

sentially, it states that if your pointer arithmetic only adds 0 to the base

pointer, then you are left with the original pointer value.

Vector Axioms: These axioms describe how LLVM handles vector values.

<simpleTransform >

extractelement(insertelement(@V:*,@X:*,@I:*),@I) = @X

</simpleTransform >

// Extracting a vector element that was just inserted yields that new element.

Aliasing Axioms: In LLVM, since we have pointers, we must deal with the pos-

sibility of aliasing. We handle this by introducing some useful annotations

that can help propagate information throughout the EPEG. The first of these

is stackPointer(P), which encodes the assertion “P is a pointer to the cur-

rent call’s stack”. Based on information deduced during Equality Saturation,

we may equate stackPointer(P) with either the true or false node of the

EPEG.

The second annotation that we use is doesNotAlias(P,Q), which encodes

the assertion “pointer P and pointer Q do not alias each other”. This can

become equivalent to true if we have proof that P and Q can never point to

51

the same memory location. With these two annotations, we can perform a

great deal of alias analysis in order to determine equivalences between pointer

operations.

Example:

<simpleRule name=’non -aliasing stores can swap’>

@S:store(store(@SIGMA:*,@PTR1:*,@V1:*,@A1 :*),

@PTR2:*,

@V2:*,

@A2 :*)

{annotation(" doesNotAlias", @PTR1 , @PTR2)}

==>

@S = store(store(@SIGMA ,@PTR2 ,@V2 ,@A2),@PTR1 ,@V1 ,@A1)

</simpleRule >

// Adjacent stores to non-aliasing addresses can switch order.

Many of the axioms in this category only introduce and propagate the various

annotations we created. The major use for these annotations is to trigger

one particular axiom, which allows a load to move before a store to a non-

aliasing pointer. This axiom combines with another simple axiom which

states that a load right after a store to the same pointer yields the stored

value. When these two axioms work in concert, it allows a load to traverse

down the “sigma path” through any non-aliasing stores that come before

it, until it can match up with a store to the same pointer. Then the load

can be replaced by the stored value, which simplifies the PEG. This can

significantly reduce the number of memory operations in a program, which

is very useful for optimization purposes. It can also be very useful in terms

of translation validation, if one of the translations performed is to remove

memory operations.

5.5 Constant Folding

One of the most common peephole optimizations in any optimizer is con-

stant folding. It amounts to identifying constant expressions in the code and

evaluating them statically, then replacing the code with the result expression. For

instance, one could replace “4+5*8” with “44”, and now the program does not

52

have to do that computation at runtime. This is possible because we know the

operands ahead of time, so we can be sure of the final result of the computation.

In Peggy, we also have a constant folder. It has no special status, but in-

stead runs as yet another equality analysis within the Equality Saturation engine.

However, whereas all the axioms above were described in terms of the input lan-

guages defined in Chapter 4, the constant folder is written in Peggy’s source code

and is not extensible.

Since the constant folder is just another equality analysis, we can describe

it in terms of a trigger and a response. The trigger for the constant folder looks for

a single domain operator that takes at least one parameter. It then checks to make

sure that every one of the parameters is a constant value. We define a constant

value to be any 0-arity node that is not an input parameter. This is only the

structural part of the trigger. The trigger also has a more complicated condition,

which essentially checks to see if the operator, when combined with its constant

children, can be pre-evaluated and hence folded.

This condition is very complicated to express, and is satisfied by an instance

of the ConstantFolder class in Peggy, as defined below:

public interface ConstantFolder<L> {

boolean canFold(L root, List<? extends L> children);

L fold(L root, List<? extends L> children);

}

Any object that implements this interface must do two things. Firstly, it must

be able to decide whether or not it knows how to fold a given operator with its

constant children (the canFold method). Secondly, if it has claimed it can fold

something, it must be able to perform the folding and return the result (the fold

method). The final part of the trigger for the constant folding analysis makes a

query against an instance of ConstantFolder, and if its canFold method returns

true then the fold method is called, and the result is used as the label for a new

constant value node.

This design allows us a high degree of modularity in our choice of implemen-

tation of the constant folder. For instance, in our current system there are default

constant folders that are able to fold constant based around the built-in LLVM

53

and Java operators and values. However, we could extend the domain of foldable

operators to include annotation labels as well. Since annotation labels have no

a-priori semantics attached to them, this provides a high degree of flexibility. For

instance, in Java, one could make a custom constant folder that can fold calls to

the most common String operations on constant Strings. If an expression such

as "abcd".indexOf(’a’) was seen, we could write an axiom to equate this with

foldIndexOf("abcd", ’a’), which uses a custom annotation label. The constant

folder would be aware of this label and since the operands are both constant, could

fold this expression by calling indexOf inside the folder.

5.6 Domain-Specific Axioms

One of the most important features of the axiom input languages is that

they allow for easy extensibility of the Equality Saturation system. The main usage

presented so far is describing the semantics of built-in language operators, and the

interactions between them. These are generally useful because the semantics of the

operators does not change from one program to the next. However, if we consider

only the current program we are evaluating, we can make assumptions that allow

us to write axioms that are less general-purpose, but still quite useful. These are

domain-specific axioms, because they apply only to a particular program domain.

Writing axioms must be done with care, because they are required to be

accurate regardless of the context they are in (simply because we do not control how

and when they are applied during saturation). If, however, there is an overarching

assumption about the entire program, then this same assumption can apply to

the axiom set as well. For example, if there is a global function named “sqrt”

that is used throughout the program, you may make some assumptions about calls

to “sqrt” based on its known (and presumably fixed) semantics. One may write

axioms about calls to this function to encode some of the details of how it works

and interacts with other operators. In this particular case (assuming “sqrt” is a

square-root function) we could write axioms like sqrt(X*X) = abs(X), or even

add an analysis to do folding if the argument is constant. These axioms would not

54

be valid outside of this program domain, because any other program might define

a different function named “sqrt” with different semantics. But within the context

of this program, the axioms are valid.

We have written some domain-specific axioms for the experiments we de-

scribe in Chapter 9. These are Java axioms that to optimize a raytracer benchmark

for the purposes of evaluating the effectiveness of Peggy as an optimizer. These

axioms are designed to encode facts about a particular class named CVector3D,

which represents a 3-D vector of double-precision floating point numbers. The

vector class uses a factory pattern: there is a static method that takes 3 doubles

and returns a new CVector3D by calling the single private constructor. The con-

structor also takes 3 doubles and sets the final X, Y, and Z fields to those values,

making the vector immutable once it is created. Since the vectors are immutable,

every method that manipulates vectors must return a new one. Hence, there is a

lot of useless temporary object creation being done. The axioms we define below

help to reduce some of that by exposing the semantics of the vector operations.

Examples:

<simpleTransform name=’cons(A,B,C).X = A’>

rho_value(getfield(

*,

rho_value(invokestatic(

*,

method(" CVector3D CVector3D.cons(double ,double ,double)"),

params(@A:*,@B:*,@C:*))),

field(" double CVector3D.X")))

=

@A

</simpleTransform >

// The value of the X field of a newly-constructed vector is equal to the first

input (similar axioms for Y, Z).

<simpleTransform name=’cons(A,B,C).sub(cons(D,E,F)) = cons(A-D, B-E, C

-F)’>

invokevirtual(

@SIGMA:*,

rho_value(invokestatic(

*,

@CONS:method(" CVector3D CVector3D.cons(double ,double ,double)")

,

params(@A:*,@B:*,@C:*))),

method(" CVector3D CVector3D.sub(CVector3D)"),

params(

rho_value(invokestatic(

*,

@CONS ,

params(@D:*,@E:*,@F:*)))))

=

invokestatic(

@SIGMA ,

55

@CONS ,

params(sub(@A ,@D), sub(@B ,@E), sub(@C ,@F)))

</simpleTransform >

// Subtracting two newly-constructed vectors is the same as constructing a new

vector of the difference of the components (similar method for add).

<simpleTransform name=’cons(A,B,C).scaled(D) = cons(A*D,B*D,C*D)’>

invokevirtual(

@SIGMA:*,

rho_value(invokestatic(

*,

@CONS:method(" CVector3D CVector3D.cons(double ,double ,double)")

,

params(@A:*,@B:*,@C:*))),

method(" CVector3D CVector3D.scaled(double)"),

params(@D:*))

=

invokestatic(

@SIGMA ,

@CONS ,

params(mul(@A ,@D), mul(@B ,@D), mul(@C ,@D)))

</simpleTransform >

// Scaling a newly-constructed vector by a scalar is the same as making a new vector

with scaled components.

These axioms allow complicated vector expressions to be simplified down

to just the basic arithmetic that is involved. This can avoid creating temporary

vector objects for each subexpression, which saves both memory and time.

Summary

In this chapter, we presented examples of the actual axioms that we use

when performing Equality Saturation. Some of them are simple and just encode

facts about arithmetic operators. Most of them are language-specific in that they

refer to operators that only appear in onr particular target language. Other are

language-independent and only refer to the nondomain operators. The ones that

name specific constants often have to be phrased as analyses, since often the same

axiom would apply to constants of many different types. Finally, we talked about

the constant folder, which looks for constant expressions and attempts to statically

evaluate them so that they do not need to be evaluated at runtime.

In the next chapter, we will discuss an issue the crops up in many different

places throughout the design of Peggy. That is the issue of linear types and linear

operators in the PEG. Though they can often be treated just like any other value,

56

in certain situations they can greater increase the complexity of the algorithms

involved.

Chapter 6

Side Effects and Linearity

The PEG is a purely functional representation of a program. As such, it

suffers from the same major problem that all functional representations suffer from,

which is that it becomes difficult to represent operations that produce side effects.

While languages like Haskell solve this problem with monads [JL95], our chosen

approach is slightly different.

We represent side effects by encapsulating them all within an opaque effect

token. The effect token is a value that represents the state of the stateful portions

of the computing environment, such as the hard drive, I/O streams, and even main

memory [TSTL10]. With this abstraction, we can represent side-effecting behavior

with functional PEG operators. Any operator that wants to produce side effects

must take an effect token as input and can then produce a new one as output. The

new effect token opaquely represents the new state of the environment, after the

side effects that occurred during the operation.

In the Peggy system, we represent the effect token by σ. Every PEG pro-

gram that has side effects must take an effect token as input. This allows us to

keep track of what side effects the function had as a whole. The input effect token

is threaded through the side-effect-producing operators in the PEG, and finally

produced as one of the root return values. This is a complete way to represent side

effects, and it is still done in a purely functional way.

57

58

6.1 The problem with effect tokens

While the system we have just described works correctly for PEGs, there is

an important detail that we must consider. Since PEGs are functional, everything

is treated as a value and every value is referentially transparent. This means that an

operator’s context does not affect its value; only its parameters do. Hence, there

is no reason why we cannot have many different unrelated effect tokens flowing

throughout a single PEG. Though the tokens are designed to intuitively represent

the continuous state of the program as it changes, there is no mathematical need

for this. Tokens could be copied, filtered, and destroyed as long as the semantics

of the operators is unchanged.

This freedom becomes a problem when we try to convert a PEG back to

an imperative program. As one of the final phases of the optimization pipeline,

we are given a saturated EPEG and we must search through it to find an optimal

PEG that is equivalent to the original input PEG. We call this the PEG Selection

Problem, and we describe it in detail in Chapter 8. We then convert this PEG

to an imperative CFG, and write the optimized code back to disk. The notion of

an effect token makes explicit something that was only implicit in an imperative

language. The state of the program environment is not a first-class object in most

imperative languages. In cannot be manipulated directly or passed to functions.

Moreover, there is no way to create a new one, nor to destroy one. There is a

single global instance of the state of the program, and it is updated implicitly by

the side-effect-producing operations of the imperative language. Hence, if we wish

to convert a PEG into an imperative program, we have a very harsh restriction on

the way that effect tokens can be used within the PEG.

One example of how things can go wrong has to do with conditional state-

ments. We represent conditional statements in a PEG using φ nodes, and there will

be one φ node for every program variable that may have two different values based

on the condition. Through Equality Saturation, we can get into situations where

an effectful operation is both inside and outside of a conditional statement, and

hence it is unclear how to revert the code to CFG. Consider the example program

shown in Figure 6.1(a). The foo method makes calls to the set method, which sets

59

foo(a,b,c) {

 if (b)

 return this.set(a);

 else

 return this.set(c);

}

set(v) {

 this.v = v;

 return this.counter++;

}
a

b

c

 v



set set

 v

 

b

1

2

a

b

c





set set

 v



(a) (b) (c)

Figure 6.1: An example of how effect tokens can interact poorly with φ nodes.

Part (a) shows the original source code, part (b) shows the EPEG for the code

during saturation, with 2 axioms applied, and part (c) shows a potential PEG

that could be chosen for reversion from the EPEG.

a field value to its parameter and then increments and returns a counter value. The

counter essentially keeps track of how many times set has been called. The PEG

for this code is shown in part (b). The designer of this code could write a domain-

specific axiom about the set method, knowing its semantics. Since set always

returns the latest counter value, we know that any two calls to set will produce

the same return value if they have the same incoming memory state. Hence, we

can deduce the equality illustrated by dotted-edge 1©. Now we can apply the rule

“φ(A,B,B) = B” to establish dotted-edge 2©. Starting from this EPEG, when we

apply the normal PEG Selection process, one possible solution is the PEG shown

in Figure 6.1(c). This PEG has discarded the right-hand φ node in favor of its

right child, which is now the program’s global return value. Since it is the return

value, it must be evaluated unconditionally and its value must be returned. Unfor-

tunately, the effect token output of the set method is only executed conditionally

based on the value of b. So, the result value output of the right-hand call to set is

used unconditionally but the effect token output is only used conditionally. This

becomes a problem when attempting to revert this PEG to a CFG, because the

call to set cannot be “split up” in the way we need here.

60

foo() {

 x = bar();

 while (...)

 x = bar();

 return x;

}

bar() {

 this.counter++;

 return 1;

}

 v



bar

bar

 v

θ

1

2

(a) (b) (c)

θ

eval eval

… …
3





bar

bar



θ

eval

…

v

Figure 6.2: An example of how effect tokens can interact poorly with θ nodes.

Part (a) shows the original source code, part (b) shows the EPEG for the code

during saturation, with 2 axioms applied, and part (c) shows a potential PEG

that could be chosen for reversion from the EPEG.

A similar problem is caused by loops. Just as code can be both inside and

outside of a conditional statement, we can generate a case when code is both inside

and outside of a loop. Consider the source code in Figure 6.2(a). The foo method

makes calls to the bar method, which increments a counter and always returns 1.

The PEG for foo is in Figure 6.2(b). Since we know the return value of bar is

always the same, we can equate the results of the two calls, and get dotted-edge

1©. Then, by semantics of the θ operator, and since both children of the θ node are

equal, the θ node itself is equal to that value, so we get dotted-edge 2©. Finally,

by the semantics of eval, eval-ing a loop-invariant quantity is equal to the quantity

itself, so we get dotted-edge 3©. The PEG in Figure 6.2(c) is one that could result

from the normal PEG Selection process, given the EPEG in part (b). Here we have

removed the θ and eval nodes, and marked the value of the bar method inside the

loop as the global return value. This means that this node must be evaluated

unconditionally, and its value returned. Unfortunately, the effect-token output of

that method call is only evaluated inside of the loop. Hence we once again have a

61

situation where we cannot split up the effectful operation in the way we need in

order to produce imperative code.

6.1.1 A Solution: Linear Types

One way to model the restrictions on effect tokens is to consider the effect

token as a value having linear type. A linear type describes a set of objects such

that there must always be exactly one in existence at any given time [Wad90b,

Gir98]. They cannot be copied or destroyed, and any operator that takes one

as input must produce one as output. There are a few special cases to consider

for this rule, specifically branches and loops. For a conditional branch (or even

an n-way branching operator like a “switch”) all arms of the branch get the same

incoming linear value, but since only one will actually execute at runtime, this does

not constitute an actual duplication of the value, and a single value is produced

as output. For loops, there is a single linear typed value existing at all times

throughout the loop. These rules combine to keep exactly one instance of the

linear typed value in existence at all times. This kind of behavior is exactly what

we want for our effect tokens, when converting back to imperative code.

Linear types provide us with a model for how we should try to arrange

our PEGs in order to easily revert them back to imperative code. The problem

remains: how do we get our PEG into that form? To answer this problem, it helps

to first look at which PEGs we would want to revert in the first place. Specifically,

we can ask ourselves at which state in the pipeline do we generate PEGs that we

might want to convert to imperative code. For the Peggy system, this only occurs

when we use Equality Saturation to perform optimization.

After Equality Saturation, we perform the PEG Selection process described

above, and attempt to revert the resulting PEG to imperative code. Hence, the

EPEG-to-PEG conversion must produce PEGs that have a linear usage of their

effect tokens. There are essentially two possible solutions to this problem, and we

discuss them below.

62

6.1.2 Solution 1: PEG to linear PEG conversion

One solution to this problem would be to have a separate conversion pass

that acted on the output of the PEG Selection problem. The PEG that is produced

by the PEG Selection process would potentially not have a properly linear usage

of its effect tokens. The conversion pass would take this PEG and try to convert

it to a new one that differed only in its use of the effect tokens, which would be

properly linearized. Essentially, this would amount to an algorithm that could

take any PEG as input and return a linearized PEG as output.

In the Peggy system, this was the first solution we actually implemented.

The main reason for this is that we did not immediately understand the need for

a properly linearized PEG, and so we implemented this pass after the fact. What

we discovered is that in general this technique does not work very well. There are

essentially two versions of the conversion that one can write. The first is one that

will always succeed and produce a properly linearized PEG, but in the worst case

will require a great deal of code copying, which bloats the final PEG. The second

version is one that does a greedy approach to linearizing the PEG, and makes as

few changes as possible to the PEG, but in some cases may not succeed. Since the

latter version does not always succeed in producing a linearized PEG, there is a

certain percentage of PEGs that we simply cannot convert to imperative code.

In the end, we tried and abandoned both of these approaches. The large

amount of code copying from the first version negated most of the positive effects

of the optimization that we were attempting in the first place. The failure rate of

the second version was high enough that most large, complicated PEGs were not

convertible, which prevented any optimization from occurring at all. We concluded

that the correct solution lay in a fundamentally different approach to the problem,

as described below.

6.1.3 Solution 2: Stateful PEG Selection Problem

The previous approach involved two phases. The first was the PEG Selec-

tion process and the second took the result PEG from that process and converted it

to a properly linearized PEG. As an alternative, we can combine these two phases

63

into one. This amounts to reformulating the PEG Selection Problem into a new

problem that produces the optimal PEG from the EPEG, subject to the constraint

that the result must have linear usage of effect tokens. We call this new problem

the Stateful PEG Selection Problem, and it is described in detail in Chapter 8.

This new approach essentially adds some new restrictions to the original PEG Se-

lection problem, so that the only valid results now must be linearized. Hence every

output of the Stateful PEG Selection process is now suitable for conversion back

to imperative code.

Summary

In this chapter we introduced the concept of effect tokens, which are a

functional representation for operations that produce side effects from imperative

code. We can use these effect tokens within a PEG just like any other values, but

when converting an effectful PEG back to imperative code, we must be careful

about how we handle the effectful operations. Imperative code does not have

first-class effect tokens, and implicitly treats the state of the program as a value

with linear type: there must be exactly one at all times, and it cannot be copied

or destroyed. We must restructure the PEG to treat its effect tokens linearly

as well; only then can we convert the PEG back to imperative code correctly.

We outlined two approaches to do this, favoring the second which reformulates

the PEG Selection problem to incorporate additional constraints that force the

resulting PEG to be properly linearized. The details of the actual PEG Selection

problem and the subsequent Stateful PEG Selection problem are discussed in detail

in Chapter 8.

This chapter focused on a particular aspect of the optimization pipeline.

The next chapter describes the entire optimization pipeline algorithm, and how we

can use Equality Saturation to perform optimization of programs.

Chapter 7

Optimization

In general, Equality Saturation is used to explore a large space of equivalent

programs. The ultimate goal behind this exploration is application-specific, and

can be designed independently of the saturation engine itself. Hence, in our Peggy

implementation, we have multiple clients that make use of the saturation engine

internally. The first client we designed was our intra-procedural optimizer.

Abstractly, program optimization can be thought of as a search problem.

Specifically, when we optimize a program P , we are actually just searching for the

most efficient program that is semantically equivalent to P . Equality Saturation

is well-suited to this task, since it allows us to explore a large portion of the space

of programs that are equivalent to the input P . Hence, the saturated EPEG

potentially contains a large number of optimized versions of P , and it is our job to

choose one. The task of choosing the most-optimized program from the EPEG is

the known as the PEG Selection Problem, which we describe in detail in Chapter 8.

Once we have saturated the EPEG and solved the PEG Selection Problem,

we are left with a PEG that is equivalent to the original program P , but is optimal

over the set of PEGs represented by the EPEG. All that remains is to convert this

PEG back to its original program representation. Hence, we can use our Equality

Saturation engine as the heart of an effective intra-procedural optimizer.

In the following sections, we present the benefits of our approach as well

as some of the drawbacks. Chapter 9 follows with an experimental evaluation of

Equality Saturation as a means of optimization.

64

65

x = 0;
while (...)

x += 1;
return 5*x;

x = 0;
while (...)

x += 5;
return x;

eval1

0 +

1

5

θ

*

1

P

eval1

0 +

1
5 θ
*

1

P

eval1

0 +

1

5

θ P

(b) (c)(a) (d) (e)

Figure 7.1: An example of loop-based code motion from simple axiom

applications; (a) the original source code, (b) the original PEG, (c) the PEG

after distributing ∗ through eval1, (d) the PEG after performing

loop-induction-variable strength reduction, (e) the resulting source code.

7.1 Local Changes Have Non-Local Effects

The axioms we apply during our saturation phase tend to be simple and

local in nature. It is therefore natural to ask how such axioms can perform anything

more than peephole optimizations. In this section, we show additional examples

of how Peggy is capable of making significant changes in the program using its

purely local reasoning. We particularly emphasize how local changes in the PEG

representation can lead to large changes in the CFG of the program. We conclude

the section by describing some loop optimizations that we have not fully explored

using PEGs, and which could pose additional challenges.

7.1.1 Loop-based code motion

We start with an example showing how Peggy can use simple local axioms

to achieve code motion through a loop. Consider the program in Figure 7.1. Part

(a) shows the source code for a loop where the counter variable is multiplied by 5

at the end, and part (e) shows equivalent code where the multiplication is removed

and the increment has been changed to 5. Essentially, this optimization moves the

(∗5) from the end of the loop and applies it to the increment and the initial value

instead. This constitutes code motion into a loop, and is a non-local transformation

in the CFG.

66

Peggy can perform this optimization using local axiom applications, without

requiring any additional non-local reasoning. Figure 7.1(b) shows the PEG for the

expression 5*x in the code from part (a). Parts (c) and (d) show the relevant

pieces of the EPEG used to optimize this program. The PEG in part (c) is the

result of distributing multiplication through the eval node. The PEG in part (d)

is the result of applying loop-induction-variable strength reduction to part (c)

(the intermediate steps are omitted for brevity). Finally, the code in part (e) is

equivalent to the PEG in part (d).

Our mathematical representation of loops is what makes this optimization

so simple. Essentially, when an operator distributes through eval (a local transfor-

mation in the PEG), it enters the loop (leading to code motion). Once inside the

loop, distributing it through θ makes it apply separately to the initial value and

the inductive value. Then, if there are axioms to simplify those two expressions,

an optimization may result. This is exactly what happened to the multiply node

in the example. In this case, only a simple operation (∗5) was moved into the loop,

but the same set of axioms would allow more complex operations to do the same,

using the same local reasoning.

7.1.2 Restructuring the CFG

In addition to allowing non-local optimizations, small changes in the PEG

can cause large changes in the program’s CFG. Consider the program in Figure 7.2.

Parts (a) and (f) show two CFGs that are equivalent but have very different struc-

ture. Peggy can use several local axiom applications to achieve this same restruc-

turing. Figure 7.2(b) shows the PEG version of the original CFG, and parts (c)-(e)

show the relevant portions of the EPEG used to optimize it. Part (c) results from

distributing the multiply operator through the left-hand φ node. Similarly, part

(d) results from distributing each of the two multiply operators through the bot-

tom φ node. Part (e) is simply the result of constant folding, and is equivalent to

the CFG in part (f).

By simply using the local reasoning of distributing multiplications through

φ nodes, we have radically altered the branching structure of the corresponding

67

b

c

x=1 x=-1

y=-1 y=1

return x*y

(b) (c)

O

-11b

*
O

-1 1c

O

1

b *

-1

*

O

-1 1c

O

b
O

c *

1 -1

*

1 1

O

c *

-1 -1

*

-1 1

O
b

O

-1 1c

O

1 -1c

b

x=1x=-1

return x

c c

x=-1x=1

(a) (d) (e) (f)

Figure 7.2: An example of how local changes in the PEG can cause large changes

in the CFG: (a) the original CFG, (b) the original PEG, (c) the PEG after

distributing ∗ through the left-hand φ, (d) the PEG after distributing ∗ through

the bottom φ, (e) the PEG after constant folding, (f) the resulting CFG.

CFG. This illustrates how small, local changes to the PEG representation can have

large, far-reaching effects on the program.

7.1.3 Loop Peeling

Here we present an in-depth example to show how loop peeling is achieved

using equality saturation. Loop peeling essentially takes the first iteration from a

loop and places it before the loop. Using very simple, general-purpose axioms, we

can peel a loop of any type and produce code that only executes the peeled loop

when the original would have iterated at least once. Furthermore, the peeled loop

will also be a candidate for additional peeling.

Consider the source code in Figure 7.3(a). We want to perform a loop

peeling on this code, which will result in the code shown in Figure 7.3(i). This

can be done through axiom application through the following steps, depicted in

Figure 7.3 parts (c) through (h).

Starting from the PEG for the original code, shown in part (b), the first step

transforms the pass1 node using the axiom pass1(C) = φ(eval1(C,Z), Z, S(pass1(

peel1(C)))) yielding the PEG in part (c). In this axiom, Z is the zero iteration

count value, S is a function that takes an iteration count and returns its successor

68

O

eval1

0 +
1

1

θ

0 +
1

5

θ

N

≥

Zeval1

Z

S

peel1

pass1

O

eval1

0 +
1

1

θ

0 +
1

5

θ

N

≥

Z
eval1

Z
S

peel1

pass1

eval1 O

eval1

0 +
1

1

θ

0 +
1

5

θ

N

≥

S

peel1

pass1

0

N

≥
0

O

eval1

0

+

1
1 θ

0 +
1

5

θ

N

≥

S

pass1

0

N

≥
0

O

eval1

0

+

1
1 θ

0

+

1
5 θ

N

≥

pass1

0

N

≥
0

O

eval1

N

≥

pass1

0

N

≥
0

5 +
1

5

θ

1 +
1

1

θ

eval1

0 +
1

1

θ

pass1

0 +
1

5

θ

N

≥

x=0;
i=0;
while(i<N){

x+=5;
i++;

}
return x;

if(0>=N){
x=0;

}else{
x=5;
i=1;
while(i<N){

x+=5;
i++;

}
}
return x;

(b) (c)

(a)

(d)

(f) (g)

(e)

(h) (i)

Figure 7.3: An example of axiom-based loop peeling: (a) the original loop, (b)

the PEG for part (a), (c)-(h) intermediate steps of the optimization, (i) the final

peeled loop, which is equivalent to (h).

(i.e. S = λx.x+ 1), and peel takes a sequence and strips off the first element (i.e.

peel(C)[i] = C[i + 1]). This axiom is essentially saying that the iteration where

a loop stops is equal to one plus where it would stop if you peeled off the first

iteration, but only if the loop was going to run at least one iteration.

The second step, depicted in part (d), involves distributing the topmost

eval1 through the φ node using the axiom op(φ(A,B,C), D) = φ(A, op(B,D),

op(C,D)). Note that op only distributes on the second and third children of the

φ node, because the first child is the condition.

The third step, shown in part (e), is the result of propagating the two

eval1(·,Z) expressions downward, using the axiom eval1(op(a1, . . . , ak),Z) = op(

eval1(a1,Z), . . . , eval1(ak,Z)) when op is a domain operator, such as +, ∗, or S.

69

When the eval meets a θ, it simplifies using the axiom eval1(θ1(A,B),Z) = A.

Furthermore, we also use the axiom eval1(C,Z) = C for any constant or parameter

C, which is why eval1(N,Z) = N.

The fourth step, shown in part (f), involves propagating the peel1 opera-

tor downward, using the axiom peel1(op(a1, . . . , ak)) = op(peel1(a1), . . . , peel1(ak))

when op is a domain operator. When the peel operator meets a θ, it simplifies

with the axiom peel1(θ1(A,B)) = B. Furthermore, we also use the axiom that

peel1(C) = C for any constant or parameter C, which is why peel1(N) = N.

The fifth step, shown in part (g), involves removing the S node using the

axiom eval1(θ1(A,B), S(C)) = eval1(B,C).

The final step (which is not strictly necessary, as the peeling is complete at

this point) involves distributing the two plus operators through their θ’s and doing

constant folding afterward, to yield the PEG in part (h). This PEG is equivalent

to the final peeled source code in part (i).

It is interesting to see that this version of loop peeling includes the condi-

tional test to make sure that the original loop would iterate at least once, before

executing the peeled loop. Another way to implement loop peeling is to exclude

this test, opting only to peel when the analysis can determine statically that the

loop will always have at least one iteration. This limits peeling to certain types

of loops, those with guards that fit a certain pattern. This can both increase the

analysis complexity and reduce the applicability of the optimization. In the PEG-

based loop peeling, not only do we use the more applicable version of peeling, but

the loop guard expression is immaterial to the optimization.

The resulting PEG shown in Figure 7.3(h) is automatically a candidate

for another peeling, since the original axiom on pass can apply again. Since we

separate our profitability heuristic from the saturation engine, Peggy may attempt

any number of peelings. After saturation has completed, the global profitability

heuristic will determine which version of the PEG is best, and hence what degree

of peeling yields the best result.

70

eval1

0 +
1

1

θ

y = 0;
while(...){
if (N == 0)

x = y*2;
else

x = y*3;
y++;

}
return x;

y = 0;
while(...){y++;}
if (N == 0)
x = y*2;

else
x = y*3;

return x;

O

* *=
2 3N 0

P

O

=

N 0

eval1 eval1

P

0 +
1

1

θ

* *
2 3

O

=

N 0
eval1

P

0 +
1

1

θ

* *
2 3

(b) (c)(a) (d) (e)

Figure 7.4: An example of branch hoisting: (a) the original program, (b) the

PEG for part (a), (c) the PEG after distributing eval through φ, (d) the PEG

after distributing eval through ∗, (e) the code resulting from (d).

7.1.4 Branch Hoisting

We now examine an example of branch hoisting, where a conditional branch

is moved from inside the loop to after the loop. This is possible when the condition

of the branch is loop-invariant, and hence is not affected by the loop it’s in. This

is another example of code motion, and is an optimization because the evaluation

of the branch no longer happens multiple times inside the loop, but only once at

the end.

Consider the code in Figure 7.4(a). We assume that N is a parameter or

a variable initialized elsewhere, and is clearly not altered inside the loop. Hence

the condition on the if-statement is loop-invariant. Also we see that x is never

read inside the loop, so the value it holds at the end of the loop can be expressed

entirely in terms of the final values of the other variables (i.e. y). Hence, this code

is equivalent to the code seen in part (e), where the branch is moved outside the

loop and x is assigned once, using only the final value of y.

Our saturation engine can perform this optimization using simple axioms,

starting with the PEG shown in part (b) corresponding to the code in part (a). In

part (b), we display the pass condition as P , since we never need to reason about

it. Parts (c) and (d) depict the relevant intermediate steps in the optimization.

Part (c) results from distributing the eval operator through the φ operator using

71

the axiom op(φ(A,B,C), D) = φ(A, op(B,D), op(C,D)) with op = eval1. Part (d)

comes from distributing the two eval nodes through the multiplication operator,

using the axiom eval1(op(A,B), P) = op(eval1(A,P), eval1(B,P)) where op is any

domain operator. Part (e) is the final code, which is equivalent to the PEG in

part (d).

Our semantics for φ nodes allows the eval to distribute through them, and

hence the loop moves inside the conditional in one axiom. Since we can further

factor the ∗’s out of the eval’s, all of the loop-based operations are joined at the

“bottom” of the PEG, which essentially means that they are at the beginning of

the program. Here we again see how a few simple axioms can work together to

perform a quite complex optimization that involves radical restructuring of the

program.

7.1.5 Limitations of PEGs

The above examples show how local changes to a PEG lead to non-local

changes to the CFG. There are however certain kinds of more advanced loop op-

timizations that we have not yet fully explored. Although we believe that these

optimizations could be handled with equality saturation, we have not worked out

the full details, and there could be additional challenges in making these optimiza-

tions work in practice. One such optimization would be to fuse loops from different

nesting levels into a single loop. One option for doing this kind of optimization is

to add built-in axioms for fusing these kinds of loops together into one. Another

optimization that we have not fully explored is loop unrolling. By adding a few ad-

ditional higher-level operators to our PEGs, we were able to perform loop unrolling

on paper using just equational reasoning. Furthermore, using similar higher-level

operators, we believe that we could also perform loop interchange (which changes

a loop for i in R1, for j in R2 into for j in R2 for i in R1). However,

both of these optimizations do require adding new operators to the PEG, which

would require carefully formalizing their semantics and axioms that govern them.

Finally, these more sophisticated loop optimizations would also require a more so-

phisticated cost model. In particular, because our current cost model does not take

72

into account loop bounds (only loop depth), it has only a coarse approximation of

the number of times a loop executes. As a result, it would assign the same cost

to the loop before and after interchange, and it would assign a higher cost to an

unrolled loop than the original. For our cost model to see these optimizations as

profitable, we would have to update it with more precise information about loop

bounds, and a more precise modeling of various architectural effects like caching

and scheduling. We leave all of these explorations to future work.

7.2 Axiom Sets

One of the largest factors that influences the effectiveness of Peggy is the

axiom set it uses. Peggy relies on the axioms to deduce equivalences between the

nodes in the EPEG; in fact, this is the only means by which Equality Saturation

can do any useful computation. Hence, if any important axioms are missing then

there are important deductions that cannot be made. Therefore, the more axioms

that are enabled, the more kinds of equalities may be used for optimization.

Conversely, an overly large axiom set can cause problems. For instance,

loops within the EPEG can combine with certain axioms to produce a situation

where saturation is impossible. Specifically, it may be possible never to reach a

state where no axioms can fire without doing redundant work. Figure 7.5 shows a

very simple example of how this non-saturation can occur. In part (a), we see a

PEG with a θ node in it, which represents a loop-inductive value, call it T . The

initial expression sets T ← A, and the recursive expression sets T ← op(T,B).

If B is a constant and op is a domain operator, then we can apply an axiom to

distribute the op(·, B) expression through the θ node. This axiom can be written

as: “op(θ(A,B),C) = θ(op(A,C), op(B,C)), if C is loop-invariant.” The resulting

EPEG after applying this axiom is shown in Figure 7.5(b). The axiom creates a

new θ node, with an op node as its child. Since the left-hand child of the new op

node is equivalent to the new θ node, the same axiom can apply again, this time

on the new op node. The axiom does not do redundant work, because the left-

hand child of each new θ node is different than the previous one’s, and hence the

73

θ1

A op

B

θ1

A

op

B

op

B

θ1

A op

B

(a) (b)

Figure 7.5: Part of an EPEG before and after applying an axiom. The same

axiom can apply an infinite number of times, since it creates new nodes that will

trigger itself.

axiom is creating unique expressions at each application. Thus, there is nothing

to stop this axiom from being applied an unbounded number of times, requiring

unbounded execution time and unbounded memory cost. It is clear that in some

cases, even a single axiom can cause non-saturation to occur.

Given the previous two paragraphs, one is left with a complicated decision

about how many and which axioms should be included in the engine’s axiom

set. Too few and the engine cannot deduce enough information to perform a

useful optimization, too many and we can get unbounded expansion. In our Peggy

system, we have implemented a number of practical techniques to mitigate these

issues.

First and foremost, we can specify a limit on the maximum number of

axioms that the engine will apply. After the specified number of axioms have been

applied, the engine halts and saturation does not occur. This is an easy way to

prevent the unbounded expansion described above. However, it can prevent useful

axioms from applying if they would normally apply late in the saturation process.

In some cases, we see that the same axioms that can cause unbounded

expansion are also required for the desired optimization to occur. In this case,

disabling the axiom completely is not an option. For these axioms, we can specify

a maximum number of times that particular axiom may be applied. This is espe-

cially useful for axioms that may potentially be applied an unbounded number of

times, like in Figure 7.5 above. Limiting individual axioms can prevent unbounded

74

expansion while still enabling the other axioms to apply and do useful work.

Finally, we can attempt to weed out axioms that may apply in the EPEG,

but never do useful work. For each successful optimization, we can extract a proof

of the equivalence of the original program and the optimal one [TSL10]. This

proof spells out the exact set of axioms that were used to deduce the equivalence

between the programs, and where each axiom applied. Hence, all the axioms in

that set were useful to the optimization, and the rest were not. Through examining

several proofs, we can begin to see which axioms are used regularly in successful

optimizations. The remaining ones are clearly not useful and can be excluded from

the saturation process. This technique would be most useful for code that has not

changed but is being run through the optimizer again, such as during a nightly

automated build process.

These techniques merely ameliorate the problem, they do not solve it. In

general, the undirected nature of the saturation process makes it very difficult to

determine in advance which axioms should be applied and when. This is an area

for future work.

Summary

We have seen how Equality Saturation is used to perform program opti-

mizations by means of first saturating an EPEG and then choosing the best PEG

to produce as output. This is effective because of the fact that local changes can

produce non-local effects, such as a sequence of simple axioms resulting in loop-

based code motion. There are also some problems with using Equality Saturation,

such as the fact that several loop-based optimizations are difficult to express with-

out introducing new higher-level operators to the PEG. Also, the cost model is

imprecise in certain ways that would prevent some types of optimizations like loop

peeling from ever being chosen. Finally, we see that the set of axioms chosen plays

a large role in the overall effectiveness of the optimizer, and that the choice of

which axioms to include is a difficult one.

In the next chapter, we will focus on an important sub-problem faced when

75

using Peggy as an optimizer. Specifically, we will discuss the problem of choosing

the best PEG from a saturated EPEG. We call this the PEG Selection Problem,

and we will see how complicated this problem is, and the various approaches we

take to solving it.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER grant CCF-0644306.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Logical Methods in Computer Science 2010. The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL ’09). The

dissertation author was the secondary investigator and author of this paper.

Chapter 8

The PEG Selection Problem

One of the fundamental problems associated with optimization is converting

between the different representations of the program. In the Peggy system, our

primary representations are the PEG and EPEG. In order to perform equality

saturation on a program, we convert the program from a CFG representation into

a PEG, and then use those PEG nodes to build the initial EPEG. We then perform

equality saturation on the EPEG to add new nodes and equivalences, and then we

choose a single optimal PEG out of the EPEG. Finally, we convert this optimal

PEG back into a CFG. Hence, there are 4 conversion problems we must solve:

CFG to PEG, PEG to EPEG, EPEG to PEG, and PEG to CFG. Note that the

last two of the four are only necessary during optimization. When using Equality

Saturation for translation validation, we do not need to find an optimal PEG, nor

convert any PEG back to CFG. Hence, the discussion in the rest of this chapter

applies only when using Equality Saturation for optimization purposes. We will

focus our attention on the middle two conversion phases: PEG to EPEG, and

EPEG to PEG.

In the Peggy system, a PEG is represented as a labelled, ordered, directed

graph G = (N,E, λ,R), where N is the set of nodes, and E : N → N∗ is a function

mapping each node to its ordered list of child nodes [TSTL09]. Each node has a

label, which is the mathematical function being represented by the node. They

are taken from a set of functions F , and hence λ : N → F is the function that

maps each node to its label. The children of each node represent the parameters

76

77

to the operator named by the node’s label. Hence, if a given PEG node p has

label λ(p) = `, and the label operation requires n parameters, then E(p) will be an

ordered list of n children. Conversely, a given PEG node may have any number of

parents, which allows for a sharing of common subexpressions. In addition, a few

nodes in each PEG will be marked as “return” nodes, and represent the expression

for one of the return values of the function; R is the set of these nodes.

Though we abstractly define an EPEG as a collection of PEGs, the internal

representations are quite different. Indeed, since equality saturation relies on the

ability to have a single EPEG represent a large number of PEGs, the memory

requirements of such a collection put restrictions on how we represent it.

An EPEG must represent the PEG nodes but also keep track of the equiv-

alences between the nodes. We achieve this by defining the nodes of an EPEG

differently than those for a PEG. An EPEG is a 5-tuple G = (N,C,E, λ,R), where

N is the set of nodes. The EPEG nodes still have a label defined by λ : N → F ,

and an ordered list of children defined by E, but the children are sets of EPEG

nodes rather than individual nodes. The nodes of an EPEG are divided into

equivalence classes in C. Two nodes share a class only if they have been proven

equivalent through equality saturation. Hence, every child of an EPEG node will

be one of these equivalence classes, and E : N → C∗ is the mapping from nodes to

their ordered lists of child classes. Finally, whereas the PEG has particular nodes

marked as “return” nodes, the EPEG will have certain equivalence classes marked

as “return” classes, so R ⊆ C.

One of the immediate advantages of this representation is that we represent

many equivalent PEGs implicitly through the equivalence classes. For instance,

given an EPEG node p ∈ N where E(p) = (C1, C2, C3) for some classes C1, C2, C3 ∈
C, we can see that the node p represents |C1| · |C2| · |C3| different parent/child

combinations. Hence, this representation of an EPEG can succinctly encode an

exponential number of equivalent PEGs.

With these definitions, converting a PEG to an EPEG is quite straightfor-

ward. Given a PEG G = (N,E, λ,R), we can create an EPEG Ge = (Ne, Ce, Ee,

λe, Re) as follows. For each n ∈ N , we create en ∈ Ne with the same label. Hence

78

λ(n) = λe(en). Each node gets placed inside a singleton equivalence class, so we

have Ce = {{en} : en ∈ Ne}. We also make the return classes of the EPEG be the

singleton classes of the return nodes of the PEG: Re = {{en} : n ∈ R}. Finally,

the edges now point to the class of the child node rather than the node itself, so

Ee(en) = ({en1}, . . . , {enm}), where E(n) = (n1, . . . , nm).

8.1 The PEG Selection Problem

We see that the initial EPEG given to an equality saturation engine is es-

sentially a glorified PEG. However, after saturation has completed, the equivalence

classes will be larger because of merges. Furthermore, new nodes will be added

to the EPEG, and with each one a new equivalence class. Hence, the EPEG after

saturation has completed will be much larger and more complicated than the orig-

inal. At that point, the task of choosing a single PEG out of that EPEG becomes

more nontrivial.

Definition 1. We define the PEG Selection Problem abstractly as follows.

Given an EPEG Ge = (Ne, Ce, Ee, λe, Re) and a cost function F over EPEG nodes,

find a valid PEG G = (N,E, λ,R) such that:

(1) Each PEG node n ∈ N corresponds to one node EPEG node en ∈ Ne, and

for each n ∈ N, λ(n) = λe(en).

(2) For each PEG node n ∈ N , we choose the children of n from the child

classes of en. Hence, if E(n) = (n1, . . . , nm), then Ee(en) = (C1, . . . , Cm),

where eni
∈ Ci, ∀i.

(3) The return nodes of G must be chosen from the return classes of Ge, exactly

one node from each class. Hence if Re = {C1, . . . , Ck}, then R = {r1, . . . , rk},
where ri ∈ Ci,∀i.

(4) The cost of the chosen PEG must be minimal among all PEGs which satisfy

1-3 above. The cost of a PEG is defined as∑
n∈N

F(en)

79

The PEG Selection Problem essentially requires that one choose the optimal

“valid” PEG based on the nodes of the EPEG, where optimality is defined by the

cost function. One subtle detail is that this definition does not require all chosen

nodes to be reachable from a root node. However, since we have optimality, we

know that these unreachable nodes must have cost 0 because otherwise they could

be removed without affecting the other validity restrictions. Hence any nodes not

reachable from a root node can be safely ignored. As it turns out, the definition

provided above is too simplistic to deal with a PEG that originated from a program

that has stateful operations. But even so, this simpler version of the problem

statement is NP-hard, as we show in the following proof.

8.2 The MIN-SAT Problem

We define here the well-known MIN-SAT problem, which we will use in a

reduction proof to show that the PEG Selection Problem is NP-Hard.

Definition 2. We define a clause to be a boolean formula that is a disjunction of

literals, where each literal is either a boolean variable or the negation of a boolean

variable.

Definition 3. Let X = {x1, . . . , xn} be a set of boolean variables, and let D be

a clause over those variables. Then we say a mapping A : X → {true, false}
satifies the clause D if (∃xi ∈ X,A(xi) = true and xi appears un-negated in D)

or (∃xi ∈ X,A(xi) = false and xi appears negated in D).

Definition 4. Given a set of boolean variables X = {x1, . . . , xn} and a set of

clauses over those variables D = {D1, . . . , Dm}, the MIN-SAT Problem is to

find a mapping A : X → {true, false} such that a minimal number of clauses in D

are satisfied.

8.3 NP-Hardness of the PEG Selection Problem

In this section we prove that the PEG Selection Problem is NP-Hard, by

reduction from the MIN-SAT Problem.

80

Proof. Let X = {x1, . . . , xn} be a set of boolean variables, and let D = {D1, . . . ,

Dm} be a set of clauses over X. We will construct an EPEG Ge = (Ne, Ce, Ee,

λe, Re) in the following manner:

Nodes: For each clause Dj ∈ D, create a node dj ∈ Ne. For each variable xi ∈ X,

create nodes pi, ni ∈ Ne. Create a node root in Ne.

Equivalence Classes: For each dj ∈ Ne, create equivalence class Qj = {dj} in

Ce. For each pair of pi, ni ∈ Ne, create equivalence class Fi = {pi, ni} in

Ce. Create root class Re = {{root}} ⊆ Ce (a set containing one equivalence

class, with one element).

Edges: Add edges from the root node to the Fi nodes; Ee(root) = (F1, . . . , Fm).

For each variable xi, let Pi = {dj | xi appears un-negated in Dj} and let

Mi = {dj | xi appears negated in Dj}. Then impose an arbitrary ordering

{ai} on Pi and {bi} on Mi and let Ee(pi) = (da1 , . . . , da|Pi|
), and Ee(ni) =

(db1 , . . . , db|Mi|
).

Cost Function: Create a cost function F : N → N as follows: For each dj ∈ Ne,

F(dj) = 1. For all other nodes n, F(n) = 0.

An example of the encoding is given in Figure 8.1(a). This figure shows

the EPEG generated by the boolean expression “(x1 ∨ x2)∧ (x2 ∨ x3)∧ (x1 ∨ x3)”.

The intuition behind this encoding is that each Fi equivalence class represents the

value of the variable xi in the final mapping A. If pi is used in the optimal PEG

then xi will map to true (p = “positive”) in A, and if node ni is used then xi will

map to false (n = “negative”). The pi and ni nodes point only to the nodes for

the clauses that they participate in, as represented by the dj nodes. For instance,

if node ni is used in the optimal PEG, then the node for every clause that contains

xi will also be used in the optimal PEG, representing the fact that those clauses

are satisfied. In the example, we have 3 variables and 3 clauses. The first clause

contains x1 un-negated and x2 negated, so the EPEG has edges from p1 and n2 to

d1. Similarly, there are edges from p2 and n3 to d2, and edges from n1 and p3 to

d3. When we get the optimal PEG, since only the dj nodes have non-zero weight,

81

p1

root

d1 d2 d3

p1 n2 p3

root

d1 d3

(a) (b)

n1 p2 n2 p3 n3

Figure 8.1: An example of the encoding of the expression

“(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3)”. Part (a) shows the EPEG that is produced by

the encoding, and part (b) shows the PEG that results from applying the PEG

Selection problem to part (a).

we will effectively minimize the number of dj nodes that are present in the final

PEG. This is exactly analogous to minimizing the number of satisfied clauses.

After creating the EPEG Ge from our MIN-SAT problem instance, we can

apply the PEG Selection Problem to Ge and F to get the minimal cost PEG,

G = (N,E, λ,R). A minimal solution to the PEG Selection problem for the

EPEG in Figure 8.1(a) is shown in Figure 8.1(b).

From the optimal PEG we can construct an optimal mapping A : X →
{true, false} for the original MIN-SAT problem as follows:

A(xi) =

{
true, if pi ∈ N and is reachable from root

false, else

We will show that the mapping A is a minimal solution to the original

MIN-SAT Problem over X and D, and hence we have given a reduction from the

MIN-SAT Problem to the PEG Selection Problem.

Since there are edges in Ee from the root node to each of the Fi equivalence

classes, conditions (2) and (3) from above tell us that there must be edges in E

from root to some node in Fi, for each i. This can either be pi or ni, or both. In

the case when both are chosen, only one will be reachable from the root node. This

82

is obvious because the Fi class has only one parent, with only one edge sinking in

Fi. Hence only one of pi or ni can be a descendant of the root node, so we can

safely discard the other. The mapping A reflects this.

We can be sure that the discarding step will not affect the cost of the final

PEG. Suppose that we have an optimal PEG G where both p1 and n1 are used,

and we decide to discard n1 (WLOG). Discarding n1 will either lower the cost of

G or leave it unchanged, since all node weights are non-negative. The only case

when discarding n1 could lower the cost of G is if there exists some clause node

dj such that n1 is the only node in G that is adjacent to dj. By optimality of G,

we know that this cannot be the case, because the PEG formed by removing n1

clearly has a lower cost than G and is still valid. Hence, there can be no decrease

in the cost of G.

The choice of pi or ni represents whether boolean variable xi is true or false

in the assignment A. By construction, each pi in N has edges to the equivalence

class of each of the dj nodes for which Dj would be satisfied if xi were true.

Similarly, each ni in N has edges to each dj for which Dj is satisfied if xi is false.

Since each dj node is in a singleton equivalence class Qj, they must be chosen if

any pi or ni with an edge to Qj is chosen. Thus, the set of dj nodes that are in N

are exactly those that correspond to clauses in D that would be satisfied by A.

We now consider the cost of N with respect to F. Since F assigns cost 0 to

all nodes except for the dj nodes, we can see that the cost of N with respect to F
is:

∑
n∈N

F(n) =
∑

n∈N∩Z

F(n) +
∑
n∈N/Z

F(n)

=
∑

n∈N∩Z

1 +
∑
n∈N/Z

0

= |N ∩ Z|,

where Z = {di | Di ∈ D}

Hence the cost of G with respect to F is exactly the number of clauses that

are satisfied by A. Since this cost is minimal by assumption, we can see that A

83

gives an assignment that produces the minimal number of satisfied clauses in D,

and hence is a solution to the MIN-SAT Problem over X and D.

Thus we have shown that, given an instance of the MIN-SAT Problem, we

can construct an instance of the PEG Selection Problem and use the solution to

construct a solution to the original MIN-SAT Problem. Therefore, the MIN-SAT

Problem reduces to the PEG Selection Problem. Since the MIN-SAT Problem is

NP-Hard, this means that the PEG Selection Problem is also NP-Hard.

Since we have shown that the PEG Selection Problem is NP-Hard, there is

no efficient algorithm to solve it. Thus, we are justified in our use of a Pseudo-

Boolean solver within the Peggy system. A Pseudo-Boolean problem is a special

case of an Integer Linear Programming (ILP) problem, where all of the variables

are restricted to be either 0 or 1. Even though it is a simpler problem than Integer

Linear Programming, it is still NP-Hard to solve it. We now show how to reduce

a PEG Selection Problem instance to a Pseudo-Boolean problem instance.

8.4 Reduction from PEG Selection to Pseudo-

Boolean

In addition to the constraints defined in 1, there is an additional constraint

we must obey due to the nature of PEG nodes and operators. Our θ node, which

is used to describe the value of a loop-varying value, is the only kind of node which

should be allowed to create a loop within the graph of the PEG. That is to say,

no node should be able to reach itself along any path that does not include the

second child of a θ node. We can encode this restriction within the Pseudo-Boolean

formulation to ensure that the resulting PEG is valid.

Given an EPEG Ge = (Ne, Ce, Ee, λe, Re) and a cost function F : Ne → Z,

we will construct a Pseudo-Boolean (PB) problem instance as follows.

Variables: The variables used in the constraints and objective function are de-

fined as follows:

(1) For each node n ∈ Ne, add PB variable Bn.

84

(2) For each class C ∈ Ce, add PB variable BC .

(3) For each pair of classes (C1, C2) ∈ Ce × Ce, add PB variable BC1→C2 .

Constraints: The constraints over the variables are defined as follows:

(1) For each class C ∈ Ce, add constraint:

BC =
∑
n∈C

Bn

(2) Add constraint: BRe = 1.

(3) For each n ∈ Ne, let Ee(n) = (C1, . . . , Cm), then add constraints:

Bn =⇒ BCi
, ∀i

(4) For each n ∈ Ne, let C ∈ Ce be the class of n and let Ee(n) =

(C1, . . . , Cm), then add constraints:

Bn =⇒ BC→Ci
, ∀i

(exception: if λe(n) = θ and i = 2, do not add this constraint)

(5) For each class C, let TC = {n ∈ C | λe(n) = θ}. Add constraint:

BC→C =⇒
∨
n∈TC

Bn

(if TC is empty, this reduces to BC→C =⇒ False)

(6) For each triple of distinct classes C1, C2, C3 ∈ Ce, add constraint:

BC1→C2 ∧BC2→C3 =⇒ BC1→C3

Objective Function: The objective function of the PB instance is as follows:

minimize:
∑
n∈Ne

Bn · F(n)

85

In the formulation above, we presented the constraints as a mixture of

ILP notation and propositional logic notation. This is because it is trivial to

convert a propositional logic expression into an ILP inequality, by the following

method. Firstly, convert the expression to conjunctive normal form. Once this is

done, we can encode each disjunctive clause as a separate ILP inequality. Given

a disjunct p1 ∨ . . . ∨ pk ∨ n1 ∨ . . . n`, we can encode this as the PB inequality

p1 + . . .+ pk + (1− n1) + . . .+ (1− n`) ≥ 1. This inequality will be true if any of

the pi are 1, or if any of the ni are 0, and will be false only if all pi are 0 and all ni

are 1. Since each variable can be only 0 or 1, this exactly encodes the semantics

of the original propositional logic expression.

The intuition behind the above formulation is quite straightforward. For

each n ∈ Ne, the variable Bn is 1 if and only if node n participates in the resulting

PEG. Similarly, for each C ∈ Ce, variable BC is 1 if and only if some node in

class C participates in the resulting PEG (i.e. if C is used). The BC1→C2 variables

are designed to prevent invalid loops within the PEG. They enforce the restriction

that every loop must include the 2nd child of a θ node. The intuitive meaning of

these variables is “class C1 can reach class C2 along some path without traversing

a θ node’s second edge”. Hence the exception in constraint rule (4).

Constraint rule (1) encodes the fact that a class can be used if and only if

exactly one of its nodes is used. This is a stricter restriction than mentioned before,

but it turns out to be an optimization. Any resulting PEG that uses more than

one node from the same class is being wasteful, since the two nodes are equivalent.

Hence we can prevent this by allowing exactly one. Constraint rule (2) encodes

the fact that the root class must be used. Constraint rule (3) implies that if a node

is used, each of its child classes must also be used. Constraint rule (4) encodes the

fact that the edge from a node to its child class causes one of the BC1→C2 variables

to be true, unless it is the second child of a θ node. Constraint rule (5) encodes

the fact that, if a given class C can reach itself via a path with no θ-second-child

edge, then the node used in that class can only be a θ node. Finally, constraint

rule (6) encodes transitivity rules for the BC1→C2 variables.

The objective function encodes the cost of the PEG, by multiplying each

86

node’s boolean variable by that node’s cost. This will be exactly the sum of the

costs of the nodes that are used in the resulting PEG. Note that this would allow

some 0-cost nodes to be included even if they are not reachable from the root node.

However, they can be safely discarded.

We have seen how the PEG Selection Problem as described above can be

solved by a reduction to a Pseudo-Boolean problem. However, the PEG Selec-

tion problem as described above is incomplete if the programming language being

represented by the PEG has stateful operations in it. As we saw in Section 6.1,

Stateful operations must be treated specially, since they are instances of linear type

operators. The next section details how we redefine the PEG Selection problem to

deal with state, and how we solve this problem in practice.

8.5 Stateful PEG Selection Problem

To reformulate the PEG Selection Problem, we must take into account

the ways that stateful operations must behave, and the ways in which the heap

summary nodes may be manipulated. For traditional linear typed values, there

must be exactly one instance of the value at all times [Wad90b, Gir98]. The value

cannot be copied or destroyed, except in very particular situations. For example,

both branches of an “if” statement will get one copy of the incoming linear value

and must produce exactly one as output. Then at runtime only one of the two

branches will actually be executed, so the value is indeed treated linearly. The same

goes for multi-way conditionals like a “switch” statement. The other complication

has to do with loops. When a linear value is used in a loop, we must make sure

that it is treated linearly inside the body of the loop. The entrance/exit of the

loop is one of the exceptional cases where the linear value may be merged/split.

Aside from the two special cases of loops and conditionals, all other opera-

tors that take a linear value as input must output one as well, even if no changes

are made to the linear value. In the scope of PEGs, determining when these condi-

tions are met can be tricky, because loops and conditionals are split into multiple

θ and φ nodes. For any given loop in the source code, there can be at most one θ

87

node that has a linear type (there can be none if the loop does not read or modify

the linear value at all). In addition, whenever there is a linear φ node (which

constitutes the merge of a linear value), there must be a matching descendant op-

erator that both the true and false branches of the φ share. This point will be the

splitting point of the linear value. In PEGs, unlike in source code, we do not mark

the splitting point of a conditional branch explicitly, but it can be calculated.

With these ideas in mind, we can begin to formulate the restrictions for a

PEG that properly handes all its linear values. Unlike before, a Pseudo-Boolean

formulation is not expressive enough. Instead we will rely on an Integer Linear

Programming (ILP) formulation. We will see that this is also not quite good

enough, which will lead us to adopt an iterative refinement approach to solving

this problem.

8.6 Reduction of Stateful PEG Selection to ILP

In this section we describe how we can formulate the Stateful PEG Selection

Problem as an ILP problem. However, the formulation we describe will not be

complete. It will still allow certain types of invalid PEGs. Specifically, it will

not properly constrain the use of φ nodes as they apply to linear values. The

reason for this is that the rules to describe these constraints cannot be expressed

in an Integer Linear Program; they are too complex. To mitigate this problem,

we adopt an iterative refinement approach. We use our ILP formulation to impose

all but the φ constraints. Whatever solution comes out of the ILP solver may be

valid or may have an illegal use of φ operators. This fact can be checked quite

easily with a Turing-complete programming language (we explore this algorithm in

Section 8.7). Hence, we run the ILP solution through a separate validity checker,

and if it is valid we accept it as the best solution. If not, we add a new constraint to

the old formulation and run it through the ILP solver again. This new constraint

essentially says that the previous answer is now invalid. Specifically, we assert that

the conjunction of the values of all the variables in the previous solution implies

falsehood. This will force the solver to find a new solution, which we will again

88

Validity
Checker

Saturation
Engine

ILP Solver
ILP Instance Result PEG

ILP Refiner

Refined ILP
Instance

Reject×

Accept Convert PEG
to CFG

Figure 8.2: A flowchart of the iterative refinement PEG Selection Process.

subject to the validity test. We continue in this iterative manner until the ILP

solver has produced a solution that the checker deems valid. Figure 8.2 shows a

flowchart of the process.

In the following description, we will refer to a typical EPEG G = (N,

C, E, λ, R) and a cost function F over EPEG nodes, as described above. For

convenience, we impose an arbitrary ordering on the nodes of the EPEG, and so

N = {n1, n2, . . . , nK}. The formulation will also need to talk about loop-depth

values, so we define V to be the maximal loop-depth index over all loop operators

in the EPEG.

Variables. The variables of this formulation are defined as follows.

Na For each na ∈ N , we define boolean variable Na. This variable will be true if

and only if node na is used in the result PEG.

INVv
a For each na ∈ N and 1 ≤ v ≤ V , we define boolean variable INVv

a. This

variable will be true if and only if node na is invariant w.r.t. loop depth v in

the result PEG.

CINVv
a[i] For each na ∈ N, 1 ≤ v ≤ V, and for each child index i of node na, we

define boolean variable CINVv
a[i]. This variable will be true if and only if

the i-th child of node na is invariant w.r.t. loop depth v.

IOa,i
b,j For each na, nb ∈ N and for each input index i of na and each output index

j of nb, we define boolean variable IOa,i
b,j. This variable will be true if and

only if input i of na is connected to output index j of nb in the result PEG.

89

TIa,i For each node na ∈ N and input index i of na, we define integer node TIa,i

to be in the range [0,MT]. This variable will hold the “theta flow” quantity

that goes outward from node na along input edge i.

TOa For each node na ∈ N , we define integer variable TOa to be in the range

[0,MT]. This variable will hold the “theta flow” quantity coming into node

na from its parents.

RIa For each linear node na ∈ N , we define integer variable RIa to be in the

range [0,MR]. This variable will hold the current “root flow” that is leaving

node na out through its child edges.

ROa For each linear node na ∈ N , we define integer variable ROa to be in the

range [0,MR]. This variable will hold the current “root flow” that is entering

node na from its parents.

The concept of “theta flow” as described above is used to ensure that all

cycles in the result PEG involve the second child edge of some θ node. Essentially,

the theta flow is a value that starts at 0 at the roots of the PEG, and increments

downward from parent to child. Every node has one outgoing theta flow towards

its children and multiple incoming theta flows from its parents. The incoming

theta flow value of a given node is the max of the outgoing theta flow values of

its parents. The outgoing theta flow value of a node is equal to its incoming theta

flow value plus 1. The only exception to this rule is the θ node itself. The outgoing

theta flow value of a θ node along its second child edge is always 0. This allows

cycles to occur in the PEG, but only along the second child of a θ node. No other

cycles can occur, because the max of incoming parents’ theta flows would not be

well defined.

The “root flow” is similar, except it is designed to ensure that all operators

that use linear values are reachable from the linear root node. This is important

because if some linear operators are not reachable, they constitute a sub-PEG in

which the state of the program has been duplicated and separated from the rest of

the program. It will also ensure that the linear root dominates all linear operators,

90

and that the linear input parameter (the input σ node) will post-dominate all

linear operators.

In the above description we refer to values MT and MR. These are ar-

bitrarily chosen positive integer constants that are meant to impose a practical

upper bound on the “theta flow” and the “root flow” values, respectively. Theo-

retically, these values should be unbounded, but in practice we can place a fairly

conservative bound of around 1000 on them.

Constraints. The constraints of the program define what a valid PEG must look

like. In some sense, the only “important” variables above are the Na and IOa,i
b,j

variables, because those are the only ones needed to construct the result PEG. The

other ones, along with these constraints, are what prevent invalid PEG from being

returned by the ILP solver.

Rule 1: If a node’s output is used, then the whole node must be used.

∀a, b, i, j, IOa,i
b,j =⇒ Nb

This rule prevents any of the IO variables from being true without the ac-

companying N variables being true.

Rule 2: If a node is used, then exactly one child edge is used for each input.

∀a, i, Na =
∑
b,j

IOa,i
b,j

The IO variables essentially represent the edges of the PEG, so this rule says

that if a node is used then its child edges must be used as well. Also, it

requires that exactly one child edge for each index is used.

Rule 3: The root nodes must be used.

∀r ∈ R, 1 =
∑
na∈r

na

This rule says that one node from each root class must be used.

91

Rule 4: The children of a node define its child invariance values.

∀a, i, b, j, v, IOa,i
b,j =⇒ (CINVv

a[i] = INVv
b)

The CINV variables are really just a convenience to help compute the values

of the INV variables. Each node will learn its “child invariance” from its

children and store that in the CINV variables. The next rule we present uses

the child invariance to compute the invariance for the node itself.

Rule 5: The child invariance of a node determines its invariance.

This rule is divided into several cases based on what the operator of the node

is. We present these cases below. For a given node na:

(1) For θi nodes:

θi varies in loop depth i: Na =⇒ INVi
a.

θi’s first child must not vary in i: Na =⇒ CINVi
a[0].

θi’s second child must vary in i: Na =⇒ CINVi
a[1].

(2) For passi nodes:

passi does not vary in i: Na =⇒ INVi
a.

passi’s child must vary in i: Na =⇒ CINVi
a[0].

(3) For evali nodes:

evali varies in i iff its 2nd child does: Na =⇒
(
INVi

a = CINVi
a[1]
)
.

evali’s first child must vary in i: Na =⇒ CINVi
a[0].

(4) For all other nodes:

A node is invariant in v if and only if all of its children are also invariant

in v:

∀v, Na =⇒ (CINVv
a[0] ∧ . . . ∧CINVv

a[m] ⇐⇒ INVv
a)

In the above description, we only describe how a loop operator defines its

invariance in terms of its own loop depth i. For other loop depths v 6= i,

these operators exhibit the same behavior as in rule (4) above.

92

Rule 6: Root nodes have total invariance.

∀r ∈ R, ∀na ∈ r,∀v, Na =⇒ INVv
a

The root of a PEG must not be inside any loop.

Rule 7: For linear domain operators, any linear child must vary at least as much

as any nonlinear child.

∀a, ∀v,∀linear i, ∀nonlinear j, CINVv
a[i] =⇒ CINVv

a[j]

If any nonlinear child of a domain operator varies in some loop depth i, then

all linear children must do so as well. This is because the node will have to

be inside some loop at depth i. Hence, the node operator will be evaluated

at every loop iteration. If the linear child is invariant, then the operator

clearly expects to get the same state value at each iteration. However, just

by evaluating the operator we change the state implicitly. Hence, the linear

input to the operator must vary since it will do so implicitly anyway.

Rule 8: A θ node cannot be its own second child.

∀a, IOa,1
a,0 = false, if na is a θ node

Rule 9: All linear nodes must be reachable from the linear root.

This rule consists of several subrules that describe the “root flow” mentioned

above. Every linear node has both an incoming and outgoing root flow value.

The incoming root flow RIa comes from the parents of the node, and the

outgoing root flow ROa goes out to the children of the node.

(1) The linear root’s flow starts at 1.

RIr = 1,ROr = 2, for linear root node nr

(2) A linear node can only be used if it has a nonzero root flow.

∀linear na ∈ N, Na =⇒ (RIa > 0)

93

(3) The outgoing root flow is 1 more than the incoming root flow.

∀a, ROa = RIa + 1

(4) The incoming root flow is equal to the min of the outgoing root flow

over all parent nodes.

∀a, Na =⇒
(
RIa = min

{
ROb | IOb,i

a,j is true and linear
})

These rules constrain the linear operators in such a way that no linear op-

erator can be unreachable from the linear root node. Rule 2 states that all

linear nodes must have a nonzero root flow, and the other rules state that

no node may have a nonzero root flow unless there is an increasing path of

root flows reaching it from the linear root node.

Rule 10: No cycles may exist in the PEG unless they use the second child edge

of a θ node.

This rule is divided into a few subrules that make use of the idea of “theta

flow” described above. These rules use the TI and TO variables to ensure

that the only cycles allowed in a PEG must use the second child edge of a θ

node.

(1) The theta flow input of a node is greater than the theta flow output of

all its parents.

∀a, b, i, j, IOa,i
b,j =⇒ (TOb ≥ TIa,i)

(2) The theta flow output of a node is related to its theta flow input.

For a θ node na: TIa,0 = TOa + 1, TIa,1 = 0.

For a root node na: ∀i, TIa,i = 0, TOa = 0.

For all other nodes na: ∀i, TIa,i = TOa + 1.

The “theta flow” is a value that increases from parent to child within the

PEG. The only exception is that the second child of a θ node always gets 0

as its incoming theta flow. This allows a cycle to form without having an

ever-increasing theta flow value. No other cycles are possible.

94

These constraints define exactly how a valid PEG must look when being

chosen from an EPEG. The set of N and IO variables that are true in the solution

to this problem will describe exactly the shape of the result PEG. In order to find

the best PEG, we must include the objective function to encode the cost model

over the nodes.

Objective Function. The objective function of the ILP formulation is slightly

more complicated than the one for the Pseudo-Boolean formulation. This is be-

cause we explicitly keep track of the invariance of the nodes in this formulation,

rather than relying on the invariance info from the EPEG itself. We wish to make

the cost of a node higher if it is inside of a loop. Hence, we add negative weight

to the INV variables for each node. This way, if a node varies in a particular loop

depth, the cost will be higher. We define a variance multipler VM and define the

objective function of the formulation as follows:

∑
a

(
F(na) ·Na −

V∑
i=1

VMi · INVi
a

)
This objective function weights each PEG node according to its cost, and

adds weight proportional to the variance of the node. With this objective function,

we can find the optimal PEG in the EPEG according to the cost function F.

8.7 The PEG Validity Checker

As we have stated above, the Stateful PEG Selection problem is incomplete.

It relies on a separate checker to determine whether or not the chosen PEG is prop-

erly linearized with respect to φ nodes. In this section we describe the algorithm

for implementing this check.

Recall from Section 6.1 that the real problem with linearity with respect

to φ nodes is that some operations have both linear and non-linear outputs, and

we can encounter cases where one of the outputs is executed “more conditionally”

than another. That is, one of the outputs is always used and another is only

used if a certain condition is true. If the conditional output is the linear output,

then it is unclear how to convert the operation back to imperative code. In the

95

imperative version we cannot split up the operation into multiple parts. Hence, if

we were to execute the operation unconditionally to get one value out, we would

inevitably cause the side effects to occur, and hence evaluate the linear output

unconditionally as well, which is not the correct semantics. Note that it is allowable

for the nonlinear output to be executed more conditionally than the linear output.

This would amount to something like saving the return value of a function call,

but only using that value under certain conditions. As long as we unconditionally

want the side effects to occur, the operation can be executed safely.

The solution embodied by the validity checker algorithm is to disallow PEGs

that have this pattern of φ nodes. In order to do this, we must simply identify every

operator in the PEG that has both linear and non-linear outputs, and for each one

ensure that its outputs have compatible φ profiles. The φ profile of an output of

an operator is the set of paths of nested φ nodes that can reach the output. Each φ

node in a path is represented as a triple (cond , case, var), where cond is the PEG

node that represents the φ’s condition, case is either T or F telling which child of

the φ reaches the output in question, and var is the maximum loop index in which

the φ node varies. In fact, we do not need the sets of profiles to be identical for all

outputs. The profiles for linear outputs just need to be prefixes of the profiles for

nonlinear outputs. We formalize these notions below.

Definition 5. We define a φ-path to be a sequence of triples representing φ nodes

in a PEG: (cond1 , case1 , var1)→ . . .→ (condn , casen , varn). The empty path is a

valid path, and is denoted by ∅. We call a set of φ-paths a φ-path profile.

A single φ-path represents one path of nested φ’s in the PEG that reaches

a particular output of a particular operator. Triples that occur later in a path are

nested deeper than those that occured earlier. The empty path effectively means

unconditional execution of the output.

Definition 6. Given φ-paths p1, p2, p3, we say that p3 subsumes p1 and p2 if

there exist subpaths A and B such that p1 = A → (cond i, T, var i) → B and

p2 = A → (cond i, F, var i) → B and p3 = A → B. In this case, we call p1 and p2

a redundant pair.

96

The intuition behind this definition is that if the same output occurs on

both sides of a single φ, then it is being executed in either case, and hence it is

not actually conditional upon that φ node. When we collect sets of paths, we

will always want to remove redundant pairs and replace them with the paths that

subsume them.

Definition 7. Given a φ-path profile S, we define the process of pruning S as

follows:

while ∃ redundant pair p1, p2 ∈ S do

Let p3 be the path that subsumes p1 and p2.

S ← S\{p1, p2} ∪ {p3}
end while

We call the result of this process a pruned profile.

Definition 8. Given two φ-path profiles A and B, we say that A implies B if

∀pa ∈ A, ∃pb ∈ B, ∃pc, pb = pc → pa.

Intuitively, a profile A implies another profile B if every path in A is “more

conditional” than some path in B. We can see that in general we want the profile

for a nonlinear output to imply the profile for a linear output of the same operator.

With these definitions, we are now ready to express the validity condition for PEGs.

Definition 9. Let G be a PEG. Let L be the set of nodes in G whose operators

have both linear and nonlinear outputs. Then we say that G is valid with respect

to conditionals if for every node ` ∈ L, the pruned profiles of every nonlinear

output of ` implies the pruned profile of the linear output of `.

For any PEG that is valid with respect to conditionals, we have made sure

that there are no cases when a φ node causes unconditional execution of a nonlinear

output with conditional execution of a linear output. This means that the PEG

can be reverted to a CFG in a fairly straightforward manner, and the semantics of

the PEG will be preserved.

In the example from Figure 6.1(c), the profile for the right-hand call to set

is A = {(b, F, 0)} for the linear output and B = {∅} for the nonlinear output.

97

Hence A does not imply B, and so this PEG is not valid. Notice that for the

left-hand call to set, the profile for the nonlinear output is the empty set, which

trivially implies all other profiles, and hence is still valid.

Summary

In this chapter we describe an important subproblem that we encounter

when optimizing using Equality Saturation. That is finding the optimal PEG

within the saturated EPEG. We proved formally that, given a per-node cost func-

tion, the task of finding the optimal PEG is NP-Hard. We presented a naive first

attempt at solving the problem by reducing it to a Pseudo-Boolean problem in-

stance. We then discovered that this is insufficient for PEGs with linearly typed

operations, and reformulated the problem to handle the linear values. Finally, we

describe an Integer Linear Programming solution to the problem, that involves an

iterative refinement approach.

In the next chapter, we perform an experimental evaluation of Peggy as

a tool for optimization. We show that Peggy can perform many different types

of classical optimizations, as well as some that are difficult to do in a classical

optimzer. We also show that Equality Saturation is a useful tool for performing

optimizations on real programs.

Chapter 9

Evaluation: Optimization

In this chapter we use our Peggy implementation to validate two hypotheses

about our approach for structuring optimizers: our approach is practical both in

terms of space and time (Section 9.1), and it is effective at discovering both simple

and intricate optimization opportunities (Section 9.2).

9.1 Time and space overhead

To evaluate the running time of the various Peggy components, we compiled

SpecJVM, which comprises 2,461 methods. We used the Pueblo pseudo-boolean

solver to solve the PEG selection problem, as described in Chapter 8. For 1%

of these methods, Pueblo exceeded a one minute timeout we imposed on it, in

which case we just ran the conversion to PEG and back. We imposed this timeout

because in some rare cases, Pueblo runs too long to be practical.

The following table shows the average time in milliseconds taken per method

for the 4 main Peggy phases (for Pueblo, a timeout counts as 60 seconds).

CFG to PEG Saturation Pueblo PEG to CFG

Time 13.9 ms 87.4 ms 1,499 ms 52.8 ms

All phases combined take slightly over 1.5 seconds. An end-to-end run

of Peggy is on average 6 times slower than Soot with all of its intraprocedural

98

99

(a) EQ Analyses Description

1. Built-in EPEG ops Axioms about primitive PEG nodes (φ, θ, eval, pass)

2. Basic Arithmetic Axioms about arithmetic operators like +, −, ∗, /, <<, >>

3. Constant Folding Equates a constant expression with its constant value

4. Java-specific Axioms about Java operators like field/array accesses

5. TRE Replaces the body of a tail-recursive procedure with a loop

6. Method Inlining Inlining based on intraprocedural class analysis

7. Domain-specific User-provided axioms about application domains

(b) Optimizations Description

8. Constant Prop/Fold Traditional Constant Propagation and Folding

9. Simplify Algebraic Various forms of traditional algebraic simplifications

10. Peephole SR Various forms of traditional peephole optimizations

11. Array Copy Prop Replace read of array element by last expression written

12. CSE for Arrays Remove redundant array accesses

13. Loop Peeling Pulls the first iteration of a loop outside of the loop

14. LIVSR Loop-induction-variable Strength Reduction

15. Interloop SR Reduce strength of nested loop computation

16. Entire-loop SR Entire loop becomes one op, e.g. n incrs becomes “plus n”

17. Loop-op Factoring Factor op out of a loop, e.g. multiplication

18. Loop-op Distributing Distribute op into loop, where it cancels out with another

19. Partial Inlining Inlines part of method in caller, but keeps the call

20. Polynomial Factoring Evaluates a polynomial in a more efficient manner

(c) DS Opts Description

21. DS LIVSR LIVSR on domain ops like matrix addition and multiply

22. DS Code Hoisting Code hoisting based on domain-specific invariance axioms

23. DS Remove Redundant Removes redundant computations based on domain axioms

24. Temp. Object Removal Remove temp objects made by calls to, e.g., matrix libraries

25. Math Lib Specializing Specialize matrix algs based on, e.g., the size of the matrix

26. Design-pattern Opts Remove overhead of common design patterns

27. Method Outlining Replace code by method call performing same computation

28. Specialized Redirect Replace call with more efficient call based on calling context

Figure 9.1: Optimizations performed by Peggy. Throughout this table we use the

following abbreviations: EQ means “equality”, DS means “domain-specific”,

TRE means “tail-recursion elimination”, SR means “strength reduction”

100

optimizations turned on. Nearly all of our time is spent in the pseudo-boolean

solver. We have not focused our efforts on compile-time, and we conjecture there

is significant room for improvement, such as better pseudo-boolean encodings, or

other kinds of profitability heuristics that run faster.

Since Peggy is implemented in Java, to evaluate memory footprint, we lim-

ited the JVM to a heap size of 200 MB, and observed that Peggy was able to

compile all the benchmarks without running out of memory.

In 84% of compiled methods, the engine ran to complete saturation, without

imposing bounds. For the remaining cases, the engine limit of 500 was reached,

meaning that the engine ran until fully processing 500 expressions in the EPEG,

along with all the equalities they triggered. In these cases, we cannot provide a

completeness guarantee, but we can give an estimate of the size of the explored

state space. In particular, using just 200 MB of heap, our EPEGs represented

more than 2103 versions of the input program (using geometric average).

9.2 Implementing optimizations

The main goal of our evaluation is to demonstrate that common, as well

as unanticipated, optimizations result in a natural way from our approach. To

achieve this, we implemented a set of basic equality analyses, listed in Figure 9.1(a).

We then manually browsed through the code that Peggy generates on a variety

of benchmarks (including SpecJVM) and made a list of the optimizations that

we observed. Figure 9.1(b) shows the optimizations that we observed fall out

from our approach using equality analyses 1 through 6, and Figure 9.1(c) shows

optimizations that we observed fall out from our approach using equality analyses

1 through 7. Based on the optimizations we observed, we designed some micro-

benchmarks that exemplify these optimizations. We then ran Peggy on each of

these micro-benchmarks to show how much these optimizations improve the code

when isolated from the rest of the program.

Figure 9.2 shows our experimental results for the runtimes of the micro-

benchmarks listed in Figure 9.1(b) and (c). The y-axis shows run-time normalized

101

to the runtime of the unoptimized code. Each number along the x-axis is a micro-

benchmark exemplifying the optimization from the corresponding row number in

Figure 9.1. The “rt” and “sp” columns correspond to our larger raytracer bench-

mark and SpecJVM, respectively. The value reported for SpecJVM is the average

ratio over all benchmarks within SpecJVM. Our experiments with Soot involve run-

ning it with all intra-procedural optimizations turned on, which include: common

sub-expression elimination, lazy code motion, copy propagation, constant propa-

gation, constant folding, conditional branch folding, dead assignment elimination,

and unreachable code elimination. Soot can also perform interprocedural optimiza-

tions, such as class-hierarchy-analysis, pointer-analysis, and method-specialization.

We did not enable these optimizations when performing our comparison against

Soot, because we have not yet attempted to express any interprocedural optimiza-

tions in Peggy. In terms of runtime improvement, Peggy performed very well on

the micro-benchmarks, optimizing all of them by at least 10%, and in many cases

much more. Conversely, Soot gives almost no runtime improvements, and in some

cases makes the program run slower. For the larger raytracer benchmark, Peggy

is able to achieve a 7% speedup, while Soot does not improve performance. On

the SpecJVM benchmarks both Peggy and Soot had no positive effect, and Peggy

on average made the code run slightly slower. This leads us to believe that tra-

ditional intraprocedural optimizations on Java bytecode generally produce only

small gains, and in this case there were few or no opportunities for improvement.

With effort similar to what would be required for a compiler writer to

implement the optimizations from part (a), our approach enables the more ad-

vanced optimizations from parts (b) and (c). Peggy performs some optimizations

(for example 15 through 20) that are quite complex given the simplicity of its

equality analyses. To implement such optimizations in a traditional compiler, the

compiler writer would have to explicitly design a pattern that is specific to those

optimizations. In contrast, with our approach these optimizations fall out from

the interaction of basic equality analyses without any additional developer effort,

and without specifying an order in which to run them. Essentially, Peggy finds

the right sequence of equality analyses to apply for producing the effect of these

102

0

0.2

0.4

0.6

0.8

1

1.2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 rt sp

Soot
Peggy

Figure 9.2: Runtimes of generated code from Soot and Peggy, normalized to the

runtime of the unoptimized code. The x-axis denotes the optimization number

from Figure 9.1, where “rt” is our raytracer benchmark and “sp” is the average

over the SpecJVM benchmarks.

complex optimizations.

With the addition of domain-specific axioms, our approach enables even

more optimizations, as shown in part (c). To give a flavor for these domain-specific

optimizations, we describe two examples.

The first is a ray tracer application (5 KLOCs) that one of the authors had

previously developed. To make the implementation clean and easy to understand,

the author used immutable vector objects in a functional programming style. This

approach however introduces many intermediate objects. With a few simple vector

axioms, Peggy is able to remove the overhead of these temporary objects, thus

performing a kind of deforestation optimization. This makes the application 7%

faster, and reduces the number of allocated objects by 40%. Soot is not able to

recover any of the overhead, even with interprocedural optimizations turned on.

This is an instance of a more general technique where user-defined axioms allow

Peggy to remove temporary objects (optimization 24 in Figure 9.1).

Our second example targets a common programming idiom involving Lists,

which consists of checking that a List contains an element e, and if it does, fetching

103

and using the index of the element. If written cleanly, this pattern would be

implemented with a branch whose guard is contains(e) and a call to indexOf(e) on

the true side of the branch. Unfortunately, contains and indexOf would perform

the same linear search, which makes this clean way of writing the code inefficient.

Using the equality axiom l.contains(e) = (l.indexOf(e) 6= −1), Peggy can convert

the clean code into the hand-optimized code that programmers typically write,

which stores indexOf(e) into a temporary, and then branches if the temporary

is not −1. An extensible rewrite system would not be able to provide the same

easy solution: although a rewrite of l.contains(e) to (l.indexOf(e) 6= −1) would

remove the redundancy mentioned above, it could also degrade performance in the

case where the list implements an efficient hash-based contains. In our approach,

the equality simply adds information to the EPEG, and the profitability heuristic

can decide after saturation which option is best, taking the entire context into

account. In this way our approach transforms contains to indexOf, but only if

indexOf would have been called anyway.

These two examples illustrate the benefits of user-defined axioms. In par-

ticular, the clean, readable, and maintainable way of writing code can sometimes

incur performance overheads. User-defined axioms allow the programmer to reduce

these overheads while keeping the code base clean of performance-related hacks.

Our approach makes domain-specific axioms easier to add for the end-user pro-

grammer, because the programmer does not need to worry about what order the

user-defined axioms should be run in, or how they will interact with the compiler’s

internal optimizations. The set of axioms used in the programs from Figure 9.1 is

presented in Appendix D.1.

Summary

This chapter presented an experimental evaluation of the Peggy optimizer

on several real benchmark programs. We showed the time and space overhead of

the running the optimizer, as well as a set of specific optimizations that we were

able to perform. Finally, we presented our results in optimizing several micro-

104

benchmarks as well as two real-world code examples.

In the next chapter we will move away from optimization and talk instead

about another major application for Equality Saturation. Specifically, we will

talk about how Equality Saturation can be used to perform translation validation,

which is a technique to prove that some other program transformer is semantically

valid. This is useful for program verification, and it is a natural extension of the

existing Equality Saturation engine.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER grant CCF-0644306.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Logical Methods in Computer Science 2010. The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL ’09). The

dissertation author was the secondary investigator and author of this paper.

Chapter 10

Translation Validation

Until now, we have only presented Peggy as a tool for performing opti-

mizations. In this section, we will examine a new use for the Equality Saturation

technique.

When an optimizer transforms a program, there is a specific goal in mind;

namely, that the resulting program should be more efficient in some way, be it

runtime, memory usage, etc. This goal is related to the utility of the optimizer. In

addition, the optimizer is under the restriction that it must preserve the seman-

tics of the program being transformed. That is, the program after optimization

must perform the same computation as the program before optimization. This

restriction is related to the correctness of the optimizer.

10.1 Translation Validation

Both of these factors are important, but we argue that the latter is moreso.

It does little good to have an optimizer that doubles the speed of your program if it

no longer produces the same output, or computes the same value. Hence, ensuring

compiler correctness is of paramount importance. This has led to the creation of

Translation Validation [PSS98b], which is a process whereby one attempts to prove

the correctness of a program transformer such as an optimizer.

There are multiple ways to approach translation validation, but we will

focus on one in particular. Our method involves looking not at the optimizer

105

106

itself, but instead at its output. Given a program P , we can run an optimizer on it

to produce a new program, P ′. Our translation validation tool will then examine

the pair of P and P ′ to test for semantic equivalence. This test can produce

one of three answers: Equivalent, Not Equivalent, or Unknown. If the result is

Equivalent, then we have shown that the particular transformations performed on

P to produce P ′ are valid, and preserve correctness. If the result is Not Equivalent,

then we have found a correctness bug in the optimizer, and have found a concrete

instance of a program that triggers it. If the result is Unknown, then the tool was

unable to prove anything, and no conclusions can be drawn.

The setup as described above is not a decision procedure for validating an

optimizer’s correctness, but is instead more of a confidence builder. It cannot

detect the absence of correctness bugs, only their presence. If we can validate the

translation of a large corpus of programs by a particular optimizer, we have still

not proven it correct, but we have increased our confidence in its correctness.

10.2 Translation Validation in Peggy

We have extended the Peggy system to include a translation validation

engine for both Java and LLVM. We achieve this by using the same Equality

Saturation engine that we use for optimization. Equality Saturation is inherently

designed to find equivalences between programs, so it is a perfect tool for this job.

The validation process proceeds as follows. Firstly, we convert both the before and

after programs into our PEG representation. Secondly, we merge the two PEGs

into the same PEG-space, so that they share as many nodes as possible. Now that

both programs are in the same PEG-space, we can begin to describe equivalences

between them. As we did for optimization, we input the merged PEG into an initial

EPEG and perform Equality Saturation on it. If, at any time, the corresponding

pairs of root nodes of the two PEGs become equivalent, then we have shown that

the two programs are equivalent.

Example 1. Consider the original code in Figure 10.1(a) and the optimized

code in Figure 10.1(b). There are two optimizations that LLVM applied here.

107

int g(p,t) {
*p := t | (t & 4)
return 0

}

store

σ

load

tp 4

&

|
|

p

store

σ p

store

p

1

2

3int f(p,t) {
*p := t
*p := *p | (t & 4)
return 0

}
(a)
(b)

(c)

fσ gσfv gv

0

Figure 10.1: (a) Original code (b) Optimized code (c) Combined EPEG.

First, LLVM performed copy propagation through the location *p, thus replacing

*p with t. Second, LLVM removed the now-useless store *p := t.

Figure 10.1(c) shows the PEGs for f and g. The labels fv and fσ point to

the value and heap returned by f respectively, and likewise for g. The PEG for

f takes a heap σ as an input parameter (in addition to p and t), and produces a

new heap, labeled fσ, and a return value, labeled fv.

Our approach to translation validation builds the PEGs for both the origi-

nal and the optimized programs in the same PEG space, meaning that nodes are

reused when possible. In particular note how t & 4 is shared. Once this combined

PEG has been constructed, we apply equality saturation. If through this process

Peggy infers that node fσ is equal to node gσ and that node fv is equal to node

gv, then Peggy has shown that the original and optimized functions are equivalent.

In the diagrams we use dashed lines to represent PEG node equality (in the im-

plementation, we store equivalence classes of nodes using Tarjan’s union-find data

structure).

Peggy proves the equivalence of f and g in the following three steps:

Peggy adds equality 1© using axiom: load(store(σ, p, v), p) = v

Peggy adds equality 2© by congruence closure: a = b⇒ f(a) = f(b)

Peggy adds equality 3© by axiom: store(store(σ, p, v1), p, v2) = store(σ, p, v2)

By equality 3©, Peggy has shown that f and g return the same heap, and are

therefore equivalent since they are already known to return the same value 0.

108

load

σ p

char* f(p,s,r) {
x := strchr(s,*p)
*r := *p+1
return x

} (a)
(b)

(c)
char* g(p,s,r) {

t := *p
x := strchr(s,t)
*r := t+1
return x

}

params

s

call

strchr

load

p

+

1

only-reads

true
1

2
3

ρσ

ρv store

+

1

r

store

r

4

5
fσfv gσgv

Figure 10.2: (a) Original code (b) Optimized code (c) Combined EPEG.

Example 2. As a second example, consider the original function f in Fig-

ure 10.2(a) and the optimized version g in Figure 10.2(b). p is a pointer to an int,

s is a pointer to a char, and r is a pointer to an int. The function strchr is part

of the standard C library, and works as follows: given a string s (i.e., a pointer

to a char), and an integer c representing a character1, strchr(s,c) returns a

pointer to the first occurrence of the character c in the string, or null otherwise.

The optimization is correct because LLVM knows that strchr does not modify

the heap, and the second load *p is redundant.

The combined PEGs are shown in Figure 10.2(c). The call to strchr is

represented using a call node, which has three children: the name of the function,

the incoming heap, and the parameters (which are passed as a tuple created by

the params node). A call node returns a pair consisting of the return value and

the resulting heap. We use projection operators ρv and ρσ to extract the return

value and the heap from the pair returned by a call node.

To give Peggy the knowledge that standard library functions like strchr do

not modify the heap, we have annotated such standard library functions with an

only-reads annotation. When Peggy sees a call to a function foo annotated with

only-reads, it adds the equality only-reads(foo) = true in the PEG. Equality 1© in

Figure 10.2(c) is added in this way.

Peggy adds equality 2© using: only-reads(n) = true ⇒ ρσ(call(n, σ, p)) = σ.

This axiom encodes the fact that a read-only function call does not modify the

1It may seem odd that c is not declared a char, but this is indeed the interface.

109

+

eval

pass

0
θ

int f(x,y,z) {
for (t:=0; t<z; t:=x*y+t) {}
return t

} (a)
(b)

(c)
int g(x,y,z) {

xy := x*y
for (t:=0; t<z; t:=xy+t) {}
return t

}

*
zx y

fv gv

σ

fσ gσ

Figure 10.3: (a) Original code (b) Optimized code (c) Combined EPEG.

heap. Equalities 3©, 4©, and 5© are added by congruence closure.

In these 5 steps, Peggy has identified that the heaps fσ and gσ are equal,

and since the returned values fv and gv are trivially equal, Peggy has shown that

the original and optimized functions are equivalent.

Example 3. As a third example, consider the original code in Figure 10.3(a)

and the optimized code in Figure 10.3(b). LLVM has pulled the loop-invariant

code x*y outside of the loop. The combined PEG for the original function f and

optimized function g is shown in Figure 10.3. As it turns out, f and g will produce

the exact same PEG, so let us focus on understanding the PEG itself. The θ node

represents the sequence of values that t takes throughout the loop. The ≥ node is

a lifting of ≥ to sequences, and so it represents the sequence of values that t ≥ z

takes throughout the loop. The eval/pass pair is used to extract the value of t

after the loop. Therefore, eval returns the value of t after the last iteration of the

loop

As Figure 10.3 shows, the PEG for the optimized function g is the same

as the original function f. Peggy has validated this example just by converting

to PEGs, without even running equality saturation. One of the key advantages

of PEGs is that they are agnostic to code-placement details, and so Peggy can

validate code placement optimizations such as loop-invariant code motion, lazy

code motion, and scheduling by just converting to PEGs and checking for syntactic

equality.

110

10.3 Evaluation

In this section we evaluate Equality Saturation as a mechanism for perform-

ing translation validation. We performed two experiments to evaluate translation

validation on Java and LLVM separately. These experiments were performed at

different stages of Peggy’s development, and hence do not follow the same exper-

imental methodology. However, they both show that Equality Saturation is an

effective tool for performing translation validation of imperative programs.

10.3.1 Translation Validation in Java

We used Peggy to perform translation validation for the Soot optimizer

[VRHS+99]. In particular, we used Soot to optimize a set of benchmarks with

all of its intraprocedural optimizations turned on. The benchmarks included

SpecJVM [spe], along with other programs, comprising a total of 3,416 methods.

After Soot finished compiling, for each method we asked Peggy’s saturation engine

to show that the original method was equivalent to the corresponding method that

Soot produced. The engine was able to show that 98% of methods were compiled

correctly.

Among the cases that Peggy was unable to validate, we found three methods

that Soot optimized incorrectly. In particular, Soot incorrectly pulled statements

outside of an intricate loop, transforming a terminating loop into an infinite loop.

It is a testament to the power of our approach that it is able not only to perform

optimizations, but also to validate a large fraction of Soot runs, and that in doing

so it exposed a bug in Soot. Furthermore, because most false negatives are a

consequence of our coarse heap model (single σ node), a finer-grained model can

increase the effectiveness of translation validation, and it would also enable more

optimizations.

10.3.2 Translation Validation in LLVM

We used our updated Peggy tool to perform translation validation for LLVM

on SPEC CPU 2006 integer C benchmarks. We used LLVM version 2.3, and we

111

Benchmark #func #instr %succ To PEG
Engine Time

succ fail

400.perlbench 1,868 317,016 84.9% 0.878s 1.592s 23s

401.bzip2 103 18,820 74.0% 0.943s 0.614s 16s

403.gcc 5,619 982,168 84.8% 0.829s 0.670s 24s

429.mcf 24 2,865 70.8% 0.308s 0.907s 15s

433.milc 235 24,457 83.3% 0.631s 0.249s 12s

456.hmmer 539 64,677 84.2% 0.700s 1.089s 17s

458.sjeng 144 29,767 77.1% 0.648s 0.688s 27s

462.libquantum 115 7,939 79.1% 0.343s 0.748s 15s

464.h264ref 590 142,521 78.7% 1.147s 0.885s 26s

470.lbm 19 3,628 73.7% 0.349s 0.088s 5s

482.sphinx3 370 32,103 88.1% 0.331s 0.588s 20s

Figure 10.4: Results of running Peggy’s translation validator on SPEC 2006

benchmarks. The times listed in the “Engine Time” columns are averages.

enabled the following optimizations in our experiment: dead code elimination,

global value numbering, sparse conditional constant propagation, loop-invariant

code motion, loop deletion, loop unswitching, dead store elimination, constant

propagation, conditional propagation, and basic block placement.

Figure 10.4 shows the results: “Benchmark” is the benchmark name;

“#func” is the total number of functions in the benchmark; “#instr” is the total

number of instructions; “%succ” is the percentage of functions whose compilation

Peggy validated (in measuring this and subsequent columns, we ignored functions

that LLVM did not perform any optimizations on – about 0.16% of all functions);

“To PEG” is the average time per function taken to convert the CFG into a

PEG; “Engine Time” is the average time per function taken by the Peggy equality

saturation engine (“succ” is the average over successful runs, and “fail” is the

average over failed runs).

For these experiments, we found that the greatest difficulty Peggy had in

validating was in dealing with pointers and aliasing. For instance, there were many

112

cases where the validation relied on using the following axiom: load(store(σ, P,

V), P) = V . This axiom encodes the fact that a load from a pointer P after a

store of value V to the same pointer P will yield the value V that was stored, if

no other heap-modifying operations happen in between. This axiom is straight-

forward, but unfortunately the code is often not shaped in this way. More often,

there are several heap operations in between a store to P and the next load from

P , so the axiom will not fire.

In some cases, we can use alias information to get around this problem. For

instance, if the code contained a store to P , then a store to Q, then a load from

P , then this pattern will not immediately trigger the above axiom. However, if we

can prove with alias information that Q and P definitely do not alias, then we can

safely move the load of P before the store to Q. Now the load of P immediately

follows the store to P , so the axiom applies.

This pattern occurs far more frequently in real code. With the proper alias

information, we are still able to get the results we want. However, we have seen that

before we can apply the critical axiom, we must apply other helper axioms first.

In our example only one was necessary, but in general many such axioms might

be needed for each load/store pair. Also, gathering the alias information itself

requires additional axiom applications, and if the right paths are not followed then

there is not enough information to allow the critical axioms to fire. In general, we

are left with many situations where Peggy could validate the function pair, but it

requires the application of the right axioms in the right places to do so. Hence we

see false negatives because of our heuristic cutoff mechanism, not because Peggy

is incapable of performing the validation.

Summary

We have shown how Equality Saturation can be used to perform translation

validation of pairs of programs. Since Equality Saturation is primarily designed

to find equivalences between program fragments, it is ideally suited to this task.

We have seen multiple examples of how Peggy performs translation validation by

113

applying axioms to both of the input programs simultaneously. We also showed

experimental evidence that Equality Saturation is an effective device for performing

translation validation on real programs. In the Java setting, we validated 98% of

the runs of the Soot optimizer on the SpecJVM benchmark, and in the process

discovered a bug in Soot. In the LLVM setting, we were able to validate LLVM’s

optimizer on the SPEC CPU 2006 benchmarks, getting results that are consistent

with the current state of the art [TGM11].

In the next chapter, we examine the body of related work. We will look

at some of the issues related to Equality Saturation. We will also examine other

approaches that have been taken, and how Peggy relates to them.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER grant CCF-0644306.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Logical Methods in Computer Science 2010. The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL ’09). The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality-Based Translation Val-

idator for LLVM”, by Michael Stepp, Ross Tate, and Sorin Lerner, which appears

in Proceedings of the 23rd International Conference on Computer Aided Verifica-

tion (CAV 2011). The dissertation author was the primary investigator and author

of this paper.

Chapter 11

Related Work

Superoptimizers. Our approach of computing a set of programs and then

choosing from this set is related to the approach taken by super-optimizers [Mas87,

GK92, BA06, FHP92]. Superoptimizers strive to produce optimal code, rather

than simply improve programs. Although super-optimizers can generate (near)

optimal code, they have so far scaled only to small code sizes, mostly straight line

code. Our approach, on the other hand, is meant as a general purpose paradigm

that can optimize branches and loops.

Our approach was inspired by Denali [JNR02], a super-optimizer for finding

near-optimal ways of computing a given basic block. Denali represents the compu-

tations performed in the basic block as an expression graph, and applies axioms to

create an E-graph data structure representing the various ways of computing the

values in the basic block. It then uses repeated calls to a SAT solver to find the

best way of computing the basic block given the equalities stored in the E-graph.

The biggest difference between our work and Denali is that our approach can per-

form intricate optimizations involving branches and loops. On the other hand,

the Denali cost model is more precise than ours because it assigns costs to entire

sequences of operations, and so it can take into account the effects of scheduling

and register allocation.

Extensible Optimizers. There are many existing extensible optimization sys-

tems that allow the user to define additional optimizations or analyses. The Gen-

114

115

esis system [WS97b] by Whitfield and Soffa takes specifications written in the

Gospel language and examines them to determine if they have any important in-

teractions. The user must specify the relevant pre- and post- conditions for their

optimization in the Gospel specification, and then the Genesis engine can use that

data to determine a logical ordering in which the optimizations can run, without

having any harmful interactions. Since our system makes no destructive updates,

we can make a similar guarantee of no harmful interactions without doing any

costly analysis step. However, the individual rewrite rules in our system tend to

be smaller in scope and we instead rely on multiple interacting rules to get things

done.

The Broadway compilation engine [GL05] performs library-level optimiza-

tion by reading annotation files that describe the properties of library functions.

The user can specify lattice types that the library manipulates, and then describe

how each function affects elements of those lattices. Optimization occurs by de-

scribing circumstances when a particular function call may be replaced with a

more efficient one. Our system can similarly be used to optimize library calls by

specifying the usage patterns within axioms. In addition, Peggy is not limited to

optimizations related to library calls, nor limited to optimizations on procedure

calls in general.

Rhodium [LMRC05] is a system for defining propagation and transforma-

tion rules that can then be proved correct and semantics-preserving automatically.

The user specifies a set of propagation and transformations rules by manipulating

explicit dataflow facts in Rhodium, and then the engine proves that the trans-

formations are semantics-preserving by discharging a simple proof obligation to a

theorem prover for each rule. Our system does not perform the same formal proof

of soundness of the transformations specified, but at the same time it is not limited

by the scope of the theorem prover. In addition, we do not require the user to

define complex dataflow propagation rules for each analysis.

Rewrite-Based Optimizers. Axioms or rewrite-rules have been used in many

compilation systems, for example TAMPR [BHW97], ASF+SDF [vdBHKO02], the

ML compilation system of Visser et al. [VBT98], and Stratego [BKVV08]. These

116

systems, however, perform transformations in sequence, with each axiom or rewrite

rule destructively updating the IR. Typically, such compilers also provide a mech-

anism for controlling the application of rewrites through built-in or user-defined

strategies. Our approach, in contrast, does not use strategies – we instead simul-

taneously explore all possible optimization orderings, while avoiding redundant

work. Furthermore, even with no strategies, we can perform a variety of intricate

optimizations.

Intermediate Representations. Our main contribution is an approach for

structuring optimizers based on equality saturation. However, to make our ap-

proach effective, we have also designed the EPEG representation. There has been

a long line of work on developing IRs that make analysis and optimizations easier

to perform [CFR+89, AWZ88, TP95, Hav93, FOW87, WCES94, Cli95, SKR90,

PBJ91]. The key distinguishing feature of EPEGs is that a single EPEG can rep-

resent many optimized versions of the input program, which allows us to use global

profitability heuristics and to perform translation validation.

We now compare the PEG component of our IR with previous IRs. PEGs

are related to SSA [CFR+89], gated SSA [TP95] and thinned-gated SSA [Hav93].

The µ function from gated SSA is similar to our θ function, and the η function

is similar to our eval/pass pair. However, in all these variants of SSA, the SSA

nodes are inserted into the CFG, whereas we do not keep the CFG around. The

fact that PEGs are not tied to a CFG imposes fewer placement constraints on IR

nodes, allowing us to implicitly restructure the CFG simply by manipulating the

PEG. Furthermore, the conversion from any of the SSA representations back to

imperative code is extremely simple since the CFG is already there. It suffices for

each assignment x := φ(a, b) to simply insert the assignments x := a and x := b

at the end of the two predecessors CFG basic blocks. The fact that our PEG

representation is not tied to a CFG makes the conversion from PEGs back to a

CFG-like representation much more challenging, since it requires reconstructing

explicit control information.

The Program Dependence Graph [FOW87] (PDG) represents control infor-

mation by grouping together operations that execute in the same control region.

117

The representation, however, is still statement-based. Also, even though the PDG

makes many analyses and optimizations easier to implement, each one has to be

developed independently. In our representation, analyses and optimizations fall

out from a single unified reasoning mechanism.

The Program Dependence Web [OBM90] (PDW) combines the PDG with

gated SSA. Our conversion algorithms have some similarities with the ones from

the PDW. The PDW however still maintains explicit PDG control edges, whereas

we do not have such explicit control edges, making converting back to a CFG-like

structure more complex.

Dependence Flow Graphs [PBJ91] (DFGs) are a complete and executable

representation of programs based on dependencies. However, DFGs employ a

side-effecting storage model with an imperative store operation, whereas our rep-

resentation is entirely functional, making equational reasoning more natural.

Like PEGs, the Value Dependence Graph [WCES94] (VDG) is a complete

functional representation. VDGs use λ nodes (i.e. regular function abstraction)

to represent loops, whereas we use specialized θ, eval and pass nodes. Using λs

as a key component in an IR is problematic for the equality saturation process.

In order to effectively reason about λs one must particularly be able to reason

about substitution. While this is possible to do during equality saturation, it is

not efficient. The reason is that equality saturation is also being done to the body

of the λ expression (essentially optimizing the body of the loop in the case of

VDGs), so when the substitution needs to be applied, it needs to be applied to all

versions of the body and even all future versions of the body as more axioms are

applied. Furthermore, one has to determine when to perform λ abstraction on an

expression, that is to say, turn e into (λx.ebody)(earg), which essentially amounts

to pulling earg out of e. Not only can it be challenging to determine when to

perform this transformation, but one also has to take particular care to perform

the transformation in a way that applies to all equivalent forms of e and earg .

The problem with λ expressions stems in fact from a more fundamental

problem: λ expressions use intermediate variables (the parameters of the λs), and

the level of indirection introduced by these intermediate variables adds reasoning

118

overhead. In particular, as was explained above for VDGs, the added level of

indirection requires reasoning about substitution, which in the face of equality sat-

uration is cumbersome and inefficient. An important property of PEGs is that they

have no intermediate variables. The overhead of using intermediate variables is also

why we chose to represent effects with an effect token rather than using the tech-

niques from the functional languages community such as monads [Wad90a, Wad95,

Wad98] or continuation-passing style [App91, Ken07, HD94, FSDF93, AJ97], both

of which introduce indirection through intermediate variables. It is also why we

used recursive expressions rather than using syntactic fixpoint operators.

Dataflow Languages. Our PEG intermediate representation is related to the

broad area of dataflow languages [JHM04]. The most closely related is the Lucid

programming language [AW77], in which variables are maps from iteration counts

to possibly undefined values, as in our PEGs. Lucid’s first/next operators are

similar to our θ nodes, and Lucid’s as soon as operator is similar to our eval/pass

pair. However, Lucid and PEGs differ in their intended use and application. Lucid

is a programming language designed to make formal proofs of correctness easier to

do, whereas Peggy uses equivalences of PEG nodes to optimize code expressed in

existing imperative languages.

Optimization Ordering. Many research projects have been aimed at mitigating

the phase ordering problem, including automated assistance for exploring enabling

and disabling properties of optimizations [WS90, WS97a], automated techniques

for generating good sequences [CSD99, ACG+04, KDC02], manual techniques for

combining analyses and optimizations [CC95], and automated techniques for the

same purpose [LGC02]. However, we tackle the problem from a different per-

spective than previous approaches, in particular, by simultaneously exploring all

possible sequences of optimizations, up to some bound. Our approach can do well

even if every part of the input program requires a different ordering.

Translation Validation. Although previous approaches to translation valida-

tion have been explored [PSS98a, Nec00, ZPFG03], our approach has the advan-

tage that it can perform translation validation by using the same technique as for

program optimization, with no significant changes to the underlying Equality Sat-

119

uration engine. Another approach performs translation validation by attempting

to put both programs into the same normal form, by applying several heuristically-

ordered normalization passes [TGM11]. Our approach subsumes this one since we

do similar transformations but with no need to worry about the order in which

they are applied.

Execution Indices. Execution indices identify the state of progress of an exe-

cution [Dij68, XSZ08]. The call stack typically acts as the interprocedural portion,

and the loop iteration counts in our semantics can act as the intraprocedural por-

tion. As a result, one of the benefits of PEGs is that they make intraprocedural

execution indices explicit.

Theorem Proving. Because our reasoning mechanism uses axioms, our work

is related to the broad area of automated theorem proving. The theorem prover

that most inspired our work is the Simplify theorem prover, with its E-graph data

structure for representing equalities [NO79, NO80, DNS05]. Our EPEGs are in

essence specialized E-graphs for reasoning about PEGs. The process of applying

axioms to EPEGs uses a conceptually similar notion to the matching heuristic used

in Simplify for instantiating universal quantifiers. However, the implementation of

our axiom engine is different from Simplify’s, in that we use the Rete algorithm.

SAT-based Optimizers. There has been a variety of work on using SAT solvers

or Integer Linear Program solvers to compute optimal or near optimal solutions to

various compiler optimization problems, for example data layout [BKK94], register

allocation [GW96], and instruction scheduling [WLH00]. The work that is most

closely related to ours in this area is the Denali super-optimizer [JNR02], a system

for finding near-optimal ways of computing a given basic block. Denali represents

the computation in the basic block as an expression graph, and applies axioms to

create an E-graph representing the various ways of computing the values in the

basic block. It then uses repeated calls to a SAT solver to find the best way of

computing the basic block given the equalities stored in the E-graph. The biggest

difference between our work and Denali is that we represent an entire procedure,

including branches and loops. Also, our work uses an Integer Linear Program

solver rather than iterated calls to a SAT solver. On the other hand, the Denali

120

cost model is more precise than ours because it assigns costs entire sequences of

operations, and so it can take into account the effects of scheduling and register

allocation.

Linear Types. Since our PEG representation is inherently functional, we rep-

resent operations with side effects by using effect tokens. This is related to the

area of linear types [Wad90b] and linear logic [Gir98]. A linearly typed value is

one that cannot be duplicated or destroyed by any operation. Any operation that

takes in a value of linear type must produce one as output. Hence there will always

be a single object of any linear type in existence at any given time. In Peggy, we

use linear types to opaquely represent the global program state, which may be

modified but cannot be copied or destroyed.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER grant CCF-0644306.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Logical Methods in Computer Science 2010. The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL ’09). The

dissertation author was the secondary investigator and author of this paper.

Chapter 12

Conclusion

This dissertation has described the Equality Saturation technique for per-

forming optimization and translation validation of programs, and the Peggy frame-

work which implements it. The major focus has been on the engineering challenges

and applications of Equality Saturation, in order to make it into a viable technique

for performing optimization and translation validation.

One of the first requirements for using Equality Saturation on real programs

is the ability to represent real programs in a way that the engine can manipulate.

To this end, I designed and implemented two distinct front-ends for Peggy; one for

Java bytecode and one for LLVM bitcode. This required defining conversions from

every Java/LLVM operator to a functional form that can be used in the PEG.

Acting upon the compiled code rather than source allows Peggy to target a wide

range of languages, since both Java and LLVM are compilation targets for many

other languages.

The Equality Saturation engine acts upon the EPEG through a set of equal-

ity analyses. The more analyses it has, the more opportunities there are for op-

timization. To this end, I designed a system for describing and implementing

equality analyses based on a simple XML-based text format. There are many lev-

els of complexity for these analyses, and as such the input language has different

kinds of specifications. The common case of a less complex analysis (or axiom)

is much simpler to define than one that has arbitrary complexity, but both are

possible.

121

122

Using the equality analysis definition language, I created a large corpus of

analyses to be used within Peggy, for both the Java and LLVM contexts. These

axioms encode many different aspects of the operators and values used within these

languages, such as arithmetic facts, language-specific facts, pointer and aliasing

facts, and even domain-specific facts. The inclusion of these analyses makes Peggy

a much more potent system than it would be otherwise.

When converting from an imperative language to a functional language,

there are some fundamental differences that must be overcome. Specifically, we

must be careful in how we deal with imperative operations that cause side-effects.

The imperative-to-functional conversion is fairly straightforward, but the reverse

conversion can be quite tricky, since imperative code implicitly has more restric-

tions than functional code. To this end, I formalized the notion of what properties

need to be maintained when converting to and from a PEG, and designed a sys-

tem to maintain the correctness of the imperative code that is produced from a

saturated EPEG.

Equality Saturation is simply a technique to discover equalities within pro-

grams. The engine by itself performs neither optimization nor translation vali-

dation, but is merely the mechanism by which these are achieved. I designed a

system utilizing the main Equality Saturation engine which performs optimization

of both Java and LLVM programs. The basic pipeline for optimization is: parse

input program, convert program to PEG, add equality analyses to engine, insert

PEG into engine, run Equality Saturation, choose optimal PEG from saturated

EPEG, convert PEG back to imperative form, write imperative code back to disk.

Each of these phases is a complex sub-problem with its own engineering challenges.

One of the most important sub-problems in the optimization pipeline is

finding the optimal PEG in a saturated EPEG. This problem deserves special

attention because its effectiveness speaks directly to the utility of the optimization

performed. I formalized the PEG Selection problem, which describes the process of

finding the optimal PEG within a saturated EPEG. I proved that this problem is

NP-hard, and designed an algorithm to solve it by reducing the problem to Integer

Linear Programming.

123

To show that Equality Saturation and Peggy in particular are effective at

performing optimization, I performed an experimental evaluation of the optimizer.

These experiments illustrated the fact that Peggy can perform many classical op-

timizations, and is particularly suited to domain-specific optimizations. Also, we

found that Peggy exhibits instances of emergent optimizations, where equality

analyses can combine in unexpected ways to perform optimizations that the user

did not anticipate. I also showed that Equality Saturation can show significant

performance improvements on a large real-world Java benchmark.

In addition to the optimization framework, I designed and implemented a

framework for using Equality Saturation to perform translation validation of Java

and LLVM programs. The basic pipeline for translation validation is: parse input

programs, convert both programs into a single merged PEG, add equality analyses

to engine, insert merged PEG into engine, run Equality Saturation, check that all

pairs of program roots are equivalent in the EPEG. I also performed an experi-

mental evaluation of the translation validator, for both Java and LLVM programs.

In the Java setting, we validated 98% of the runs of the Soot optimizer on the

SpecJVM benchmark. In the LLVM setting, we validated around 80% of the func-

tions from the SPECCPU2006 integer benchmarks, after being optimized by the

LLVM compiler. In both cases, we only evaluated intraprocedural optimizations.

Our implementation of the Peggy system is available for download at the

following url: http://cseweb.ucsd.edu/~mstepp/peggy/

There are several avenues for future work which we have considered for

Equality Saturation and the Peggy system, which we describe below.

Linear Types. One direction involves addressing our heap linearizing issues

when reverting a PEG to a CFG. Our current approach relies on only allowing

a particular subset of PEGs to be reverted, specifically those that are “properly

linearized”. This restricts the manner in which stateful operators can be used, so

that they correspond more closely to the implicitly stateful operations of a CFG.

Another approach to this problem is to reformulate our PEG representation itself

to use string diagrams [BS09, Cur08]. Expressions are an excellent theory for

non-linear values; string diagrams are a similar theory, but for linear values. A

http://cseweb.ucsd.edu/~mstepp/peggy/

124

string diagram is comprised of nodes with many inputs and many outputs along

with strings which connect outputs of nodes to inputs of other nodes. By default

these strings cannot be forked, capturing the linear quality of the values carried

by the strings; however, strings for non-linear types are privileged with the ability

to fork. In addition to using string diagrams to encode linearity in our PEGs, we

could also re-express all of our axioms in terms of string diagrams, thus preserving

the linear qualities of any strings involved. This prevents the saturation engine

from producing PEGs which cannot be linearized. Also, string diagrams can be

used to preserve well-formedness of PEGs.

Expressiveness of Rules. Our implementation of the Equality Saturation

engine relies on the Rete pattern-matching algorithm [For82]. The α and β nodes

in the engine’s Rete currently only check structural properties of the EPEG, such

as the fact the node A has n children, or that node A is the second child of node B.

It also does basic node label equality tests. We could easily extend this to allow

more general predicates in the α and β nodes of the Rete network. For instance, we

could make an α predicate to check the result type of the operator for a particular

node. Or, we could make a β predicate to compare the operators of two different

nodes to see if they are binary operators that commute. These types of tests could

be used to make more powerful and expressive axioms to be used in the engine. In

addition, the Rete nodes are designed to check only local properties of the nodes

in the EPEG. They cannot check properties that have to do with arbitrarily long

paths through the EPEG. For instance, there is no way to write an axiom to test

for “node A is a descendant of node B”. Designing an efficient method for defining

and checking such properties is an area for future work.

Interprocedural Optimization. Currently our optimization framework oper-

ates on one function at a time, and hence is purely intra-prodecural. However, it

would useful to explore how Equality Saturation could be used to perform inter-

procedural optimizations as well. This would have impact on the effectiveness of

the optimizer, as well as the potency of the translation validator. As mentioned in

Section 4.2, Equality Saturation is in fact well-suited to perform one very specific

type of inter-procedural optimization, which is inlining. This is achieved by writing

125

an axiom that replaces a function call with the body of the called function. Iden-

tifying additional types of interprocedural optimizations that Peggy can perform

is an area for future work.

Acknowledgements

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER grant CCF-0644306.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Logical Methods in Computer Science 2010. The

dissertation author was the secondary investigator and author of this paper.

This chapter contains material taken from “Equality Saturation: a New

Approach to Optimization”, by Ross Tate, Michael Stepp, Zachary Tatlock, and

Sorin Lerner, which appears in Proceedings of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL ’09). The

dissertation author was the secondary investigator and author of this paper.

Appendix A

Java/Soot/PEG conversion

In this section we describe in detail the conversion from Java bytecode to

PEG operators. For each Java bytecode, we show how it maps to a Soot Value or

Stmt, and then how the Soot objects are represented in terms of groups of PEG

nodes. Some of the Java bytecode instructions have no direct analog to Soot or

PEG operators. For example, since Soot is based on Jimple 3-address code, the

instructions that only manipulate the stack such as POP and SWAP are translated

away. Hence they are not represented in the PEG either.

For the Soot rows of the table, most of the bytecode instructions trans-

late to instances of subclasses of the Value class. In addition to these values,

there are JimpleVariable values, which represent local variables. Since Jimple

is designed to resemble 3-address code, the expressions that take other values as

parameters may only take constants or JimpleVariable’s as their parameters.

Hence, rather than building up arbitrarily complex composite expressions, assign-

ment statements are inserted of the form “JAssignStmt(V value, RHS value) stmt”,

where V is a JimpleVariable and RHS is an expression. In the table, whenever

a bytecode instruction uses a parameter off the operand stack, Soot would have

a JimpleVariable associated with that stack location, and would use that vari-

able as the parameter to a new expression. Hence, in our notation we treat the

stack operands as if they were Soot values. These are shown in the PEG rows in

bold italics. All the node labels that appear in all capitals are instances of the

SimpleJavaLabel class, which is used for labels that don’t require any additional

126

127

information.

Table A.1: Translation between bytecode, Soot, and PEG nodes.

BC: AALOAD, BALOAD, CALOAD, DALOAD, FALOAD, IALOAD, LALOAD, SALOAD.

Desc: Load element from array.

Stack: . . . , array , index =⇒ . . . , element

Soot: JArrayRef(array value, index value) value

PEG:
sigma array index

RHO_SIGMA

GETARRAY

0

0 1 2

RHO_VALUE

0

BC: AASTORE, BASTORE, CASTORE, DASTORE, FASTORE, IASTORE, LASTORE,

SASTORE.

Desc: Store element into array.

Stack: . . . , array , index , element =⇒ . . .

Soot: JAssignStmt(LHS, RHS) stmt, where

LHS = JArrayRef(array value, index value) value

RHS = element value

PEG:
sigma array index element

RHO_SIGMA

SETARRAY

0

0 1 2 3

RHO_VALUE

0

BC: ACONST NULL.

Desc: Push a null reference onto the stack.

Stack: . . . =⇒ . . . ,null

Soot: NullConstant value

PEG:
ConstantJavaLabel[null]

BC: ALOAD index ,

ILOAD index ,

FLOAD index ,

DLOAD index ,

LLOAD index .

Desc: Load from local variable slot index.

Stack: . . . =⇒ . . . , val

128

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Soot: Represented by a JimpleVariable value, whose value was assigned by a pre-

vious JAssignStmt.

PEG: Represented by the sub-PEG for the Soot variable’s value.

BC: ANEWARRAY type ,

NEWARRAY type .

Desc: Create a new array of object/primitive type given by type.

Stack: . . . ,numelts =⇒ . . . , array

Soot: JNewArray(type type, numelts value) value

PEG:
sigma TypeJavaLabel[type] numelts

RHO_SIGMA

NEWARRAY

0

0 1 2

RHO_VALUE

0

BC: ARETURN, IRETURN, FRETURN, LRETURN, DRETURN.

Desc: Return value and end method.

Stack: . . . , result =⇒ [empty]

Soot: JReturnStmt(result value) stmt

PEG:
result

INJR

0

BC: ARRAYLENGTH.

Desc: Get length of array.

Stack: . . . , array =⇒ . . . , length

Soot: JLengthExpr(array value) value

PEG:
sigma array

RHO_SIGMA

ARRAYLENGTH

0

0 1

RHO_VALUE

0

BC: ASTORE index ,

ISTORE index ,

DSTORE index ,

FSTORE index ,

LSTORE index .

129

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Desc: Store value into local variable.

Stack: . . . , val =⇒ . . .

Soot: JAssignStmt(LHS value, val value) stmt, where LHS is the JimpleVariable

value for the given local variable slot.

PEG: Store is not explicitly represented, but will be referenced by the sub-PEG for

LHS.

BC: ATHROW.

Desc: Throw an exception.

Stack: . . . , exception =⇒ exception

Soot: JThrowStmt(exception value) stmt

PEG:
sigma exception

RHO_SIGMA

THROW

0

0 1

RHO_EXCEPTION

0

BC: BIPUSH byte .

Desc: Push constant byte onto stack.

Stack: . . . =⇒ . . . , byte

Soot: IntConstant value

PEG:
ConstantJavaLabel[byte]

BC: CHECKCAST type .

Desc: Perform dynamic type cast.

Stack: . . . , obj =⇒ . . . , obj

Soot: JCastExpr(obj value, type type) value

PEG:
sigma TypeJavaLabel[type] obj

RHO_SIGMA

CAST

0

0 1 2

RHO_VALUE

1

BC: D2F, D2I, D2L

Desc: Convert double to float/int/long.

Stack: . . . , val =⇒ . . . , cval

Soot: JCastExpr(val value, float/int/long type) value

130

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

PEG:
TypeJavaLabel[float/int/long] val

PRIMITIVECAST

0 1

BC: DADD, FADD, IADD, LADD

Desc: Add two doubles/floats/ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , sum

Soot: JAddExpr(lhs value, rhs value) value

PEG:
lhs rhs

ADD

0 1

BC: DCMPG, DCMPL, FCMPG, FCMPL

Desc: Compare two doubles/floats.

Stack: . . . , lhs, rhs =⇒ . . . , cmp

Soot: JCmpgExpr(lhs value, rhs value) value, or

JCmplExpr(lhs value, rhs value) value

PEG:
lhs rhs lhs rhs

CMPL

0 1

CMPG

0 1

BC: DCONST 0, DCONST 1

Desc: Push double constant 0.0 or 1.0.

Stack: . . . =⇒ . . . , val

Soot: DoubleConstant value

PEG:
ConstantJavaLabel[0.0] ConstantJavaLabel[1.0]

BC: DDIV, FDIV, IDIV, LDIV

Desc: Divide two doubles/floats/ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , quotient

Soot: JDivExpr(lhs value, rhs value) value

PEG:
lhs rhs

DIV

0 1

BC: DMUL, FMUL, IMUL, LMUL

Desc: Multiply two doubles/floats/ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , product

Soot: JMulExpr(lhs value, rhs value) value

131

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

PEG:
lhs rhs

MUL

0 1

BC: DNEG, FNEG, INEG, LNEG

Desc: Negate a double/float/int/long.

Stack: . . . , val =⇒ . . . ,nval

Soot: JNegExpr(val value) value

PEG:
val

NEG

0

BC: DREM, FREM, IREM, LREM

Desc: Compute modulus of two doubles/floats/ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . ,mod

Soot: JRemExpr(lhs value, rhs value) value

PEG:
lhs rhs

REM

0 1

BC: DSUB, FSUB, ISUB, LSUB

Desc: Subtract two doubles/floats/ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , diff

Soot: JSubExpr(lhs value, rhs value) value

PEG:
lhs rhs

SUB

0 1

BC: DUP, DUP X1, DUP X2, DUP2, DUP2 X1, DUP2 X2

Desc: Duplicate items on the stack.

Stack: . . . , v1 =⇒ . . . , v1 , v1

. . . , v2 , v1 =⇒ . . . , v1 , v2 , v1

. . . , v3 , v2 , v1 =⇒ . . . , v1 , v3 , v2 , v1

. . . , v2 , v1 =⇒ . . . , v2 , v1 , v2 , v1

. . . , v3 , v2 , v1 =⇒ . . . , v2 , v1 , v3 , v2 , v1

. . . , v4 , v3 , v2 , v1 =⇒ . . . , v2 , v1 , v4 , v3 , v2 , v1

Soot: Not represented in Soot.

PEG: Not represented in PEG.

132

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

BC: F2D, F2I, F2L

Desc: Convert float to double/int/long.

Stack: . . . , val =⇒ . . . , cval

Soot: JCastExpr(val value, double/int/long type) value

PEG:
TypeJavaLabel[double/int/long] val

PRIMITIVECAST

0 1

BC: FCONST 0, FCONST 1

Desc: Push float value 0.0f or 1.0f into stack.

Stack: . . . =⇒ . . . , val

Soot: FloatConstant value

PEG:
ConstantJavaLabel[0.0f] ConstantJavaLabel[1.0f]

BC: GETFIELD field ,

GETSTATIC field .

Desc: Get the value of a non-static/static field.

Stack: . . . , obj =⇒ . . . , val ,

. . . =⇒ . . . , val

Soot: JInstanceFieldRef(obj value, field field) value,

StaticFieldRef(field field) value

PEG:

RHO_SIGMA

GETFIELD

0

RHO_VALUE

0

RHO_SIGMA

GETSTATICFIELD

0

RHO_VALUE

0

sigma sigma FieldJavaLabel[field] FieldJavaLabel[field] obj

0 21 0 1

BC: GOTO target

GOTO W target

Desc: Unconditional branch.

Stack: No change.

Soot: JGotoStmt(target stmt) stmt

PEG: Not represented in PEG.

BC: I2B, I2C, I2D, I2F, I2L, I2S

Desc: Convert int to byte/char/double/float/long/short.

Stack: . . . , val =⇒ . . . , cval

Soot: JCastExpr(val value, byte/char/double/float/long/short type) value

133

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

PEG:
TypeJavaLabel[byte/char/double/float/long/short] val

PRIMITIVECAST

0 1

BC: IAND, LAND

Desc: Bitwise AND of two ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , and

Soot: JAndExpr(lhs value, rhs value) value

PEG:
lhs rhs

AND

0 1

BC: ICONST M1, ICONST 0, ICONST 1, ICONST 2, ICONST 3, ICONST 4,

ICONST 5

Desc: Push the int value -1/0/1/2/3/4/5 into the stack.

Stack: . . . =⇒ . . . , val

Soot: IntConstant value

PEG:
ConstantJavaLabel[-1 / 0 / 1 / 2 / 3 / 4 / 5]

BC: IF ACMPEQ target ,

IF ACMPNE target

Desc: Conditional branch, comparing two objects for reference equality.

Stack: . . . , lhs, rhs =⇒ . . .

Soot: JIfStmt(JEqExpr(lhs value, rhs value) value, target stmt) stmt

JIfStmt(JNeExpr(lhs value, rhs value) value, target stmt) stmt

PEG:

phi

EQ / NE

0

tv

1

fv

2

lhs

0

rhs

1

BC: IF ICMPEQ target ,

IF ICMPNE target ,

IF ICMPGE target ,

IF ICMPGT target ,

IF ICMPLE target ,

IF ICMPLT target

Desc: Conditional branch, comparing two int values.

134

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Stack: . . . , lhs, rhs =⇒ . . .

Soot: JIfStmt(JEqExpr(lhs value, rhs value) value, target stmt) stmt

JIfStmt(JNeExpr(lhs value, rhs value) value, target stmt) stmt

JIfStmt(JGeExpr(lhs value, rhs value) value, target stmt) stmt

JIfStmt(JGtExpr(lhs value, rhs value) value, target stmt) stmt

JIfStmt(JLeExpr(lhs value, rhs value) value, target stmt) stmt

JIfStmt(JLtExpr(lhs value, rhs value) value, target stmt) stmt

PEG:

phi

EQ / NE / GTE / GT / LTE / LT

0

tv

1

fv

2

lhs

0

rhs

1

BC: IFEQ target ,

IFNE target ,

IFGE target ,

IFGT target ,

IFLE target ,

IFLT target

Desc: Conditional branch, comparing int value against 0.

Stack: . . . , val =⇒ . . .

Soot: JIfStmt(JEqExpr(val value, 0 value) value, target stmt) stmt,

JIfStmt(JNeExpr(val value, 0 value) value, target stmt) stmt,

JIfStmt(JGeExpr(val value, 0 value) value, target stmt) stmt,

JIfStmt(JGtExpr(val value, 0 value) value, target stmt) stmt,

JIfStmt(JLeExpr(val value, 0 value) value, target stmt) stmt,

JIfStmt(JLtExpr(val value, 0 value) value, target stmt) stmt

PEG:

phi

EQ / NE / GTE / GT / LTE/ LT

0

tv

1

fv

2

lhs

0

ConstantJavaLabel[0]

1

BC: IFNULL target ,

IFNONNULL target

Desc: Conditional branch, compare object against null reference.

Stack: . . . , obj =⇒ . . .

135

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Soot: JIfStmt(JEqExpr(obj value, null value) value, target stmt) stmt,

JIfStmt(JNeExpr(obj value, null value) value, target stmt) stmt

PEG:

EQ / NE

ConstantJavaLabel[null]

1

obj

0

tv fv

phi

0 1 2

BC: IINC index, inc

Desc: Increment integer local variable slot index by amount inc.

Stack: No change.

Soot: JAssignStmt(var value, JAddExpr(var value, inc value) value) stmt

PEG: Represented same as addition.

BC: INSTANCEOF type

Desc: Checks if an object is of the given type.

Stack: . . . , obj =⇒ . . . , bool

Soot: JInstanceOfExpr(obj value, type type) value

PEG:
sigma obj TypeJavaLabel[type]

RHO_SIGMA

INSTANCEOF

0

0 1 2

RHO_VALUE

0

BC: INVOKEINTERFACE method ,

INVOKEVIRTUAL method ,

INVOKESPECIAL method

Desc: Non-static method invocation of interface/virtual/constructor method.

Stack: . . . , obj , arg1 , . . . , argn =⇒ . . . , result or

. . . , obj , arg1 , . . . , argn =⇒ . . . if void.

136

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Soot: If void, a JInvokeStmt(invoke value) stmt,

otherwise a JAssignStmt(var value, invoke value) stmt, where

var is a JimpleVariable for the return value, and where invoke is one of:

JInterfaceInvokeExpr(obj value, method method, arg1 value, . . . , argn

value) value,

JVirtualInvokeExpr(obj value, method method, arg1 value, . . . , argn value)

value,

JSpecialInvokeExpr(obj value, method method, arg1 value, . . . , argn value)

value.

PEG:

sigma obj MethodJavaLabel[method]

arg_1 arg_n

RHO_SIGMA

INVOKE

0

0 1 2

PARAMS

3

RHO_VALUE

0

0 n-1

BC: INVOKESTATIC method

Desc: Static method invocation.

Stack: . . . , arg1 , . . . , argn =⇒ . . . , result or

. . . , arg1 , . . . , argn =⇒ . . . if void.

Soot: If void, a JInvokeStmt(invoke value) stmt,

otherwise a JAssignStmt(var value, invoke value) stmt, where

var is a JimpleVariable for the return value, and where invoke is:

JStaticInvokeExpr(method method, arg1 value, . . . , argn value) value

PEG:

sigma MethodJavaLabel[method]

arg_1 arg_n

RHO_SIGMA

INVOKESTATIC

0

0 1

PARAMS

2

RHO_VALUE

0

0 n-1

BC: IOR, LOR.

Desc: Bitwise OR of two ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , or

137

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Soot: JOrExpr(lhs value, rhs value) value

PEG:
lhs rhs

OR

0 1

BC: ISHL, LSHL.

Desc: Left shift of int/long.

Stack: . . . , lhs, rhs =⇒ . . . , result

Soot: JShlExpr(lhs value, rhs value) value

PEG:
lhs rhs

SHL

0 1

BC: ISHR, LSHR

Desc: Arithmetic shift right of int/long.

Stack: . . . , lhs, rhs, =⇒ . . . , result

Soot: JShrExpr(lhs value, rhs value) value

PEG:
lhs rhs

SHR

0 1

BC: IUSHR, LUSHR

Desc: Logical shift right of int/long.

Stack: . . . , lhs, rhs, =⇒ . . . , result

Soot: JUshrExpr(lhs value, rhs value) value

PEG:
lhs rhs

USHR

0 1

BC: IXOR, LXOR

Desc: Bitwise XOR of two ints/longs.

Stack: . . . , lhs, rhs =⇒ . . . , xor

Soot: JXorExpr(lhs value, rhs value) value

PEG:
lhs rhs

XOR

0 1

138

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

BC: JSR target ,

JSR W target

Desc: Jump-to-subroutine: branch and push (opaque) address of following instruction

on stack.

Stack: . . . =⇒ . . . , addr

Soot: These are restructured into GOTO’s before translation to Soot.

PEG: Not represented.

BC: L2D, L2F, L2I

Desc: Convert long to double/float/int.

Stack: . . . val =⇒ . . . , cval

Soot: JCastExpr(val value, double/float/int type) value

PEG:
TypeJavaLabel[double/float/int] val

PRIMITIVECAST

0 1

BC: LCMP

Desc: Compare two longs.

Stack: . . . , lhs, rhs =⇒ cmp

Soot: JCmpExpr(lhs value, rhs value) value

PEG:
lhs rhs

CMP

0 1

BC: LCONST 0, LCONST 1

Desc: Push the long value 0 or 1 onto the stack.

Stack: . . . =⇒ . . . , val

Soot: LongConstant value.

PEG:
ConstantJavaLabel[0L] ConstantJavaLabel[1L]

BC: LDC constant ,

LDC W constant ,

LDC2 W constant

Desc: Load an int, float, double, long, or string constant from the constant pool onto

the stack.

Stack: . . . =⇒ . . . , constant

Soot: IntConstant value, FloatConstant value, DoubleConstant value,

LongConstant value, or StringConstant value.

139

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

PEG:
 ConstantJavaLabel[constant]

BC: LOOKUPSWITCH default, n, match1, target1, . . . , matchn, targetn.

Desc: Switch statement, with default target default, and n match-target pairs.

Stack: . . . , key =⇒ . . .

Soot: JLookupSwitchStmt(key value, default stmt, match1 value, target1 value,

. . . , matchn value, targetn value) stmt

PEG: First converted to chain of if-stmts, then those are translated in normal way.

BC: MONITORENTER, MONITOREXIT

Desc: Acquire/release an object’s monitor condition variable.

Stack: . . . , obj =⇒ . . .

Soot: JEnterMonitorStmt(obj value) stmt

PEG:

RHO_SIGMA

ENTERMONITOR

0

RHO_SIGMA

EXITMONITOR

0

RHO_VALUE

0

RHO_VALUE

0

sigma sigmaobj obj

0 1 0 1

BC: MULTIANEWARRAY type, n

Desc: Create a new n-dimensional array of type type.

Stack: . . . , size1 , . . . , sizen =⇒ . . . , array

Soot: JNewMultiArrayExpr(type type, size1 value, . . . , sizen value) value

PEG:

sigma TypeJavaLabel[type]

 size_1 size_n

RHO_SIGMA

NEWMULTIARRAY

0

0 1

DIMS

2

RHO_VALUE

0

0 n-1

BC: NEW type

Desc: Create new object of type type (does not call constructor).

Stack: . . . =⇒ . . . , obj

Soot: JNewExpr(type type) value

140

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

PEG:
sigma TypeJavaLabel[type]

RHO_SIGMA

NEWINSTANCE

0

0 1

RHO_VALUE

0

BC: NOP

Desc: Do nothing (NO-OP).

Stack: No change.

Soot: JNopStmt stmt.

PEG: Not represented.

BC: POP, POP2

Desc: Pop 1 or 2 items off the stack.

Stack: . . . , v1 =⇒ . . .,

. . . , v2 , v1 =⇒ . . .

Soot: Not directly represented.

PEG: Not directly represented.

BC: PUTFIELD field ,

PUTSTATIC field .

Desc: Set value of non-static/static field.

Stack: . . . , obj , val =⇒ . . .,

. . . , val =⇒ . . .

Soot: JAssignStmt(JInstanceFieldRef(obj value, field field) value, val value)

stmt,

JAssignStmt(StaticFieldRef(field field) value, val value) stmt

PEG:

RHO_SIGMA

SETFIELD

0

RHO_VALUE

0

sigma FieldJavaLabel[field] valobj

RHO_SIGMA

SETSTATICFIELD

0

RHO_VALUE

0

sigma FieldJavaLabel[field] val

0 2 31 0 1 2

BC: RET index

Desc: Jump to opaque address value stored in local variable slot index.

Stack: No change.

Soot: JSR/RET instructions are converted to GOTO’s before translation to Soot.

PEG: Not directly represented.

BC: RETURN

141

Table A.1: Translation between bytecode, Soot, and PEG nodes, Continued

Desc: Void return from method.

Stack: . . . =⇒ [empty]

Soot: JReturnVoidStmt stmt

PEG:

INJR

VOID

0

BC: SIPUSH short

Desc: Push constant short onto stack.

Stack: . . . =⇒ . . . , short

Soot: IntConstant value

PEG:
ConstantJavaLabel[short]

BC: SWAP

Desc: Exchange top 2 items on stack.

Stack: . . . , v2 , v1 =⇒ . . . , v1 , v2

Soot: Not directly represented.

PEG: Not directly represented.

BC: TABLESWITCH default, lo, hi, targetlo, ..., targethi

Desc: Switch statement, with default target default and targets to match lo through

hi.

Stack: . . . , key =⇒ . . .

Soot: JTableSwitchStmt(default stmt, lo value, hi value, targetlo stmt, . . . ,

targethi stmt) stmt

PEG: Converted to chain of if-stmts, then those are translated in normal way.

Appendix B

LLVM/PEG conversion

Table B.1 describes how the various LLVM values are encoded as PEG

nodes. Each value in this table is represented as a single node with no children, so

we do not draw the PEG, but simply describe the operator label for the single PEG

node. Several of the labels are simply wrappers around the values themselves. For

these examples, we give the value an explicit name and then refer to it in the PEG

label.

In addition to the values listed in the table, there are values defined in terms

of instructions acting on constant operands. These values are most easily expressed

in terms of instructions, but since they operate on constant operands they may be

computed at compile-time, rather than runtime. The only instructions that may

be used for this purpose are Cast, GetElementPtr, Select, ExtractElement,

InsertElement, ShuffleVector, ICmp, FCmp, and Binop. In the PEG, we re-

place these constant instructions with their non-constant equivalents, as shown in

Table B.2.

Table B.1: Translation between LLVM values and PEG nodes.

LLVM: Alias(type, aliasee, linkage, visibility)

Desc: Alias value for another global value (one of global/function/alias),

where type is a pointer type, aliasee is the value being aliased,

linkage is a linkage id, and visibility is a visibility id.

142

143

Table B.1: Translation between LLVM values and PEG nodes, Continued

PEG: AliasLLVMLabel[name, type], where name is the name of the alias

taken from the module’s value symbol table.

LLVM: Argument(parent, index, type)

Desc: Function formal parameter value, where parent is the parent func-

tion value, index is the 0-based formal parameter index, and type

is the first-class type of the parameter.

PEG: ArgumentLLVMParameter[parent, index, type]

LLVM: BlockAddress(func, index)

Desc: Address value for a particular basic block of a particular function,

where func is the function value, and index is the index of the basic

block.

PEG: Cannot be represented.

LLVM: C = ConstantExplicitArray(type, elt1, . . . , eltn)

Desc: An explicitly-defined constant array value, where type is an array

type, and elt1, . . . , eltn are the constant element values.

PEG: ConstantLLVMLabel[C]

LLVM: C = ConstantNullArray(type)

Desc: A constant array value, where the elements are implicitly null (and

not listed explicitly), where type is the array type.

PEG: ConstantLLVMLabel[C]

LLVM: C = InlineASM(hasSideEffects, type,ASM, constraints)

Desc: A value which represents a block of assembly code, which can be

called as a function, where hasSideEffects is a boolean describing

if the assembly code has side effects, type is a pointer to function

type, ASM is a string of the actual assembly code, and constraints

is a string spelling out some constraints on the assembly code.

PEG: ConstantLLVMLabel[C]

LLVM: C = NullPointer(type)

Desc: A constant null pointer value, where type is the pointer type.

PEG: ConstantLLVMLabel[C]

144

Table B.1: Translation between LLVM values and PEG nodes, Continued

LLVM: C = ConstantStructure(type, field1, . . . , fieldn)

Desc: A constant structure value, where type is the struct type, and field1,

. . . , fieldn are the constant field values.

PEG: ConstantLLVMLabel[C]

LLVM: C = ConstantExplicitVector(type, elt1, . . . , eltn)

Desc: An explicitly-defined constant vector value, where type is the vector

type, and elt1, . . . , eltn are the constant element values.

PEG: ConstantLLVMLabel[C]

LLVM: C = ConstantNullVector(type)

Desc: A constant vector value, where the elements are implicitly null (and

not listed explicitly), where type is the vector type.

PEG: ConstantLLVMLabel[C]

LLVM: C = FloatingPoint(type, bits)

Desc: A literal floating point value, where type is the float type, and bits

is the bit-string representation of the value.

PEG: ConstantLLVMLabel[C]

LLVM: Function(type, cc, attrs, align, section, visibility, collector)

Desc: A function descriptor value, where type is a pointer to function

type, cc is a calling convention id, attrs is a bitmask of parameter

attributes, align is the function’s byte alignment, section is a section

id, visibility is a visibility id, and collector is a garbage collector id.

PEG: FunctionLLVMLabel[name, type], where name is the name of the

function taken from the module’s symbol table.

LLVM: Global(type, isConst, init, linkage, align, section, visibility, isTL)

Desc: A global variable value, where type is a pointer type, isConst is

a boolean specifying whether the global is constant, init is the

optional initial value, linkage is a linkage id, align is the global’s

byte alignment, section is a section id, visibility is a visibility id,

and isTL is a boolean specifying whether the global is thread-local.

145

Table B.1: Translation between LLVM values and PEG nodes, Continued

PEG: GlobalLLVMLabel[name, type], where name is the name of the

global taken from the module’s symbol table.

LLVM: C = Integer(width, bits)

Desc: A literal integer value, where width is the bit-width of the 2’s com-

plement integer value, and bits is the bit-string of the value.

PEG: ConstantLLVMLabel[C]

LLVM: Label(index)

Desc: A basic block label value, where index is the index of the basic

block. This value can only appear inside a function body, so the

parent function of the label is implicit.

PEG: Cannot be represented.

LLVM: C = MetadataNode(isFuncLocal, val1, . . . , valn)

Desc: A metadata node value, where isFuncLocal is a boolean telling

whether the metadata node contains any function-local values, and

val1, . . . , valn are the values inside the node.

PEG: ConstantLLVMLabel[C]

LLVM: C = MetadataString(str)

Desc: A metadata string value, where str is the string contents of the

metadata.

PEG: ConstantLLVMLabel[C]

LLVM: C = Undef(type)

Desc: An undefined value, where type is the type of the value.

PEG: ConstantLLVMLabel[C]

LLVM: VirtualRegister(type)

Desc: A virtual register value where the results of instructions are stored,

where type is the type of the value in the register.

PEG: Not represented.

146

Table B.2 decribes how each LLVM instruction is encoded as a group of

PEG nodes. In cases when the instruction takes a sub-value, these are represented

in the PEG in bold, and implicitly mean that the sub-PEG for that value would

appear in its place. All the node labels that appear in all capitals are instances

of the SimpleLLVMLabel class, which is used for labels that don’t require any

additional information.

Table B.2: Translation between LLVM instructions and PEG nodes.

LLVM: Alloca(type, numElts, alignment)

Desc: Dynamically allocate stack space and return a pointer to it, where

type is the pointee type, numElts is an i32 value specifying the

number of elements, and alignment is the desired byte alignment

of the pointer.

PEG:
sigma TypeLLVMLabel[type] numElts NumeralLLVMLabel[alignment]

RHO_SIGMA

ALLOCA

0

0 1 2 3

RHO_VALUE

0

LLVM: Binop(op, lhs, rhs)

Desc: Compute binary operation, where op describes which binop to

compute, which is one of: {add, sub, mul, unsigned-div,

signed-div, float-div, unsigned-mod, signed-mod,

float-mod, shift-left, arithmetic-shift-right,

logical-shift-right, and, or, xor}, lhs is the left-hand

operand, and rhs is the right-hand operand.

PEG:

 BinopLLVMLabel[op]

lhs

0

rhs

1

LLVM: Call(isTailCall, cc, func, attrs, arg1, . . . , argn)

147

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

Desc: Call a function with no unwind handling, where isTailCall is a

boolean specifying whether this is a tail call, cc is a calling con-

vention id, func is the function value, attrs is a bitmask of callsite

parameter attributes, and arg1, . . . , argn are the actual parameters

to the function.

PEG:

CALL / TAILCALL

sigma

0

func

1

 NumeralLLVMLabel[cc]

2

PARAMS

3

arg_1 arg_n

RHO_SIGMA

0

RHO_VALUE

0

0 n-1

LLVM: Cast(op, destType, castee)

Desc: Do a primitive type coercion, where op decribes

the kind of coercion, which is one of {truncate,
zero-extend, sign-extend, float-to-unsigned-int,

float-to-signed-int, unsigned-int-to-float,

signed-int-to-float, float-truncate, float-extend,

pointer-to-int, int-to-pointer, bitcast}, destType is the

new type of the coerced value, and castee is the value being

coerced.

PEG:

 CastLLVMLabel[op]

 TypeLLVMLabel[destType]

0

castee

1

LLVM: ICmp(predicate, lhs, rhs)

Desc: Do an integer value comparison, where predicate describes the

comparison being done and is one of {eq, ne, unsigned-gt,

unsigned-ge, unsigned-lt, unsigned-le, signed-gt,

signed-ge, signed-lt, signed-le}, lhs is the left-hand

operand value, and rhs is the right-hand operand value.

148

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

PEG:

 CmpLLVMLabel[predicate]

lhs

0

rhs

1

LLVM: FCmp(predicate, lhs, rhs)

Desc: Do a floating-point value comparison, where predicate de-

scribes the comparison being done and is one of {true, false,

ordered, unordered, ordered-eq, ordered-ne, ordered-gt,

ordered-ge, ordered-lt, ordered-le, unordered-eq,

unordered-ne, unordered-gt, unordered-ge, unordered-lt,

unordered-le}, lhs is the left-hand operand value, and rhs is the

right-hand operand value.

PEG:

 CmpLLVMLabel[predicate]

lhs

0

rhs

1

LLVM: ExtractElement(vector, index)

Desc: Extract an element from a vector value, where vector is the vector

value, and index is an i32 index value.

PEG:
vector index

EXTRACTELEMENT

0 1

LLVM: ExtractValue(struct, offset1, . . . , offsetn)

Desc: Extract an inner value from a structure value, where struct is the

structure value, and offset1, . . . , offsetn are offsets into the nested

structure value.

PEG:

struct

 NumeralLLVMLabel[offset_1] NumeralLLVMLabel[offset_n]

EXTRACTVALUE

0

OFFSETS

1

0 n-1

LLVM: Free(ptr)

149

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

Desc: Frees a pointer value that was previously malloc’ed, where ptr is

the pointer value.

PEG:
sigma ptr

FREE

0 1

LLVM: GetElementPointer(basePtr, offset1, . . . , offsetn)

Desc: Do pointer arithmetic to compute the location of a composite

value’s inner value, where basePtr is a pointer to the composite

value, and offset1, . . . , offsetn are the offsets into the nested com-

posite values.

PEG:

base TypeLLVMLabel[basetype]

offset_1 offset_n

GETELEMENTPTR

0 1

INDEXES

2

0 n-1

LLVM: InsertElement(vector, element, index)

Desc: Create a new vector resulting from replacing an element of a given

vector, where vector is the vector value, element is the replacement

element value, and index is an i32 value specifying the index to

replace.

PEG:
vector element index

INSERTELEMENT

0 1 2

LLVM: InsertValue(struct, element, offset1, . . . , offsetn)

Desc: Create a new structure value by replacing one of its element values,

where struct is the structure value, element is the new element

value, and offset1, . . . , offsetn are the offsets into the structure for

the element to be replaced.

150

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

PEG:

struct element

 NumeralLLVMLabel[offset_1] NumeralLLVMLabel[offset_n]

INSERTVALUE

0 1

OFFSETS

2

0 n-1

LLVM: Load(pointer, alignment, isVolatile)

Desc: Load a value from a pointer, where pointer is the pointer value to

load from, alignment is the byte-alignment of the pointer value,

and isVolatile is a boolean specifying whether the load is volatile.

PEG:

LOAD / VOLATILE_LOAD

sigma

0

pointer

1

 NumeralLLVMLabel[alignment]

2

RHO_SIGMA

0

RHO_VALUE

0

LLVM: Malloc(type, numElements, alignment)

Desc: Dynamically allocate heap memory, where type is the pointee type,

numElements is a i32 value indicating the number of items to al-

locate, and alignment is the desired byte-alignment of the result

pointer.

PEG:
sigma TypeLLVMLabel[type] numElements NumeralLLVMLabel[alignment]

RHO_SIGMA

MALLOC

0

0 1 2 3

RHO_VALUE

0

LLVM: Phi(type, 〈value1, bb1〉, . . . , 〈valuen, bbn〉)
Desc: Executable SSA φ-operator, where type is the type of the result,

and 〈value1, bb1〉, . . . , 〈valuen, bbn〉 are the value-block pairs that

tell which value to use based on the dynamically preceding basic

block.

PEG: Not represented.

151

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

LLVM: Select(condition, true, false)

Desc: Returns one of two values based on a boolean condition, where

condition is the boolean condition value, true is the value to return

if true, and false is the value to return if false.

PEG:
condition true false

SELECT

0 1 2

LLVM: ShuffleVector(vector1, vector2, mask)

Desc: Create new vector based on rearranging elements from two others,

where vector1 is the first input vector, vector2 is the second input

vector, and mask is a “shuffle vector” that describes which elements

of the input vectors to use in the result vector.

PEG:
vector1 vector2 mask

SHUFFLEVECTOR

0 1 2

LLVM: Store(pointer, value, alignment, isVolatile)

Desc: Store a value to a pointer, where pointer is the pointer value, value

is the value being stored, alignment is the byte-alignment of the

pointer, and isVolatile is a boolean specifying if the store is volatile.

PEG:
sigma pointer value NumeralLLVMLabel[alignment]

STORE / VOLATILE_STORE

0 1 2 3

LLVM: Branch(condition, bbtrue, bbfalse)

Branch(target)

Desc: Conditional or unconditional branch, where condition is the

boolean condition value to test, bbtrue is the block to visit if true,

bbfalse is the block to visit if false, and target is the sole branch

target for an unconditional branch.

PEG: Conditional branch represented with φ nodes. Unconditional

branch not represented.

152

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

LLVM: IndirectBranch(blockAddress, block1, . . . , blockn)

Desc: Indirect branch to an opaque basic block address, where blockAd-

dress is the block address value, and block1, . . . , blockn are all pos-

sible blocks where the branch might land.

PEG: Cannot be represented.

LLVM: Invoke(cc, func, attrs, bbreturn, bbunwind, arg1, . . . , argn)

Desc: Call a function with unwind handling, where cc is a calling con-

vention id, func is the function value to call, attrs is a bitmask

of callsite parameter attributes, bbreturn is the basic block to jump

to if the function returns normally, bbunwind is the basic block to

jump to if the function unwinds, and arg1, . . . , argn are the actual

parameter values.

PEG:

sigma func NumeralLLVMLabel[cc]

arg_1 arg_n

RHO_SIGMA

INVOKE

0

0 1 2

PARAMS

3

RHO_VALUE

0

0 n-1

LLVM: Ret(arg1, . . . , argn)

Desc: Cause the current function to terminate, returning 0 or more values,

where arg1, . . . , argn are the values to return. If there are 0 values

then it is a void return, if there is 1 value it is a normal non-void

return, and if there are multiple values then they are implicitly

returned in the fields of a new structure value.

PEG:

INJR

VOID

0

INJR

arg_1

0

INJR

RETURNSTRUCTURE

0

arg_1 arg_n

0 n-1

153

Table B.2: Translation between LLVM instructions and PEG nodes, Continued

LLVM: Switch(key, bbdefault, 〈value1, bb1〉, . . . , 〈valuen, bbn〉)
Desc: Perform a multi-way branch based on an integer key value, where

key is the integer key value, bbdefault is the block to visit if no val-

ue/block pair matches, and 〈value1, bb1〉, . . . , 〈valuen, bbn〉 are a set

of value/block pairs that determine where to jump to based on the

key’s value.

PEG: Converted to chain of conditional branches.

LLVM: Unreachable()

Desc: Unreachable instruction; execution should never reach this instruc-

tion and if it does the behavior is undefined.

PEG: Represented same as an Unwind.

LLVM: Unwind()

Desc: Unwind the call stack until the dynamically closest occurence of

an Invoke instruction is found. This instruction is used for basic

exception handling.

PEG:
sigma

RHO_SIGMA

UNWIND

0

0

RHO_EXCEPTION

1

LLVM: Vaarg(valist, type)

Desc: Read a value from the variable-argument list of a function call,

where valist is a pointer to the variable-argument list, and type is

the type of the value to be read and returned.

PEG:
sigma valist TypeLLVMLabel[type]

RHO_SIGMA

VAARG

0

0 1 2

RHO_VALUE

0

Appendix C

Axioms and Analyses Used in

Peggy

In this appendix we list the axioms and analyses used within Peggy to

perform Equality Saturation. This section is an elaboration of Chapter 5.

C.1 Arithmetic Axioms

Commutativity. These axioms encode the fact that certain operators commute.

<simpleTransform name=’A+B = B+A’>

add (!!A:*,@B:*) = add(@B,@A)

</simpleTransform >

<simpleTransform name=’A*B = B*A’>

mul(@A:*,@B:*) = mul(@B,@A)

</simpleTransform >

<simpleTransform name=’A^B = B^A’>

xor(@A:*,@B:*) = xor(@B,@A)

</simpleTransform >

<simpleTransform name=’A|B = B|A’>

or(@A:*,@B:*) = or(@B,@A)

</simpleTransform >

<simpleTransform name=’A&B = B&A’>

and(@A:*,@B:*) = and(@B,@A)

</simpleTransform >

154

155

Distributivity. These axioms encode the fact that some operators distribute

over others.

<simpleTransform name=’A*(B+C) = A*B + A*C’>

mul(@A:*,add(@B:*,@C:*)) = add(mul(@A,@B),mul(@A,@C))

</simpleTransform >

<simpleTransform name=’A*(B-C) = A*B - A*C’>

mul(@A:*,sub(@B:*,@C:*)) = sub(mul(@A,@B),mul(@A,@C))

</simpleTransform >

<simpleTransform name=’A&(B|C) = A&B | A&C’>

and(@A:*,or(@B:*,@C:*)) = or(and(@A ,@B),and(@A,@C))

</simpleTransform >

<simpleTransform name=’A|(B&C) = (A|B) & (A|C)’>

or(@A:*,and(@B:*,@C:*)) = and(or(@A,@B),or(@A ,@C))

</simpleTransform >

Associativity. These axioms encode the fact that some operators are associative.

<simpleTransform name=’A+(B+C) = (A+B)+C’>

add(@A:*,add(@B:*,@C:*)) = add(add(@A,@B),@C)

</simpleTransform >

<simpleTransform name=’A*(B*C) = (A*B)*C’>

mul(@A:*,mul(@B:*,@C:*)) = mul(mul(@A,@B),@C)

</simpleTransform >

<simpleTransform name=’A&(B&C) = (A&B)&C’>

and(@A:*,and(@B:*,@C:*)) = and(and(@A,@B),@C)

</simpleTransform >

<simpleTransform name=’A|(B|C) = (A|B)|C’>

or(@A:*,or(@B:*,@C:*)) = or(or(@A,@B),@C)

</simpleTransform >

<simpleTransform name=’A^(B^C) = (A^B)^C’>

xor(@A:*,xor(@B:*,@C:*)) = xor(xor(@A,@B),@C)

</simpleTransform >

Relational Equivalence. These axioms encode the fact that many comparison

operators are related.

<simpleTransform name=’(A < B) == (B > A)’>

lt(@A:*,@B:*) = gt(@B,@A)

</simpleTransform >

156

<simpleTransform name=’(A > B) == (B < A)’>

gt(@A:*,@B:*) = lt(@B,@A)

</simpleTransform >

<simpleTransform name=’(A <= B) == (B >= A)’>

lte(@A:*,@B:*) = gte(@B,@A)

</simpleTransform >

<simpleTransform name=’(A >= B) == (B <= A)’>

gte(@A:*,@B:*) = lte(@B,@A)

</simpleTransform >

Implications. These axioms encode implications about relational operators.

<simpleRule name=’(A > B) => (A >= B)’>

{gt(@A:*,@B:*)}

==>

{gte(@A,@B)}

</simpleRule >

<simpleRule name=’(A < B) => (A <= B)’>

{lt(@A:*,@B:*)}

==>

{lte(@A,@B)}

</simpleRule >

<simpleRule name=’(A < A) => false ’>

@TOP:lt(@A:*,@A)

==>

!{@TOP}!

</simpleRule >

<simpleRule name=’(A > A) => false ’>

@TOP:gt(@A:*,@A)

==>

!{@TOP}!

</simpleRule >

<simpleRule name=’(A != A) => false’>

@TOP:ne(@A:*,@A)

==>

!{@TOP}!

</simpleRule >

<simpleRule name=’(A == A) => true’>

@TOP:eq(@A:*,@A)

==>

{@TOP}

157

</simpleRule >

<simpleRule name=’(A >= A) => true’>

@TOP:gte(@A:*,@A)

==>

{@TOP}

</simpleRule >

<simpleRule name=’(A <= A) => true’>

@TOP:lte(@A:*,@A)

==>

{@TOP}

</simpleRule >

Miscellaneous. These axioms encode miscellaneous mathematical facts.

<simpleTransform name=’(X*C1)<<C2 = X*(C1<<C2)’>

shl(mul(@X:*,@C1:*),@C2:*) = mul(@X ,shl(@C1 ,@C2))

</simpleTransform >

<simpleTransform name=’(X<<C1)<<C2 = X<<(C1+C2)’>

shl(shl(@X:*,@C1:*),@C2:*) = shl(@X ,add(@C1 ,@C2))

</simpleTransform >

<simpleTransform name=’(X>>C1)>>C2 = X>>(C1+C2)’>

shr(shr(@X:*,@C1:*),@C2:*) = shr(@X ,add(@C1 ,@C2))

</simpleTransform >

<simpleTransform name=’(Y+(X>>>C)&CC)<<C = (X&(CC <<C))+(Y<<C)’>

shl(add(@Y:*,and(ushr(@X:*,@C:*),@CC :*)),@C)

= add(and(@X,shl(@CC ,@C)),shl(@Y,@C))

</simpleTransform >

<simpleTransform name=’(X<<C1)*C2 = X*(C2<<C1)’>

mul(shl(@X:*,@C1:*),@C2:*) = mul(@X ,shl(@C2 ,@C1))

</simpleTransform >

<simpleTransform name=’(X/A)/B = X/(A*B)’>

div(div(@X:*,@A:*),@B:*) = div(@X,mul(@A ,@B))

</simpleTransform >

<simpleTransform name=’A-(B+C) = (A-B)-C’>

sub(@A:*,add(@B:*,@C:*)) = sub(sub(@A,@B),@C)

</simpleTransform >

<simpleTransform name=’A-(B-C) = (A-B)+C’>

sub(@A:*,sub(@B:*,@C:*)) = add(sub(@A,@B),@C)

</simpleTransform >

158

C.2 Nondomain Axioms

Boolean Axioms. These are axioms that encode facts about boolean logic.

<simpleRule name=’A && false = false’>

@TOP:%and(@A:*, @B:*)

!{@B}!

==>

!{@TOP}!

</simpleRule >

<simpleRule name=’A && true = true’>

@TOP:%and(@A:*, @B:*)

{@B}

==>

@TOP = @A

</simpleRule >

<simpleRule name=’A || false = A’>

@TOP:%or(@A:*, @B:*)

!{@B}!

==>

@TOP = @A

</simpleRule >

<simpleRule name=’A || true = true’>

@TOP:%or(@A:*, @B:*)

{@B}

==>

{@TOP}

</simpleRule >

<simpleTransform name=’A && B = B && A’>

%and(@A:*, @B:*) = %and(@B,@A)

</simpleTransform >

<simpleTransform name=’A || B = B || A’>

%or(@A:*, @B:*) = %or(@B,@A)

</simpleTransform >

<simpleRule name=’negate(true) = false’>

@TOP:% negate(@A:*)

{@A}

==>

!{@TOP}!

</simpleRule >

159

<simpleRule name=’negate(false) = true’>

@TOP:% negate(@A:*)

!{@A}!

==>

{@TOP}

</simpleRule >

<simpleTransform name=’negate(negate(A)) = A’>

%negate (% negate(@A:*)) = @A

</simpleTransform >

Phi Axioms. These axioms encode facts about the φ operator.

<simpleRule name=’phi(true ,B,C) = B’>

@TOP:%phi(@A:*,@B:*,*)

{@A}

==>

@TOP = @B

</simpleRule >

// If the condition is true, the result is the first child.

<simpleRule name=’phi(false ,B,C) = C’>

@TOP:%phi(@A:*,*,@C:*)

!{@A}!

==>

@TOP = @C

</simpleRule >

// If the condition is false, the result is the second child.

<simpleTransform name=’phi(negate(A),B,C) = phi(A,C,B)’>

%phi(% negate(@A:*),@B:*,@C:*) = %phi(@A,@C,@B)

</simpleTransform >

// Negating the condition is the same as swapping the other two children.

<simpleTransform name=’phi(A,B,B) = B’>

%phi(@A:*,@B:*,@B) = @B

</simpleTransform >

// If both cases are equal, that value is the result.

<simpleRule name=’phi(A,true ,false) = A’>

@TOP:%phi(@A:*,@B:*,@C:*)

{@B}

!{@C}!

==>

@TOP = @A

</simpleRule >

// If the result matches the condition in both cases, then just use the condition.

160

<simpleRule name=’phi(A,false ,true) = negate(A)’>

@TOP:%phi(@A:*,@B:*,@C:*)

!{@B}!

{@C}

==>

@TOP = %negate(@A)

</simpleRule >

// If the result is the negation of the condition in both cases, just use the negated condition.

Loop Axioms. These axioms encode facts about loop operators.

<simpleRule name=’eval(theta(A,B),zero) = A, if A invariant ’>

@TOP:%eval-1(%theta-1(@A:*,@B:*) ,%zero)

~1{@A}

==>

@TOP = @A

</simpleRule >

// Evaluating a loop-varying value at the 0-th iteration gives the initial value.

<simpleRule name=’eval(A,B) = A, if A invariant ’>

@TOP:%eval-1(@A:*,*)

~1{@A}

==>

@TOP = @A

</simpleRule >

// Evaluating a loop-invariant value at any loop iteration yields the same value.

<simpleTransform name=’shift(theta(A,B)) = B’>

%shift -1(%theta-1(*,@B:*)) = @B

</simpleTransform >

// Peel an iteration of a loop-varying value yields the recursive case.

<simpleRule name=’shift(A) = A, if A invariant ’>

@TOP:%shift -1(@A:*)

~1{@A}

==>

@TOP = @A

</simpleRule >

// Peeling a loop-invariant value has no effect.

<simpleRule name=’theta(A,A) = A, if A invariant ’>

@TOP:%theta-1(@A:*,@A)

~1{@A}

==>

@TOP = @A

</simpleRule >

// A loop-varying value that does not change equals its initial value.

161

<simpleRule name=’pass(theta(true ,*)) = 0’>

@P:%pass-1(%theta-1(@A:*,*))

{@A}

==>

@P = %zero

</simpleRule >

// The first true iteration of a loop that starts with true is 0.

<simpleRule name=’pass(true) = 0’>

@P:%pass-1(@A:*)

{@A}

==>

@P = %zero

</simpleRule >

// The first true iteration of true itself is 0.

Loop Operator Factoring Axioms. These axioms encode how domain oper-

ators can distribute through loop operators.

<analysis name=’op distribute through theta’>

<trigger >

<exists >

<wild value=’1’ id=’OP’>

<theta index=’1’ id=’THETA’>

<variable id=’A’/>

<variable id=’B’/>

</theta >

<variable id=’C’/>

</wild >

</exists >

<match >

function match() {

var op = $("OP");

return op.getOp ().isDomain ();

}

</match >

</trigger >

<response >

function build() {

var opop = $("OP").getOp ();

var index = $("THETA").getOp().getLoopDepth ();

var A = copySource($("THETA"), 0);

var B = copySource($("THETA"), 1);

var C = copySource($("OP"), 1);

// Build: theta(op(A,eval(B,zero)),op(B,shift(C)))

var result = futureNode(FlowValue.createTheta(index),

futureSource(opop ,

A,

162

futureSource(FlowValue.createEval(index),

C,

futureSource(FlowValue.createZero ()))),

futureSource(opop ,

B,

futureSource(FlowValue.createShift(index), C)));

makeEqual(result , $("OP"));

}

</response >

</analysis >

This axiom states that any domain operator can distribute through a θ node, but

its children must be evaluated specially. For the initial value of the new θ node,

the new children of the operator must be evaluated at the 0-th loop iteration. This

is equivalent to passing the operator the initial values of all of its parameters, as

would happen at the start of the loop. In the recursive case of the new θ node, the

children of the operator must be peeled by one iteration.

The above axiom can generalize to the case when the operator has any

number of parameters. Each parameter that is not a θ gets the eval/shift operators

on top of its old value, as with C in the above axiom.

<analysis name=’op distributes through eval’>

<trigger >

<exists >

<wild value=’1’ id=’OP’>

<eval index=’1’ id=’EVAL’>

<variable id=’A’/>

<variable id=’B’/>

</theta >

<variable id=’C’/>

</wild >

</exists >

<match >

function match() {return $("OP").getOp().isDomain ();}

</match >

</trigger >

<response >

function build() {

var opop = $("OP").getOp ();

var index = $("EVAL").getOp ().getLoopDepth ();

// Build: eval(op(A,C),B)

var result = futureNode(FlowValue.createEval(index),

163

futureSource(opop ,

copySource($("EVAL"), 0),

copySource($("OP"), 1)),

copySource($("EVAL"), 1));

makeEqual(result , $("OP"));

}

</response >

</analysis >

This axiom states that a domain operator can distribute through an eval node as

long as the other children of the operator are invariant w.r.t. the same loop as the

eval. This is important because when you move the operator under the eval, its

children will now be evaluated according to a new loop iteration number. We can

only be sure of the equivalence of these two expressions if the children are already

invariant of the loop iteration they are evaluated at.

The above axiom can also generalize to the case when the operator has any

number of parameters. As long as the children of the domain operator node are

invariant then an analogous axiom can apply. We make special cases of this axiom

for different arities.

C.3 Language-Specific Axioms

C.3.1 Java-specific Axioms

Field Access Axioms. These axioms encode facts about how Java accesses and

modifies fields of classes.

<simpleTransform name=’get(set(T,F,V),T,F) = V’>

rho_value(getfield(

rho_sigma(setfield(*,@T:*,@F:*,@V:*)),

@T,

@F))

= @V

</simpleTransform >

<simpleRule name=’get(set(Q,F,V),T,G) = get(T,F), if F!=G’>

@V1:rho_value(getfield(

rho_sigma(setfield(@SIGMA:*,@T:*,@F1:*,*)),

@T,

@F2 :*))

164

!{% equals(@F1 ,@F2)}!

==>

@V1 = rho_value(getfield(@SIGMA ,@T,@F2))

</simpleRule >

<simpleTransform name=’set(set(T,F,X),T,F,Y) = set(T,F,Y)’>

rho_sigma(setfield(

rho_sigma(setfield(@SIGMA:*,@T:*,@F:*,@V1:*)),

@T,

@F,

@V2 :*))

=

rho_sigma(setfield(@SIGMA ,@T,@F,@V2))

</simpleTransform >

The first axiom above states that if you set a field’s value and then immediately

fetch it, it will equal the value stored. The second axiom states that a get of a field

after a set of a different field can be moved before the set. This relies on seeing

that the field descriptors are explicitly non-equal. The third axiom states that a

set of a field after another set to the same field makes the first set irrelevant.

<simpleTransform name=’getstatic(setstatic(F,V),F)= V’>

rho_value(getstaticfield(

rho_sigma(setstaticfield(@SIGMA:*,@F:*,@V:*)),

@F))

= @V

</simpleTransform >

<simpleRule

name=’getstatic(setstatic(G,V),F) = getstatic(F),if F!=G’>

@V1:rho_value(getstaticfield(

rho_sigma(setstaticfield(@SIGMA:*,@F1:*,*)),

@F2 :*))

!{% equals(@F1 ,@F2)}!

==>

@V1 = rho_value(getstaticfield(@SIGMA ,@F2))

</simpleRule >

<simpleTransform

name=’setstatic(setstatic(F,X),F,Y) = setstatic(F,Y)’>

rho_sigma(setstaticfield(

rho_sigma(setstaticfield(@SIGMA:*,@F:*,*)),

@F,

@V2 :*))

165

=

rho_sigma(setstaticfield(@SIGMA ,@F ,@V2))

</simpleTransform >

These 3 axioms are analogous to the first 3, but for static fields.

Array Access Axioms. These axioms encode facts about how Java accesses

and modifies arrays and array elements.

<simpleTransform name=’get(set(A,I,V),A,I) = V’>

rho_value(getarray(

rho_sigma(setarray(@SIGMA:*,@A:*,@I:*,@V:*)),

@A,

@I))

= @V

</simpleTransform >

<simpleRule name=’get(set(A,J,V),A,I) == get(A,I), if I!=J’>

@V1:rho_value(getarray(

rho_sigma(setarray(@SIGMA:*,@A:*,@I:*,*)),

@A,

@J:*))

!{% equals(@I,@J)}!

==>

@V1 = rho_value(getarray(@SIGMA ,@A,@J))

</simpleRule >

<simpleTransform name=’set(set(A,I,V1),A,I,V2) = set(A,I,V2)’>

rho_sigma(setarray(

rho_sigma(setarray(@SIGMA:*,@A:*,@I:*,*)),

@A,

@I,

@V2 :*))

= rho_sigma(setarray(@SIGMA ,@A ,@I,@V2))

</simpleTransform >

These 3 axioms are analogous to the field axioms above.

C.3.2 LLVM-specific Axioms

Pointer Axioms. These axioms have to do with pointers to memory in LLVM,

and the operations that manipulate them.

166

<simpleTransform name=’(store P (load P)) = no-op’>

store(@S:*,@P:*, rho_value(load(@S ,@P,@N:*)),@N) = @S

</simpleTransform >

// Storing the value that was just loaded from the same pointer is a no-op.

<simpleTransform name=’load after store = stored value’>

rho_value(load(store(*,@PTR:*,@V:*,@A:*),@PTR ,@A)) = @V

</simpleTransform >

// Loading the value that was just stored in a pointer is equal to the stored value.

<simpleTransform name=’store after store => kill bottom store’>

store(store(@SIGMA:*,@PTR:*,*,*),@PTR ,@V:*,@A:*) =

store(@SIGMA ,@PTR ,@V,@A)

</simpleTransform >

// Storing to the same pointer twice in a row makes the first store useless.

<simpleTransform name=’load is sigma -invariant ’>

rho_sigma(load(@S:*,*,*)) = @S

</simpleTransform >

// Loading from a pointer does not modify the heap.

<simpleTransform name=’gep(B,0) = B’>

getelementptr(@B:*,@T:*, indexes(int ("32" ,"0"))) = @B

</simpleTransform >

<simpleTransform name=’gep(B,0) = B’>

getelementptr(@B:*,@T:*, indexes(int ("64" ,"0"))) = @B

</simpleTransform >

// Pointer arithmetic with offset 0 gives the original pointer.

These last 2 axioms are actually constant axioms, but they relate to the GETELE-

MENTPTR operator, which performs opaque pointer arithmetic. Essentially, these

axioms state that if your pointer arithmetic only adds 0 to the base pointer, then

you are left with the original pointer value. Since the indexes to the GETELE-

MENTPTR operator can only be i32 or i64 values, we can simply make two versions

of this axiom to cover both cases.

Vector Axioms. These axioms describe how LLVM handles vector values.

<simpleTransform >

extractelement(insertelement(@V:*,@X:*,@I:*),@I) = @X

</simpleTransform >

// Extracting a vector element that was just inserted yields that new element.

167

<simpleRule >

@TOP:extractelement(insertelement(@V:*,*,@I:*),@J:*)

{% negate (% equals(@I,@J))}

==>

@TOP = extractelement(@V,@J)

</simpleRule >

// Extracting an element after inserting is the same as extracting before inserting, if you know

the vector indices are different.

<simpleTransform >

insertelement(insertelement(@V:*,@X1:*,@I:*),@X2:*,@I)

=

insertelement(@V,@X2 ,@I)

</simpleTransform >

// Inserting the same element twice into a vector is the same as only inserting the later one.

Aliasing Axioms. These axioms encode facts about pointers and aliasing in

LLVM, and make use of the stackPointer and doesNotAlias annotation labels

defined in Section 5.4.2.

<simpleRule name=’non -aliasing stores can swap’>

@S:store(store(@SIGMA:*,@PTR1:*,@V1:*,@A1 :*),

@PTR2:*,

@V2:*,

@A2 :*)

{annotation(" doesNotAlias", @PTR1 , @PTR2)}

==>

@S = store(store(@SIGMA ,@PTR2 ,@V2 ,@A2),@PTR1 ,@V1 ,@A1)

</simpleRule >

// Adjacent stores to non-aliasing addresses can switch order.

<simpleRule name=’sp(phi(A,B,C)) = sp(B) = sp(C)’>

@A1:annotation(" stackPointer", %phi(@A:*,@B:*,@C:*))

==>

@A1 = annotation(" stackPointer", @B)

@A1 = annotation(" stackPointer", @C)

</simpleRule >

// If a φ is known to be a stack pointer, then so must be both its result cases.

<simpleRule name=’alloca is a stackPointer ’>

@TOP:rho_value(alloca (*,*,*,*))

==>

{annotation(" stackPointer",@TOP)}

</simpleRule >

// The alloca instruction always yields a stack pointer.

168

<simpleRule name=’GEP preserves stackPointer -ness’>

@GEP:getelementptr(@PTR:*,*,*)

@A:annotation(" stackPointer",@PTR)

==>

@A = annotation(" stackPointer",@GEP)

</simpleRule >

// If a pointer comes from the stack, then so does any arithmetic on top of it.

<simpleRule name=’malloc is not a stackPointer ’>

@TOP:rho_value(malloc (*,*,*,*))

==>

!{annotation(" stackPointer",@TOP)}!

</simpleRule >

// The malloc instruction always yields a non-stack pointer.

<simpleRule name=’sp and non -sp do not alias’>

{annotation(" stackPointer", @A:*)}

!{annotation(" stackPointer", @B:*)}!

==>

{annotation(" doesNotAlias", @A, @B)}

</simpleRule >

// If one pointer is from the stack and another is not, they cannot alias.

<simpleRule name=’load may skip over non -aliasing alloca ’>

@L:rho_value(load(

rho_sigma(@A:alloca(@SIGMA :*,*,*,*)),

@PTR1:*,

@ALIGN :*))

{annotation(" doesNotAlias", @PTR1 , rho_value(@A))}

==>

@L = rho_value(load(@SIGMA ,@PTR1 ,@ALIGN))

</simpleRule >

// A load may skip over a non-aliasing stack allocation.

<simpleRule name=’load may skip over a non -aliasing store’>

@TOP:rho_value(load(

store(@SIGMA:*,@PTR1 :*,*,*),

@PTR2:*,

@ALIGN :*))

{annotation(" doesNotAlias",@PTR1 ,@PTR2)}

==>

@TOP = rho_value(load(@SIGMA ,@PTR2 ,@ALIGN))

</simpleRule >

// A load may skip over a store to a non-aliasing pointer.

169

In addition to the axioms presented above, we also use some analyses to

help with the alias analysis. These are presented below.

<analysis name=’bitcast to pointer preserves stackPointer ’>

<trigger >

<exists >

<cast id=’B’ type=’bitcast ’>

<wild id=’TYPE’ value=’1’/>

<variable id=’PTR’/>

</cast >

<annotation id=’S’ value=’stackPointer ’>

<ref id=’PTR’/>

</annotation >

</exists >

<match >

function match() {

var d, t, typeop = $("TYPE").getOp();

return typeop.isDomain () &&

(d=typeop.getDomain ()).isType () &&

(t=d.getTypeSelf ().getType ()).isComposite () &&

t.getCompositeSelf ().isPointer ();

}

</match >

</trigger >

<response >

function build() {

var result = futureNode(

new StringAnnotationLLVMLabel (" stackPointer "),

concreteSource($("B")));

makeEqual(result , $("S"));

}

</response >

</analysis >

// A pointer-to-pointer bitcast preserves stack-pointer-ness.

This axiom states that if you have a pointer with a stackPointer annotation

on it, then doing a pointer-to-pointer bitcast should result in a new pointer that

has the same stack-pointer-ness as the original. We can express this by equating

the stackPointer annotation on the original pointer with a new stackPointer

annotation on the bitcast. Even if we have not yet determined that the original

pointer was definitely a stack pointer or definitely not a stack pointer (by equating

the annotation to true or false), we can still say that the stack-pointer-ness of the

two pointers will be equal.

170

<analysis name=’null is not a stackPointer ’>

<trigger >

<exists >

<wild id=’null’ value=’1’/>

</exists >

<match >

function match() {

var d, n = $("null").getOp();

return n.isDomain () &&

(d=n.getDomain ()).isConstantValue () &&

d.getConstantValueSelf ().getValue ().isConstantNullPointer ();

}

</match >

</trigger >

<response >

function build() {

var n = $("null");

addArityProperty(n);

addOpProperty(n);

var result = node(

new StringAnnotationLLVMLabel (" stackPointer "),

concOld(n));

makeEqual(result , getFalse ());

}

</response >

</analysis >

// The null pointer (of any type) is not a stack pointer.

This analysis simply marks all occurrences of the null pointer as not being a stack

pointer. This must be done in an analysis instead of a simple axiom, because the

type of the null pointer can be any valid pointer type. An axiom would have to

spell out the pointer’s type explicitly in order to match, but with an analysis we

can just check that the given type is a pointer without naming it explicitly.

<analysis name=’alloca/malloc does not alias null’>

<trigger >

<exists >

<op id=’RHO_VALUE ’ value=’rho_value ’>

<wild id=’ALLOC’ value=’1’>

<variable/>

<variable/>

<variable/>

<variable/>

</wild >

171

</op >

<wild id=’NULL’ value=’2’/>

</exists >

</trigger >

<match >

function match() {

var ALLOCALABEL = LLVMOperator.ALLOCA;

var MALLOCLABEL = LLVMOperator.MALLOC;

var NULL = $("NULL").getOp ();

var ALLOC = $("ALLOC").getOp();

if (NULL.isDomain () &&

(d=NULL.getDomain ()).isConstantValue () &&

d.getConstantValueSelf ().getValue ().isConstantNullPointer () &&

ALLOC.isDomain () &&

(d=ALLOC.getDomain ()).isSimple ()) {

var op = d.getSimpleSelf ().getOperator ();

return op.equals(ALLOCALABEL) ||

op.equals(MALLOCLABEL);

}

return false;

}

</match >

<response >

function build() {

var NULL = $("NULL");

addArityProperty(NULL);

addOpProperty(NULL);

var result = futureNode(

new StringAnnotationLLVMLabel (" doesNotAlias "),

concreteSource($(" RHO_VALUE ")),

concreteSource(NULL));

makeEqual(result , getTrue ());

}

</response >

</analysis >

// The result of an alloca or malloc does not alias NULL.

This analysis establishes new instances of the doesNotAlias annotation, between

any null pointer objects and any allocation operators (i.e. alloca or malloc).

The allocation operators never return null, so we know that the result of these

operators cannot alias the null pointer.

172

C.4 Domain-Specific Axioms

In this section we provide more of the domain-specific axioms used in the

raytracer example described in Section 5.6.

<simpleRule name=’V.getX() = V.mX’>

@BS:rho_sigma(@GETX:invokevirtual(

@SIGMA:*,

@V:*,

method(" double CVector3D.getX()"),

params ()))

@BV:rho_value(@GETX)

==>

@BS = @SIGMA

@BV = rho_value(getfield(@SIGMA ,@V,field(" double CVector3D.X")))

</simpleRule >

// Calling the getX method is the same as accessing the X field (similar axioms for Y, Z)

<simpleTransform name=’cons(A,B,C).X = A’>

rho_value(getfield(

*,

rho_value(invokestatic(

*,

method(" CVector3D CVector3D.cons(double ,double ,double)"),

params(@A:*,@B:*,@C:*))),

field(" double CVector3D.X")))

=

@A

</simpleTransform >

// The value of the X field of a newly-constructed vector is equal to the first input (similar

axioms for Y, Z).

<simpleTransform name=’cons(A,B,C).sub(cons(D,E,F)) = cons(A-D, B-E, C-F)’>

invokevirtual(

@SIGMA:*,

rho_value(invokestatic(

*,

@CONS:method(" CVector3D CVector3D.cons(double ,double ,double)"),

params(@A:*,@B:*,@C:*))),

method(" CVector3D CVector3D.sub(CVector3D)"),

params(

rho_value(invokestatic(

*,

@CONS ,

params(@D:*,@E:*,@F:*)))))

=

invokestatic(

173

@SIGMA ,

@CONS ,

params(sub(@A ,@D), sub(@B ,@E), sub(@C ,@F)))

</simpleTransform >

// Subtracting two newly-constructed vectors is the same as constructing a new vector of the

difference of the components (similar method for add).

<simpleTransform name=’cons(A,B,C).scaled(D) = cons(A*D,B*D,C*D)’>

invokevirtual(

@SIGMA:*,

rho_value(invokestatic(

*,

@CONS:method(" CVector3D CVector3D.cons(double ,double ,double)"),

params(@A:*,@B:*,@C:*))),

method(" CVector3D CVector3D.scaled(double)"),

params(@D:*))

=

invokestatic(

@SIGMA ,

@CONS ,

params(mul(@A ,@D), mul(@B ,@D), mul(@C ,@D)))

</simpleTransform >

// Scaling a newly-constructed vector by a scalar is the same as making a new vector with scaled

components.

<simpleRule name=’cons(A,B,C).dot(cons(D,E,F)) = A*D + B*E + C*F’>

@V:rho_value(@I:invokevirtual(

@SIGMA:*,

rho_value(invokestatic(

*,

@CONS:method(" CVector3D CVector3D.cons(double ,double ,double)"),

params(@A:*,@B:*,@C:*))),

method(" double CVector3D.dot(CVector3D)"),

params(

rho_value(invokestatic(

*,

@CONS ,

params(@D:*,@E:*,@F:*))))))

@S:rho_sigma(@I)

==>

@V = add(add(mul(@A,@D),mul(@B,@E)),mul(@C,@F))

@S = @SIGMA

</simpleRule >

// Computing the dot product of two newly-constructed vectors is equal to operating on the

components.

Appendix D

Axioms used in Figure 9.1

D.1 Axioms

In this section we describe the axioms used to produce the optimizations

listed in Figure 9.1. We organize the axioms into two categories: general-purpose

and domain-specific. The general-purpose axioms are useful enough to apply to a

wide range of programming domains, while the domain-specific axioms give useful

information about a particular domain.

The axioms provided below are not a complete list of the ones generally

included in our engine during saturation. Instead, we highlight only those that

were necessary to perform the optimizations in Figure 9.1.

D.1.1 General-purpose Axioms

The axioms presented here are usable in a wide range of programs. Hence,

these axioms are included in all runs of Peggy.

Built-in EPEG ops. This group of axioms relates to the special PEG oper-

ators θ, eval, and φ. Many of these axioms describe properties that hold for any

operation op.

• if T = θi(A, T) exists, then T = A

[A loop-varying value that always takes its previous value equals its initial value]

174

175

• if A is invariant w.r.t. i, then evali(A,P) = A

[Loop-invariant operations have the same value regardless of the loop iteration]

• op(A1, . . . , θj(Bi,Ci), . . . ,Ak) =

θj(op(evalj(A1, 0), . . . ,Bi, . . . , evalj(Ak, 0)),

op(peelj(A1), . . . ,Ci, . . . , peelj(Ak)))

[Any domain operator can distribute through θj]

• φ(C,A,A) = A

[If both branches of a φ node are equal, then it is equal to them]

• φ(C, φ(C,T2,F2),F1) = φ(C,T2,F1)

[A φ node in a context where its condition is true is equal to its true case]

• op(A1, . . . , φ(B,C,D), . . . ,Ak) = φ(B,op(A1, . . . ,C, . . . ,Ak),

op(A1, . . . ,D, . . . ,Ak))

[All operators distribute through φ nodes]

• op(A1, . . . , evalj(Ai,P), . . . ,Ak) = evalj(op(A1, . . . ,Ai, . . . ,Ak),P),

when A1, . . . ,Ai−1,Ai+1, . . . ,Ak are invariant w.r.t. j

[Any operator can distribute through evalj]

Code patterns. These axioms are more elaborate and describe some complicated

(yet still non-domain-specific) code patterns. These axioms are awkward to depict

using our expression notation, so instead we present them in terms of before-and-

after source code snippets.

• Unroll loop entirely:

x = B; == x = B;

for (i=0;i<D;i++) if (D>=0) x += C*D;

x += C;

176

[Adding C to a variable D times is the same as adding C*D (assuming D ≥ 0)]

• Loop peeling:

A; == if (N>0) {

for (i=0;i<N;i++) B[i -> 0];

B; for (i=1;i<N;i++)

B;

} else {

A;

}

[This axiom describes one specific type of loop peeling, where B[i → 0] means

copying the body of B and replacing all uses of i with 0]

• Replace loop with constant:

for (i=0;i<N;i++){} == x = N;

x = i;

[Incrementing N times starting at 0 produces N]

Basic Arithmetic. This group of axioms encodes arithmetic properties includ-

ing facts about addition, multiplication, and inequalities. Once again, this is not

the complete list of arithmetic axioms used in Peggy, just those that were relevant

to the optimizations mentioned in Figure 9.1.

• (A ∗B) + (A ∗C) = A ∗ (B + C)

• if C 6= 0, then (A/C) ∗C = A

• A ∗B = B ∗A

• A + B = B + A

• A ∗ 1 = A

177

• A + 0 = A

• A ∗ 0 = 0

• A−A = 0

• A mod 8 = A&7

• A + (−B) = A−B

• −(−A) = A

• A ∗ 2 = A << 1

• (A + B)−C = A + (B−C)

• (A + B) + C = A + (B + C)

• if A ≥ B then (A + 1) > B

• if A ≤ B then (A− 1) < B

• (A > A) = false

• (A ≥ A) = true

• ¬(A > B) = (A ≤ B)

• ¬(A ≤ B) = (A > B)

• (A < B) = (B > A)

• (A ≤ B) = (B ≥ A)

• if A ≥ B and C ≥ 0 then (A ∗C) ≥ (B ∗C)

Java-specific. This group of axioms describes facts about Java-specific oper-

ations like reading from an array or field. Though they refer to Java operators

explicitly, these axioms are still general-purpose within the scope of the Java pro-

gramming language.

178

• getarray(setarray(S,A, I,V),A, I) = V

[Reading A[I] after writing A[I]← V yields V]

• If I 6= J, getarray(setarray(S,A,J,V),A, I) = getarray(S,A, I)

[Reading A[I] after writing A[J] (where I 6= J) is same as reading before writing]

• setarray(setarray(S,A, I,V1),A, I,V2) = setarray(S,A, I,V2)

[Writing A[I]← V1 then A[I]← V2 is the same as only writing V2]

• getfield(setfield(S,O,F,V),O,F) = V

[Reading O.F after writing O.F← V yields V]

• If F1 6= F2,

then getfield(setfield(S,O,F1,V),O,F2) = getfield(S,O,F2)

[Reading A[I] after writing A[J] (where I 6= J) is same as reading before writing]

• setfield(setfield(S,O,F,V1),O,F,V2) = setfield(S,O,F,V2)

[Writing O.F← V1 then O.F← V2 is the same as only writing V2]

D.1.2 Domain-specific

Each of these axioms provides useful information about a particular pro-

gramming domain. These could be considered “application-specific” or “program-

specific” axioms, and are only expected to apply to that particular application/pro-

gram.

Inlining. Inlining in Peggy acts like one giant axiom application, equating the

inputs of the inlined PEG with the actual parameters, and the outputs of the PEG

with the outputs of the invoke operator.

• Inlining axiom:

179

x = pow(A,B); == result = 1;

for (e = 0;e < B;e++)

result *= A;

x = result;

[A method call to pow is equal to its inlined body]

Sigma-invariance. It is very common for certain Java methods to have no effect

on the heap. This fact is often useful, and can easily be encoded with axioms like

the following.

• ρσ(invoke(S,L, [Object List.get()],P)) = S

[List.get is σ-invariant]

• ρσ(invoke(S,L, [int List.size()],P)) = S

[List.size is σ-invariant]

• ρσ(invokestatic(S, [double Math.sqrt(double)],P)) = S

[Math.sqrt is σ-invariant]

Vector axioms. In our raytracer benchmark, there are many methods that

deal with immutable 3D vectors. The following are some axioms that pertain to

methods of the Vector class. These axioms when expressed in terms of PEG nodes

are large and awkward, so we present them here in terms of before-and-after source

code snippets.

• construct(A,B,C).scaled(D) = construct(A ∗D,B ∗D,C ∗D)

[Vector (A,B,C) scaled by D equals vector (A ∗D,B ∗D,C ∗D)]

• A.distance2(B) = A.difference(B).length2()

[The squared distance betweenA andB equals the squared length of vector (A−B)]

180

•
A.getX() = A.mX

A.getY() = A.mY

A.getZ() = A.mZ

[Calling the getter method is equal to accessing the field directly]

•
construct(A,B,C).mX = A

construct(A,B,C).mY = B

construct(A,B,C).mZ = C

[Reading field of vector (A,B,C) is equal to input]

•
construct(A,B,C).difference(construct(D,E,F)) =

construct(A−D,B− E,C− F)

[The difference of vectors (A,B,C) and (D,E, F) equals (A−D,B − E,C − F)]

• construct(A,B,C).dot(construct(D,E,F)) = A ∗D + B ∗ E + C ∗ F

[The dot product of vectors (A,B,C) and (D,E, F) equals A ∗D+B ∗E+C ∗F]

• construct(A,B,C).length2() = A ∗A + B ∗B + C ∗C

[The squared length of vector (A,B,C) equals A2 +B2 + C2]

• construct(A,B,C).negative() = construct(−A,−B,−C)

[The negation of vector (A,B,C) equals (−A,−B,−C)]

• construct(A,B,C).scaled(D) = construct(A ∗D,B ∗D,C ∗D)

[Scaling vector (A,B,C) by D equals (A ∗D,B ∗D,C ∗D)]

•
construct(A,B,C).sum(construct(D,E,F)) =

construct(A + D,B + E,C + F)

[The sum of vectors (A,B,C) and (D,E, F) equals (A+D,B + E,C + F)]

• getZero().mX = getZero().mY = getZero().mZ = 0.0

[The components of the zero vector are 0]

Design patterns. These axioms encode scenarios that occur when programmers

use particular coding styles that are common but inefficient.

181

• Axiom about integer wrapper object:

A.plus(B).getValue() = A.getValue() + B.getValue()

[Where plus adds two integer wrappers, and getValue gets wrapped value]

• Axiom about redundant method calls when using java.util.List:

Object o = ... == Object o = ...

List l = ... List l = ...

if (l.contains(o)) { int index = l.indexOf(o);

int index = l.indexOf(o); if (index >= 0) {

... ...

} }

[Checking if a list contains an item then asking for its index is redundant]

Method Outlining. Method “outlining” is the opposite of method inlining; it

is an attempt to replace a snippet of code with a procedure call that performs the

same task. This type of optimization is useful when refactoring code to remove a

common yet inefficient snippet of code, by replacing it with a more efficient library

implementation.

• Body of selection sort replaced with Arrays.sort(int[]):

length = A.length; == Arrays.sort(A);

for (i=0;i<length;i++) {

for (j=i+1;j<length;j++) {

if (A[i] > A[j]) {

temp = A[i];

A[i] = A[j];

A[j] = temp;

}

}

}

Specialized Redirect. This optimization is similar to Method Outlining, but

instead of replacing a snippet of code with a procedure call, it replaces one proce-

dure call with an equivalent yet more efficient one. This is usually in response to

182

some learned contextual information that allows the program to use a special-case

implementation.

• if I = invokestatic(S, [void sort(int[])],params(A)) exists,

then add equality isSorted(ρσ(I),A) = true

[If you call sort on an array A, then A is sorted in the subsequent heap]

• if isSorted(S,A) = true, then

invokestatic(S, [int linearSearch(int[],int)],params(A,B)) =

invokestatic(S, [int binarySearch(int[],int)],params(A,B))

[If array A is sorted, then a linear search equals a binary search]

Bibliography

[ACG+04] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Finding effective
compilation sequences. In LCTES, 2004.

[AJ97] Andrew W. Appel and Trevor Jim. Shrinking lambda expressions
in linear time. Journal of Functional Programming, 7(5):515–540,
1997.

[App91] A. Appel. Compiling with Continuations. Cambridge University
Press, 1991.

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language
with iteration. Communications of the ACM, 20(7):519–526, 1977.

[AWZ88] B. Alpern, M. Wegman, and F. Zadeck. Detecting equality of vari-
ables in programs. In POPL, January 1988.

[BA06] S. Bansal and A. Aiken. Automatic generation of peephole superop-
timizers. In ASPLOS, 2006.

[BHW97] James M. Boyle, Terence J. Harmer, and Victor L. Winter. The
TAMPR program transformation system: simplifying the develop-
ment of numerical software. Modern software tools for scientific com-
puting, pages 353–372, 1997.

[BKK94] R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using
0-1 integer programming. In Conference on Parallel Architectures
and Compilation Techniques (PACT), August 1994.

[BKVV08] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strat-
ego/XT 0.17. A language and toolset for program transformation.
Science of Computer Programming, 72(1-2):52–70, 2008.

[BS09] John C. Baez and Mike Stay. Physics, topology, logic and compu-
tation: A rosetta stone. http://arxiv.org/abs/0903.0340. Mar
2009.

183

http://arxiv.org/abs/0903.0340

184

[CC95] K. D. Cooper C. Click. Combining analyses, combining opti-
mizations. Transactions on Programming Languages and Systems,
17(2):181–196, 1995.

[CFR+89] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An
efficient method for computing static single assignment form. In
POPL, January 1989.

[Cli95] C. Click. Global code motion/global value numbering. In PLDI,
June 1995.

[CSD99] K. D. Cooper, P. J. Schielke, and Subramanian D. Optimizing for
reduced code space using genetic algorithms. In LCTES, 1999.

[Cur08] Pierre-Louis Curien. The joy of string diagrams. In CSL ’08: Pro-
ceedings of the 22nd international workshop on Computer Science
Logic, pages 15–22, Berlin, Heidelberg, 2008. Springer-Verlag.

[DC94] Jeffrey Dean and Craig Chambers. Towards better inlining deci-
sions using inlining trials. In Conference on LISP and Functional
Programming, 1994.

[Dij68] E. Dijkstra. Go to statement considered harmful. Communications
of the ACM, 11(3):147 – 148, 1968.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[FHP92] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting.
BURG – fast optimal instruction selection and tree parsing. SIG-
PLAN Notices, 27(4):68–76, April 1992.

[For82] Charles Forgy. Rete: A fast algorithm for the many pattern/-
many object pattern match problem. Artificial Intelligence, 19:17–
37, 1982.

[FOW87] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence
graph and its use in optimization. Transactions on Programming
Languages and Systems, 9(3):319–349, July 1987.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. In PLDI
’93: Proceedings of the ACM SIGPLAN 1993 conference on Pro-
gramming language design and implementation, pages 237–247, New
York, NY, USA, 1993. ACM.

185

[Gir98] Jean-Yves Girard. Light linear logic. Inf. Comput., 143(2):175–204,
1998.

[GK92] Torbjorn Granlund and Richard Kenner. Eliminating branches using
a superoptimizer and the GNU C compiler. In PLDI, 1992.

[GL05] Samuel Z. Guyer and Calvin Lin. Broadway: A compiler for exploit-
ing the domain-specific semantics of software libraries. Proceedings
of IEEE, 93(2), 2005.

[GW96] D. Goodwin and K. Wilken. Optimal and near-optimal global reg-
ister allocations using 0-1 integer programming. Software Practice
and Experience, 26(8):929–965, August 1996.

[Hav93] P. Havlak. Construction of thinned gated single-assignment form.
In Workshop on Languages and Compilers for Parallel Computing,
1993.

[HD94] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In POPL ’94: Proceedings of the 21st ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 458–471, New York, NY, USA, 1994. ACM.

[JHM04] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Computing Surveys,
36(1):1–34, 2004.

[JL95] SL Peyton Jones and J Launchbury. State in haskell. In Lisp and
Symbolic Computation 8(4), 1995.

[JNR02] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed super-
optimizer. In PLDI, June 2002.

[KDC02] L. Torczon K. D. Cooper, D. Subramanian. Adaptive optimizing
compilers for the 21st century. The Journal of Supercomputing, pages
7–22, 2002.

[Ken07] Andrew Kennedy. Compiling with continuations, continued. In ICFP
’07: Proceedings of the 12th ACM SIGPLAN international confer-
ence on Functional programming, pages 177–190, New York, NY,
USA, 2007. ACM.

[LGC02] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses
and transformations. In POPL, January 2002.

[llv] The LLVM compiler infrastructure. http://llvm.org.

http://llvm.org

186

[LMRC05] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Au-
tomated soundness proofs for dataflow analyses and transformations
via local rules. In POPL, 2005.

[Mas87] Henry Massalin. Superoptimizer: a look at the smallest program. In
ASPLOS, 1987.

[Nec00] G. Necula. Translation validation for an optimizing compiler. In
PLDI, June 2000.

[NO79] G. Nelson and D. Oppen. Simplification by cooperating decision
procedures. Transactions on Programming Languages and Systems,
1(2):245–257, October 1979.

[NO80] G. Nelson and D. Oppen. Fast decision procedures based on congru-
ence closure. Journal of the Association for Computing Machinery,
27(2):356–364, April 1980.

[OBM90] K. Ottenstein, R. Ballance, and A. MacCabe. The program depen-
dence web: a representation supporting control-, data-, and demand-
driven interpretation of imperative languages. In PLDI, June 1990.

[PBJ91] K. Pengali, M. Beck, and R. Johson. Dependence flow graphs: an
algebraic approach to program dependencies. In POPL, January
1991.

[PSS98a] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
TACAS, 1998.

[PSS98b] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation valida-
tion. In TACAS, 1998.

[SKR90] B. Steffen, J. Knoop, and O. Ruthing. The value flow graph: A
program representation for optimal program transformations. In
European Symposium on Programming, 1990.

[spe] The spec jvm98 benchmarks. http://www.spec.org/jvm98/.

[TGM11] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. Evalu-
ating value-graph translation validation for LLVM. In PLDI, 2011.

[TP95] P. Tu and D. Padua. Efficient building and placing of gating func-
tions. In PLDI, June 1995.

[TSL10] Ross Tate, Michael Stepp, and Sorin Lerner. Generating compiler
optimizations from proofs. In POPL, 2010.

http://www.spec.org/jvm98/

187

[TSTL09] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equal-
ity saturation: a new approach to optimization. In POPL, 2009.

[TSTL10] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equal-
ity saturation: a new approach to optimization. In Logical Methods
in Computer Science, December 2010.

[VBT98] E. Visser, Z. Benaissa, and A Tolmach. Building program optimizers
with rewriting strategies. In ICFP, 1998.

[vdBHKO02] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Com-
piling language definitions: the ASF+SDF compiler. Transactions
on Programming Languages and Systems, 24(4), 2002.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam,
Etienne Gagnon, and Phong Co. Soot - a java optimization frame-
work. In Proceedings of CASCON 1999, pages 125–135, 1999.

[Wad90a] Philip Wadler. Comprehending monads. In LFP ’90: Proceedings
of the 1990 ACM conference on LISP and functional programming,
pages 61–78, New York, NY, USA, 1990. ACM.

[Wad90b] Philip Wadler. Linear types can change the world! In PROGRAM-
MING CONCEPTS AND METHODS. North, 1990.

[Wad95] Philip Wadler. Monads for functional programming. In Advanced
Functional Programming, First International Spring School on Ad-
vanced Functional Programming Techniques-Tutorial Text, pages 24–
52, London, UK, 1995. Springer-Verlag.

[Wad98] Philip Wadler. The marriage of effects and monads. In ICFP ’98:
Proceedings of the third ACM SIGPLAN international conference on
Functional programming, pages 63–74, New York, NY, USA, 1998.
ACM.

[WCES94] D. Weise, R. Crew, M. Ernst, and B. Steensgaard. Value dependence
graphs: Representation without taxation. In POPL, 1994.

[WLH00] K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling
using integer programming. In PLDI, June 2000.

[WS90] Debbie Whitfield and Mary Lou Soffa. An approach to ordering
optimizing transformations. In PPOPP, pages 137–146, March 1990.

[WS97a] Deborah L. Whitfield and Mary Lou Soffa. An approach for explor-
ing code improving transformations. Transactions on Programming
Languages and Systems, 19(6):1053–1084, November 1997.

188

[WS97b] Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring
code improving transformations. ACM Transactions on Program-
ming Languages and Systems, 19(6):1053–1084, November 1997.

[XSZ08] B. Xin, W. N. Sumner, and X. Zhang. Efficient program execution
indexing. In PLDI, June 2008.

[ZPFG03] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. VOC:
A methodology for the translation validation of optimizing compil-
ers. Journal of Universal Computer Science, 9(3):223–247, March
2003.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Overview
	Representations
	Program Expression Graphs
	Equivalence PEGs

	Benefits of our Approach
	Optimization Order Does Not Matter
	Global Profitability Heuristics
	Translation Validation

	Frontends
	Language-Independent Components
	Java Bytecode
	LLVM Bitcode

	Defining Equality Analyses
	Axioms
	Creating Axioms

	Complex Analyses

	Axioms
	Arithmetic Axioms
	Constant Value Axioms
	Nondomain Axioms
	Language-Specific Axioms
	Java-specific Axioms
	LLVM-specific Axioms

	Constant Folding
	Domain-Specific Axioms

	Side Effects and Linearity
	The problem with effect tokens
	A Solution: Linear Types
	Solution 1: PEG to linear PEG conversion
	Solution 2: Stateful PEG Selection Problem

	Optimization
	Local Changes Have Non-Local Effects
	Loop-based code motion
	Restructuring the CFG
	Loop Peeling
	Branch Hoisting
	Limitations of PEGs

	Axiom Sets

	The PEG Selection Problem
	The PEG Selection Problem
	The MIN-SAT Problem
	NP-Hardness of the PEG Selection Problem
	Reduction from PEG Selection to Pseudo-Boolean
	Stateful PEG Selection Problem
	Reduction of Stateful PEG Selection to ILP
	The PEG Validity Checker

	Evaluation: Optimization
	Time and space overhead
	Implementing optimizations

	Translation Validation
	Translation Validation
	Translation Validation in Peggy
	Evaluation
	Translation Validation in Java
	Translation Validation in LLVM

	Related Work
	Conclusion
	Java/Soot/PEG conversion
	LLVM/PEG conversion
	Axioms and Analyses Used in Peggy
	Arithmetic Axioms
	Nondomain Axioms
	Language-Specific Axioms
	Java-specific Axioms
	LLVM-specific Axioms

	Domain-Specific Axioms

	Axioms used in Figure 9.1
	Axioms
	General-purpose Axioms
	Domain-specific

	Bibliography

