
Haskell: Programming
with Functions

Niki Vazou, Pablo Serrano
Clubes de Ciencia, Summer 2015

Overview of Day 1

Announcements

• Complete the 2 questionaries
• 7+3 min presentation on Saturday
• Name cards
• Collaborations of 2

Functional Programming

mathematical functions

no-side effectsno state

same input gives same output

Side Effects

modification of state

printing

interaction with the world

observable effects,
other that return value

Recursion

a function that calls itself

haskell’s way to do “loops”
maths’s way to do “loops”

Lazy Evaluation

only evaluate things that I need

delay evaluation

not really intuitive

it is fine, since no side effects

λ-calculus

the tiniest programming language

equally expressive as any other pl

Type Checking

prevents errors at compilation stage

“If it compiles, it works!”

Types
Haskell has some build-in types:

real numbers

True, False

any integer

any “small” integer
from −229 to 229

Int Integer Bool Double

Data Types

Usually, a collection of labelled things

data Err a = Error a | Value a

Let us build our own types,

Pattern Matching

fact 1 = 1
fact n = n * fact (n-1)

The evaluation depends on the patterns

In faction definition

Using case

fact n = case n of
 1 -> 1
 m -> m * fact (m-1)

Pattern Matching

showErr (Error x) = “Error”
showErr (Value x) = show x

The evaluation depends on the patterns
In faction definition

Using case

factErr n
 = case factErr (n-1) of
 Error x -> Error x
 Value x -> Value $ n*factErr (x-1)

Ordering of Definitions

fact 1 = 1
fact n = n * fact (n-1)

In the same function is important

Are the following two the same?

fact n = n * fact (n-1)
fact 1 = 1

Ordering of Definitions

plus1 x = x + 1
plus2 x = x + 2
plus3 x = plus1 . plus2

In different functions is not important

Are the following two the same?

plus3 x = plus1 . plus2
plus1 x = x + 1
plus2 x = x + 2

Comments

-- This is an one line comment

Why using comments?

{-
This is a multiple line comment
 -}

Identation
The empty space has meaning

The golden rule of indentation:
Code which is part of some expression should be indented

further in than the beginning of that expression.

Today
Type classes

“The data type”: Lists
Sorting Lists
Strings
The “non-silly” fibonacci function

Type Inference: The theory break

Binary Search Trees

Type Classes

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

interface that defines some behavior

What is the type of (==)?

Type Class Constraints

(==) :: (Eq a) => a -> a -> Bool

What is the type of (==)?

with int, bool fine because, with Err not

two alternatives
contraint propagation

Type Classes

 instance Show (Err Int) where
 show x = showErr xcheckEq :: Eq a => a -> a -> Bool

checkEq x y = x == y

Some Notes

Show, Num, Eq, …

Identation: https://en.wikibooks.org/wiki/Haskell/
Indentation

Sorting Lists
Strings
The “non-silly” fibonacci function

https://en.wikibooks.org/wiki/Haskell/Indentation

