
Haskell: Programming
with Functions

Niki Vazou, Pablo Serrano
Clubes de Ciencia, Summer 2015

Overview of Day 2

Cabal: Haskell Package Manager

Package or Library:
a group of functions that implement a functionality

Data.Char
Data.List

NLP.Stemmer
Prelude

Cabal: Haskell Package Manager

A cabal is a group of people united in some close design together,
usually to promote their private views or interests in a church, state, or

other community, often by intrigue, usually unbeknownst to persons
outside their group.*

*Wikipedia

Cabal: Haskell Package Manager

Haskell Developer Haskell User

Cabal: Haskell Package Manager

Haskell User

Download: `cabal install steemer`

import in code: `import NPL.Steemer`

Importing things

import NPL.Steemer

import Data.Chat (toLower)

import Prelude hiding (tail)

import qualified Data.Char as C

Type Classes

A type class is an interface that defines some behavior.

 class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

class name

class method(s)

Type Class Instances

Define how a type instantiates a class

 instance Eq a => Eq (Err a) where
 err1 == err2 = eqErr err1 err2

Now I can use (==) on `Err a` expressions

Type Class Constraints

Constrain type variables to be instances of type class

(==) :: (Eq a) => a -> a -> Bool

constraint

Constraints are propagated!

checkEq :: (Eq a) => a -> a -> String
checkEq x y | x == y = “Equal”
 | otherwise = “Different”

Why Type Classes?

• It is an abstraction!
• Use the same (==) operator to things of different type
• Determine the implementation of (==) from the type
• Haskell will figure out the correct implementation
• Overloading

Data Types
Usually, a collection of labelled things

data Err a = Value a | Error a

type constructor

type variable(s)

data constructor

type argument(s)

OR

List: The Data Type

data [a] = [] | (:) a [a]

empty

cons

List Manipulation

Recursion

Higher Order Functions

Recursion

 length [] = 0
 length (x:xs) = 1 + length xs

Prove that for every list xs, list xs >= 0

Induction

Prove:

If S(0) and S(n) => S(n+1), then for all n. S(n)

Structural Induction

If S([]) and S(xs) => S(x:xs), then for all ls. S(ls)

Prove that for every list xs, length xs >= 0

 length [] = 0
 length (x:xs) = 1 + length xs

Recursion

 length [] = 0
 length (x:xs) = 1 + length xs

Prove that length terminates

Should functions always terminate?

No. Remember fibs?

List Manipulation

Recursion

Higher Order Functions

Higher Order Functions

 map :: (a -> b) -> a -> b

 foldr :: (a -> b -> b) -> b -> [a] -> b

Today

String Manipulation

Type Inference: The theory break

Binary Search Trees
Monads

Currying

List Comprehension

Currying
 Transform a function with many arguments

to a function with one argument

 plus1 :: (Int, Int) -> Int
 plus1(x, y) = x + y

 plus2 :: Int -> Int -> Int
 plus2 x y = x + y

Currying

 plus2 :: Int -> Int -> Int
 plus2 x y = x + y

plus2 takes an Int and returns a function

If we apply the first argument we get a function

 plus2 4 :: Int -> Int

• American mathematician and logician
• Known for his work in combinatory logic
• Curry–Howard correspondence

 Curry
(1900 – 1982)

Statement Proof

Type Function

Math

Programs

Haskell

List Comprehension

 filter p xs == [x | x <- xs, p x]

[(7, 7*i)| i <- [1..10]]

Multiplication Tables

[(i,j)| i <- [1..10], j <- [1..i]]

All Combinations

List Comprehension

 factors 5 = []
 factors 12 = [2, 3, 4, 6]

Factors
Define a function factors n which returns a list of the integers

that divide n. Omit the trivial factors 1 and n.

Examples:

factors n = [i | i<-[2..n-1], n `mod` i == 0]

List Comprehension

 triads 5 = [(3,4,5), (4,3,5)]

Pythagorean Triads

Generate a list of triples (x,y,z) such that
x^2+y^2=z^2 and x,y,z <= n.

Examples:

triads n = [(x, y, z)
 | x<-[1..n], y<-[1..n], z<-[1..n],
 x^2+y^2==z^2]

