
Haskell: Programming
with Functions

Niki Vazou, Pablo Serrano
Clubes de Ciencia, Summer 2015

Overview of Day 3

Cabal

the Haskell package manager

Type Classes

A type class is an interface that defines some behavior.

 class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

class name

class method(s)

Type Class Instances

Define how a type instantiates a class

 instance Eq a => Eq (Err a) where
 err1 == err2 = eqErr err1 err2

Now I can use (==) on `Err a` expressions

Type Class Constraints

Constrain type variables to be instances of type class

(==) :: (Eq a) => a -> a -> Bool

constraint

Constraints are propagated!

checkEq :: (Eq a) => a -> a -> String
checkEq x y | x == y = “Equal”
 | otherwise = “Different”

Why Type Classes?

• It is an abstraction!
• Use the same (==) operator to things of different type
• Determine the implementation of (==) from the type
• Haskell will figure out the correct implementation
• Overloading

Data Types
Usually, a collection of labelled things

data Err a = Value a | Error a

type constructor

type variable(s)

data constructor

type argument(s)

OR

List Manipulation

Recursion

 length [] = 0
 length (x:xs) = 1 + length xs

Higher Order Functions

 map :: (a -> b) -> a -> b

 foldr :: (a -> b -> b) -> b -> [a] -> b

Structural Induction

If S([]) and S(xs) => S(x:xs), then for all ls. S(ls)

Prove that for every list xs, length xs >= 0

 length [] = 0
 length (x:xs) = 1 + length xs

Currying
 Transform a function with many arguments

to a function with one argument

 plus1 :: (Int, Int) -> Int
 plus1(x, y) = x + y

 plus2 :: Int -> Int -> Int
 plus2 x y = x + y

If we apply the first argument we get a function

List Comprehension

[x | x <- xs, y <- ys, p x, q y]

[(7, 7*i)| i <- [1..10]]

Multiplication Tables

[(i,j)| i <- [1..10], j <- [1..i]]

All Combinations

Today

String Manipulation

Type Inference: The theory break

Binary Search Trees

Monads

