Bounded Refinement Types

Niki Vazou,
Alexander Bakst,
Ranjit Jhala
(UC San Diego)

Refinement Types

{v:Int | v>0}

Basic Type Predicate

LiquidHaskell:
Refinement types to express specifications

Choice:
Refinements drawn from decidable logic

Question:
How to enhance expressiveness?

Question:
How to enhance expressiveness?

Can we specify function composition?

Can we specify function composition?

1Ncr c: x:Int -> {vl v = x+1}
ncr X = x+1

incr2 :: x:Int -> {vl v = x+2%
1ncrZ = compose incr incr

Can we specify function composition?

compose ::
(y:b-> {z:clz = y+1})
-> (x:a-> {z:bly = x+1})
-> (x:a-> {z:clz = x+2})
compose f g x = f (g x)

incr :: x:Int -> {vl v = x+2}
1ncrZ = compose i1ncr incr OK

Can we specify function composition?

compose ::

incr :: x:Int -> {vl v = x+2}
LncrZ = compose decr 1incr Fail

Can we specify function composition?

compose ::
(y:b-> {z:clz = y+1})
-> (x:a-> {z:bly = x+1})
-> (x:a-> {z:clz = x+2})
compose f g x = f (g x)

incr :: x:Int -> {vl v = x+2}
LncrZ = compose 1ncr incr

Can we specify function opoitin? |

compose :: e S & AT
(y:b-> {z:clp y z})

-> (x:a-> {y:blg x y})

-> (x:a-> {z:clr x z})
compose f g x = f (g x)

incr :: x:Int -> {vl v = x+2}
LncrZ = compose 1ncr incr

Can we specify function composition?

compose ::
(y:b-> {z:clp vy z})
-> (x:a-> {y:blg x y})
-> (x:a-> {z:clr x z})
compose f g x = f (g x)

Can we specify function composition?

compose ::
(y:b-> {z:clp y z})
-> (xta-> {y:blg x y})
> (x:a-> {z:clr x z})
compose f g x = lety=gxinfy

y:{y:blg x y}rA{z:clp y z}<:{z:clr x z}

Can we specify function composition?

compose ::
(y:b-> {z:clp y z})
-> (x:a-> {y:blg x y})
-> (x:a-> {z:clr x z})
compose f gx = lety =gx in fy

y:iy:blg x y} {z:clr x z}

Can we specify function composition?

compose ::
(y:b-> {z:clp vy z})
-> (x:a-> {y:blg x y})
-> (x:a-> jz:clr x 7},
compose f gx = lety =gx in fy

y:{y:blg x y}-{z:clp vy z}<:jE£:1u;l;jQ;

Can we specify function composition?

compose ::

—> (y:b-> {z:clp y z})

-> (x:a-> {y:blg x y})

-> (x:a-> {z:clr x z})
compose f gx =lety=gxinfy

bound Chaitn p gr =\xvy z ->
gqXy=pyz-=1r2X?=z

Can we specify function composition?

compose :: (Chain p g r)
—> (y:b-> {z:clp y z})
-> (x:a-> {y:blg x y}) OK
-> (x:a-> {z:clr x z})

compose f gx = lety =gx in fy

bound Chaitn p gr =\xvy z ->
gqXy=pyz-=1r2X?=z

Can we specify function composition?

incrZ :: x:Int -> {vl v = x+2}
1ncrZ = compose i1ncr incr

bound Chaitn p gr =\xvy z ->
gqXy=pyz-=1r2X?=z

Can we specify function composition?

incrZ :: x:Int -> {vl v = x+2}
incr2 = compose incr incr OK

bound Chain = \x y z -> _
y=X+1 => z=y+1 => z=Xx+2 Valid

Can we specify function composition?

Bounds let us specify function composition

Do bounds add complexity?

No. Bounds are desugared to unbounded types

Bounds are desugared to unbounded types

compose :: (Chain p g r)
=> (y:b-> {z:clp vy z})
-> (x:a-> {y:blg x y})
-> (x:a-> {z:clr x z})
compose f g X =
let y = g x 1r
let z =f vy 1n z

bound Chaitn p gr =\xy z ->
gXy=pyz=rn2X?2

Bounds are desugared to unbounded types

compose :: $chain:(tchain p g r)
-> (y:b-> {z:clp y z})
> (x:a-> {y:blg x y})
-> (x:a-> {z:clr x z})
compose $chain f g x =
let y = g x 1ir
let z =fy 1in z

type tchain p g r = x:a->y:b ->z:c ->
{vlg X y =>pvy z=1r x z}

Bounds are desugared to unbounded types

compose :: $chain:(tchain p g r)
-> (y:b-> {z:clp y z})
> (x:a-> {y:blg x y})
-> (x:a-> {z:clr x z})
compose $chain f g x =
let y = g x 1ir
let z = f y 1ir
let _ = $chain x y z in z OK

type tchain p g r = x:a->y:b ->z:c ->
{vlg X y =>pvy z=1r x z}

Bounds are desugared to unbounded types

incr2 :: x:Int -> {vl v = x+2%

1ncrZ2 = compose $chain incr incr

where $chain :: (tchain p g r)
$chain 27?7

type tchain p g r = x:a->y:b ->z:c ->
{vlg X y =>pvy z=1r x z}

Bounds are desugared to unbounded types

incr2 :: x:Int -> {vl v = x+2%
1ncrZ2 = compose $chain incr incr
where $chain :: tchain

$chain = 7?77

type tchain = X:a->y:b->z:c >
{vly=x+1l => z=y+1 => z=x+/}

Bounds are desugared to unbounded types

incr2 :: x:Int -> {vl v = x+2%
1ncrZ2 = compose $chain incr incr
where $chain :: tchain

$chain = 7?77

type tchain = X:a->y:b->z:c >
{vltruet}

Bounds are desugared to unbounded types

incr2 :: x:Int -> {vl v = x+2%
1ncrZ2 = compose $chain incr incr
where $chain :: tchain

$chain = 7?77

type tchain = X:a->y:b->z:c >
{vltruet}

Bounds enhance expressiveness

Do bounds add complexity?

No. Bounds are desugared to unbounded types

Are bounds useful?

Function Composition
List Filtering and List Folding

List Filtering

filter :: (Witness p w)
=> (x:a-> {v:Boollw x v})
-> [a] -> [{v:alp v}]
filter g (X:xs)
g X = X : filter g xs
| otherwise = filter q xs
filter _ [1 = []

bound Witness p w = \x b ->
b =>wXxb=p x

List Filtering

1sPos :: x:Int -> {vilv <=> 0<x}

ex :: xX:[Int] -> [{vIO<v}]
ex = filter 1sPos

b =>wXb=p x

List Filtering

1sPos :: x:Int -> {vilv <=> 0<x}

ex :: xX:[Int] -> [{vIO<v}]
ex = filter 1sPos

2 2D, -0

bound Witnesé =\X bc;;r' - o |
b= (b <= 0<x) =0 < X Valid

Bounds enhance expressiveness

Do bounds add complexity?

No. Bounds are desugared to unbounded types

Are bounds useful?

Function Composition
List Filtering and List Folding

List Folding

foldr :: (Inductive 1nv step)
=> (x:a -> acc:b ->{v:blstep x acc v})
-> {v:blinv [] v} -> xs:[a]l
->4{v:blinv xs v}
foldr f b (x:xs) = f x (foldr op b xs)
foldr f b [] = b

bound Inductive 1nv step = \Xx xs b b’->
v Xs b => step x b b’
=> 1nv (xX:xs) b’

List Folding

x+1 }

ex :: xXs:[a] -> {v:Int |Iv = len xst}
ex = foldr (A\x -> 1ncr) 0

incr :: x:Int -> {vlv

len xs }
=b + 1 \

-> \XS b

ff 1NV
-> \X b b’ -> b’

o TEES = 2 . — 5 < _ — 5 _ _
i e et o s ce e o P Z - g/
R
.
— 0
o — '
8
)
g

v Step
= ok g i e &, Lo . 4

[S s e T
Lz P < - B .

bound Inductive 1nv step = \Xx xs b b’->
v Xs b => step x b b’
=> 1nv (xX:xs) b’

List Folding

x+1 }

ex :: xXs:[a] -> {v:Int |Iv = len xst}
ex = foldr (\x -> 1ncr) 0

incr :: x:Int -> {viv

bound Inductive = \x xs b b’->
b = len xs = b’ = b + 1 _
> b’ = len (x:xs) Valid

Bounds enhance expressiveness

Do bounds add complexity?

No. Bounds are desugared to unbounded types

Are bounds useful?

Function Composition
List Filtering and List Folding

Floyd-Hoare Logic in the State monad
Relational DataBases Thank you!

