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 incr2 x = x + 2

Given: Library



Goal: Verify Client

 p = incr2 40 
 assert (p == 42) 
!

 n = incr2 (-50) 
 assert (n < 0)



Automatic Verification via S    SMT



Formula*
Valid

Invalid

*From Decidable Logic

SMT



 Specify

x:Int -> {r:Int | r = x+2}

Refinement Type

 incr2 x = x + 2

r = x+2



 !

 p = incr2 40 
   

 assert (p == 42) 

… & Verify

p = 40 + 2

Via Type



 !

 p = incr2 40 
   

 assert (p == 42) 

… & Verify

p = 40 + 2

SMT: Is Valid? Yes!

=> p = 42



Automatic Verification via S    SMT



! I
SMT

SLAM, 
BLAST,..

ESC, 
BOOGIE,..

Liquid,F*…DART, 
KLEE…



have a problem withI SMT

Specifications Not “Modular”

Decidable Logic

Quantifier-Free, First-Order Logic



  

 f = compose (\a -> a + 1) 
             (\b -> b + 1) 
 p = f 40 
 assert (p == 42) 
 

Goal: Verify Client



  

 compose f g x = f (g x) 
 

Specification?

Given: Library



  

 compose :: (y:b-> {z:c|z = y+1}) 
         -> (x:a-> {y:b|y = x+1})  
         -> (x:a-> {z:c|z = x+2}) 
 

  

 compose f g x = f (g x) 
 

First-Order Specification

Given: Library

Not 

Modular



  

 compose f g x = f (g x) 
 

Higher-Order Specification

Given: Library

ensures \forall f g x. r = f (g x)

Not 

Decidable



y = x + 1 r = f (g x)

Automatic Verification Modular Specificationsvs.
Problem



Goal

Automatic Verification Modular Specificationsof



Key  Idea

!
 x:Int-> {y:Int| y = x+2 } 
 

Observe: Refinements are Relations

Relation between input x and output y
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Key  Idea
Step 1: Abstract Relations

!
 x:Int-> {y:Int| p x y } 
 

In SMT p is “Uninterpreted Function”



Key  Idea

Observe: Refinements are Relations

Step 1: Abstract Relations

Step 2: Constrain Relations

To specify properties of abstract p



  

 compose :: forall a, b, c.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

{z:c|z = y+1})

{z:c|z = x+2})
{y:b|y = x+1})

Step 1: Abstract Relations



  

 compose :: forall a, b, c.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

{z:c|z = y+1})

{z:c|z = x+2})
{y:b|y = x+1})

Step 1: Abstract Relations



  

 compose :: forall a, b, c.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

, p, q, r.

Step 1: Abstract Relations

Wait! Is this specification correct?



Wait! Is this specification correct?
  

 compose :: forall p, q, r.             
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 compose :: forall p, q, r.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

Assume Prove      
y:{y:b|q x y}

Wait! Is this specification correct?



  

 compose :: forall p, q, r.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

Assume Prove      
y:{y:b|q x y}
z:{z:c|p y z}

Wait! Is this specification correct?



  

 compose :: forall p, q, r.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

Assume Prove      
y:{y:b|q x y}
z:{z:c|p y z}

z:{z:c|r x z}

Wait! Is this specification correct?



r x z
p y z
q x y

  

 compose :: forall p, q, r.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

Assume Prove      
y:{y:b|q x y}
z:{z:c|p y z}

z:{z:c|r x z}

Wait! Is this specification correct?



  

 compose :: forall p, q, r.             
            f:(y:b-> {z:c|p y z}) 
         -> g:(x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

q x y p y z r x z
^ )

Is SMT Valid ?  No!

Wait! Is this specification correct?

Specification is too general!



Key  Idea

Step 1: Abstract Relations

Specification is too general!

q x y p y z r x z
^ )Need: 



Key  Idea

Step 2: Constrain Relations

q x y p y z r x z
^ )Bound: 

Step 1: Abstract Relations

Specification is too general!



Key  Idea

Step 2: Constrain Relations

Step 1: Abstract Relations

Specification is too general!

q x y p y z r x z
^ )

bound Chain p q r = \x y z ->  
!



compose :: forall p, q, r.             
           (y:b-> {z:c|p y z}) 
        -> (x:a-> {y:b|q x y})  
        -> (x:a-> {z:c|r x z})

Type (Bad)

bound Chain p q r = \x y z ->  
! q x y p y z r x z

^ )

Step 2: Constrain Relations



compose :: (Chain p q r)             
        => (y:b-> {z:c|p y z}) 
        -> (x:a-> {y:b|q x y})  
        -> (x:a-> {z:c|r x z})

bound Chain p q r = \x y z ->  
! q x y p y z r x z

^ )

Type (Fixed)

Step 2: Constrain Relations



  

 compose :: (Chain p q r)             
         => (y:b-> {z:c|p y z}) 
         -> (x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

Assume Prove      
q x y
p y z

r x z

Chain p q r

Step 2: Constrain Relations



  

 compose :: (Chain p q r)             
         => (y:b-> {z:c|p y z}) 
         -> (x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

Assume Prove      
q x y
p y z

r x z

Chain p q r

Step 2: Constrain Relations



  

 compose :: (Chain p q r)             
         => (y:b-> {z:c|p y z}) 
         -> (x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  

q x y
p y z

r x z

Step 2: Constrain Relations

Is SMT Valid ?  

^

^ )(q x y p y z r x z)^ )

Yes(!)



Step 2: Constrain Relations

Verification is Decidable …

  

 compose :: (Chain p q r)             
         => (y:b-> {z:c|p y z}) 
         -> (x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  



Step 2: Constrain Relations

… but is Specification Modular?
Next: Lets’s Verify a Client

  

 compose :: (Chain p q r)             
         => (y:b-> {z:c|p y z}) 
         -> (x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) 
 compose f g x = let y = g x in  
                 let z = f y in z !
  



  

 compose :: (Chain p q r)             
         => (y:b-> {z:c|p y z}) 
         -> (x:a-> {y:b|q x y})  
         -> (x:a-> {z:c|r x z}) !
 

Client Verification

  

 incr2 :: x:Int -> {v:Int |v = x+2} 
 incr2 = compose (+1) (+1) 
 

p, q ::= \x z->z=x+1 
r    ::= \x z->z=x+2



  

 incr2 :: x:Int -> {v:Int |v = x+2} 
 incr2 = compose (+1) (+1) 
 

p, q ::= \x z->z=x+1 
r    ::= \x z->z=x+2

bound Chain p q r = \x y z ->  
! q x y p y z r x z

^ )

Client Verification



  

 incr2 :: x:Int -> {v:Int |v = x+2} 
 incr2 = compose (+1) (+1) 
 

p, q ::= \x z->z=x+1 
r    ::= \x z->z=x+2

bound Chain p q r = \x y z ->  
! q x y p y z r x z

^ )y=x+1 z=y+1 z=x+2
= \x y z ->       

Valid

Client Verification

OK



Key  Idea

Observe: Refinements are Relations

Step 1: Abstract Relations @ Lib

Step 2: Constrain Relations @ Lib

Step 3: Instantiate Relations @ Clt
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Goal
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Automatic Verification of  Modular Specifications

Goal

Constrained Abstract Refinements

Key Idea

Applications



Floyd-Hoare Logic

Database Schema

Higher-Order Functions

Applications

Capability Safe IO Monad



Higher-Order Functions

Examples  
compose, foldr, filter, … 



Higher-Order Functions

Examples  
compose, foldr, filter, … 



  

 foldr f b (x:xs) = f x (foldr op b xs) 
 foldr f b []     = b 
 



  

 foldr f b (x:xs) = f x (foldr op b xs) 
 foldr f b []     = b 
 

inv xs b   := list xs and value b
stp x b b’ := inputs  and output of f

Specification

  

 bound Ind inv stp = \x xs b b’-> 
   inv xs b   stp x b b’  
              inv (x:xs) b’ 
 

)
)



  

 bound Ind inv stp = \x xs b b’-> 
   inv xs b   stp x b b’  
              inv (x:xs) b’ 
 

)
)

Refinement Type
  

foldr :: (Ind inv stp) 
      => (x:a -> b:b -> {b’:b|stp x b b’})  
      -> {b:b|inv [] b} -> xs:[a]  
      -> {v:b|inv xs v}  
 

Specification



Floyd-Hoare Logic

Database Schema

Higher-Order Functions

Applications

Capability Safe IO Monad



Floyd-Hoare Logic

Database Schema and Queries

Higher-Order Functions

Applications

Capability Safe IO Monad



Database Schema and Queries

Modular Specifications  
select, project, join, …

Abstract Refinements 
 Describe generic key-value relationships

Bounds 
 Describe schema disjointness, union,…



Floyd-Hoare Logic (in ST)

Modular Specifications  
sequence, if, while, for, … 

Abstract Refinements 
 Describe generic state assertions

Bounds 
 Describe Floyd-Hoare Constraints



Floyd-Hoare Logic (in ST)

Database Schema

Higher-Order Functions

Applications

Capability Safe IO Monad



Automatic Verification of  Modular Specifications
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Automatic Verification of  Modular Specifications
Goal

Constrained Abstract Refinements
Key Idea

Applications
HOFs, Databases, Floyd-Hoare, Capabilities.

Implementation



Implementation

LiquidHaskell 
Liquid Types for Haskell

CUFP Tutorial on Thu!



Bounds desugar to Ghost functions  
(à la TypeClass Dictionaries)

Implementation
Abstract Refinements desugar to Ghost variables
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Automatic Verification of  Modular Specifications
Goal

Constrained Abstract Refinements
Key Idea

Applications
HOFs, Databases, Floyd-Hoare, Capabilities.

Implementation
Ghost variables (à la TypeClass Dictionaries)

Details/FAQ



Details/FAQ

5. What’s so great about decidability?

1. How do we prove soundness?

3. How easy is it so come up with bounds?

4. What are the limitations?

2. How fast is (bounded) type checking?

Questions?/Thank you!



END



O(n^k) calls where k is the number of parameters in the 
bound and n the number of variables in scope


