
Bounded Refinement Types

Niki Vazou, Alexander Bakst, Ranjit Jhala

UC San Diego

 incr2 x = x + 2

Given: Library

Goal: Verify Client

 p = incr2 40
 assert (p == 42)
!

 n = incr2 (-50)
 assert (n < 0)

Automatic Verification via S SMT

Formula*
Valid

Invalid

*From Decidable Logic

SMT

 Specify

x:Int -> {r:Int | r = x+2}

Refinement Type

 incr2 x = x + 2

r = x+2

 !

 p = incr2 40

 assert (p == 42)

… & Verify

p = 40 + 2

Via Type

 !

 p = incr2 40

 assert (p == 42)

… & Verify

p = 40 + 2

SMT: Is Valid? Yes!

=> p = 42

Automatic Verification via S SMT

! I
SMT

SLAM,
BLAST,..

ESC,
BOOGIE,..

Liquid,F*…DART,
KLEE…

have a problem withI SMT

Specifications Not “Modular”

Decidable Logic

Quantifier-Free, First-Order Logic

 f = compose (\a -> a + 1)
 (\b -> b + 1)
 p = f 40
 assert (p == 42)

Goal: Verify Client

 compose f g x = f (g x)

Specification?

Given: Library

 compose :: (y:b-> {z:c|z = y+1})
 -> (x:a-> {y:b|y = x+1})
 -> (x:a-> {z:c|z = x+2})

 compose f g x = f (g x)

First-Order Specification

Given: Library

Not

Modular

 compose f g x = f (g x)

Higher-Order Specification

Given: Library

ensures \forall f g x. r = f (g x)

Not

Decidable

y = x + 1 r = f (g x)

Automatic Verification Modular Specificationsvs.
Problem

Goal

Automatic Verification Modular Specificationsof

Key Idea

!
 x:Int-> {y:Int| y = x+2 }

Observe: Refinements are Relations

Relation between input x and output y

Key Idea

Observe: Refinements are Relations

Step 1: Abstract Relations

!
 x:Int-> {y:Int| y = x+2 }

Key Idea

Observe: Refinements are Relations

Step 1: Abstract Relations

!
 x:Int-> {y:Int| p x y }

In SMT p is “Uninterpreted Function”

Key Idea
Step 1: Abstract Relations

!
 x:Int-> {y:Int| p x y }

In SMT p is “Uninterpreted Function”

Key Idea

Observe: Refinements are Relations

Step 1: Abstract Relations

Step 2: Constrain Relations

To specify properties of abstract p

 compose :: forall a, b, c.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

{z:c|z = y+1})

{z:c|z = x+2})
{y:b|y = x+1})

Step 1: Abstract Relations

 compose :: forall a, b, c.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

{z:c|z = y+1})

{z:c|z = x+2})
{y:b|y = x+1})

Step 1: Abstract Relations

 compose :: forall a, b, c.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

, p, q, r.

Step 1: Abstract Relations

Wait! Is this specification correct?

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove
y:{y:b|q x y}

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove
y:{y:b|q x y}
z:{z:c|p y z}

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove
y:{y:b|q x y}
z:{z:c|p y z}

z:{z:c|r x z}

Wait! Is this specification correct?

r x z
p y z
q x y

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove
y:{y:b|q x y}
z:{z:c|p y z}

z:{z:c|r x z}

Wait! Is this specification correct?

 compose :: forall p, q, r.
 f:(y:b-> {z:c|p y z})
 -> g:(x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

q x y p y z r x z
^)

Is SMT Valid ? No!

Wait! Is this specification correct?

Specification is too general!

Key Idea

Step 1: Abstract Relations

Specification is too general!

q x y p y z r x z
^)Need:

Key Idea

Step 2: Constrain Relations

q x y p y z r x z
^)Bound:

Step 1: Abstract Relations

Specification is too general!

Key Idea

Step 2: Constrain Relations

Step 1: Abstract Relations

Specification is too general!

q x y p y z r x z
^)

bound Chain p q r = \x y z ->
!

compose :: forall p, q, r.
 (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})

Type (Bad)

bound Chain p q r = \x y z ->
! q x y p y z r x z

^)

Step 2: Constrain Relations

compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})

bound Chain p q r = \x y z ->
! q x y p y z r x z

^)

Type (Fixed)

Step 2: Constrain Relations

 compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove
q x y
p y z

r x z

Chain p q r

Step 2: Constrain Relations

 compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Assume Prove
q x y
p y z

r x z

Chain p q r

Step 2: Constrain Relations

 compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

q x y
p y z

r x z

Step 2: Constrain Relations

Is SMT Valid ?

^

^)(q x y p y z r x z)^)

Yes(!)

Step 2: Constrain Relations

Verification is Decidable …

 compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

Step 2: Constrain Relations

… but is Specification Modular?
Next: Lets’s Verify a Client

 compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z})
 compose f g x = let y = g x in
 let z = f y in z !

 compose :: (Chain p q r)
 => (y:b-> {z:c|p y z})
 -> (x:a-> {y:b|q x y})
 -> (x:a-> {z:c|r x z}) !

Client Verification

 incr2 :: x:Int -> {v:Int |v = x+2}
 incr2 = compose (+1) (+1)

p, q ::= \x z->z=x+1
r ::= \x z->z=x+2

 incr2 :: x:Int -> {v:Int |v = x+2}
 incr2 = compose (+1) (+1)

p, q ::= \x z->z=x+1
r ::= \x z->z=x+2

bound Chain p q r = \x y z ->
! q x y p y z r x z

^)

Client Verification

 incr2 :: x:Int -> {v:Int |v = x+2}
 incr2 = compose (+1) (+1)

p, q ::= \x z->z=x+1
r ::= \x z->z=x+2

bound Chain p q r = \x y z ->
! q x y p y z r x z

^)y=x+1 z=y+1 z=x+2
= \x y z ->

Valid

Client Verification

OK

Key Idea

Observe: Refinements are Relations

Step 1: Abstract Relations @ Lib

Step 2: Constrain Relations @ Lib

Step 3: Instantiate Relations @ Clt

Automatic Verification of Modular Specifications

Goal

Automatic Verification of Modular Specifications

Goal

Constrained Abstract Refinements

Key Idea

Automatic Verification of Modular Specifications

Goal

Constrained Abstract Refinements

Key Idea

Applications

Floyd-Hoare Logic

Database Schema

Higher-Order Functions

Applications

Capability Safe IO Monad

Higher-Order Functions

Examples
compose, foldr, filter, …

Higher-Order Functions

Examples
compose, foldr, filter, …

 foldr f b (x:xs) = f x (foldr op b xs)
 foldr f b [] = b

 foldr f b (x:xs) = f x (foldr op b xs)
 foldr f b [] = b

inv xs b := list xs and value b
stp x b b’ := inputs and output of f

Specification

 bound Ind inv stp = \x xs b b’->
 inv xs b stp x b b’
 inv (x:xs) b’

)
)

 bound Ind inv stp = \x xs b b’->
 inv xs b stp x b b’
 inv (x:xs) b’

)
)

Refinement Type

foldr :: (Ind inv stp)
 => (x:a -> b:b -> {b’:b|stp x b b’})
 -> {b:b|inv [] b} -> xs:[a]
 -> {v:b|inv xs v}

Specification

Floyd-Hoare Logic

Database Schema

Higher-Order Functions

Applications

Capability Safe IO Monad

Floyd-Hoare Logic

Database Schema and Queries

Higher-Order Functions

Applications

Capability Safe IO Monad

Database Schema and Queries

Modular Specifications
select, project, join, …

Abstract Refinements
 Describe generic key-value relationships

Bounds
 Describe schema disjointness, union,…

Floyd-Hoare Logic (in ST)

Modular Specifications
sequence, if, while, for, …

Abstract Refinements
 Describe generic state assertions

Bounds
 Describe Floyd-Hoare Constraints

Floyd-Hoare Logic (in ST)

Database Schema

Higher-Order Functions

Applications

Capability Safe IO Monad

Automatic Verification of Modular Specifications

Goal

Constrained Abstract Refinements

Key Idea

Applications

HOFs, Databases, Floyd-Hoare, Capabilities.

Automatic Verification of Modular Specifications
Goal

Constrained Abstract Refinements
Key Idea

Applications
HOFs, Databases, Floyd-Hoare, Capabilities.

Implementation

Implementation

LiquidHaskell
Liquid Types for Haskell

CUFP Tutorial on Thu!

Bounds desugar to Ghost functions
(à la TypeClass Dictionaries)

Implementation
Abstract Refinements desugar to Ghost variables

Automatic Verification of Modular Specifications
Goal

Constrained Abstract Refinements
Key Idea

Applications
HOFs, Databases, Floyd-Hoare, Capabilities.

Implementation
Ghost variables (à la TypeClass Dictionaries)

Automatic Verification of Modular Specifications
Goal

Constrained Abstract Refinements
Key Idea

Applications
HOFs, Databases, Floyd-Hoare, Capabilities.

Implementation
Ghost variables (à la TypeClass Dictionaries)

Details/FAQ

Details/FAQ

5. What’s so great about decidability?

1. How do we prove soundness?

3. How easy is it so come up with bounds?

4. What are the limitations?

2. How fast is (bounded) type checking?

Questions?/Thank you!

END

O(n^k) calls where k is the number of parameters in the
bound and n the number of variables in scope

