
Remarrying Effects and Monads

Niki Vazou1 and Daan Leijen2

1 UC San Diego
2 Microsoft Research

Abstract. Sixteen years ago Wadler and Thiemann published “The
marriage of effects and monads” [35] where they united two previously
distinct lines of research: the effect typing discipline (proposed by Gifford
and others [9, 31]) and monads (proposed by Moggi and others [23, 34]).
In this paper, we marry effects and monads again but this time within a
single programming paradigm: we use monads to define the semantics of
effect types, but then use the effect types to program with those monads.
In particular, we implemented an extension to the effect type system of
Koka [18] with user defined effects. We use a type-directed translation to
automatically lift such effectful programs into monadic programs, insert-
ing bind- and unit operations where appropriate. As such, these effects
are not just introducing a new effect type, but enable full monadic ab-
straction and let us “take control of the semi-colon” in a typed and
structured manner. We give examples of various abstractions like am-
biguous computations and parsers. All examples have been implemented
in the Koka language and we describe various implementation issues and
optimization mechanisms.

1. Introduction
Sixteen years ago Wadler and Thiemann published “The marriage of effects and
monads” [35] where they united two previously distinct lines of research: the
effect typing discipline (proposed by Gifford and others [9, 31]) and monads
(proposed by Moggi and others [23, 34]). In this paper, we marry effects and
monads again but this time within a single programming paradigm: we use
monads to define the semantics of effect types, but then use the effect types to
program with those monads.

We implemented these ideas as an extension of the effect type system of
Koka [18] – a Javascript-like, strongly typed programming language that au-
tomatically infers the type and effect of functions. For example, the squaring
function:
function sqr(x : int) { x * x }
gets typed as:
sqr : int → total int
signifying that sqr has no side effect at all and behaves as a total function from
integers to integers. However, if we add a print statement:
function sqr(x : int) { print(x); x * x }

the (inferred) type indicates that sqr has a console effect:
sqr : int → console int
There is no need to change the syntax of the original function, nor to promote
the expression x * x into the console effect as effects are automatically combined
and lifted.

Monadic effects. We described before a type inference system for a set of stan-
dard effects like divergence, exceptions, heap operations, input/output, etc [18].
Here we extend the effect system withmonadic user defined effects, where we can
define our own effect in terms of any monad. As a concrete example, we define
an amb effect for ambiguous computations [15]. In particular we would like to
have ambiguous operations that return one of many potential values, but in the
end get a list of all possible outcomes of the ambiguous computation. Using our
new effect declaration we can define the semantics of the amb effect in terms of
a concrete list monad:
effect amb⟨a⟩ = list⟨a⟩ {

function unit(x) { [x] }
function bind(xs, f) { xs.concatMap(f) }

}
where the unit and bind correspond to the usual list-monad definitions. Given
such effect declaration, our system automatically generates the following two
(simplified) primitives:
function to amb (xs : list⟨a⟩) : amb a
function from amb (action : ()→ amb a) : list⟨a⟩
This is really where the marriage between effects and monads comes into play
as it allows us to reify the two representations going from a concrete monad to
its corresponding effect and vice versa. Given these primitives, we can now use
our new amb effect to construct truth tables for example:
function flip() : amb bool {

to amb([False,True])
}

function xor() : amb bool {
val p = flip()
val q = flip()
(p || q) && not(p&&q) // p,q : bool

}

function main() : console () {
print(from amb(xor))

}
where executing main prints [False,True,True,False]. Note how the result of flip is
just typed as bool (even though amb computations internally use a list monad of
all possible results). Furthermore, unlike languages like Haskell, we do not need

2

to explicitly lift expressions into the monad, or explicitly bind computations
using do notation.

Translation. It turns out we can use an automatic type directed translation
that translates a program with user-defined effect types into a corresponding
monadic program. Internally, the previous example gets translated into:
function flip : list⟨bool⟩ {
[False,True]

}

function xor() : list⟨bool⟩ {
bind(flip(), fun(p) {

bind(flip(), fun(q) {
unit((p || q) && not(p&&q))

})})}

function main { print(xor()) }
Here we see how the unit and bind functions of the effect declaration are used,
where bind is inserted whenever a monadic value is returned and passed the
current continuation at that point. Moreover, the to amb and from amb both
behave like an identity and are removed from the final monadic program.

The capture of the continuation at every bind makes monadic effects very
expressive. For example, note that the amb effect can cause subsequent state-
ments to be executed multiple times, i.e. once for every possible result. This
is somewhat dual to the built-in exception effect which can cause subsequent
statements to not be executed at all, i.e. when an exception is thrown. As such,
this kind of expressiveness effectively let us take “control of the semi-colon”.

Many useful library abstractions are effect polymorphic, and they work seam-
lessly for monadic effects as well. In particular, we do not need families of func-
tions for different monadic variants. For example, in Haskell, we cannot use the
usual map function for monadic functions but need to use the mapM function
(or a similar variant). In our system, we can freely reuse existing abstractions:
function xor() : amb bool {

val [p,q] = [1,2].map(fun(_) { flip() })
(p || q) && not(p&&q)

}
Translating such effect polymorphic functions is subtle though and, as we will
discuss, requires dictionaries to be passed at runtime.

The marriage of effects and monads. Wadler and Thiemann [35] show that
any effectful computation can be transposed to a corresponding monad. If JτK is
the call-by-value type translation of τ and Mu is the corresponding monad of an
effect u, they show how an effectful function of type Jτ1 → u τ2K corresponds to a
pure function with a monadic type Jτ1K→ Mu⟨Jτ2K⟩. In this article, we translate
any effectful function of type Jτ1 →⟨u|ϵ⟩ τ2K, to the function Jτ1K→ ϵ Mu⟨ϵ, Jτ2K⟩.
This is almost equivalent, except for the ϵ parameter which represents arbitrary

3

built-in effects like divergence or heap operations. If we assume ϵ to be empty,
i.e. a pure function like in Wadler and Thiemann’s work, then we have an exact
match! How nice when practice meets theory in this fashion. As we shall see,
due to the non-monadic effects as an extra parameter, our monads are effectively
indexed- or poly-monads [12] instead of regular monads.
Contributions. In the rest of the paper we treat each the above points in depth
and discuss the following contributions in detail:

– Using the correspondence between monads and effects [35], we propose a
novel system where you define the semantics of an effect in terms of a first-
class monadic value, but you use the monad using a first-class effect type. We
build on the existing Koka type system [18] to incorporate monadic effects
with full polymorphic and higher-order effect inference.

– We propose (§ 3) a sound type directed monadic translation that transforms
a program with effect types into one with corresponding monadic types.
This translation builds on our earlier work on monadic programming in
ML [30] and automatically lifts and binds computations. Moreover, relying
on the monadic laws, and effect types to guarantee purity of the primitives,
the translation is robust in the sense that small rewrites or changes to our
algorithm will not affect the final semantics of the program.

– The original row-based polymorphic effect type inference system for Koka [18]
was created without monadic effects in mind. It turns out that the system
can be used as is to incorporate monadic effects as well. Instead, the trans-
lation is done purely on an intermediate explicitly typed core calculus, λκu.
This is a great advantage in practice where we can clearly separate the two
(complex) phases in the compiler.

– In contrast to programming with monads directly (as in Haskell), program-
ming with monadic effects integrate seamlessly with built-in effects where
there is no need for families of functions like map, and mapM , or other spe-
cial monadic syntax. Moreover, in contrast to earlier work by Filinksi who
showed how to embed monads in ML [7, 8], our approach is strongly typed
with no reliance on first-class continuations in the host language.

– In practice, you need to do a careful monadic translation, or otherwise there
is the potential for code blowup, or large performance penalties. We present
(§ 4) how we optimize effect polymorphic functions and report on various
performance metrics using our Koka to Javascript compiler, which can run
programs both in a browser as well as on NodeJS [33].

2. Overview
Types tell us about the behavior of functions. For example, the ML type int→ int
of a function tells us that the function is well defined on inputs of type int and
returns values of type int. But that is only one part of the story, the type tells
us nothing about all other behaviors: i.e. if it accesses the file system perhaps,
or throws exceptions, or never returns a result at all.

In contrast to ML, the type of a function in Koka is always of the form τ→ ϵ τ ′

signifying a function that takes an argument of type τ , returns a result of type

4

τ ′ and may have a side effect ϵ. Sometimes we leave out the effect and write
τ→ τ ′ as a shorthand for the total function without any side effect: τ→ ⟨⟩ τ ′.
A key observation on Moggi’s early work on monads [23] was that values and
computations should be assigned a different type. Here we apply that principle
where effect types only occur on function types; and any other type, like int,
truly designates an evaluated value that cannot have any effect1.

In contrast to many other effect systems, the effect types are not just labels
that are propagated but they truly describe the semantics of each function. As
such, it is essential that the basic effects include exceptions (exn) and divergence
(div). The deep connection between the effect types and the semantics leads to
strong reasoning principles. For example, Koka’s soundness theorem [18] implies
that if the final program does not have an exn effect, then its execution never
results in an exception (and similarly for divergence and state).

Example: Exceptions. Exceptions in Koka can be raised using the primitive error
function:
error : string → exn a
The type shows that error takes a string as an argument and may potentially
raise an exception. It returns a value of any type! This is clearly not possible in
a strongly typed parametric language like Koka, so we can infer from this type
signature that error always raises an exception. Of course, effects are properly
propagated so the function wrong will be inferred to have the exn type too:
function wrong() : exn int { error(”wrong”); 42 }
Exceptions can be detected at run-time (unlike divergence) so we can discharge
exceptions using the catch function:
function catch(action : ()→ exn a, handler : exception → a) : a
To catch exceptions we provide two arguments: an action that may throw an
exception and an exception handler. If action() throws an exception the handler
is invoked, otherwise the result of the action() is returned. In both cases catch
has a total effect: it always returns a value of type a. For example, function pure
always returns an int:
function pure() : int { catch(wrong, fun(err){ 0 }) }

Effect polymorphism. In reality, the type of catch is more polymorphic: instead
of just handling actions that can at most raise an exception, it accepts actions
with any effect that includes exn:
function catch(action : ()→ ⟨exn | e⟩ a, handler : exception → e a) : e a
The type variable e applies to any effect. The type expression ⟨exn | e⟩ stands for
the effect row that extends the effect e with the effect constant exn. Effectively,
1 In contrast to Haskell for example, where Int really stands for Int⊥, i.e. referring to

a value of such type may still diverge or raise an exception.

5

this type captures that given an action that can potentially raise an exception,
and perhaps has other effects e, catch will handle that exception but not influence
any of the other effects. In particular, the handler has at most effect e. For
example, the result effect of:
catch(wrong, fun(err) { print(err); 0 })
is console since the handler uses print. Similarly, if the handler itself raises an
exception, the result of catch will include the exn effect:
catch(wrong, fun(err) { error(”oops”) })
Apart from exceptions Koka supplies more built-in effects: we already mentioned
div that models divergence; there is also io to model interaction with input-
output, ndet to model non-determinism, heap operations through alloc, read,
and write, and the list goes on. For all built-in effects, Koka supplies primitive
operators that create (e.g. error, random, print, etc) and sometimes discharge
the effect (e.g. catch, timeout, or runST).

The main contribution of this paper is how we extend Koka so that the user
can define her own effects, by specifying the type and meaning of new effects
and defining primitive operations on them.

2.1. The ambiguous effect

We start exploring the user-defined effects by presenting first how they can be
used and then how they can be defined.

To begin with, we recall the ambiguous effect shown in the introduction (§ 1).
Similar to the exceptions, the user is provided with primitive operations to create
and discharge the amb effect
function to amb(xs : list⟨a⟩) : ⟨amb | e⟩ a
function from amb(action : ()→ ⟨amb | e⟩ a) : e list⟨a⟩
and with these primitives we can compose ambiguous computations.
function flip() : amb bool {

to amb([False, True])
}

function xor() : amb bool {
val p = flip()
val q = flip()
(p || q) && not(p&&q) // p,q : bool

}

function main() : console () {
print(from amb(xor))

}
Even though p and q are the result of the ambiguous computation flip, in the
body of the function we treat them as plain boolean values, and provide them as
arguments to the standard boolean operators like && and || . When we evaluate

6

main we do not get a single ambiguous result, but a list of all possible output
values: [False,True,True,False]. One can extend such mechanism to, for example,
return a histogram of the results, or to general probabilistic results [15, 30].

2.1.1. Defining the ambiguous effect We can define the amb effect through
an effect declaration:
effect amb⟨a⟩ = list⟨a⟩ {

function unit(x : a) : list⟨a⟩ { [x] }
function bind(xs : list⟨a⟩, f : a → e list⟨b⟩) : e list⟨b⟩ { xs.concatMap(f) }

}
As we can see, defining the amb effect basically amounts to defining the standard
list monad, and is surprisingly easy, especially if we remove the optional type
annotations. Given the above definition, a new effect type amb is introduced,
and we know:
1. how to represent (internally) ambiguous computations of a values: as a list⟨a⟩
2. how to lift plain values into ambiguous ones: using unit, and
3. how to combine ambiguous computations: using bind.
Moreover, with the above definition Koka automatically generates the to amb
and from amb primitives that allow us to go from monadic values to effect types
and vice versa. These are basically typed versions of the reify and reflect methods
of Filinski’s monadic embedding [7].

Later we discuss the more interesting effect of parsers (§ 2.3), but before
that, let’s see how our system internally translates code with monadic effects.

2.2. Translating effects

Koka uses a type directed translation to internally translate effectful to monadic
code. As shown in the introduction, the xor function is translated as:
function xor() : amb bool {

val p = flip()
val q = flip()
(p || q) && not(p&&q)

}

⇝

function xor() : list⟨bool⟩ {
bind(flip(), fun(p) {
bind(flip(), fun(q) {
unit((p || q) && not(p&&q))

})})}
Here we see how the unit and bind functions of the effect declaration are used.
In particular, bind is inserted at every point where a monadic value is returned,
and passed the current continuation at that point. Since flip has an ambiguous
result, our type-directed translation binds its result to a function that takes p
as an argument and similarly for q. Finally, the last line returns a pure boolean
value, but xor’s result type is ambiguous. We use unit to lift the pure value to the
ambiguous monad. We note that in Koka’s actual translation, xor is translated
more efficiently using a single map instead of a unit and bind.

The translation to monadic code is quite subtle and relies crucially on type
information provided by type inference. In particular, the intermediate core lan-
guage is explicitly type à la System F (§ 3.1). This way, we compute effects
precisely and determine where bind and unit get inserted (§ 3.3). Moreover, we

7

// source effectful code
function map(xs, f) {

match(xs) {
Nil → Nil
Cons(y, ys) →

val z = f (y)
val zs = map(ys, f)
Cons(z, zs)

}
}

function xor() {
val [p,q] =

map([1,2], fun(_) { flip() })

(p || q) && not(p&&q)
}

// translated monadic code
function map(d : dict⟨e⟩, xs, f) {

match(xs) {
Nil → d.unit(Nil)
Cons(y, ys) →

d.bind(f (y), fun(z) {
d.bind(map(ys, f), fun(zs) {

d.unit(Cons(z, zs)
})})}

}

function xor() {
dict amb.bind(

map(dict amb, [1,2], fun(_) { flip() }),
fun([p,q]) {

dict amb.unit((p || q) && not(p&&q))
})

}

Figure 1. Dictionary translation of map and xor

rely on the user to ensure that the unit and bind operations satisfy the monad
laws [34], i.e. that unit is a left- and right identity for bind, and that bind is
associative. This is usually the case though; in particular because the effect typ-
ing discipline ensures that both unit and bind are total and cannot have any
side-effect (which makes the translation semantically robust against rewrites).

2.2.1. Translating polymorphic effects One of the crucial features of Koka
is effect polymorphism. Consider the function map
function map(xs : list⟨a⟩, f : (a)→ e b) : e list⟨b⟩ {

match(xs) {
Nil → Nil
Cons(y, ys)→ Cons(f (y), map(ys,f))
}

}
The function map takes as input a function f with some effect e. Since it calls f ,
map can itself produce the effect e, for any effect e. This means we can use such
existing abstractions on user defined effects too:
function xor() {

val [p,q] = map([1,2], fun(_) { flip() })
(p || q) && not(p&&q)

}
Unfortunately, this leads to trouble when doing a type directed translation: since
the function passed to map has a monadic effect, we need to bind the call f (y)
inside the map function! Moreover, since we can apply map to any monadic
effect, we need to be able to dynamically call the right bind function.

8

The remedy is to pass Haskell-like dictionaries or monad interfaces to effect
polymorphic functions. In our case, a dictionary is a structure that wraps the
monadic operators bind and unit. The dictionaries are transparent to the user
and are automatically generated and inserted. During the translation, every
effect polymorphic function takes a dictionary as an additional first argument.
Figure 1 shows how the map function gets translated.

Now that internally every effect polymorphic function gets an extra dictio-
nary argument, we need to ensure the corresponding dictionary is supplied at
every call-site. Once again, dictionary instantiation is type-directed and builds
upon Koka’s explicitly typed intermediate core language. Whenever a polymor-
phic effect function is instantiated with a specific effect, the type directed trans-
lation automatically inserts the corresponding dictionary argument. Figure 1
shows this in action when we call map inside the xor function.

We can still use map with code that has a non-monadic effect and in that
case the translation will use the the dictionary of the primitive identity monad,
e.g. map(dict id, [1,2], sqr).

This is not very efficient though: always using the monadic version of map
introduces a performance penalty to all code, even code that doesn’t use any
monadic effect. As shown in § 4.1, we avoid this by careful translation. For
every effect polymorphic function, we generate two versions: one that takes a
monad dictionary, and another that has no monadic translation at all. When in-
stantiating map we use the efficient non-monadic version unless there is monadic
effect. This way the performance of code with non-monadic effects is unchanged.

Being able to reuse any previous abstractions when using monadic effects is
very powerful. If we insert user-defined effects to a function, only the type of
the function changes. Contrast this to Haskell: when inserting a monad, we need
to do a non-trivial conversion of the syntax to do notation, but also we need to
define and use monadic counterparts of standard functions, like mapM for map.

2.2.2. Interaction with other effects User defined effects can be combined
with other effects. However, in this paper we do not allow multiple user-defined
effects to be combined and in our implementation the type-checker enforces this
restriction via various checks. Combining multiple monadic effects is for exam-
ple described by Swamy et al. [30], and generally requires morphisms between
different monads, which we leave as a future work.

For now we just consider how user-defined effects, like amb, interact with
built-in effects like state, divergence, and exceptions. The formal semantics of
Koka [18] are unchanged in our system, and we define the semantics of the user-
defined effects simply as a monadic transformation. As such, if we viewed the
effects as a stack of monad transformers, the user defined effects would be last
with all built-in effects transforming it, i.e. something like div⟨st⟨exn⟨amb⟨a⟩⟩⟩⟩.
These semantics still require careful compilation; for example, it is important
when doing the internal monadic translation to properly capture local variables
in the continuation functions passed to bind.

Here is an example of a more subtle interaction: if we use mutable variables
in the ambiguity monad, we may observe that computations run multiple times:

9

function strange() : amb bool {
var i := 0
val p = flip()
val q = flip()
i := i +1
if (i ≥ 4) then True else (p || q) && not(p&&q)

}
In this example, we define and increment the mutable variable i. The function
strange itself does not have a stateful effect (st⟨h⟩) because the mutability is not
observable from outside and can be discharged automatically through Koka’s
higher-ranked type system [16, 18]. However, executing run(strange) results in
[False,True,True,True] where inside the body of strange we can observe that
some statements are executed multiple times. This shows the importance of
strong typing: in an IDE one would see that the flip() invocations have an amb
effect that causes the following statements to potentially execute more than
once. This is similar for exceptions, where statements following invocations of
functions that may raise exceptions, may not execute at all.

Under the monadic semantics, the interaction with built-in effects is more or
less what one would expect, with one exception: the exception effect does not
play nice with certain user defined effects due to the (expected) lexical scoping
of catch. Exceptions interact with amb as expected, but this is not the case in
the context of the parser effect and we discuss this further in the next section.

2.3. The parser effect

We conclude the overview with a more advanced example in the form of monadic
parsers. A parser can be defined as a function that consumes the input string
and returns a list of (all possible) pairs of parsed tokens and the remaining input:
: string → list⟨(a,string)⟩. This representation is quite standard but many other
designs are possible [13, 20]. Since a parser is a function, it may have effects itself:
parsers can diverge or throw exceptions for example. This means that we need to
parameterize the parser effect with two type parameters (instead of one):
effect parser⟨e,a⟩ = string → e list⟨(a,string)⟩ {

function unit(x) {
return fun(s) { [(x,s)] }
}
function bind(p, f) {
return fun(s) { p(s).concatMap(fun(r) { f (r.fst)(r.snd) }) }
}

}
Given the above definition, koka automatically derives the conversion functions:

function to parser(p : string → e list⟨(a,string)⟩) : ⟨parser | e⟩ a
function from parser(action : ()→ ⟨parser | e⟩ a) : e (string → e list⟨(a,string)⟩)

10

function parse(p : () → ⟨parser | e⟩ a, input : string) : e list⟨(a,string)⟩ {
from parser(p)(input)

}

function succeed(x : a) : parser a { to parser fun(input) { [(x,input)] }

function satisfy(pred : (string) → maybe⟨(a,string⟩)) : ⟨parser⟩ a {
to parser fun(input) {

match(pred(input)) {
Just((x,rest)) → [(x,rest)]
Nothing → []

}}
}

function choice(p1 : () → ⟨parser | e⟩ a, p2 : () → ⟨parser | e⟩ a) : ⟨parser | e⟩ a {
to parser fun(input) {

match (parse(p1,input)) {
Nil → parse(p2,input)
res → res

}}
}

Figure 2. Parser primitives

which can be used by the parser-library developer to build primitive parsing
operators as shown in Figure 2: parse that takes a parsing computation and
an input string and runs the parser; succeed(x) that returns its argument x,
without consuming the input; satisfy(p) that parses the string iff it satisfies p;
and choice(p1, p2) that chooses between two parsers p1 or p2.

Note how the effect e in from parser occurs both as the effect of the function,
but also in the returned parser function. Essentially this is because we cannot
distinguish at the type level whether an effect occurs when constructing the
parser (i.e. before the first bind), or whether it occurs when running the parser.

Having set up the parser effect and its primitives, we can easily construct
other parsers. As an example, many(p) is a parser that applies the parser p
zero or more times. Also, a digit can be parsed as a string that satisfy isDigit.
Combining these two, many(digit) gives a list of parsed digits.
function main(input : string) : div list⟨int, string⟩ {

parse(integer, input)
}
function integer() : ⟨parser,div⟩ int {

val ds = many(digit)
ds.foldl(0,fun(i,d) { i * 10 + d })

}
function digit() : parser int { satisfy(...) }

11

function many(p : ()→ ⟨parser,div | e⟩ a) : ⟨parser,div | e⟩ list⟨a⟩ {
choice { Cons(p(),many(p)) } { succeed(Nil) }

}
Running main(”12a”) now results in [(12,”a”)]. Note also how in the integer func-
tion we can very easily combine parser results (many(digit)) with pure library
functions (foldl).

2.3.1. Interaction with exceptions Because the parser monad is defined as
function we need to be careful on how exception handling is defined. Take for
example the following parser that may raise an exception:
function division() : ⟨parser,exn⟩ int {

val i = integer(); keyword(”/”); val j = integer()
if (j ==0) then error(”divide by zero”) else i/j

}
Suppose now that we catch errors on parsers, as in the following safe version of
our parser:
function safe() : parser int { catch(division, fun(err) { 0 }) }
If catch is implemented naïvely this would not work as expected. In particular,
if catch just wraps a native try - catch block, then the exceptions raised inside
division are not caught: after the monadic translation, division would return
immediately with a parser function: only invoking that function would actually
raise the exception (i.e. when the parser is run using parse). Effectively, the
lexical scoping expectation of the catch would be broken.

Our (primitive) catch implementation takes particular care to work across
monadic effects too. Since catch is polymorphic in the effect, the type directed
translation will actually call the specific monadic version of catch and pass a
dictionary as a first argument. The primitive monadic catch is basically imple-
mented in pseudo-code as:
function catch monadic(d : dict⟨e⟩, action, handler) {

catch({ d.bind catch(action, handler) }, handler)
}
Besides catching regular exceptions raised when executing action(), it uses the
special bind catch method on the dictionary that allows any user-defined effect
to participate in exception handling. This is essential for most effects that are
implemented as functions. For our parser, we can implement it as:
effect parser⟨e,a⟩ = string → e list⟨(a,string)⟩ {
...
function bind catch(p, handler) {
fun(s) { catch({ p(s) }, fun(err) { handler(err)(s) }) }
}

}

12

With this implementation in place, the parser effect participates fully in ex-
ception handling and the safe parser works as expected, where any exception
raised in division is handled by our handler, i.e. the expression parse(safe,”1/0”)
evaluates to 0.

Here is the type of bind catch and its default implementation:

// bind catch : (()→ ⟨exn | e⟩ m⟨⟨exn | e⟩,a⟩, exception → e m⟨e,a⟩)→ e m⟨e,a⟩
function bind catch(action, handler) { catch(action, handler) }
In the above type we write m for the particular monadic type on which the effect
is defined. A nice property of this type signature and default implementation is
that Koka type inferencer requires you to define bind catch, only when needed
for your particular monad. For example, the default works as is for the amb
effect since its monad disregards the e parameter, but the default is correctly
rejected by the type checker for the parser since the signature of catch requires
the m⟨⟨exn | e,a⟩ to be unified with m⟨e,a⟩.

3. Formalism
In this section we formalize the type-directed translation using an explicitly
typed effect calculus we call λκu. First, we present the syntax (§ 3.1) and typing
(§ 3.2) rules for λκu. Then, we formalize our translation (§ 3.3) from effectful to
monadic λκu. Finally, we prove soundness (§ 3.4) by proving type preservation
of the translation.

3.1. Syntax
Figure 3 defines the syntax of expressions and types of λκu, which is a polymor-
phic explicitly typed λ-calculus. It is very similar to System F [10, 26] except
for the addition of effect types.

Expressions. λκu expressions include typed variables xσ, typed constants cσ,
λ-abstraction λϵx : σ. e, application e e, value bindings val xσ = e; e, if state-
ments if e then e else e, type application e [σ] and type abstraction Λακ . e. Note
that each value variable is annotated with its type and each type variable is
annotated with its kind. Finally, each λ-abstraction λϵx : σ. e is annotated with
its result effect ϵ which is necessary to check effect types.

Types and type schemes. Types consist of explicitly kinded type variables ακ

and application of constant type constructors cκ0⟨τκ1
1 , ..., τκn

n ⟩, where the type
constructor c has the appropriate kind κ0 = (κ1, ..., κn)→ κ. We do not provide
special syntax for function types, as they can be modeled by the constructor
(_→__) :: (∗, e, ∗)→∗ that, unlike the usual function type, explicitly reasons
for the effect produced by the function. Finally, types can be qualified over type
variables to yield type schemes.

Kinds. Well-formedness of types is guaranteed by a simple kind system. We
annotate the type τ with its kind κ, as τκ. We have the usual kinds ∗ and →,
and also kinds for effect rows (e), effect constants (k), and user-defined effects
(u). We omit the kind κ of the type τκ when κ is immediately apparent or not
relevant and just write the plain type τ . For clarity, we are using α for regular

13

expressions e ::= xσ | cσ | λϵx : σ. e | e e
| val xσ = e; e
| if e then e else e
| e [σ] | Λακ . e type application and abstraction

types τκ ::= ακ type variable (using µ for effects)
| cκ0⟨τκ1

1 , ..., τκn
n ⟩ κ0 = (κ1,...,κn) → κ

kinds κ ::= ∗ | e | k | u values, effects, effect constants, user effects
| (κ1, ..., κn)→ κ type constructor

type schemes σ ::= ∀ακ. σ | τ∗

constants () :: ∗ unit type
bool :: ∗ bool type
(_ → _ _) :: (∗, e, ∗)→∗ functions
⟨⟩ :: e empty effect
⟨_ |_⟩ :: (k, e)→ e effect extension
exn, div :: k partial, divergent
user⟨_⟩ :: u→ k user effects
tdict⟨_⟩ :: e→∗ effect to universe

Syntactic sugar:
effects ϵ

.
= τ e

effect variables µ
.
= αe

closed effects ⟨l1, ..., ln⟩ .
= ⟨l1, ..., ln | ⟨⟩⟩

user effects lu .
= user⟨lu⟩

Figure 3. Syntax of explicitly typed Koka, λκu.

type variables and µ for effect type variables. Furthermore, we write ϵ for effects,
i.e. types of kind e.

Effects. Effects are types. Effect types are defined as a row of effect labels l.
Such effect row is either empty ⟨⟩, a polymorphic effect variable µ, or an extension
of an effect row ϵ with an effect constant l, written as ⟨l|ϵ⟩. The effect constants
are either built-in Koka effects, i.e. anything that is interesting to our language
like exceptions (exn), divergence (div) etc. or lifted user-defined monadic effects
like the ambiguous effect ambu :: u. Note that for an effect row to be well-formed
we use the user effect function to lift user⟨ambu⟩ :: k to the appropriate kind k.
For simplicity, in the rest of this section we omit the explicit lifting and write
ambu to denote user⟨ambu⟩ when a label of kind k is expected.

Finally, Figure 3 includes definition of type constants and syntactic sugar
required to simplify the rest of this section, most of which we already discussed.
Type rules. Figure 4 describes type rules for λκu where the judgment ⊢ e : σ
assigns type σ for an expression e. All the rules are essentially equivalent to the
regular System F rules, except for rule (Lam) where the effect of the function
in the type is drawn from the effect annotation in the λ-abstraction. Just like
System F, there is the implicit assumption that under a lambda λϵx : σ. e (1)

14

(Con) ⊢ cσ : σ
(Var) ⊢ xσ : σ

(TLam) ⊢ e : σ

⊢ Λακ. e : ∀ακ. σ
(TApp) ⊢ e : ∀α. σ

⊢ e[σ′] : σ[α 7→ σ′]

(Lam) ⊢ e : σ2

⊢ λϵx : σ1. e : σ1 → ϵ σ2
(App) ⊢ e1 : σ1 → ϵ σ2 ⊢ e2 : σ1

⊢ e1 e2 : σ2

(Val) ⊢ e1 : σ1 ⊢ e2 : σ2

⊢ val x = e1; e2 : σ2
(If) ⊢ e : bool ⊢ e1 : σ ⊢ e2 : σ

⊢ if e then e1 else e2 : σ

Figure 4. Type rules for explicitly typed Koka.

all (bound) occurrences of x are typed as xσ, and (2) in all applications (App)
the effect is ϵ, i.e. e1 : σ1 → ϵ σ. By construction, the Koka type inference rules
always produce well-formed λκu. Soundness of λκu follows from the soundness
result for Koka as described by Leijen [18].

3.2. Type inference for effect declarations

The effect- and type inference of Koka is presented in previous work [17, 18].
Here we look specifically at how type inference works for effect declarations.

The Identity Effect. Before we look at the general type inference rule for effect
declarations (Figure 5) we start with a concrete example, namely the identity
effect uid:
effect uid⟨e,a⟩ = a {

function unit(x) { x }
function bind(x,f) { f (x) }

}
From the above effect definition, initially, Koka automatically generates a type
alias that isolates the first line of the definition and relates the effect name with
its monadic representation.

alias Muid⟨ϵ, α⟩ = α
Then, Koka checks well-formedness of the effect definition, by (type-) check-

ing that the defined functions unit and bind are the appropriate monadic oper-
ators. Concretely, it checks that

unit : ∀αµ. α→ µ Muid⟨µ, α⟩
bind : ∀αβµ. (Muid⟨µ, α), α→ µ Muid⟨µ, β⟩)→ µ Muid⟨µ, β⟩

Given the definitions of unit and bind, Koka automatically constructs the primi-
tives required by the rest of the program to safely manipulate the identity effect:

– uidu – the effect constant that can be used in types in the rest of the program,
– touid : ∀αµ. (Muid⟨µ, α⟩)→ ⟨uid|µ⟩ α – the function that converts monadic

computations to effectful ones,
– fromuid : ∀αβµ. (()→ ⟨uid|µ⟩ α)→ µ Muid⟨µ, α⟩ – the dual function that

converts effectful function to their monadic equivalent, and finally,
– dictuid – the (internal) effect dictionary that stores uid’s monadic operators.

15

(Eff)

Γ, µe, α∗ ⊢k τ :: ∗ Γ′ = Γ, Meff⟨µ, α⟩ = τ

Γ′ ⊢ e1 : ∀αµ. α→ µ Meff⟨µ, α⟩
Γ′ ⊢ e2 : ∀µαβ. (Meff⟨µ, α⟩, α→ µ Meff⟨µ, β⟩)→ µ Meff⟨µ, β⟩

Γ ⊢ effect eff⟨µ, α⟩ = τ { unit = e1; bind = e2 } :

Γ′, effu, edicteff : tdict⟨Meff⟩
toeff : ∀αµ. (Meff⟨µ, α⟩)→ ⟨eff|µ⟩ α,
fromeff : ∀αβµ. (()→ ⟨eff|µ⟩ α)→ µ Meff⟨µ, α⟩

Figure 5. Type rule for effect declarations.

Dictionaries. The first three values are user-visible but the final dictionary value
is of course only used internally during the monadic translation phase. The type
of the effect dictionary, like dictuid, is a structure that contains the monadic
operators unit and bind of the effect. It can as well include the monadic map
which can be automatically derived from unit and bind, and the bindcatch method
to interact with primitive exceptions. Thus, we define the dictionary structure as
a type that is polymorphic on the particular monad, represented as type variable
m :: (e, ∗)→∗:

struct tdict⟨m⟩ {
unit : ∀αµ. α→ µ m⟨µ, α⟩
map : ∀αβµ. (m⟨µ, α), α→ β)→ µ m⟨µ, β⟩
bind : ∀αβµ. (m⟨µ, α), α→ µ m⟨µ, β⟩)→ µ m⟨µ, β⟩
bindcatch : ∀αµ. (m⟨⟨exn|µ⟩, α⟩), exc → µ m⟨µ, α⟩)→ µ m⟨µ, α⟩

}

With this we can type dictuid : tdict⟨Muid⟩.
General user-defined effects. Figure 5 generalizes the previous concrete ex-

ample to any user-defined effect declaration. The judgment:

Γ ⊢ effect eff⟨µ, α⟩ = τ⟨µ, α⟩ { unit = e1; bind = e2 } : Γ′

states that under a kind- and type environment Γ, the effect declaration eff
results in a new type environment Γ′ that is extended with the needed types and
primitives implied by eff. As shown in Figure 5, we first check well-formedness
of the effect types, and then check that unit and bind operations have the proper
types. Finally, the environment is extended with the corresponding types and
values.

3.3. Type-directed monadic translation

Next we are going to define the type-directed monadic translation, of the form
e⇝ϵ e′ | υ: this judgment takes an effect expression e to the monadic expression
e′.

Computed effects. Our translation needs two effects, ϵ and υ: the maximum
(inferred) effect ϵ and the minimum (computed) effect υ. After type inference,
every function body has one unified effect ϵ, that consists of the unification of all
the effects in that function. Our translation computes bottom-up the minimal
user-defined portion of each separate sub-expression, where υ should always be

16

contained in ϵ. Specifically, we define computed effects υ as effect types ϵ that
have the following grammar:

υ ::= ⟨lu⟩ | ⟨⟩| µ

Note that in this work we do not allow more that one user-defined effects to
co-exist, but we defer this to future work (§ 6). We can convert a regular effect
type ϵ to a computed effect ϵ as:

⟨lu| ϵ⟩ = ⟨lu⟩ if ϵ = ⟨⟩
⟨lκ| ϵ⟩ = ϵ if κ ̸= u
⟨⟩ = ⟨⟩
µ = µ

Constraining the minimum computed effects greatly simplifies effect operations.
We can add computed effects simply as:

⟨⟩ ⊕ ⟨⟩ = ⟨⟩
⟨⟩ ⊕ υ = υ
υ ⊕ ⟨⟩ = υ
υ ⊕ υ = υ

Type translation. Our translation transforms effectful- to monadic expressions
and changes the return types in the process. The function J·K does the corre-
sponding translation on types:JακK = ακJτ→ ϵ τ ′K = JτK → mon⟨ϵ, ϵ, Jτ ′K⟩Jcκ⟨τ1, . . . , τn⟩K = cκ⟨Jτ1K, . . . , JτnK⟩ with c ̸= →J∀ακ . σK = ∀ακ . JσK
mon⟨⟨⟩, ϵ, τ⟩ = ϵ τ
mon⟨⟨lu⟩, ⟨lu|ϵ⟩, τ⟩ = ϵ Ml⟨ϵ, τ⟩
mon⟨µ, ϵ, τ⟩ = ... (evaluated at instantiation)

The mon operation derives a monadic result type and effect. This cannot be
computed though for polymorphic effect types since it is not known whether it
will be instantiated to a built-in effect or user-defined effect. We therefore keep
this type unevaluated until instantiation time. As such, it is really a dependent
type. In our case, this is a benign extension to λκu since λκu is explicitly typed.
There is one other dependent type for giving the type of a polymorphic dictionary
(see Figure 7):

tdict⟨⟨⟩⟩ = tdict⟨Muid⟩
tdict⟨⟨lu⟩⟩ = tdict⟨Ml⟩
tdict⟨µ⟩ = ... (evaluated at instantiation)

Given the type translation function J·K we can now also derive how the to eff
and from eff functions are internally implemented. If we apply type translation
to their signatures, we can see that both become identity functions. For example,
the type translation type of to eff is JMeff⟨ϵ, α⟩→ ⟨eff|ϵ⟩αK which is equivalent to

17

bindυ
⟨⟩(ϵ, e1, x, e2) = val x = e1; e2

bind⟨⟩
υ (ϵ, e1, x, e2) = dictυ.map ⟨τ1, τ2, ϵ⟩(e1, λx. e2) where ⊢ e1 : τ1, ⊢ e2 : τ2

bindυ
υ(ϵ, e1, x, e2) = dictυ.bind⟨τ1, τ2, ϵ⟩(e1, λx. e2) where ⊢ e1 : τ1, ⊢ e2 : τ2

liftυυ(ϵ, e) = e
liftυ⟨⟩(ϵ, e) = dictυ.unit⟨τ, ϵ⟩(e) where υ ̸= ⟨⟩, ⊢ e : τ

Figure 6. Helper functions for binding and lifting.

Meff⟨ϵ, α⟩ → ϵ Meff⟨ϵ, α⟩, i.e. we can implement to eff simply as λx. x. Similarly,
from eff is implemented as λf. f().

Monadic Abstractions. Figure 6 defines two syntactic abstractions that are
used by our translation to bind and lift effect computations.

– liftυt
υs(ϵ, e) lifts the expression e from the source υs to the target υt computed

effect. If the computed effects are different υs ̸= υt the lifting is performed
via a call to the unit field of the dictionary of the target effect dictυt . Note that
the monadic unit operator is effect polymorphic thus lift is also parametric
on an effect ϵ :: e that we use to instantiate the effect variable of unit.

– bindυ
υx(ϵ, ex, x, e) binds the expression ex to the variable x that appears in

e. The expression ex (resp. e) has computed (minimum) effect υx (resp. υ)
and ϵ is the combined (maximum) effect of the binding. If ex does not have
any computed effect binding is simply a val-binding, otherwise binding is
performed via a call in the bind field of the dictionary of the target effect
dictυx .

As an optimization, if υ = ⟨⟩ our system uses the monadic map instead of lifting
ϵ to υ and using bind. As in lift the combined effect ϵ is used to instantiate the
effect variable of the monadic operators. This particular optimization is similar
to the ones used to avoid unnecessary “administrative” redexes, which customary
CPS-transform algorithms go to great lengths to avoid [6, 27].

3.3.1. Monadic Translation Finally we can define the translation relation
e⇝ϵ e′ | υ as shown in Figure 7, where ϵ is inherited and υ synthesized.

Values. Values have no effect, and compute ⟨⟩. Rules (Con) and (Var) are
simple: they only translate the type of the expression and leave the expression
otherwise unchanged. In rule (Lam) we see that when translating λϵx : σ. e the
type σ of the parameter is also translated. Moreover, the effect ϵ dictates the
maximum effect in the translation of the body e. Finally, we lift the body of the
function from the computed minimum effect to ϵ.

Type Operations. Type abstraction and application preserve the computed ef-
fect of the wrapped expression e. In (TLam-E) we abstract over an effect variable
µ, thus we add an extra value argument, namely, the dictionary of the effect that
instantiates µ, i.e. dictµ : tdict⟨µ⟩. Symmetrically, rule (TApp-E) that translates
application of the effect ϵ′ also applies the dictionary dictϵ′ : tdict⟨ϵ′⟩ of the ef-
fect ϵ′. Note that if the computed effect ϵ′ is a user-defined effect, say amb, then

18

Translation e ⇝ϵ e | υ

(Con) cσ ⇝ϵ cJσK | ⟨⟩ (Var) xσ ⇝ϵ xJσK | ⟨⟩
(Lam) e ⇝ϵ e′ | υ

λϵx : σ. e ⇝ϵ0 λϵx : JσK. liftϵυ(ϵ, e′) | ⟨⟩
(TLam) e ⇝ϵ e′ | υ κ ̸= e

Λακ. e ⇝ϵ Λακ. e′ | υ (TLam-E) e ⇝ϵ e′ | υ
Λµ. e ⇝ϵ Λµ.λϵdictµ : tdict⟨µ⟩. e′ | υ

(TApp) e ⇝ϵ e′ | υ κ ̸= e
e[τκ] ⇝ϵ e′ [JτκK] | υ (TApp-E) e ⇝ϵ e′ | υ

e[ϵ′] ⇝ϵ e′[Jϵ′K] dictϵ′ | υ

(App) e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2 e1 ↓ υ3 υ = υ1 ⊕ υ2 ⊕ υ3

e1 e2 ⇝ϵ bindυ
υ1
(ϵ, e′1, f, bindυ

υ2
(ϵ, e′2, x, liftυυ3

(ϵ, f x))) | υ

(Val) e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2

val x = e1; e2 ⇝ϵ bindυ2
υ1
(ϵ, e′1, x, e′2) | υ1 ⊕ υ2

(If) e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2 e3 ⇝ϵ e′3| υ3 υ = υ1 ⊕ υ2 ⊕ υ3

if e1 then e2 else e3 ⇝ϵ bindυ
υ1
(ϵ, e′1, x, if x then liftυυ2

(ϵ, e′2) else liftυυ3
(ϵ, e′3)) | υ

Figure 7. Basic translation rules. Any f and x are assumed fresh.

(Opt-TApp) ⊢ e : ∀µ, α1, ..., αm. σ1 → ⟨l1, ..., ln|µ⟩ σ2

e[ϵ, α1, ..., αm] ↓ ⟨l1, ..., ln⟩

(Opt-Default) ⊢ e : σ1 → ϵ σ2

e ↓ ϵ

Figure 8. Computing minimal effects of function expressions.

the rule directly applies the appropriate dictionary dictamb, that is the dictio-
nary value Koka created from the amb effect definition. If the computed effect ϵ′
is an effect variable µ, then the rule directly applies the appropriate dictionary
dictµ, that is the variable abstracted by a rule (TLam-E) lower in the translation
tree. The final case is the computed effect ϵ′ to be the empty effect ⟨⟩, in that
case the dictionary of the identity effect dictuid is applied. This is because in the
computed effects world the total effect ⟨⟩ is the identity effect uid. But in our
rules we used the ⟨⟩ effect as it is more intuitive.

Application. The rule (App) translates the application e1 e2. The minimal
computed effect of the application is the union of the computed effects of the
function e1 (that is υ1), the argument e2 (that is υ2) and the computed effect
of the body of the the function. The maximum effect of the function is ϵ but
using this maximum effect would lead to unoptimized translation, since every

19

application would be unnecessarily lifted to its maximum effect. For example, if
we wrote:
choose(id([False,True]))
then the unified effect for the id application would be amb and we would unnec-
essarily pass an amb dictionary to id and bind the result.

As an optimization, we compute the minimal function effect as e1 ↓ υ3,
which is presented in Figure 8. In this example, we can apply (Opt-TApp) and
use a fully pure invocation of the id([False,True]) sub-expression. As it turns
out, in practice this optimization is very important and saves much unnecessary
binding, lifting, and passing of dictionaries. It is absolutely essential to maintain
good performance.
Finally, the rule (Val) translates val-binding val x = e1; e2 by binding e1 to x
in e2. Similarly, the rule (If) translates if e1 then e2 else e3 by first binding e1 to
a fresh variable x, since e1 may have user-defined effects and then lifting both
branches to the computed effect υ that is the union of the computed effects of
the guard υ1 and the two branches υ2 and υ3.

3.4. Soundness
From previous work on type inference for Koka [18] we have that the resulting
explicitly typed Koka is well-typed, i.e.
Theorem 1. (Explicit Koka is well-typed)
If Γ⊢i k : σ | ϵ⇝ e then ⊢ e : σ.
The new part in this paper is that our translation preserves types according to
the J·K type translation:
Theorem 2. (Type Preservation)
If ⊢ e : σ and e ⇝ϵ e′ | υ, then ⊢ e′ : JσK.
Proof. By induction of the structure of the derivation, and checking at each
rule that the results are well-typed. □
This is a very strong property since Koka has explicit effect types, i.e. it is not
possible to have typed translation simply by using ⊥, and as such it gives high
confidence in the faithfulness of the translation. This is related to the types of
bind and unit for example which are both guaranteed to be total functions (since
they are polymorphic in the effect).

More properties hold in our translation, like that the minimum effect is always
included in the maximum (ϵ ⊑ υ), but we omit them for lack of space.

4. Implementation
We implemented monadic user-defined effects in Koka and the implementation is
available at koka.codeplex.com. Koka’s compiler is implemented in Haskell and
it transforms Koka source code to javascript:

– The compiler takes as input Koka source code as specified in [18].
– Next, it performs type inference and transforms the source code the Koka’s

intermediate representation which is very similar to λκu of Figure 3.
– Then, it applies the translation rules of Figure 7, i.e. it uses the inferred

types and effects to apply our effect to monadic translation.

20

http://koka.codeplex.com/

before translation after translation percentage increase
lines bytes lines bytes lines bytes
2678 89038 3248 121668 21.28 % 36.65%

Figure 9. Code size of Koka’s library before and after translation.

– Finally, the monadic intermediate Koka is translated to Javascript.

The goal of our implementation is to build a sound, complete, and efficient trans-
lation with minimum run-time overhead. We get soundness by § 3.4, and in § 4.2
we discuss that the translation is complete, modulo the monomorphic restric-
tion. Moreover (§ 4.1), our translation is optimized to reduce any compile- and
run-time overhead as far as possible. We conclude this section by a quantitative
evaluation (§ 4.3) of our translation.

4.1. Optimizations
We optimized the translation rules of Figure 7 with three main optimization
rules: only translate when necessary, generate multiple code paths for effect
polymorphic functions, and use monadic laws to optimize bind structures.

Selective Translation. We observed that most of the functions are user-defined
effect free. A function is user-defined effect free when (1) it does not generate
user-defined effects, (2) it is not effect polymorphic (as any abstract effect can
be instantiated with a user-defined one), and (3) all the functions that calls or
defines are user-defined effect free.

A user-defined effect free function is translated to itself. Thus our first opti-
mization is to skip translation of such functions. This optimization is crucial in
code that does not make heavy use of user-defined effects. As it turns out, 229
out of 287 Koka library functions are not translated!

Two versions of effect polymorphic functions. The translation rule (TApp-
E) is quite inefficient when the applied effect ϵ is not user-defined: the identity
dictionary is applied and it is used to perform identity monadic operators. User-
defined effect free functions are the common case in Koka code, and as such they
should not get polluted with identity dictionaries.
As an optimization, when translating an effect polymorphic function we create
two versions of the function:

– the monadic version, where the effect variables can be instantiated with user-
defined effects, thus insertion of monadic operators (unit and bind) and thus
the addition of the monadic dictionary is required, and

– the non-monadic version, where the effect variables cannot be instantiated
with user-defined effects, thus the monadic dictionary is not required.

To soundly perform this optimization we use an environment with the effect
variables that cannot be instantiated with user-defined effects, which is used as
a proof that insertion of monadic operators is not required.
Non-monadic versions are translated, but using the effect environment that con-
straints their effect variables to non-user effects. Still translation is required as
these functions may use or produce user-defined effects. Though, in practice

21

static time file size
program compile time translation time percentage of translation lines

amb 107.697 ms 2.795 ms 2.6 % 67
parser 89.712 ms 2.582 ms 2.88 % 72
async 117.989 ms 3.155 ms 2.67 % 166
core 6057.327 ms 16.424 ms 0.27% 2465

Figure 10. Quantitative evaluation of static time for user-defined effects.

translation of non-monadic versions of functions is non-required and optimized
by our previous optimization. It turns out that in Koka’s library there are 58
polymorphic functions for which we created double versions. None of the non-
monadic version requires translation.

Monadic Laws. As a final optimization we used the monadic laws to produce
readable and optimized javascript code. Concretely, we applied the following
three equivalence relations to optimize redundant occurrences:

bind(unit x, f) ≡ f x bind(f, unit x) ≡ f x map(unit x, f) ≡ unit (f x)

4.2. The Monomorphism Restriction

In our setting the Monomorphic Restriction restricts value definitions that are
not functions to be effect monomorphic. Consider the following program
function poly(x : a, g : (a)→ e b) : e b
val mr = if (expensive()≥ 0) then poly else poly
How often is expensive() executed? The user can naturally assume that the call
is done once, at the initialization of mr. But, since mr is effect polymorphic
(due to poly), our translation inserts a dictionary argument. Thus, the call is
executed as many times as mr is called. This is definitely not the expected
behaviour, especially since dictionaries are totally opaque to the user. To avoid
this situation Koka’s compiler rejects such value definitions, similarly to the
monomorphism restriction of Haskell. Besides this restriction, our translation is
complete, ie., we accept and translate all programs that plain Koka accepts.

4.3. Evaluation

Finally, we give a quantitative evaluation of our approach that allows us to
conclude that monadic user-defined effects can be use to produce high quality
code without much affecting the compile- or running-time of your program.

In Figure 10 we present the static metrics and the file size of our four bench-
marks: (1) amb manipulates boolean formulas using the ambiguous effect, (2)
parser parses words and integers from an input file using the parser effect, (3)
async interactively processes user’s input using the asynchronous effect, and (4)
core is Koka’s core library that we translate so that all library’s functions can be
used in effectful code. On these benchmarks we count the file size in lines, the
total compilation time, the translation time and we compute the percentage of
the compilation time that is spent on translation. The results are collected on a
machine with an Intel Core i5.

22

Static Time. As Figure 10 suggests the compile-time spend in translation is
low (less that 3% of compilation time). More importantly, the fraction of the
time spend in translation is minor in code that does not use monadic effects,
mostly due to our optimizations (§ 4.1).

Run Time. To check the impact of our translation on run-time we created
“monadic” versions of our examples, i.e. a version of the amb that uses lists
instead of the amb effect and a version of the parser that uses a parser data
type. We observed that our monadic translation does not have any run-time
cost mostly because it optimizes away redundant calls (§ 4.1).

Thus, we conclude that our proposed abstraction provides better quality of
code with no run-time and low static-time overhead.

5. Related work

The problems with arbitrary effects have been widely recognized, and there is a
large body of work studying how to delimit the scope of effects. There have been
many effect typing disciplines proposed. Early work is by Gifford and Lucassen [9,
21] which was later extended by Talpin [32] and others [24, 31]. These systems
are closely related since they describe polymorphic effect systems and use type
constraints to give principal types. The system described by Nielson et al. [24]
also requires the effects to form a complete lattice with meets and joins. Wadler
and Thiemann [35] show the close connection between monads [23, 34] and the
effect typing disciplines.

Java contains a simple effect system where each method is labeled with the
exceptions it might raise [11]. A system for finding uncaught exceptions was
developed for ML by Pessaux et al. [25]. A more powerful system for tracking
effects was developed by Benton [2] who also studies the semantics of such effect
systems [3]. Recent work on effects in Scala [28] shows how even a restricted
form of polymorphic effect types can be used to track effects for many programs
in practice.

Marino et al. created a generic type-and-effect system [22]. This system
uses privilege checking to describe analytical effect systems. Their system is
very general and can express many properties but has no semantics on its own.
Banados et al. [29] layer a gradual type system on top this framework resulting
in a generic effect system that can be gradually checked. This may prove useful
for annotating existing code bases where a fully static type system may prove
too conservative.

This paper relies heavily on a type directed monadic translation. This was
also described in the context of ML by Swamy et al. [30], where we also show
how to combine multiple monads using monad morphisms. A similar approach
is used by Rompf et al. [27] to implement first-class delimited continuations in
Scala which is essentially done by giving a monadic translation. Similar to our
approach, this is also a selective transformation; i.e. only functions that need it
get the monadic translation. Both of the previous works are a typed approach
where the monad is apparent in the type. Early work by Filinksi [7, 8] showed
how one can embed any monad in any strict language that has mutable state in

23

combination with first-class continuations (i.e. callcc). This work is untyped in
the sense that the monad or effect is not apparent in the type.

Many languages have extensions to support a particular effect or monad.
For example, both C# [4] and Scala [1] have extensions to make programming
with asynchronous code more convenient using await and async keywords. In
those cases, the compiler needs to be significantly extended to generate state
machines under the hood. Similarly, many languages have special support for
iterators which can be implemented using a list-like monad. Of course, once the
expressiveness of monads become available, there is a wide range of abstractions
that can be implemented, ranging from parsers [13, 20], database queries [19],
interpreters [34], threading [5], etc.

Koka’s design is deeply influenced by the Haskell language. However, it also
differs in many crucial areas. For example, Koka has strict evaluation in order
to only have effects on arrows, but all Haskell values contain ⊥ due to laziness
(and may therefore have an effect in itself, i.e. diverge or raise an exception). To
program with monads in Haskell, you need to switch to another syntax (do nota-
tion) and be explicit about every unit and bind which is generally cumbersome.
However, by being more explicit you can also do more, like combining multiple
monads through monad transformers which we leave to future work for now.

6. Conclusion & Future Work
Using the correspondence between monads and effects [35], we have shown how
you can define the semantics of an effect in terms of a first-class monadic value,
but you can use the monad using a first-class effect type. We provide a prototype
implementation that builds on top of Koka’s type- and effect inference system.

As future work we would like take the work on monadic programming in
ML [30] and explore how multiple user-defined effects can co-exist and how to
automatically infer the morphisms between them. Furthermore, we would like
to apply the existing system to program larger real-world applications, like an
asynchronous web server.

In “The essence of functional programming” [34], Wadler remarks that “by
examining where monads are used in the types of programs, one determines in
effect where impure features are used. In this sense, the use of monads is similar
to the use of effect systems”. We take the opposite view: by examining the effect
types one can determine where monads are to be used. In Wadler’s sense of the
word, the essence of effectful programming is monads.

References

[1] Scala async proposal (2013), http://docs.scala-lang.org/sips/pending/async.html
[2] Benton, N., Buchlovsky, P.: Semantics of an effect analysis for exceptions. In: TLDI

(2007)
[3] Benton, N., Kennedy, A., Beringer, L., Hofmann, M.: Relational semantics for

effect-based program transformations with dynamic allocation. In: PPDP (2007)
[4] Bierman, G., Russo, C., Mainland, G., Meijer, E., Torgersen, M.: Pause ‘N’ Play:

Formalizing asynchronous C#. In: ECOOP (2012)
[5] Claessen, K.: A poor man’s concurrency monad. JFP (1999)

24

http://docs.scala-lang.org/sips/pending/async.html

[6] Danvy, O., Millikin, K., Nielsen, L.R.: On one-pass cps transformations. J. Funct.
Program. 17(6), 793–812 (Nov 2007)

[7] Filinski, A.: Representing monads. In: POPL (1994)
[8] Filinski, A.: Controlling effects. Tech. rep., U.S. Dept. of Labor, OSHA (1996)
[9] Gifford, D.K., Lucassen, J.M.: Integrating functional and imperative programming.

In: LFP (1986)
[10] Girard, J.Y.: The System F of variable types, fifteen years later. TCS (1986)
[11] Gosling, J., Joy, B., Steele, G.: The Java Language Specification (1996)
[12] Hicks, M., Bierman, G., Guts, N., Leijen, D., Swamy, N.: Polymonadic program-

ming. In: MSFP (2014)
[13] Hutton, G., Meijer, E.: Monadic parser combinators. Tech. Rep. NOTTCS-TR-96-

4, Dept. of Computer Science, University of Nottingham (1996)
[14] Kambona, K., Boix, E.G., De Meuter, W.: An evaluation of reactive programming

and promises for structuring collaborative web applications. In: DYLA (2013)
[15] Kiselyov, O., Shan, C.c.: Embedded probabilistic programming. In: Domain-

Specific Languages (2009)
[16] Launchbury, J., Sabry, A.: Monadic state: Axiomatization and type safety. In:

ICFP (1997)
[17] Leijen, D.: Koka: Programming with row-polymorphic effect types. Tech. Rep.

MSR-TR-2013-79, Microsoft Research (2013)
[18] Leijen, D.: Koka: Programming with row polymorphic effect types. In: MSFP

(2014)
[19] Leijen, D., Meijer, E.: Domain specific embedded compilers. In: Domain Specific

Languages (1999)
[20] Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the

real world. Tech. Rep. UU-CS-2001-27, Dept. of Computer Science, Universiteit
Utrecht (2001), http://www.haskell.org/haskellwiki/Parsec

[21] Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL (1988)
[22] Marino, D., Millstein, T.: A generic type-and-effect system. In: TLDI (2009)
[23] Moggi, E.: Notions of computation and monads. Inf. Comput. (1991)
[24] Nielson, H.R., Nielson, F., Amtoft, T.: Polymorphic subtyping for effect analysis:

The static semantics. In: LOMAPS (1997)
[25] Pessaux, F., Leroy, X.: Type-based analysis of uncaught exceptions. In: POPL

(1999)
[26] Reynolds, J.C.: Towards a theory of type structure. In: Programming Symposium

(1974)
[27] Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited

continuations by a type-directed selective cps-transform (2009)
[28] Rytz, L., Odersky, M., Haller, P.: Lightweight polymorphic effects. In: ECOOP

(2012)
[29] Bañados Schwerter, F., Garcia, R., Tanter, E.: A theory of gradual effect systems.

In: ICFP (2014)
[30] Swamy, N., Guts, N., Leijen, D., Hicks, M.: Lightweight monadic programming in

ML. In: ICFP (2011)
[31] Talpin, J.P., Jouvelot, P.: The type and effect discipline. Inf. Comput. (1994)
[32] Talpin, J.: Theoretical and practical aspects of type and effect inference. Ph.D.

thesis, Ecole des Mines de Paris and University Paris VI, Paris, France (1993)
[33] Tilkov, S., Vinoski, S.: NodeJS: Using javascript to build high-performance network

programs. IEEE Internet Computing (2010)
[34] Wadler, P.: The essence of functional programming. POPL (1992)
[35] Wadler, P., Thiemann, P.: The marriage of effects and monads. TOLC (2003)

25

http://www.haskell.org/haskellwiki/Parsec

Appendix
A. The Async effect
As a final example we present how user-defined effects can be used to simplify
asynchronous programming. Asynchronous code can have big performance ben-
efits but it notoriously cumbersome to program with since one has to specify
the continuation (and failure continuation). This style of programming is quite
widely used in the Javascript community for XHR calls on the web, or when pro-
gramming NodeJS[33] servers. Consider the following asynchronous Javascript
code that uses promises [14]. This example is somewhat simple but also in many
ways typical for asynchronous code:
function main() {

game().then(null, function(err) {
println(”an error happened”);
});

}
function game() {

return new Promise().then(function() {
println(”what is your name”);
readline().then(function(name) {
println(”Ah, And who is your mentor?”);
readline().then(function(mentor) {
println(”Thinking...”);
wait(1000).then(function() {
println(”Hi ” + name + ”. Your mentor is ” + mentor);
});});});});

};
The asynchronous functions here are readline and wait. Both return immediately
a so-called Promise object, on which we call the then method to supply its
success continuation: a function that takes as argument the result of readline
and uses it at its body. Finally, then takes a second (optional) argument as the
failure continuation. If a failure occurs within a continuation with no failure
continuation, execution skips forward to the next then. In this example if any
error occurs, it will be forwarded to the main function which will die by printing
”an error occured”.

Programming with callbacks in tricky. Common errors include doing com-
putations outside the continuation, forgetting to supply an error continuation,
using try - catch naively (which don’t work across continuations), and mistakes
with deeply nested continuations (e.g. the pyramid of doom).

Asynchronicity as an effect. In Koka, we can actually define an async effect
that allows us to write asynchronous code in a more synchronous style while
hiding all the necessary plumbing. that behave asynchronous, ie., have exactly
the same behaviour as the previous example. We define the asynchronous effect
as a function with two arguments, the success and the failure continuation:

26

effect async⟨e,a⟩ = (a → e (), exception → e ())→ e () {
function unit(x) {
return fun(c,ec) { c(x) }
}
function bind(m,f) {
return fun(c,ec) {
m(fun(x) {
val g = catch({ f (x) }, fun(exn) { return fun(_,_) { ec(exn) } })
g(c,ec)
}, ec)
}
}
function bind catch(m,h) {
return fun(c,ec) {
catch({
m(c, fun(err) { h(err)(c,ec) })
}, fun(err) { h(err)(c,ec) })
}
}

}
This one is quite complex but that is somewhat expected of course – getting
asynchronicity right is complicated. As usual, Koka automatically creates the
primitives to async and from async. We use these to define other functions:
run(action) turns the async computation action into an io computation. read-
line is an async wrapper for the primitive readln function that is explicitly called
with its success continuation.
function readline() : ⟨async,console⟩ string {

to async fun(cont, econt) { readln(cont) }
}
Finally, using these two primitives and the async effect we can now program nice
and “vertical”, synchronous-like code for our initial javascript example:
function main() {

run(game)
}
function game() : ⟨async,io⟩ () {

println(”what is your name?”)
val name = readline()
println(”Ah. And who is your mentor?”)
val age = readline()
println(”Thinking...”)
wait(1000)
println(”Hi ” + name + ”. Your mentor is ” + age)

}

27

How amazing! Moreover, just like other effects, we can use any abstraction as
usual, like mapping asynchronous computation over lists etc. Of course, we need
more primitives, like fork which starts multiple asynchronous computations in
parallel and finished when all are done.

The strong typing is crucial here as it provides good indication that the
code is potentially asynchronous! It is generally recognized that knowing about
asynchronicity is important, but other effects like exceptions, divergence, or heap
mutation, are not always treated with the same care. In Koka, all effects are
considered essential to the type of a function and asynchronicity is treated in
the same way as any other effect.

Semantically, the asynchronous effect is not quite like our earlier examples
which could be implemented in Koka as is. For example, note the invocation
of catch in the definition of bind. Why is that necessary? and what happens
if we would forget it? The reason behind this is that asynchronicity cannot
exist within the basic semantics of Koka (as described in [18]). In particular,
we introduce new constants supplied by the runtime environment that behave
outside of Koka semantics, like readln. Effectively, every time an asynchronous
operation is executed, the program terminates and is revived again when the
continuation is executed. This is also why run cannot be implemented in Koka
itself but needs special runtime support too – it effectively needs to ‘wait’ until
all asynchronous operations are done and then return its result (or throw an
exception). Of course, since Koka is implemented on top of Javascript all these
primitives (and many more) are provided the host runtime systems (i.e. NodeJS
and browsers).

B. Download
The current prototype of the work in this article is freely available online. It
is not yet ready for prime-time since some checks are lacking, but by the time
of the conference we hope to have it online on http://www.rise4fun.com/koka.
Currently, one can build the development branch though and play with the
examples in this paper:

– Pull the koka -monadic branch from http://koka.codeplex.com and follow
the build instructions on that page.

– Try out the examples in test/monadic/esop15, like amb or parser.
The basic Koka compiler compiles to Javascript and is quite mature at this
point. In fact, Koka was used to create a sophisticated online markdown pro-
cessor called Madoko, which was used to completely write this article! Try it at
http://www.madoko.net.

28

http://www.rise4fun.com/koka
http://koka.codeplex.com
http://www.madoko.net

	Remarrying Effects and Monads
	Niki Vazou1Daan Leijen2

