
Remarrying Effects and Monads

Niki Vazou
UC San Diego

Daan Leijen
Microsoft Research

Abstract
Sixteen years ago Wadler and Thiemann published “The
marriage of effects and monads” [35] where they united two
previously distinct lines of research: the effect typing disci-
pline (proposed by Gifford and others [11, 31]) and monads
(proposed by Moggi and others [23, 34]). In this paper, we
marry effects and monads again but this time within a single
programming paradigm: we use monads to define the seman-
tics of effect types, but then use the effect types to program
with those monads. In particular, we implemented an exten-
sion to the effect type system of Koka [19] with user defined
effects. We use a type-directed translation to automatically
lift such effectful programs into monadic programs, insert-
ing bind- and unit operations where appropriate. As such,
these effects are not just introducing a new effect type, but
enable full monadic abstraction and let us “take control of
the semi-colon” in a typed and structured manner. We give
examples of various abstractions like ambiguous computa-
tions and parsers. All examples have been implemented in
the Koka language and we describe various implementation
issues and optimization mechanisms.

1. Introduction
Sixteen years ago Wadler and Thiemann published “The
marriage of effects and monads” [35] where they united
two previously distinct lines of research: the effect typing
discipline (proposed by Gifford and others [11, 31]) and
monads (proposed by Moggi and others [23, 34]). In this
paper, we marry effects and monads again but this time
within a single programming paradigm: we use monads to
define the semantics of effect types, but then use the effect
types to program with those monads.

We implemented these ideas as an extension of the effect
type system of Koka [19] – a JavaScript-like, strongly typed
programming language that automatically infers the type
and effect of functions. For example, the squaring function:
function sqr(x : int) { x * x }
gets typed as:
sqr : int → total int
signifying that sqr has no side effect at all and behaves as a
total function from integers to integers. However, if we add
a print statement:
function sqr(x : int) { print(x); x * x }
the (inferred) type indicates that sqr has a console effect:
sqr : int → console int
There is no need to change the syntax of the original func-
tion, nor to promote the expression x * x into the console
effect as effects are automatically combined and lifted.

Monadic effects. We described before a type inference sys-
tem for a set of standard effects like divergence, exceptions,
heap operations, input/output, etc [19]. Here we extend the
effect system with monadic user defined effects, where we
can define our own effect in terms of any monad. As a con-
crete example, we define an amb effect for ambiguous com-
putations [16]. In particular we would like to have ambiguous
operations that return one of many potential values, but in
the end get a list of all possible outcomes of the ambiguous
computation. Using our new effect declaration we can define
the semantics of the amb effect in terms of a concrete list
monad:
effect amb⟨a⟩ = list⟨a⟩ {

function unit(x) { [x] }
function bind(xs, f) { xs.concatMap(f) }

}
where the unit and bind correspond to the usual list-monad
definitions. Given such effect declaration, our system auto-
matically generates the following two (simplified) primitives:
function to amb (xs : list⟨a⟩) : amb a
function from amb (action : () → amb a) : list⟨a⟩
This is really where the marriage between effects and mon-
ads comes into play as it allows us to reify the two repre-
sentations going from a concrete monad to its corresponding
effect and vice versa. Given these primitives, we can now use
our new amb effect to construct truth tables for example:
function flip() : amb bool {

to amb([False,True])
}

function xor() : amb bool {
val p = flip()
val q = flip()
(p || q) && not(p&&q) // p,q : bool

}

function main() : console () {
print(from amb(xor))

}
Note how the result of flip is just typed as bool (even though
amb computations internally use a list monad of all possible
results). Furthermore, unlike languages like Haskell, we do
not need to explicitly lift expressions into a monad, or
explicitly bind computations using do notation. When we
evaluate main we get a list of all possible output values:
[False,True,True,False]. One can extend such mechanism to,
for example, return a histogram of the results, or to general
probabilistic results [16, 30].

Translation. It turns out we can use an automatic type
directed translation that translates a program with user-

1

defined effect types into a corresponding monadic program.
Internally, the previous example gets translated into:
function flip : list⟨bool⟩ {
[False,True]

}

function xor() : list⟨bool⟩ {
bind(flip(), fun(p) {

bind(flip(), fun(q) {
unit((p || q) && not(p&&q))

})})}

function main { print(xor()) }
Here we see how the unit and bind functions of the effect dec-
laration are used, where bind is inserted whenever a monadic
value is returned and passed the current continuation at that
point. Moreover, the to amb and from amb both behave like
an identity and are removed from the final monadic pro-
gram.

The capture of the continuation at every bind makes
monadic effects very expressive. For example, note that the
amb effect can cause subsequent statements to be executed
multiple times, i.e. once for every possible result. This is
somewhat dual to the built-in exception effect which can
cause subsequent statements to not be executed at all,
i.e. when an exception is thrown. As such, this kind of
expressiveness effectively let us take “control of the semi-
colon”.

Many useful library abstractions are effect polymorphic,
and they work seamlessly for monadic effects as well. In
particular, we do not need families of functions for different
monadic variants. For example, in Haskell, we cannot use
the usual map function for monadic functions but need to
use the mapM function (or a similar variant). In our system,
we can freely reuse existing abstractions:
function xor() : amb bool {

val [p,q] = [1,2].map(fun(_) { flip() })
(p || q) && not(p&&q)

}
Translating such effect polymorphic functions is subtle
though and, as we will discuss, requires dictionaries to be
passed at runtime.

The marriage of effects and monads. Wadler and Thie-
mann [35] show that any effectful computation can be
transposed to a corresponding monad. If JτK is the call-
by-value type translation of τ and Mu is the corresponding
monad of an effect u, they show how an effectful function
of type Jτ1 → u τ2K corresponds to a pure function with a
monadic type Jτ1K→ Mu⟨Jτ2K⟩. In this article, we translate
any effectful function of type Jτ1 →⟨u|ϵ⟩ τ2K, to the functionJτ1K→ ϵ Mu⟨ϵ, Jτ2K⟩. This is almost equivalent, except for the
ϵ parameter which represents arbitrary built-in effects like
divergence or heap operations. If we assume ϵ to be empty,
i.e. a pure function like in Wadler and Thiemann’s work,
then we have an exact match! As we shall see, due to the
non-monadic effects as an extra parameter, our monads are
effectively indexed- or poly-monads [14] instead of regular
monads.

Contributions. In the rest of the paper we treat each the
above points in depth and discuss the following contribu-
tions in detail:
• Using the correspondence between monads and effects [35],

we propose a novel system where you define the seman-
tics of an effect in terms of a first-class monadic value,

but you use the monad using a first-class effect type. We
build on the existing Koka type system [19] to incorpo-
rate monadic effects with full polymorphic and higher-
order effect inference.

• We propose (§ 3) a sound type directed monadic trans-
lation that transforms a program with effect types into
one with corresponding monadic types. This translation
builds on our earlier work on monadic programming in
ML [30] and automatically lifts and binds computations.
Moreover, relying on the monadic laws, and effect types
to guarantee purity of the primitives, the translation is
robust in the sense that small rewrites or changes to our
algorithm will not affect the final semantics of the pro-
gram.

• The original row-based polymorphic effect type inference
system for Koka [19] was created without monadic effects
in mind. It turns out that the system can be used as
is to incorporate monadic effects as well. Instead, the
translation is done purely on an intermediate explicitly
typed core calculus, λκu. This is a great advantage in
practice where we can clearly separate the two (complex)
phases in the compiler.

• In contrast to programming with monads directly (as in
Haskell), programming with monadic effects integrates
seamlessly with built-in effects where there is no need for
families of functions like map, and mapM , or other special
monadic syntax. Moreover, in contrast to earlier work by
Filinksi who showed how to embed monads in ML [9,
10], our approach is strongly typed with no reliance on
first-class continuations in the host language.

• In practice, you need to do a careful monadic transla-
tion, or otherwise there is the potential for code blowup,
or large performance penalties. We present (§ 4) how we
optimize effect polymorphic functions and report on var-
ious performance metrics using our Koka to JavaScript
compiler, which can run programs both in a browser as
well as on NodeJS [33].

• A restriction in this paper is that there can be at most
one monadic effect present in a type, e.g., we can have
many monadic effects in a program but we must use them
independently of each other and cannot compose them
automatically. In order to combine two monadic effects,
one needs to define a new effect that combines them ex-
plicitly. This is just like programming with monads in
Haskell where one needs to define explicitly how differ-
ent monads compose. Nevertheless, by building on ear-
lier work [30], we hope to extend our system in the fu-
ture to automatically insert morphisms between different
monadic effects.

2. Overview
Types tell us about the behavior of functions. For example,
the ML type int→ int of a function tells us that the function
is well defined on inputs of type int and returns values of
type int. But that is only one part of the story, the ML
type tells us nothing about all other behaviors: i.e. if it
accesses the file system perhaps, or throws exceptions, or
never returns a result at all.

In contrast, the type of a function in Koka is always
of the form τ→ ϵ τ ′ signifying a function that takes an
argument of type τ , returns a result of type τ ′ and may have
a side effect ϵ. Sometimes we leave out the effect and write

2

τ→ τ ′ as a shorthand for the total function without any side
effect: τ→ ⟨⟩ τ ′. A key observation on Moggi’s early work
on monads [23] was that values and computations should
be assigned a different type. Here we apply that principle
where effect types only occur on function types; and any
other type, like int, truly designates an evaluated value that
cannot have any effect1.

In contrast to many other effect systems, the effect types
are not just labels that are propagated but they truly de-
scribe the semantics of each function. As such, it is essential
that the basic effects include exceptions (exn) and diver-
gence (div). The deep connection between the effect types
and the semantics leads to strong reasoning principles. For
example, Koka’s soundness theorem [19] implies that if the
final program does not have an exn effect, then its execution
never results in an exception (and similarly for divergence
and state).

Example: Exceptions. Exceptions in Koka can be raised
using the primitive error function:
error : string → exn a
The type shows that error takes a string as an argument
and may potentially raise an exception. It returns a value
of any type! This is clearly not possible in a strongly typed
parametric language like Koka, so we can infer from this type
signature that error always raises an exception. Of course,
effects are properly propagated so the function wrong will
be inferred to have the exn type too:
function wrong() : exn int { error(”wrong”); 42 }
Exceptions can be detected at run-time (unlike divergence)
so we can discharge exceptions using the catch function:
function catch(action : () → exn a,

handler : exception → a) : a
To catch exceptions we provide two arguments: an action
that may throw an exception and an exception handler.
If action() throws an exception the handler is invoked,
otherwise the result of the action() is returned. In both cases
catch has a total effect: it always returns a value of type a.
For example, function pure always returns an int:
function pure() : int { catch(wrong, fun(err){ 0 }) }

Effect polymorphism. In reality, the type of catch is more
polymorphic: instead of just handling actions that can at
most raise an exception, it accepts actions with any effect
that includes exn:
function catch(action : () → ⟨exn | e⟩ a,

handler : exception → e a) : e a
The type variable e applies to any effect. The type expression
⟨exn | e⟩ stands for the effect row that extends the effect e
with the effect constant exn. Effectively, this type captures
that given an action that can potentially raise an exception,
and perhaps has other effects e, catch will handle that
exception but not influence any of the other effects. In
particular, the handler has at most effect e. For example,
the result effect of:
catch(wrong, fun(err) { print(err); 0 })

In contrast to Haskell for example, where Int really stands for
Int⊥, i.e. referring to a value of such type may still diverge or
raise an exception.

is console since the handler uses print. Similarly, if the
handler itself raises an exception, the result of catch will
include the exn effect:
catch(wrong, fun(err) { error(”oops”) })
Apart from exceptions Koka supplies more built-in effects:
we already mentioned div that models divergence; there
is also io to model interaction with input-output, ndet
to model non-determinism, heap operations through alloc,
read, and write, and the list goes on. For all built-in effects,
Koka supplies primitive operators that create (e.g. error,
random, print, etc) and sometimes discharge the effect (e.g.
catch, timeout, or runST).

The main contribution of this paper is how we extend
Koka so that the user can define her own effects, by specify-
ing the type and meaning of new effects and defining prim-
itive operations on them.

2.1. The ambiguous effect
Already in the introduction we saw how we could define and
use the ambiguous amb effect with flip and xor operations.
We will now discuss the definition and translation in more
detail. The amb effect was defined using an effect declara-
tion:
effect amb⟨a⟩ = list⟨a⟩ {

function unit(x : a) : list⟨a⟩ { [x] }
function bind(xs : list⟨a⟩, f : a → e list⟨b⟩) : e list⟨b⟩ {

xs.concatMap(f)
}

}
As we can see, defining the amb effect basically amounts to
defining the standard list monad, and is surprisingly easy,
especially if we remove the optional type annotations. Given
the above definition, a new effect type amb is introduced,
and we know:
1. how to represent (internally) ambiguous computations of

a values: as a list⟨a⟩
2. how to lift plain values into ambiguous ones: using unit,

and
3. how to combine ambiguous computations: using bind.
Moreover, with the above definition Koka automatically
generates the to amb and from amb primitives:
function to amb (xs : list⟨a⟩) : amb a
function from amb (action : () → amb a) : list⟨a⟩
that allow us to go from monadic values to effect types and
vice versa. These are basically typed versions of the reify and
reflect methods of Filinski’s monadic embedding [9]. Later
we discuss the more interesting effect of parsers (§ 2.3), but
before that, let’s discuss in more detail how we do a monadic
translation of effects.

2.2. Translating effects
Koka uses a type directed translation to internally translate
effectful to monadic code. As shown in the introduction, the
xor function is translated as:

function xor() : amb bool
{

val p = flip()
val q = flip()

(p || q) && not(p&&q)
}

⇝

function xor() : list⟨bool⟩
{

bind(flip(), fun(p) {
bind(flip(), fun(q) {

unit(
(p || q) && not(p&&q))

})})}

3

In particular, bind is inserted at every point where a monadic
value is returned, and passed the current continuation at
that point. Since flip has an ambiguous result, our type-
directed translation binds its result to a function that takes
p as an argument and similarly for q. Finally, the last line
returns a pure boolean value, but xor’s result type is am-
biguous. We use unit to lift the pure value to the ambiguous
monad. We note that in Koka’s actual translation, xor is
translated more efficiently using a single map instead of a
unit and bind.

The translation to monadic code is quite subtle and relies
crucially on type information provided by type inference.
In particular, the intermediate core language is explicitly
type à la System F (§ 3.1). This way, we compute effects
precisely and determine where bind and unit get inserted
(§ 3.3). Moreover, we rely on the user to ensure that the
unit and bind operations satisfy the monad laws [34], i.e.
that unit is a left- and right identity for bind, and that bind
is associative. This is usually the case though; in particular
because the effect typing discipline ensures that both unit
and bind are total and cannot have any side-effect (which
makes the translation semantically robust against rewrites).

2.2.1. Translating polymorphic effects
One of the crucial features of Koka is effect polymorphism.
Consider the function map
function map(xs : list⟨a⟩, f : (a) → e b) : e list⟨b⟩ {

match(xs) {
Nil → Nil
Cons(y, ys)→ Cons(f (y), map(ys,f))

}
}
The function map takes as input a function f with some
effect e. Since it calls f , map can itself produce the effect
e, for any effect e. This means we can use such existing
abstractions on user defined effects too:
function xor() {

val [p,q] = map([1,2], fun(_) { flip() })
(p || q) && not(p&&q)

}
Unfortunately, this leads to trouble when doing a type
directed translation: since the function passed to map has a
monadic effect, we need to bind the call f (y) inside the map
function! Moreover, since we can apply map to any monadic
effect, we need to be able to dynamically call the right bind
function.

The remedy is to pass Haskell-like dictionaries or monad
interfaces to effect polymorphic functions. In our case, a dic-
tionary is a structure that wraps the monadic operators bind
and unit. The dictionaries are transparent to the user and
are automatically generated and inserted. During the trans-
lation, every effect polymorphic function takes a dictionary
as an additional first argument. Figure 1 shows how the map
function gets translated.

Now that internally every effect polymorphic function
gets an extra dictionary argument, we need to ensure the
corresponding dictionary is supplied at every call-site. Once
again, dictionary instantiation is type-directed and builds
upon Koka’s explicitly typed intermediate core language.
Whenever a polymorphic effect function is instantiated with
a specific effect, the type directed translation automati-
cally inserts the corresponding dictionary argument. Fig-
ure 1 shows this in action when we call map inside the
xor function. We can still use map with code that has a

// source effectful code
function map(xs, f) {

match(xs) {
Nil → Nil
Cons(y, ys)→

val z = f (y)
val zs = map(ys, f)
Cons(z, zs)

}
}

function xor() {
val [p,q] =

map([1,2],
fun(_) { flip() })

(p || q) && not(p&&q)

}

// translated monadic code
function map(d : dict⟨e⟩, xs, f) {

match(xs) {
Nil → d.unit(Nil)
Cons(y, ys)→

d.bind(f (y), fun(z) {
d.bind(map(ys, f),

fun(zs) {
d.unit(Cons(z, zs)

})})}
}

function xor() {
dict amb.bind(

map(dict amb, [1,2],
fun(_) { flip() }),

fun([p,q]) {
dict amb.unit(
(p || q) && not(p&&q))

})
}

Figure 1. Dictionary translation of map and xor

non-monadic effect and in that case the translation will
use the the dictionary of the primitive identity monad, e.g.
map(dict id, [1,2], sqr).

A naive translation is not very efficient though: always
using the monadic version of map introduces a performance
penalty to all code, even code that doesn’t use any monadic
effect. As shown in § 4.1, we avoid this by careful transla-
tion. For every effect polymorphic function, we generate two
versions: one that takes a monad dictionary, and another
that has no monadic translation at all. When instantiating
map we use the efficient non-monadic version unless there
is monadic effect. This way the performance of code with
non-monadic effects is unchanged.

Being able to reuse any previous abstractions when using
monadic effects is very powerful. If we insert user-defined
effects to a function, only the type of the function changes.
Contrast this to Haskell: when inserting a monad, we need
to do a non-trivial conversion of the syntax to do notation,
but also we need to define and use monadic counterparts of
standard functions, like mapM for map.

2.2.2. Interaction with other effects
User defined effects can be combined with other effects.
However, in this paper we do not allow multiple user-defined
effects to be combined and in our implementation the type-
checker enforces this restriction via various checks. Com-
bining multiple monadic effects is for example described by
Swamy et al. [30], and generally requires morphisms between
different monads, which we leave as a future work.

For now we just consider how user-defined effects, like
amb, interact with built-in effects like state, divergence,
and exceptions. The formal semantics of Koka [19] are
unchanged in our system, and we define the semantics
of the user-defined effects simply as a monadic transfor-
mation. As such, if we viewed the effects as a stack of
monad transformers, the user defined effects would be last
with all built-in effects transforming it, i.e. something like
div⟨st⟨exn⟨amb⟨a⟩⟩⟩⟩. These semantics still require careful
compilation; for example, it is important when doing the

4

internal monadic translation to properly capture local vari-
ables in the continuation functions passed to bind.

Here is an example of a more subtle interaction: if we use
mutable variables in the ambiguity monad, we may observe
that computations run multiple times:
function strange() : amb bool {

var i := 0
val p = flip()
val q = flip()
i := i +1
if (i ≥ 4) then True else (p || q) && not(p&&q)

}
In this example, we define and increment the mutable vari-
able i. The function strange itself does not have a state-
ful effect (st⟨h⟩) because the mutability is not observable
from outside and can be discharged automatically through
Koka’s higher-ranked type system [17, 19]. However, exe-
cuting run(strange) results in [False,True,True,True] where
inside the body of strange we can observe that some state-
ments are executed multiple times. This shows the impor-
tance of strong typing: in an IDE one would see that the
flip() invocations have an amb effect that causes the fol-
lowing statements to potentially execute more than once.
This is similar for exceptions, where statements following
invocations of functions that may raise exceptions, may not
execute at all.

Under the monadic semantics, the interaction with built-
in effects is more or less what one would expect, with
one exception: the exception effect does not play nice with
certain user defined effects due to the (expected) lexical
scoping of catch. Exceptions interact with amb as expected,
but this is not the case in the context of the parser effect
and we discuss this further in the next section.

2.3. The parser effect
We conclude the overview with a more advanced example
in the form of monadic parsers. A parser can be defined
as a function that consumes the input string and returns a
list of (all possible) pairs of parsed tokens and the remain-
ing input: : string → list⟨(a,string)⟩. This representation
is quite standard but many other designs are possible [15,
20]. Since a parser is a function, it may have effects itself:
parsers can diverge or throw exceptions for example. This
means that we need to parameterize the parser effect with
two type parameters (instead of one):
effect parser⟨e,a⟩ = string → e list⟨(a,string)⟩ {

function unit(x) { return fun(s) { [(x,s)] } }
function bind(p, f) {

return fun(s) {
p(s).concatMap(fun(r) { f (r.fst)(r.snd) })

}}
}
Given the above definition, Koka automatically derives the
conversion functions:
function to parser(p : string → e list⟨(a,string)⟩)

: ⟨parser | e⟩ a
function from parser(action : () → ⟨parser | e⟩ a)

: e (string → e list⟨(a,string)⟩)
which can be used by the parser-library developer to build
primitive parsing operators as shown in Figure 2: parse that
takes a parsing computation and an input string and runs
the parser; succeed(x) that returns its argument x, without
consuming the input; satisfy(p) that parses the string iff

function parse(p : () → ⟨parser | e⟩ a, input : string
) : e list⟨(a,string)⟩

{
from parser(p)(input)

}

function succeed(x : a) : parser a {
to parser fun(input) { [(x,input)]

}

function satisfy(pred : (string) → maybe⟨(a,string⟩)) {
to parser fun(input) {

match(pred(input)) {
Just((x,rest))→ [(x,rest)]
Nothing → []

}}
}

function choice(p1 : () → ⟨parser | e⟩ a,
p2 : () → ⟨parser | e⟩ a) : ⟨parser | e⟩ a {

to parser fun(input) {
match (parse(p1,input)) {

Nil → parse(p2,input)
res → res

}}
}

Figure 2. Parser primitives

it satisfies p; and choice(p1, p2) that chooses between two
parsers p1 or p2.

Note how the effect e in from parser occurs both as
the effect of the function, but also in the returned parser
function. Essentially this is because we cannot distinguish
at the type level whether an effect occurs when constructing
the parser (i.e. before the first bind), or whether it occurs
when running the parser.

Having set up the parser effect and its primitives, we
can easily construct other parsers. For example, many(p) is
a parser that applies p zero or more times. A digit can be
parsed as a character where satisfy isDigit. Combining these
two, many(digit) gives a list of parsed digits.
function main(input : string) : div list⟨int, string⟩ {

parse(integer, input)
}

function integer() : ⟨parser,div⟩ int {
val ds = many(digit)
ds.foldl(0,fun(i,d) { i * 10 + d })

}

function digit() : parser int { satisfy(...) }

function many(p : () → ⟨parser,div | e⟩ a)
: ⟨parser,div | e⟩ list⟨a⟩ {

choice { Cons(p(),many(p)) } { succeed(Nil) }
}
Running main(”12a”) now results in [(12,”a”)]. Note also
how in the integer function we can very easily combine
parser results (many(digit)) with pure library functions
(foldl).

5

2.3.1. Interaction with exceptions
Because the parser monad is defined as function we need to
be careful on how exception handling is defined. Take for
example the following parser that may raise an exception:
function division() : ⟨parser,exn⟩ int {

val i = integer(); keyword(”/”); val j = integer()
if (j ==0) then error(”divide by zero”) else i/j

}
Suppose now that we catch errors on parsers, as in the
following safe version of our parser:
function safe() : parser int { catch(division, fun(err) { 0 }) }
If catch is implemented naively this would not work as
expected. In particular, if catch just wraps a native try -
catch block, then the exceptions raised inside division are
not caught: after the monadic translation, division would
return immediately with a parser function: only invoking
that function would actually raise the exception (i.e. when
the parser is run using parse). Effectively, the lexical scoping
expectation of the catch would be broken.

Our (primitive) catch implementation takes particular
care to work across monadic effects too. Since catch is
polymorphic in the effect, the type directed translation will
actually call the specific monadic version of catch and pass a
dictionary as a first argument. The primitive monadic catch
is basically implemented in pseudo-code as:
function catch monadic(d : dict⟨e⟩, action, handler) {

catch({ d.bind catch(action, handler) }, handler)
}
Besides catching regular exceptions raised when executing
action(), it uses the special bind catch method on the dic-
tionary that allows any user-defined effect to participate in
exception handling. This is essential for most effects that are
implemented as functions. For our parser, we can implement
it as:
effect parser⟨e,a⟩ = string → e list⟨(a,string)⟩ {
...
function bind catch(p, handler) {

fun(s) { catch({ p(s) }, fun(err) { handler(err)(s) }) }
}

}
With this implementation in place, the parser effect partic-
ipates fully in exception handling and the safe parser works
as expected, where any exception raised in division is han-
dled by our handler, i.e. the expression parse(safe,”1/0”)
evaluates to 0.

Here is the type of bind catch and its default implemen-
tation:
function bind catch(action : () → ⟨exn | e⟩ m⟨⟨exn | e⟩,a⟩,

handler : exception → e m⟨e,a⟩
) : e m⟨e,a⟩

{ catch(action,handler) }
In the above type we write m for the particular monadic
type on which the effect is defined. A nice property of this
type signature and default implementation is that Koka
type inferencer requires you to define bind catch, only when
needed for your particular monad. For example, the default
works as is for the amb effect since its monad disregards the
e parameter, but the default is correctly rejected by the type
checker for the parser since the signature of catch requires
the m⟨⟨exn | e,a⟩ to be unified with m⟨e,a⟩.

expressions e ::= xσ | cσ | e e
| λϵx : σ. e
| val xσ = e; e
| if e then e else e
| e [σ] | Λακ . e

types τκ ::= ακ type variable
| cκ0⟨τκ1

1 , ..., τκn
n ⟩ κ0 = (κ1,...,κn) → κ

kinds κ ::= ∗ | e values, effects
| k effect constants
| u user effects
| (κ1, ..., κn)→ κ type constructor

type scheme σ ::= ∀ακ. σ | τ∗

const () :: ∗ unit type
bool :: ∗ bool type
(_→__) :: (∗, e, ∗)→∗ functions
⟨⟩ :: e empty effect
⟨_ |_⟩ :: (k, e)→ e effect extension
exn, div :: k partial, divergent
user⟨_⟩ :: u→ k user effects
tdict⟨_⟩ :: e→∗ effect to universe

Syntactic sugar:
effects ϵ

.
= τ e

effect variables µ
.
= αe

closed effects ⟨l1, ..., ln⟩ .
= ⟨l1, ..., ln | ⟨⟩⟩

user effects lu .
= user⟨lu⟩

Figure 3. Syntax of explicitly typed Koka, λκu.

3. Formalism
In this section we formalize the type-directed translation
using an explicitly typed effect calculus we call λκu. First,
we present the syntax (§ 3.1) and typing (§ 3.2) rules for λκu.
Then, we formalize our translation (§ 3.3) from effectful to
monadic λκu. Finally, we prove soundness (§ 3.4) by proving
type preservation of the translation.

3.1. Syntax
Figure 3 defines the syntax of expressions and types of λκu,
a polymorphic explicitly typed λ-calculus. It is very similar
to System F [12, 27] except for the addition of effect types.

Expressions. λκu expressions include typed variables xσ,
typed constants cσ, λ-abstraction λϵx : σ. e, application e e,
value bindings val xσ = e; e, if combinators if e then e else e,
type application e [σ] and type abstraction Λακ . e. Note
that each value variable is annotated with its type and each
type variable is annotated with its kind. Finally, each λ-
abstraction λϵx : σ. e is annotated with its result effect ϵ
which is necessary to check effect types.

As an aside, often in strict languages one distinguishes
between values and expressions, where type abstraction and
application can only range over value expressions. In our
setting, we do not have to do this since we rely on the
Koka type checker to guarantee that we only generalize over
expressions with a total effect (and there is no need for the
‘value restriction’ [19]).

Types and type schemes. Types consist of explicitly
kinded type variables ακ and application of constant type
constructors cκ0⟨τκ1

1 , ..., τκn
n ⟩, where the type constructor

c has the appropriate kind κ0 = (κ1, ..., κn)→ κ. We do

6

(T-Con) ⊢ cσ : σ
(T-Var) ⊢ xσ : σ

(T-TLam)
⊢ e : σ

⊢ Λακ. e : ∀ακ. σ
(T-TApp)

⊢ e : ∀α. σ
⊢ e[τ] : σ[α 7→ τ]

(T-Lam)
⊢ e : τ2

⊢ λϵx : τ1. e : τ1 → ϵ τ2

(TApp)
⊢ e1 : τ1 → ϵ τ2 ⊢ e2 : τ1

⊢ e1 e2 : τ2

(T-Val)
⊢ e1 : σ1 ⊢ e2 : σ2

⊢ val x = e1; e2 : σ2

(T-If)
⊢ e : bool ⊢ e1 : σ ⊢ e2 : σ

⊢ if e then e1 else e2 : σ

Figure 4. Type rules for explicitly typed Koka.

not provide special syntax for function types, as they can
be modeled by the constructor (_ → __) :: (∗, e, ∗) → ∗
that, unlike the usual function type, explicitly reasons for
the effect produced by the function. Finally, types can be
qualified over type variables to yield type schemata.

Kinds. Well-formedness of types is guaranteed by a simple
kind system. We annotate the type τ with its kind κ, as τκ.
Apart from the usual kinds ∗ and →, we have kinds for
effect rows (e), effect constants (k), and user-defined effects
(u). We omit the kind κ of the type τκ, and write τ , when κ
is immediately apparent or not relevant. For clarity, we use
α for regular type variables and µ for effect type variables.
Finally, we write ϵ for effects, i.e. types of kind e.

Effects. Effects are types. Effect types are defined as a row
of effect labels l. Such effect row is either empty ⟨⟩, a poly-
morphic effect variable µ, or an extension of an effect row ϵ
with an effect constant l, written as ⟨l|ϵ⟩. Effect constants are
either built-in Koka effects, i.e. anything that is interesting
to our language like exceptions (exn), divergence (div) etc.
or lifted user-defined monadic effects like the ambiguous ef-
fect ambu :: u. Note that for an effect row to be well-formed
we use the user effect function to lift user⟨ambu⟩ :: k to the
appropriate kind k. For simplicity, in the rest of this sec-
tion we omit the explicit lifting and write ambu to denote
user⟨ambu⟩ when a label of kind k is expected.

Finally, Figure 3 includes definition of type constants and
syntactic sugar required to simplify the rest of this section.

Type rules. Figure 4 describes type rules for λκu where
the judgment ⊢ e : σ assigns type σ for an expression e.
All the rules are equivalent to the System F rules, except
for rule (Lam) where the effect of the function in the type
is drawn from the effect annotation in the λ-abstraction.
Just like System F, there is the implicit assumption that
under a lambda λϵx : σ. e (1) all (bound) occurrences of x
are typed as xσ, and (2) in all applications (App) the effect
is ϵ, i.e. e1 : σ1 → ϵ σ. By construction, the Koka type
inference rules always produce well-formed λκu. Soundness
of λκu follows from soundness of Koka as described in [19].

3.2. Type inference for effect declarations
The effect- and type- inference of Koka is presented in
previous work [18, 19]. Here we look specifically at how type
inference works for effect declarations.

The Identity Effect. Before we look at the general type
inference rule for effect declarations (Figure 5) we start with
a concrete example, namely the identity effect uid:
effect uid⟨e,a⟩ = a {

function unit(x) { x }
function bind(x,f) { f (x) }

}
From the above effect definition, initially, Koka generates a
type alias that isolates the first line of the definition and
relates the effect name with its monadic representation.

alias Muid⟨ϵ, α⟩ = α
Then, Koka checks well-formedness of the effect defini-

tion, by (type-) checking that unit and bind are the appro-
priate monadic operators. Concretely, it checks that

unit : ∀αµ. α→ µ Muid⟨µ, α⟩
bind : ∀αβµ. (Muid⟨µ, α), α→ µ Muid⟨µ, β⟩)→ µ Muid⟨µ, β⟩

Given the definitions of unit and bind, Koka automatically
constructs the primitives required by the rest of the program
to safely manipulate the identity effect:
• uidu – the effect constant that can be used inside types,
• touid : ∀αµ. (Muid⟨µ, α⟩)→ ⟨uid|µ⟩ α – the function that

converts monadic computations to effectful ones,
• fromuid : ∀αβµ. (() → ⟨uid|µ⟩ α) → µ Muid⟨µ, α⟩ – the

dual function that converts effectful function to their
monadic equivalent, and finally,

• dictuid – the (internal) effect dictionary that stores uid’s
monadic operators.

Dictionaries. The first three values are user-visible but the
final dictionary value is only used internally during the
monadic translation. The type of the effect dictionary (e.g.
dictuid), is a structure that contains the monadic operators
unit and bind of the effect. It can as well include the monadic
map which will otherwise be automatically derived from unit
and bind, and the bindcatch method to interact with primi-
tive exceptions. Thus, we define the dictionary structure as
a type that is polymorphic on the particular monad, repre-
sented as type variable m :: (e, ∗)→∗:
struct tdict⟨m⟩ {

unit : ∀αµ. α→ µ m⟨µ, α⟩
map : ∀αβµ. (m⟨µ, α⟩, α→ β)→ µ m⟨µ, β⟩
bind : ∀αβµ. (m⟨µ, α⟩, α→ µ m⟨µ, β⟩)→ µ m⟨µ, β⟩
bindcatch : ∀αµ. (m⟨⟨exn|µ⟩, α⟩⟩, exc → µ m⟨µ, α⟩)→ µ m⟨µ, α⟩

}

With this we can type dictuid : tdict⟨Muid⟩.
General user-defined effects. Figure 5 generalizes the pre-

vious concrete example to any user-defined effect declara-
tion. The judgment:
Γ ⊢ effect eff⟨µ, α⟩ = τ⟨µ, α⟩ { unit = e1; bind = e2 } : Γ′

states that under a kind- and type- environment Γ, the effect
declaration eff results in a new type environment Γ′ that is
extended with the needed types and primitives implied by
eff. As shown in Figure 5, we first check well-formedness
of the effect types, and then check that unit and bind
operations have the proper types. Finally, the environment
is extended with the corresponding types and values.

3.3. Type-directed monadic translation
Next we define the type-directed monadic translation e⇝ϵ e′ | υ
that takes an effect expression e to the monadic expression
e′.

7

(Eff)

Γ, µe, α∗ ⊢k τ :: ∗ Γ′ = Γ, Meff⟨µ, α⟩ = τ

Γ′ ⊢ e1 : ∀αµ. α→ µ Meff⟨µ, α⟩
Γ′ ⊢ e2 : ∀µαβ. (Meff⟨µ, α⟩, α→ µ Meff⟨µ, β⟩)→ µ Meff⟨µ, β⟩

Γ ⊢ effect eff⟨µ, α⟩ = τ { unit = e1; bind = e2 } :

Γ′, effu, edicteff : tdict⟨Meff⟩
toeff : ∀αµ. (Meff⟨µ, α⟩)→ ⟨eff|µ⟩ α,
fromeff : ∀αβµ. (()→ ⟨eff|µ⟩ α)→ µ Meff⟨µ, α⟩

Figure 5. Type rule for effect declarations.

bindυ
⟨⟩(ϵ, e1, x, e2) = val x = e1; e2

bind⟨⟩
υ (ϵ, e1, x, e2) = dictυ.map ⟨τ1, τ2, ϵ⟩(e1, λ⟨⟩ x : τ1. e2)

with ⊢ e1 : mon⟨υ, ϵ, τ1⟩, ⊢ e2 : τ2

bindυ
υ(ϵ, e1, x, e2) = dictυ.bind⟨τ1, τ2, ϵ⟩(e1, λϵ̃ x : τ1. e2)

with ⊢ e1 : mon⟨υ, ϵ, τ1⟩, ⊢ e2 : mon⟨υ, ϵ, τ2⟩

liftυυ(ϵ, e) = e
liftυ⟨⟩(ϵ, e) = dictυ.unit⟨τ, ϵ⟩(e) where υ ̸= ⟨⟩, ⊢ e : τ

Figure 6. Helper functions for binding and lifting.

Computed effects. Our translation needs two effects ϵ
and υ: the maximum (inferred) effect ϵ and the minimum
(computed) effect υ. After type inference, every function
body has one unified effect ϵ, that consists of the unification
of all the effects in that function. Our translation computes
bottom-up the minimal user-defined portion of each separate
sub-expression, where υ should always be contained in ϵ.
Specifically, we define computed effects υ as effect types ϵ
that have the following grammar:
υ ::= ⟨lu⟩ | ⟨⟩| µ
Note that in this work we do not allow more that one user-
defined effects to co-exist, but we defer this to future work
(§ 6). We can convert a regular effect type ϵ to a computed
effect ϵ, and dually, we apply ϵ̃ to an effect ϵ to remove the
user defined effects:
⟨lu| ϵ⟩ = ⟨lu⟩ if ϵ = ⟨⟩ ˜⟨lu| ϵ⟩ = ϵ

⟨lκ| ϵ⟩ = ϵ if κ ̸= u ˜⟨lκ| ϵ⟩ = ϵ̃

⟨⟩ = ⟨⟩ ⟨̃⟩ = ⟨⟩
µ = µ µ̃ = µ

Constraining the minimum computed effects greatly simpli-
fies effect operations. We can add computed effects as:
⟨⟩ ⊕ ⟨⟩ = ⟨⟩
⟨⟩ ⊕ υ = υ
υ ⊕ ⟨⟩ = υ
υ ⊕ υ = υ

Type translation. Our translation transforms effectful- to
monadic expressions and changes the return types in the
process. The functionJακK = ακJτ→ ϵ τ ′K = JτK → ϵ̃ mon⟨ϵ, ϵ, Jτ ′K⟩Jcκ⟨τ1, . . . , τn⟩K = cκ⟨Jτ1K, . . . , JτnK⟩ with c ̸= →J∀ακ . σK = ∀ακ . JσK with κ ̸= eJ∀αe . σK = ∀αe . tdict⟨αe⟩ → ⟨⟩JσK
mon⟨⟨⟩, ϵ, τ⟩ = τ
mon⟨⟨lu⟩, ⟨lu|ϵ⟩, τ⟩ = Ml⟨ϵ, τ⟩
mon⟨µ, ϵ, τ⟩ = (evaluated at instantiation)

The mon operation derives a monadic result type and effect.
This cannot be computed though for polymorphic effect
types since it is not known whether it will be instantiated
to a built-in effect or user-defined effect. We therefore keep
this type unevaluated until instantiation time. As such, it
is really a dependent type. In our case, this is a benign
extension to λκu since λκu is explicitly typed. There is one
other dependent type for giving the type of a polymorphic
dictionary (see Figure 7):
tdict⟨⟨⟩⟩ = tdict⟨Muid⟩
tdict⟨⟨lu⟩⟩ = tdict⟨Ml⟩
tdict⟨µ⟩ = ... (evaluated at instantiation)
Given the type translation function J·K we can now also
derive how the to eff and from eff functions are inter-
nally implemented. If we apply type translation to their
signatures, we can see that both become identity func-
tions. For example, the type translation type of to eff isJMeff⟨ϵ, α⟩→ ⟨eff|ϵ⟩αK which is equivalent to Meff⟨ϵ, α⟩→ ϵ Meff⟨ϵ, α⟩,
i.e. we can implement to eff simply as λx. x. Similarly,
from eff is implemented as λf. f().

Monadic Abstractions. Figure 6 defines two syntactic
abstractions that are used by our translation to bind and
lift effect computations.
• liftυt

υs(ϵ, e) lifts the expression e from the source υs to the
target υt computed effect. If the computed effects are
different υs ̸= υt the lifting is performed via a call to the
unit field of the dictionary of the target effect dictυt . Note
that the monadic unit operator is effect polymorphic thus
lift is also parametric on an effect ϵ :: e that we use to
instantiate the effect variable of unit.

• bindυ
υx(ϵ, ex, x, e) binds the expression ex to the variable

x that appears in e. The expression ex (resp. e) has
computed (minimum) effect υx (resp. υ) and ϵ is the
combined (maximum) effect of the binding. If ex does
not have any computed effect binding is simply a val-
binding, otherwise binding is performed via a call in the
bind field of the dictionary of the target effect dictυx .

As an optimization, if υ = ⟨⟩ our system uses the monadic
map instead of lifting ϵ to υ and using bind. As in lift the
combined effect ϵ is used to instantiate the effect variable of
the monadic operators. This particular optimization is sim-
ilar to the ones used to avoid unnecessary “administrative”
redexes, which customary CPS-transform algorithms go to
great lengths to avoid [8, 28].

3.3.1. Monadic Translation
Finally we can define the translation relation e⇝ϵ e′ | υ as
shown in Figure 7, where ϵ is inherited and υ synthesized.

Values. Values have no effect, and compute ⟨⟩. Rules
(Con) and (Var) are simple: they only translate the type
of the expression and leave the expression otherwise un-

8

Translation e ⇝ϵ e | υ

(Con) cσ ⇝ϵ cJσK | ⟨⟩ (Var) xσ ⇝ϵ xJσK | ⟨⟩
(Lam)

e ⇝ϵ e′ | υ
λϵx : σ. e ⇝ϵ0 λ̃ϵx : JσK. liftϵυ(ϵ, e′) | ⟨⟩

(TLam)
e ⇝ϵ e′ | ⟨⟩ κ ̸= e

Λακ. e ⇝ϵ Λακ. e′ | ⟨⟩ (TLam-E)
e ⇝ϵ e′ | ⟨⟩

Λµ. e ⇝ϵ Λµ.λ⟨⟩dictµ : tdict⟨µ⟩. e′ | ⟨⟩

(TApp)
e ⇝ϵ e′ | ⟨⟩ κ ̸= e

e[τκ] ⇝ϵ e′ [JτκK] | ⟨⟩ (TApp-E)
e ⇝ϵ e′ | ⟨⟩

e[ϵ′] ⇝ϵ e′[Jϵ′K] dictJϵ′K | ⟨⟩

(App)
e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2 e1 ↓ υ3 υ = υ1 ⊕ υ2 ⊕ υ3

e1 e2 ⇝ϵ bindυ
υ1
(ϵ, e′1, f, bindυ

υ2
(ϵ, e′2, y, liftυυ3

(ϵ, f y))) | υ

(Val)
e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2

val x = e1; e2 ⇝ϵ bindυ2
υ1
(ϵ, e′1, x, e′2) | υ1 ⊕ υ2

(If)
e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2 e3 ⇝ϵ e′3| υ3 υ = υ1 ⊕ υ2 ⊕ υ3

if e1 then e2 else e3 ⇝ϵ bindυ
υ1
(ϵ, e′1, y, if y then liftυυ2

(ϵ, e′2) else liftυυ3
(ϵ, e′3)) | υ

Figure 7. Basic translation rules. Any f and y are assumed fresh.

(Opt-TApp)
⊢ e : ∀µ, α1, ..., αm. σ1 → ⟨l1, ..., ln|µ⟩ σ2

e[ϵ, α1, ..., αm] ↓ ⟨l1, ..., ln⟩

(Opt-Default)
⊢ e : σ1 → ϵ σ2

e ↓ ϵ

Figure 8. Computing minimal effects of function expres-
sions.

changed. In rule (Lam) we see that when translating λϵx : σ. e
the type σ of the parameter is also translated. Moreover, the
effect ϵ dictates the maximum effect in the translation of the
body e. Finally, we lift the body of the function from the
computed minimum effect to ϵ.

Type Operations. Type abstraction and application pre-
serve the computed effect of the wrapped expression e –
since the Koka type system guarantees that type abstrac-
tion only happens over total expressions, the computed ef-
fect is always ⟨⟩ in these rules. In (TLam-E) we abstract over
an effect variable µ, thus we add an extra value argument,
namely, the dictionary of the effect that instantiates µ, i.e.
dictµ : tdict⟨µ⟩. Symmetrically, rule (TApp-E) that trans-
lates application of the effect ϵ′ also applies the dictionary
dictϵ′ : tdict⟨ϵ′⟩ of the effect ϵ′. Note that if the computed
effect ϵ′ is a user-defined effect, say amb, then the rule di-
rectly applies the appropriate dictionary dictamb, that is the
dictionary value Koka created from the amb effect defini-
tion. If the computed effect ϵ′ is an effect variable µ, then
the rule directly applies the appropriate dictionary dictµ,
that is the variable abstracted by a rule (TLam-E) lower in
the translation tree. The final case is the computed effect
ϵ′ to be the empty effect ⟨⟩, in that case the dictionary of
the identity effect dictuid is applied. This is because in the
computed effects world the total effect ⟨⟩ is the identity ef-
fect uid. But in our rules we used the ⟨⟩ effect as it is more
intuitive.

Application. The rule (App) translates the application
e1 e2. The minimal computed effect of the application is
the union of the computed effects of the function e1 (that is
υ1), the argument e2 (that is υ2) and the computed effect
of the body of the the function. The maximum effect of the
function is ϵ but using this maximum effect would lead to
unoptimized translation, since every application would be
unnecessarily lifted to its maximum effect. For example, if
we wrote:
choose(id([False,True]))
then the unified effect for the id application would be amb
and we would unnecessarily pass an amb dictionary to id
and bind the result.

As an optimization, we compute the minimal effect as
e1 ↓ υ3, which is presented in Figure 8. In this example, we
can apply (Opt-TApp) and use a fully pure invocation of the
id([False,True]) sub-expression. As it turns out, in practice
this optimization is very important and saves much unnec-
essary binding, lifting, and passing of dictionaries. Since a
row-based effect system like Koka uses simple unification,
all sub expressions get unified with the final type. With this
optimization we basically recover some of the subtyping but
we can do it separately from the initial type inference. This
is important in practice as we can now clearly separate the
two complex phases and keep using simple unification during
type inference.

Finally, the rule (Val) translates val-binding val x =
e1; e2 by binding e1 to x in e2. Similarly, the rule (If)
translates if e1 then e2 else e3 by first binding e1 to a fresh
variable x, since e1 may have user-defined effects and then
lifting both branches to the computed effect υ that is the
union of the computed effects of the guard υ1 and the two
branches υ2 and υ3.

9

3.4. Soundness
From previous work on type inference for Koka [19] we have
that the resulting explicitly typed Koka is well-typed, i.e.
Lemma 1. (Explicit Koka is well-typed)
If Γ ⊢ k : σ | ϵ⇝ e then ⊢ e : σ.
Here, the relation Γ ⊢ k : σ | ϵ⇝ e is the type inference
relation defined in [19] where the source term k gets type σ
with effect ϵ and a corresponding explicitly typed term e.
The new part in this paper is that our translation preserves
types according to the J·K type translation:
Theorem 1. (Type Preservation)
If ⊢ e : σ and e ⇝ϵ e′ | ⟨⟩, then ⊢ e′ : JσK.
Proof. In the supplementary material we give a proof of
soundness for a more general Theorem 3 (General Type
Preservation): if ⊢ e : σ and e ⇝ϵ e′ | υ, then ⊢ e′ :
mon⟨υ, ϵ, JσK⟩. Theorem 1 follows as a direct implication for
a computed effect υ = ⟨⟩. □
This is a strong property since Koka has explicit effect types,
i.e. it is not possible to have a typed translation simply
by using ⊥, and as such it gives high confidence in the
faithfulness of the translation. This is related to the types of
bind and unit for example which are both guaranteed to be
total functions (since they are polymorphic in the effect).

4. Implementation
We implemented monadic user-defined effects in Koka
and the implementation is available at koka.codeplex.com.
Koka’s compiler is implemented in Haskell and it transforms
Koka source code to JavaScript:
• The compiler takes as input Koka source code as specified

in [19].
• Next, it performs type inference and transforms the

source code the Koka’s intermediate representation
which is very similar to λκu of Figure 3.

• Then, it applies the translation rules of Figure 7, i.e. it
uses the inferred types and effects to apply our effect to
monadic translation.

• Finally, the monadic intermediate Koka is translated to
JavaScript.

The goal of our implementation is to build a sound, com-
plete, and efficient translation with minimum run-time over-
head. We get soundness by § 3.4, and in § 4.2 we discuss
that the translation is complete, modulo the monomorphic
restriction. Moreover (§ 4.1), our translation is optimized to
reduce any compile- and run-time overhead as far as possi-
ble. We conclude this section by a quantitative evaluation
(§ 4.3) of our translation.

4.1. Optimizations
We optimized the translation rules of Figure 7 with three
main optimization rules: only translate when necessary, gen-
erate multiple code paths for effect polymorphic functions,
and use monadic laws to optimize bind structures.

Selective Translation. We observed that most of the func-
tions are user-defined effect free. A function is user-defined
effect free when (1) it does not generate user-defined effects,
(2) it is not effect polymorphic (as any abstract effect can be
instantiated with a user-defined one), and (3) all the func-
tions that calls or defines are user-defined effect free.

before translation after translation percentage increase
lines bytes lines bytes lines bytes
2678 89038 3248 121668 21.28 % 36.65%

Figure 9. Code size of Koka’s library before and after
translation.

A user-defined effect free function is translated to itself.
Thus our first optimization is to skip translation of such
functions. This optimization is crucial in code that does not
make heavy use of user-defined effects. As it turns out, 229
out of 287 Koka library functions are not translated!

Two versions of effect polymorphic functions. The trans-
lation rule (TApp-E) is quite inefficient when the applied
effect ϵ is not user-defined: the identity dictionary is applied
and it is used to perform identity monadic operators. User-
defined effect free functions are the common case in Koka
code, and as such they should not get polluted with identity
dictionaries.
As an optimization, when translating an effect polymorphic
function we create two versions of the function:
• the monadic version, where the effect variables can be

instantiated with user-defined effects, thus insertion of
monadic operators (unit and bind) and thus the addition
of the monadic dictionary is required, and

• the non-monadic version, where the effect variables can-
not be instantiated with user-defined effects, thus the
monadic dictionary is not required.

To soundly perform this optimization we use an environment
with the effect variables that cannot be instantiated with
user-defined effects, which is used as a proof that insertion
of monadic operators is not required.
Non-monadic versions are translated, but using the effect
environment that constraints their effect variables to non-
user effects. Still translation is required as these functions
may use or produce user-defined effects. Though, in practice
translation of non-monadic versions of functions is non-
required and optimized by our previous optimization. It
turns out that in Koka’s library there are 58 polymorphic
functions for which we created double versions. None of the
non-monadic version requires translation.

Monadic Laws. As a final optimization we used the
monadic laws to produce readable and optimized JavaScript
code. Concretely, we applied the following three equivalence
relations to optimize redundant occurrences:
bind(unit x, f) ≡ f x
bind(f, unit x) ≡ f x
map(unit x, f) ≡ unit (f x)

4.2. The Monomorphism Restriction
The Monomorphism Restriction restricts value definitions to
be effect monomorphic. Consider the following program
function poly(x : a, g : (a) → e b) : e b
val mr = if (expensive() ≥ 0) then poly else poly
How often is expensive() executed? The user can naturally
assume that the call is done once, at the initialization of
mr. But, since mr is effect polymorphic (due to poly), our
translation inserts a dictionary argument. Thus, the call is
executed as many times as mr is referenced. To avoid this
situation the Koka compiler rejects such value definitions,
similar to the monomorphism restriction of Haskell. Aside

10

http://koka.codeplex.com/

static time file size
program compile trans. time trans. % lines

amb 107 ms 2.795 ms 2.60 % 67
parser 89 ms 2.582 ms 2.88 % 72
async 117 ms 3.155 ms 2.67 % 166
core 6057 ms 16.424 ms 0.27 % 2465

Figure 10. Quantitative evaluation of static time for user-
defined effects.

from this restriction, our translation is complete, i.e., we
accept and translate all programs that plain Koka accepts.

4.3. Evaluation
Finally, we give a quantitative evaluation of our approach
that allows us to conclude that monadic user-defined effects
can be use to produce high quality code without much
affecting the compile- or running-time of your program.

In Figure 10 we present the static metrics and the file
size of our four benchmarks: (1) amb manipulates boolean
formulas using the ambiguous effect, (2) parser parses words
and integers from an input file using the parser effect, (3)
async interactively processes user’s input using the asyn-
chronous effect, and (4) core is Koka’s core library that we
translate so that all library’s functions can be used in ef-
fectful code. On these benchmarks we count the file size in
lines, the total compilation time, the translation time and
we compute the percentage of the compilation time that is
spent on translation. The results are collected on a machine
with an Intel Core i5.

Static Time. As Figure 10 suggests the compile-time
spend in translation is low (less that 3% of compilation
time). More importantly, the fraction of the time spend
in translation is minor in code that does not use monadic
effects, mostly due to our optimizations (§ 4.1).

Run Time. To check the impact of our translation on run-
time we created “monadic” versions of our examples, i.e. a
version of the amb that uses lists instead of the amb effect
and a version of the parser that uses a parser data type. We
observed that our monadic translation does not have any
run-time cost mostly because it optimizes away redundant
calls (§ 4.1).

Thus, we conclude that our proposed abstraction pro-
vides better quality of code with no run-time and low static-
time overhead.

5. Related work
The problems with arbitrary effects have been widely rec-
ognized, and there is a large body of work studying how to
delimit the scope of effects. There have been many effect
typing disciplines proposed. Early work is by Gifford and
Lucassen [11, 21] which was later extended by Talpin [32]
and others [24, 31]. These systems are closely related since
they describe polymorphic effect systems and use type con-
straints to give principal types. The system described by
Nielson et al. [24] also requires the effects to form a com-
plete lattice with meets and joins. Wadler and Thiemann [35]
show the close connection between monads [23, 34] and the
effect typing disciplines.

Java contains a simple effect system where each method
is labeled with the exceptions it might raise [13]. A system
for finding uncaught exceptions was developed for ML by
Pessaux et al. [25]. A more powerful system for tracking
effects was developed by Benton [5] who also studies the

semantics of such effect systems [6]. Recent work on effects
in Scala [29] shows how restricted polymorphic effect types
can be used to track effects for many programs in practice.

Marino et al. created a generic type-and-effect system
[22]. This system uses privilege checking to describe ana-
lytical effect systems. Their system is very general and can
express many properties but has no semantics on its own.
Banados et al. [2] layer a gradual type system on top this
framework. This may prove useful for annotating existing
code bases where a fully static type system may prove too
conservative.

This paper relies heavily on a type directed monadic trans-
lation. This was also described in the context of ML by
Swamy et al. [30], where we also showed how to combine
multiple monads using monad morphisms. However, Koka
we use row-polymorphism to do the typing, while our previ-
ous paper used subtyping. A problem with subtyping is that
the inferred types can be difficult to understand. For exam-
ple, in an η-robust version, the type inferred for function
composition in [30] is:

∀a b c µ1 µ2 µ3 µ4 µ. (µ1 ≥ µ,µ2 ≥ µ) ⇒
(b → µ2 c)→ µ3 (a → µ1 b)→ µ4 (a → µ c)

which is much harder to read than the type inferred in Koka:

∀⟨a, b, c, ϵ⟩ (b → ϵ c, a → ϵ b)→ ϵ c

where no constraints are present. Just as in our system, there
is also at most one monad, but you can define the morphisms
between monads. However, that means that you may need
to define many combinations of smaller monads. For Koka,
we wanted fine-grained effect control with effects like div,
exn, read⟨h⟩ etc. This would be a problem when users need
to define all combinations with their user defined monad (so
in [30] we conveniently made all those basic effects part of
the basic Id or ML monad).

A similar approach to [30] is used by Rompf et al. [28] to
implement first-class delimited continuations in Scala which
is essentially done by giving a monadic translation. Similar
to our approach, this is also a selective transformation; i.e.
only functions that need it get the monadic translation.
Both of the previous works are a typed approach where the
monad is apparent in the type. Early work by Filinksi [9,
10] showed how one can embed any monad in any strict
language that has mutable state in combination with first-
class continuations (i.e. callcc). This work is untyped in the
sense that the monad or effect is not apparent in the type.

Algebraic effect handlers described by Plotkin et al. [26]
are not based on monads, but on an algebraic interpreta-
tion of effects. Even though monads are more general, al-
gebraic effects are still interesting as they compose more
easily. Bauer and Pretnar describe a practical programming
model with algebraic effects [3] and a type checking sys-
tem [4]. Even though this approach is quite different than
the monadic approach that we take, the end result is quite
similar. In particular, the idea of handlers to discharge ef-
fects, appears in our work in the form of the from primitives
induced by an effect declaration.

Many languages have extensions to support a particular
effect or monad. For example, both C# [7] and Scala [1]
have extensions to make programming with asynchronous
code more convenient using await and async keywords. In
those cases, the compiler needs to be significantly extended
to generate state machines under the hood. Similarly, many
languages have special support for iterators which can be
implemented using a list-like monad.

11

6. Conclusion & Future Work
Using the correspondence between monads and effects [35],
we have shown how you can define the semantics of an effect
in terms of a first-class monadic value, but you can use the
monad using a first-class effect type. We provide a prototype
implementation that builds on top of Koka’s type- and effect
inference system.

As future work we would like take the work on monadic
programming in ML [30] and explore how multiple user-
defined effects can co-exist and how to automatically infer
the morphisms between them. Furthermore, we would like
to apply the existing system to program larger real-world
applications, like an asynchronous web server.

In “The essence of functional programming” [34], Wadler
remarks that “by examining where monads are used in the
types of programs, one determines in effect where impure
features are used. In this sense, the use of monads is similar
to the use of effect systems”. We take the opposite view: by
examining the effect types one can determine where monads
are to be used. In Wadler’s sense of the word, the essence of
effectful programming is monads.

References

[1] Scala async proposal. 2013. URL http://docs.scala-
lang.org/sips/pending/async.html.

[2] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tan-
ter. A theory of gradual effect systems. In ICFP, 2014.
doi:10.1145/2628136.2628149.

[3] Andrej Bauer and Matija Pretnar. Programming with
algebraic effects and handlers. CoRR, 1203.1539, 2012. URL
http://arxiv.org/abs/1203.1539.

[4] Andrej Bauer and Matija Pretnar. An effect system for
algebraic effects and handlers. Logical Methods in Computer
Science, 10 (4), 2014. doi:10.2168/LMCS-10(4:9)2014.

[5] Nick Benton and Peter Buchlovsky. Semantics of
an effect analysis for exceptions. In TLDI, 2007.
doi:10.1145/1190315.1190320.

[6] Nick Benton, Andrew Kennedy, Lennart Beringer, and Mar-
tin Hofmann. Relational semantics for effect-based program
transformations with dynamic allocation. In PPDP, 2007.
doi:10.1145/1273920.1273932.

[7] Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik
Meijer, and Mads Torgersen. Pause ‘N’ Play: Formalizing
asynchronous C#. In ECOOP, 2012. doi:10.1007/978-3-
642-31057-7_12.

[8] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On
one-pass cps transformations. J. Funct. Program., 17 (6):
793–812, November 2007. doi:10.1017/S0956796807006387.

[9] Andrzej Filinski. Representing monads. In POPL, 1994.
[10] Andrzej Filinski. Controlling effects. Technical report, U.S.

Dept. of Labor, OSHA, 1996.
[11] David K. Gifford and John M. Lucassen. Integrating

functional and imperative programming. In LFP, 1986.
doi:10.1145/319838.319848.

[12] Jean-Yves Girard. The System F of variable types, fifteen
years later. TCS, 1986. doi:10.1016/0304-3975(86)90044-7.

[13] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. 1996.

[14] Michael Hicks, Gavin Bierman, Nataliya Guts, Daan Leijen,
and Nikhil Swamy. Polymonadic programming. In MSFP,
2014.

[15] Graham Hutton and Erik Meijer. Monadic parser combina-
tors. Technical Report NOTTCS-TR-96-4, Dept. of Com-
puter Science, University of Nottingham, 1996.

[16] Oleg Kiselyov and Chung-chieh Shan. Embedded proba-
bilistic programming. In Domain-Specific Languages. 2009.
doi:10.1007/978-3-642-03034-5_17.

[17] John Launchbury and Amr Sabry. Monadic state:
Axiomatization and type safety. In ICFP, 1997.
doi:10.1145/258948.258970.

[18] Daan Leijen. Koka: Programming with row-polymorphic
effect types. Technical Report MSR-TR-2013-79, Microsoft
Research, 2013.

[19] Daan Leijen. Koka: Programming with row polymorphic
effect types. In MSFP, 2014. doi:10.4204/EPTCS.153.8.

[20] Daan Leijen and Erik Meijer. Parsec: Direct style monadic
parser combinators for the real world. Technical Re-
port UU-CS-2001-27, Universiteit Utrecht, 2001. URL
http://www.haskell.org/haskellwiki/Parsec.

[21] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In POPL, 1988. doi:10.1145/73560.73564.

[22] Daniel Marino and Todd Millstein. A generic type-and-effect
system. In TLDI, 2009. doi:10.1145/1481861.1481868.

[23] Eugenio Moggi. Notions of computation and monads. Inf.
Comput., 1991. doi:10.1016/0890-5401(91)90052-4.

[24] Hanne Riis Nielson, Flemming Nielson, and Torben Amtoft.
Polymorphic subtyping for effect analysis: The static seman-
tics. In LOMAPS, 1997. doi:10.1007/3-540-62503-8_8.

[25] François Pessaux and Xavier Leroy. Type-based
analysis of uncaught exceptions. In POPL, 1999.
doi:10.1145/292540.292565.

[26] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic
effects. In ESOP, volume 5502 of LNCS, pages 80–94.
Springer, 2009. doi:10.1007/978-3-642-00590-9_7.

[27] John C. Reynolds. Towards a theory of type structure. In
Programming Symposium, 1974.

[28] Tiark Rompf, Ingo Maier, and Martin Odersky. Imple-
menting first-class polymorphic delimited continuations by
a type-directed selective cps-transform. In Proceedings
of the 14th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’09, pages 317–328, 2009.
doi:10.1145/1596550.1596596.

[29] Lukas Rytz, Martin Odersky, and Philipp Haller.
Lightweight polymorphic effects. In ECOOP, 2012.
doi:10.1007/978-3-642-31057-7_13.

[30] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael
Hicks. Lightweight monadic programming in ML. In ICFP,
2011. doi:10.1145/2034773.2034778.

[31] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
discipline. Inf. Comput., 1994. doi:10.1006/inco.1994.1046.

[32] J.P. Talpin. Theoretical and practical aspects of type and
effect inference. PhD thesis, Ecole des Mines de Paris and
University Paris VI, Paris, France, 1993.

[33] Stefan Tilkov and Steve Vinoski. NodeJS: Using javascript
to build high-performance network programs. IEEE Internet
Computing, 2010.

[34] Philip Wadler. The essence of functional programming.
POPL, 1992. doi:10.1145/143165.143169.

[35] Philip Wadler and Peter Thiemann. The marriage of effects
and monads. TOLC, 2003. doi:10.1145/601775.601776.

Created with Madoko.net.

12

http://docs.scala-lang.org/sips/pending/async.html
http://docs.scala-lang.org/sips/pending/async.html
http://dx.doi.org/10.1145/2628136.2628149
http://arxiv.org/abs/1203.1539
http://dx.doi.org/10.2168/LMCS-10%284:9%292014
http://dx.doi.org/10.1145/1190315.1190320
http://dx.doi.org/10.1145/1273920.1273932
http://dx.doi.org/10.1007/978-3-642-31057-7_12
http://dx.doi.org/10.1007/978-3-642-31057-7_12
http://dx.doi.org/10.1017/S0956796807006387
http://dx.doi.org/10.1145/319838.319848
http://dx.doi.org/10.1016/0304-3975%2886%2990044-7
http://dx.doi.org/10.1007/978-3-642-03034-5_17
http://dx.doi.org/10.1145/258948.258970
http://dx.doi.org/10.4204/EPTCS.153.8
http://www.haskell.org/haskellwiki/Parsec
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/1481861.1481868
http://dx.doi.org/10.1016/0890-5401%2891%2990052-4
http://dx.doi.org/10.1007/3-540-62503-8_8
http://dx.doi.org/10.1145/292540.292565
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1145/1596550.1596596
http://dx.doi.org/10.1007/978-3-642-31057-7_13
http://dx.doi.org/10.1145/2034773.2034778
http://dx.doi.org/10.1006/inco.1994.1046
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/601775.601776
https://www.madoko.net

	1. Introduction
	2. Overview
	2.1. The ambiguous effect
	2.2. Translating effects
	2.2.1. Translating polymorphic effects
	2.2.2. Interaction with other effects

	2.3. The parser effect
	2.3.1. Interaction with exceptions

	3. Formalism
	3.1. Syntax
	3.2. Type inference for effect declarations
	3.3. Type-directed monadic translation
	3.3.1. Monadic Translation

	3.4. Soundness

	4. Implementation
	4.1. Optimizations
	4.2. The Monomorphism Restriction
	4.3. Evaluation

	5. Related work
	6. Conclusion & Future Work
	References

