
From Monads to Effects and Back

Niki Vazou and Daan Leijen
1 UC San Diego

2 Microsoft Research

Abstract. The combination of monads and effects leads to a clean and
easy to reason about programming paradigm. Monadic programming is
easy to reason about, but can be cumbersome, as it requires explicit
lifting and binding. In this paper, we combine monads and effects within
a single programming paradigm: we use monads to define the semantics of
effect types, and then, use the effects to program with those monads. We
implemented an extension to the effect type system of Koka [15] with user
defined effects. We use a type-directed translation to automatically lift
effectful into monadic programs, by inserting bind- and unit operations.

1. Introduction

Monads (proposed by Moggi and others [17, 28]) are used in programming lan-
guages to wrap effectful computations, but they can be cumbersome to program
with as they require explicit lifting and binding. In this paper, we combine mon-
ads and effect typing (proposed by Gifford and others [9, 25]) within a single
programming paradigm: we use monads to define the semantics of effect types,
and then, use the effect types to program with those monads.

We implemented these ideas as an extension of the effect type system of
Koka [15] – a strict, JavaScript-like, strongly typed programming language that
automatically infers the type and effect of functions. Koka has a type inference
system for a set of standard effects like divergence, exceptions, heap operations,
input/output, etc. Here we extend the effect system with monadic user defined
effects, where we can define our own effect in terms of any monad. As an example,
we define an amb effect for ambiguous computations [13]. In particular we would
like to have ambiguous operations that return one of many potential values, but
in the end get a list of all possible outcomes of the ambiguous computation.
Using our new effect declaration we can define the semantics of the amb effect
in terms of a concrete list monad:
effect amb⟨a⟩ = list⟨a⟩ {

function unit( x ) { [x] }
function bind( xs, f ) { xs.concatMap(f ) }

}
where the unit and bind are the usual list-monad definitions.

Using the above effect definition we can write functions that have the ambiguous
effect. For example we can write a flip primitive that returns either true or false
and use it to compute the truth table of xor:
function flip : () → amb bool



function xor() : amb bool {
val p = flip()
val q = flip()
(p || q) && not(p&&q) // p,q : bool

}
Note how the result of flip is just typed as bool (even though amb computations
internally use a list monad of all possible results). Furthermore, unlike languages
like Haskell, we do not need to explicitly lift expressions into a monad, or ex-
plicitly bind computations using do notation.

Translation. Koka uses an automatic type directed translation that translates
a program with user-defined effect types into a corresponding monadic program.
Internally, the previous example gets translated into:
function xor() : list⟨bool⟩ {

bind( flip(), fun(p) {
bind( flip(), fun(q) {

unit( (p || q) && not(p&&q) )
})})}
Here we see how the unit and bind of the effect declaration are used: bind is in-
serted whenever a monadic value is returned and passed the current continuation
at that point.

The capture of the continuation at every bind makes monadic effects very
expressive. For example, the amb effect can cause subsequent statements to be
executed multiple times, i.e. once for every possible result. This is somewhat
dual to the built-in exception effect which can cause subsequent statements to
not be executed at all, i.e. when an exception is thrown. As such, this kind of
expressiveness effectively let us take “control of the semi-colon”.

Our contributions are summarized as follows:

– Using the correspondence between monads and effects [29], we propose a
novel system where you define the semantics of an effect in terms of a first-
class monadic value, but you use the monad using a first-class effect type. We
build on the existing Koka type system [15] to incorporate monadic effects
with full polymorphic and higher-order effect inference.

– We propose (§ 3) a sound type directed monadic translation that transforms
a program with effect types into one with corresponding monadic types. This
translation builds on our earlier work on monadic programming in ML [24]
and automatically lifts and binds computations.

– In contrast to programming with monads directly (as in Haskell), program-
ming with monadic effects integrates seamlessly with built-in effects where
there is no need for families of functions like map, and mapM , or other special
monadic syntax, as we further explain in § 2.2.1.

2. Overview
Types tell us about the behavior of functions. For example, the ML type int→ int
of a function tells us that the function is well defined on inputs of type int and
returns values of type int. But that is only one part of the story, the ML type tells
us nothing about all other behaviors: i.e. if it accesses the file system perhaps,
or throws exceptions, or never returns a result at all.

2



Koka is a strict programming language with a type system that tracks effects.
The type of a function in Koka is of the form τ→ ϵ τ ′ signifying a function that
takes an argument of type τ , returns a result of type τ ′ and may have a side
effect ϵ. We can leave out the effect and write τ→ τ ′ as a shorthand for the
total function without any side effect: τ→ ⟨⟩ τ ′. A key observation on Moggi’s
early work on monads [17] was that values and computations should be assigned
a different type. Koka applies that principle where effect types only occur on
function types; and any other type, like int, truly designates an evaluated value
that cannot have any effect.

In contrast to many other effect systems, the effect types are not just labels
that are propagated but they truly describe the semantics of each function. As
such, it is essential that the basic effects include exceptions (exn) and divergence
(div). The deep connection between the effect types and the semantics leads to
strong reasoning principles. For example, Koka’s soundness theorem [15] implies
that if the final program does not have an exn effect, then its execution never
results in an exception (and similarly for divergence and state).

The main contribution of this paper is how we extend Koka so that the user
can define her own effects, by specifying the type and meaning of new effects
and defining primitive operations on them.

2.1. The ambiguous effect

In the introduction we saw how one can define and use the ambiguous amb effect
with flip and xor operations. We now discuss the definition and translation in
more detail. The amb effect is defined using an effect declaration:
effect amb⟨a⟩ = list⟨a⟩ {

function unit( x : a ) : list⟨a⟩ { [x] }
function bind( xs : list⟨a⟩, f : a → e list⟨b⟩ ) : e list⟨b⟩ {

xs.concatMap(f )
}

}
Defining the amb effect amounts to defining the standard list monad, which can
be further simplified by removing the optional type annotations. Given the above
definition, a new effect type amb is introduced, and we know:

1. how to represent (internally) ambiguous computations of a values: as a list⟨a⟩
2. how to lift plain values into ambiguous ones: using unit, and
3. how to combine ambiguous computations: using bind.

Moreover, with the above definition Koka automatically generates the to amb
and from amb primitives, and a monadic type alias:
function to amb ( xs : list⟨a⟩ ) : amb a
function from amb ( action : () → amb a ) : list⟨a⟩
alias M amb⟨a⟩ = list⟨a⟩
that allow us to go from monadic values to effect types and vice versa. These
are typed versions of the reify and reflect methods of Filinski’s embedding [6].

We use the above primitives to define flip that creates the ambiguous effect
and main that evaluates the effectful computation:
function flip() : amb bool { to amb( [False,True] ) }

3



function main() : console () { print( from amb(xor) ) }
When we evaluate main we get a list of all possible output values: [False,True,True,False].
One can extend such mechanism to, for example, return a histogram of the re-
sults, or to general probabilistic results [13, 24].

2.2. Translating effects
Koka uses a type directed translation to internally translate effectful to monadic
code. As shown in the introduction, the xor function is translated as:

function xor() : amb bool
{

val p = flip()
val q = flip()

(p || q) && not(p&&q)
}

⇝

function xor() : list⟨bool⟩
{

bind( flip(), fun(p) {
bind( flip(), fun(q) {

unit(
(p || q) && not(p&&q) )

})})}
In particular, bind is inserted at every point where a monadic value is returned,
and passed the current continuation at that point. Since flip has an ambiguous
result, our type-directed translation binds its result to a function that takes p
as an argument and similarly for q. Finally, the last line returns a pure boolean
value, but xor’s result type is ambiguous. We use unit to lift the pure value to the
ambiguous monad. We note that in Koka’s actual translation, xor is translated
more efficiently using a single map instead of a unit and bind.

The translation to monadic code is quite subtle and relies crucially on type
information provided by type inference. In particular, the intermediate core lan-
guage is explicitly typed à la System F (§ 3.1). This way, we compute effects
precisely and determine where bind and unit get inserted (§ 3.3). Moreover, we
rely on the user to ensure that the unit and bind operations satisfy the monad
laws [28], i.e. that unit is a left- and right identity for bind, and that bind is
associative. This is usually the case though; in particular because the effect typ-
ing discipline ensures that both unit and bind are total and cannot have any
side-effect (which makes the translation semantically robust against rewrites).

2.2.1. Translating polymorphic effects One of the crucial features of Koka
is effect polymorphism. Consider the function map
function map(xs : list⟨a⟩, f : (a) → e b) : e list⟨b⟩ {

match(xs) {
Nil → Nil
Cons(y, ys) → Cons( f (y), map(ys,f ) )

} }
The function map takes as input a function f with some effect e. Since it calls
f , map can itself produce the effect e, for any effect e. This means that we can
use such existing abstractions on user defined effects too:
function xor() {

val [p,q] = map( [1,2], fun(_) { flip() } )
(p || q) && not(p&&q)

}

4



// source effectful code
function map(xs, f ) {

match(xs) {
Nil → Nil
Cons(y, ys) →

val z = f (y)
val zs = map(ys, f )
Cons(z, zs)

}
}

function xor() {
val [p,q] =

map( [1,2],
fun(_) { flip() })

(p || q) && not(p&&q)

}

// translated monadic code
function map(d : dict⟨e⟩, xs, f ) {

match(xs) {
Nil → d.unit(Nil)
Cons(y, ys) →

d.bind( f (y), fun(z) {
d.bind( map(ys, f ),

fun(zs) {
d.unit(Cons(z, zs)

})})}
}

function xor() {
dict amb.bind(

map( dict amb, [1,2],
fun(_) { flip() }),

fun([p,q]) {
dict amb.unit(

(p || q) && not(p&&q))
})

}

Figure 1. Dictionary translation of map and xor

Unfortunately, this leads to trouble when doing a type directed translation: since
the function passed to map has a monadic effect, we need to bind the call f (y)
inside the map function! Moreover, since we can apply map to any monadic
effect, we need to dynamically call the right bind function.

The remedy is to pass Haskell-like dictionaries or monad interfaces to effect
polymorphic functions. In our case, a dictionary is a structure that wraps the
monadic operators bind and unit. The dictionaries are transparent to the user
and are automatically generated and inserted. During the translation, every
effect polymorphic function takes a dictionary as an additional first argument.
Figure 1 shows how the map function gets translated.

Now that internally every effect polymorphic function gets an extra dictio-
nary argument, we need to ensure the corresponding dictionary is supplied at
every call-site. Once again, dictionary instantiation is type-directed and builds
upon Koka’s explicitly typed intermediate core language. Whenever a polymor-
phic effect function is instantiated with a specific effect, the type directed trans-
lation automatically inserts the corresponding dictionary argument. Figure 1
shows this in action when we call map inside the xor function. We can still use
map with code that has a non-monadic effect and in that case the translation will
use the dictionary of the primitive identity monad, e.g. map( dict id, [1,2], sqr ).

Being able to reuse any previous abstractions when using monadic effects is
very powerful. If we insert user-defined effects to a function, only the type of
the function changes. Contrast this to Haskell: when inserting a monad, we need
to do a non-trivial conversion of the syntax to do notation, but also we need to
define and use monadic counterparts of standard functions, like mapM for map.

2.2.2. Interaction between user defined effects Koka allows combination
of user defined effects. Consider a behavior user defined effect, which repre-

5



sents computations whose value varies with time, as in functional reactive pro-
grams [5]. We encode the beh effect as a function from time to a. Since a behaviour
is a function, it may have effects itself: it can diverge or throw exceptions for
example. This means that we need to parameterize the beh effect with two type
parameters one for the value a and one for the effect e:

effect beh⟨e, a⟩ = time → e a { ... }

With the above definition, Koka automatically creates a type alias for the be-
havioral monad and the respective unit and bind operators:

alias M beh⟨e, a⟩ = time → e a;
ub : a → e M beh⟨e, a⟩;
bb : (M beh⟨e, a⟩, a → e M beh⟨e, b⟩) → e M beh⟨e, b⟩

As with the amb effect, the user can define primitives that, for example, return
the temperature and humidity over time:

temp : () → beh int;
hum : () → beh int;

We use these primitives to define a function that states that one goes out when
temperature is more than 70°F and humidity less than 80%. Koka automatically
translates the effectful function to its monadic version:

function go out() : beh bool{
val t = temp()
val h = hum()
(t ≥ 70 && h ≤ 80)

}

⇝

function go out() : time → bool{
bb( temp(), fun(t) {

bb( hum(), fun(h) { ub(
(t ≥ 70 && h≤ 80)

})})}

Next, we want to insert ambiguity into the above function. Following Swamy et
al. [24] we combine the ambiguous and behavioral effects by tupling them

effect ⟨amb, beh⟩⟨e, a⟩ = time → e list⟨a⟩ { ... }

and Koka creates the appropriate monadic operators

alias M ab⟨e, a⟩ = time → e list⟨a⟩;
uab : a → e M ab⟨e, a⟩;
bab : (M ab⟨e, a⟩, a → e M ab⟨e, b⟩) → e M ab⟨e, b⟩;

Then, we define morphisms to lift from a single to the joined effect

morphism amb ⟨amb, beh⟩{ fun(xs){ fun(t){ xs }} }
morphism beh ⟨amb, beh⟩{ fun(b){ fun(t){ [b(t)] }} }

With the above morphism definitions, Koka derives internal morphism functions

a2ab :: M amb ⟨e, a⟩ → e M_⟨amb, beh⟩⟨e, a⟩;
b2ab :: M beh ⟨e, a⟩ → e M_⟨amb, beh⟩⟨e, a⟩;

and use them to automatically translate our modified go out function that com-
bines the two user defined effects:

6



function go out()
{

val t = temp()
val h = hum()
val u = flip()

(u || (t ≥ 70 && h ≤ 80))
}

⇝

function go out()
{

bab( b2ab(temp()), fun(t) {
bab( b2ab(hum()), fun(h) {

bab( a2ab(flip()), fun(u) {
uab(

(u || (t ≥ 70 && h≤ 80))
})})}

This technique for combining monads by tupling is taken from [24]. But, as
further discussed in § 4 our current work, though highly inspired, crucially differs
from [24] in that the use of effect polymorphism (instead of effect subtyping that
was previously used) makes types much simpler.

There are various language design aspects with regard to morphism decla-
rations – here we highlight the most important ones and defer to [24] and [12]
for a more in-depth discussion. First of all, since effect rows are equivalent up
to re-ordering of labels, we can only declare one combined monad for a specific
set of user-defined effects. For example, we can combine ⟨amb,beh⟩ in only one
of the two possible ways (within the scope of a module). Moreover, the com-
piler rejects duplicate definitions. Finally, if we assume that the morphism laws
hold, the compiler could derive morphisms from the existing ones, i.e. morphisms
from ma to mb, and mb to mc can be combined to give rise to a morphism from
ma to mc. Currently, we assume that the user provides all required morphisms
explicitly, but we plan to implement automatic morphism derivation.

3. Formalism
In this section we formalize the type-directed translation using an explicitly
typed effect calculus we call λκu. First, we present the syntax (§ 3.1) and typing
(§ 3.2) rules for λκu. Then, we formalize our translation (§ 3.3) from effectful to
monadic λκu. Finally, we prove soundness (§ 3.4) by proving type preservation.

3.1. Syntax
Figure 2 defines the syntax of expressions and types of λκu, a polymorphic ex-
plicitly typed λ-calculus. λκu is System F [10, 21] extended with effect types.

Expressions. λκu expressions include typed variables xσ, typed constants cσ,
λ-abstraction λϵx : σ. e, application e e, value bindings val xσ = e; e, if combi-
nators if e then e else e, type application e [σ] and type abstraction Λακ . e. Each
value variable is annotated with its type and each type variable is annotated
with its kind. Finally, each λ-abstraction λϵx : σ. e is annotated with its result
effect ϵ which is necessary to check effect types.

Types and type schemes. Types consist of explicitly kinded type variables ακ

and application of constant type constructors cκ0⟨τκ1
1 , ..., τκn

n ⟩, where the type
constructor c has the appropriate kind κ0 = (κ1, ..., κn)→ κ. We do not provide
special syntax for function types, as they can be modeled by the constructor
(_ → _ _) :: (∗, e, ∗)→∗ that, unlike the usual function type, explicitly reasons
for the effect produced by the function. Finally, types can be qualified over type
variables to yield type schemata.

Kinds. Well-formedness of types is guaranteed by a kind system. We annotate
the type τ with its kind κ, as τκ. We have the kind of types (∗) and the kind
of functions →, kinds for effect rows (e), effect constants (k), and user-defined

7



expressions e ::= xσ | cσ | e e
| λϵx : σ. e
| val xσ = e; e
| if e then e else e
| e [σ] | Λακ . e

types τκ ::= ακ type variable
| cκ0⟨τκ1

1 , ..., τκn
n ⟩ κ0 = (κ1,...,κn) → κ

kinds κ ::= ∗ | e values, effects
| k effect constants
| u user effects
| (κ1, ..., κn)→ κ type constructor

type scheme σ ::= ∀ακ. σ | τ∗

const (), bool :: ∗ unit, bool type
(_ → _ _) :: (∗, e, ∗)→∗ functions
⟨⟩ :: e empty effect
⟨_ |_⟩ :: (k, e)→ e effect extension
user⟨_⟩ :: u→ k user effects
tdict⟨_⟩ :: e→∗ effect to universe

Syntactic sugar:
effects ϵ

.
= τ e

effect variables µ
.
= αe

closed effects ⟨l1, ..., ln⟩ .
= ⟨l1, ..., ln | ⟨⟩⟩

single effect l .
= ⟨l⟩

user effects lu .
= user⟨lu⟩

Figure 2. Syntax of explicitly typed Koka, λκu.

effects (u). We omit the kind κ of the type τκ, and write τ , when κ is immediately
apparent or not relevant. For clarity, we use α for regular type variables and µ
for effect type variables. Finally, we write ϵ for effects, i.e. types of kind e.

Effects. Effects are types. Effect types are defined as a row of effect labels l.
Such effect row is either empty ⟨⟩, a polymorphic effect variable µ, or an extension
of an effect row ϵ with an effect constant l, written as ⟨l|ϵ⟩. Effect constants are
either built-in Koka effects, i.e. anything that is interesting to our language like
exceptions (exn), divergence (div) etc. or lifted user-defined monadic effects like
the ambiguous effect ambu :: u. Note that for an effect row to be well-formed we
use the user effect function to lift user⟨ambu⟩ :: k to the appropriate kind k. For
simplicity, in the rest of this section we omit the explicit lifting and write ambu

to denote user⟨ambu⟩ when a label of kind k is expected.
Finally, Figure 2 includes definition of type constants and syntactic sugar

required to simplify the rest of this section.
Type rules. Figure 3 describes type rules for λκu where the judgment ⊢ e : σ| ϵ

assigns type σ and effect ϵ to an expression e. All the rules are equivalent to the
System F rules, except for rule (Lam) where the effect of the function in the
type is drawn from the effect annotation in the λ-abstraction. λκu is explicitly
typed, in that variables are annotated with their type and functions with their
effect, hence, type checking does not require an environment. By construction,

8



Type and Effect Checking ⊢ e : σ| ϵ

⊢ cσ : σ| ϵ
⊢ e : ∀α. σ| ϵ

⊢ e[τ ] : σ[α 7→ τ ] | ϵ
⊢ e : σ| ⟨⟩

⊢ Λακ. e : ∀ακ. σ| ϵ

⊢ xσ : σ| ϵ
⊢ e : τ2 | ϵ

⊢ λϵx : τ1. e : τ1 → ϵ τ2 | ϵ′
⊢ e1 : τ1 → ϵ τ2 | ϵ ⊢ e2 : τ1 | ϵ

⊢ e1 e2 : τ2 | ϵ

⊢ e1 : σ1 | ϵ ⊢ e2 : σ2 | ϵ
⊢ val x = e1; e2 : σ2 | ϵ

⊢ e : bool | ϵ ⊢ e1 : σ| ϵ ⊢ e2 : σ| ϵ
⊢ if e then e1 else e2 : σ| ϵ

Type Checking ⊢ e : σ

⊢ e : σ| ϵ
⊢ e : σ

Figure 3. Type rules for explicitly typed Koka.

Declarations of User Effects and Morphisms Γ⊢ def : Γ

(Eff)

Γ, µe, α∗ ⊢k τ :: ∗ Γ′ = Γ, Meff⟨µ, α⟩ = τ Γ′ ⊢k e1 : ∀αµ. α→ µ Meff⟨µ, α⟩
Γ′ ⊢k e2 : ∀µαβ. (Meff⟨µ, α⟩, α→ µ Meff⟨µ, β⟩)→ µ Meff⟨µ, β⟩

Γ ⊢ effect eff⟨µ, α⟩ = τ { unit = e1; bind = e2 } :
Γ′, effu, dicteff : tdict⟨Meff⟩
toeff : ∀αµ. (Meff⟨µ, α⟩)→ ⟨eff|µ⟩ α,
fromeff : ∀αβµ. (()→ ⟨eff|µ⟩ α)→ µ Meff⟨µ, α⟩

(Morph) s ≡ ⟨l1, ..., ln⟩ t ≡ ⟨l1, ..., ln, ..., lm⟩ Γ ⊢k e : ∀αµ. Ms⟨µ, α⟩ → µ Mt⟨µ, α⟩
Γ ⊢ morphism s t { e } :Γ, s ▷ t : ∀αµ. Ms⟨µ, α⟩ → µ Mt⟨µ, α⟩

Figure 4. Type rule for effect and morphism declarations.

the Koka type inference rules always produce well-formed λκu. Soundness of λκu

follows from soundness of Koka as described in [15]. Next, we write ⊢ e : σ if
there exists a derivation ⊢ e : σ| ϵ for some effect ϵ.

3.2. Type inference for effect and morphism declarations

In this subsection we present how Koka preprocesses the effect and morphism
declarations provided by the user. Figure 4 summarizes the rules that the Koka
compiler follows to desugar the user definitions to λκu. After desugaring, Koka
proceeds to effect- and type- inference as presented in previous work [14, 15].

3.2.1. Effect Declarations Before we look at the general type inference rule
for effect declarations we start with describing the identity effect uid:
effect uid⟨e,a⟩ = a {

function unit(x) { x }
function bind(x,f ) { f (x) }

}
From the above effect definition, initially, Koka generates a type alias that relates
the effect name with its monadic representation.

alias Muid⟨ϵ, α⟩ = α

9



Then, Koka checks well-formedness of the effect definition, by (type-) check-
ing that unit and bind are the appropriate monadic operators, i.e.:

unit : ∀αµ. α→ µ Muid⟨µ, α⟩
bind : ∀αβµ. (Muid⟨µ, α), α→ µ Muid⟨µ, β⟩)→ µ Muid⟨µ, β⟩

Given the definitions of unit and bind, Koka automatically constructs the primi-
tives required by the rest of the program to safely manipulate the identity effect:

– uidu – the effect constant that can be used inside types,
– touid : ∀αµ. (Muid⟨µ, α⟩)→ ⟨uid|µ⟩ α – the function that converts monadic

computations to effectful ones,
– fromuid : ∀αβµ. (()→ ⟨uid|µ⟩ α)→ µ Muid⟨µ, α⟩ – the dual function that

converts effectful function to their monadic equivalent, and finally,
– dictuid – the (internal) effect dictionary that stores uid’s monadic operators.

Dictionaries. The first three values are user-visible but the final dictionary value
is only used internally during the monadic translation. The type of the effect
dictionary (e.g. dictuid), is a structure that contains the monadic operators unit
and bind of the effect. It can also include the monadic map which will otherwise
be automatically derived from unit and bind. Thus, we define the dictionary
structure as a type that is polymorphic on the particular monad, represented as
type variable m :: (e, ∗)→∗:

struct tdict⟨m⟩ {
unit : ∀αµ. α→ µ m⟨µ, α⟩
map : ∀αβµ. (m⟨µ, α⟩, α→ β)→ µ m⟨µ, β⟩
bind : ∀αβµ. (m⟨µ, α⟩, α→ µ m⟨µ, β⟩)→ µ m⟨µ, β⟩

With this we can type dictuid : tdict⟨Muid⟩.
General user-defined effects. Figure 4 generalizes the previous concrete ex-

ample to any user-defined effect declaration. The judgment:

Γ ⊢ effect eff⟨µ, α⟩ = τ⟨µ, α⟩ { unit = e1; bind = e2 } : Γ′

states that under a kind- and type- environment Γ, the effect declaration eff
results in the type environment Γ′ that is extended with the needed types and
primitives implied by eff. As shown in Figure 4, we first check well-formedness of
the effect types, then check that unit and bind operations have the proper types.
Finally, the environment is extended with these types and values.

3.2.2. Morphism Declarations As a morphism example, we assume the exis-
tence of the two user defined effects from the Overview (§ 2), the ambiguous and
the behaviour. Moreover, we assume that the user appropriately defined their
joined effect ⟨amb, beh⟩. These three effect definitions yield three aliases:

alias Mamb⟨ϵ, α⟩ = list⟨α⟩
alias Mbeh⟨ϵ, α⟩ = time →ϵ α
alias M⟨amb, beh⟩⟨ϵ, α⟩ = time →ϵ list⟨α⟩

Then, the user can define morphisms that go from amb or beh to the combined
effect ⟨amb, beh⟩

10



morphism amb ⟨amb, beh⟩ {
fun(xs : list⟨a⟩) : time → e list⟨a⟩{

fun(t){xs}
}}

morphism beh ⟨amb, beh⟩ {
fun(x : time → e a) : time → e list⟨a⟩{

fun(t){[x(t)]}
}}

From the above definitions, Koka will generate two morphism functions:

amb ▷ ⟨amb, beh⟩ : ∀αµ. Mamb⟨µ, α⟩ → µ M⟨amb, beh⟩⟨µ, α⟩
beh ▷ ⟨amb, beh⟩ : ∀αµ. Mbeh⟨µ, α⟩ → µ M⟨amb, beh⟩⟨µ, α⟩

The above morphisms are internal Koka functions that will be used at the trans-
lation phase to appropriately lift the monadic computations.

General user-defined morphisms. Figure 4 generalizes the previous concrete
example to any morphism declaration. The judgment Γ ⊢ morphism s t e : Γ′.
states that under a kind- and type- environment Γ, the morphism declaration
from effect raws s to t results in a new type environment Γ′ that is extended with
the morphism from the source effect s to the target effect t, when the expression
e has the appropriate morphism type. The first premise ensures that s is always
a sub-effect of the target effect t.

3.3. Type-directed monadic translation
Next, we define the type-directed monadic translation e⇝ϵ e′ | υ that takes an
effect expression e to the monadic expression e′.

Computed effects. Our translation needs two effects ϵ and υ: the maximum
(inferred) effect ϵ and the minimum (computed) effect υ. After type inference,
every function body has one unified effect ϵ, that consists of the unification of all
the effects in that function. Our translation computes bottom-up the minimal
user-defined portion of each separate sub-expression, where υ should always be
contained in ϵ. Specifically, we define computed effects υ as effect types ϵ that
have the following grammar: υ ::= µ | ⟨lu1, ..., lun⟩ (n ≥ 0)

Thus, computed effects can be a row of user-effect labels (including the empty
row) or an effect variable. Note that because user effects are always constants,
and according to the equivalence rules for rows [15], we consider computed effect
rows equal up to reordering. For example ⟨lu2, lu1⟩ ≡ ⟨lu1, lu2⟩.

As shown by the grammar, the computed effects are restricted in that a
row of monadic effects cannot end with a polymorphic tail µ. This limits the
functions that a user can write: no user-defined effects can be in a row that
has a polymorphic tail. We believe that this restriction is not too severe in
practice since it only restricts functions that are higher-order over user-defined
effects where the function parameter is open-ended in the side-effects it can
have. This is quite unusual and easy to circumvent by stating the allowed effects
explicitly. The advantage of adding this restriction is great though: we completely
circumvent the need to add constraints to the type language and can simplify
the translation significantly compared to earlier work [24].

We convert a regular effect type ϵ to a computed effect ϵ, and dually, we
apply ϵ̃ to an effect ϵ to remove the user defined effects:

⟨lu| ϵ⟩ = ⟨lu| ϵ⟩ if ϵ ̸= µ ˜⟨lu| ϵ⟩ = ϵ̃

⟨lκ| ϵ⟩ = ϵ if κ ̸= u ˜⟨lκ| ϵ⟩ = ⟨lκ| ϵ̃ ⟩
⟨⟩ = ⟨⟩ ⟨̃⟩ = ⟨⟩
µ = µ µ̃ = µ

11



bindυ
⟨⟩(ϵ, ex, x, e) = val x = ex; e

bind⟨⟩
υx(ϵ, ex, x, e) = dictυx .map ⟨σx, σ, ϵ⟩(ex, λ

⟨⟩ x : σx. e), with ⊢ ex : mon⟨υx, ϵ, σx⟩, ⊢ e : σ
bindυ

υx(ϵ, ex, x, e) = dictυx ⊕υ.bind⟨σx, σ, ϵ⟩(e′x, e′), with ⊢ ex : mon⟨υx, ϵ, σx⟩, ⊢ e : mon⟨υ, ϵ, σ⟩
where e′x = lift(υx ⊕υ)

υx (ϵ, ex), e′ = λϵ̃ x : σx. (lift(υx ⊕υ)
υ (ϵ, e))

liftυυ(ϵ, e) = e
liftυ⟨⟩(ϵ, e) = dictυ.unit⟨σ, ϵ⟩(e) where υ ̸= ⟨⟩, ⊢ e : σ
liftυt

υs(ϵ, e) = υs ▷ υt⟨σ, ϵ⟩(e) where ⊢ e : mon⟨υs, ϵ, σ⟩

Figure 5. Helper functions for binding and lifting.

Translation e ⇝ϵ e | υ

(Con) cσ ⇝ϵ cJσK | ⟨⟩ (Var) xσ ⇝ϵ xJσK | ⟨⟩
(Lam) e ⇝ϵ e′ | υ

λϵx : τ. e ⇝ϵ0 λ̃ϵx : JτK. liftϵυ(ϵ, e′) | ⟨⟩
(TLam) e ⇝ϵ e′ | ⟨⟩ κ ̸= e

Λακ. e ⇝ϵ Λακ. e′ | ⟨⟩ (TLam-E) e ⇝ϵ e′ | ⟨⟩
Λµ. e ⇝ϵ Λµ.λ⟨⟩dictµ : tdict⟨µ⟩. e′ | ⟨⟩

(TApp) e ⇝ϵ e′ | υ κ ̸= e
e[τκ] ⇝ϵ e′ [JτκK] | υ (TApp-E) e ⇝ϵ e′ | υ

e[ϵ′] ⇝ϵ e′[Jϵ′K] dictJϵ′K | υ

(App) e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2 e1 ↓ υ3 ⊢ e1 : σ1 → ϵ σ2 ue3 = ϵ υ = υ1 ⊕ υ2 ⊕ υ3

e1 e2 ⇝ϵ bindυ2⊕υ3
υ1

(ϵ, e′1, f, bindυ3
υ2
(ϵ, e′2, y, f y)) | υ

(Val) e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2

val x = e1; e2 ⇝ϵ bindυ2
υ1
(ϵ, e′1, x, e′2) | υ1 ⊕ υ2

(If) e1 ⇝ϵ e′1 | υ1 e2 ⇝ϵ e′2 | υ2 e3 ⇝ϵ e′3| υ3 υ = υ1 ⊕ υ2 ⊕ υ3

if e1 then e2 else e3 ⇝ϵ bindυ2⊕υ3
υ1

(ϵ, e′1, y, if y then liftυ2 ⊕υ3
υ2

(ϵ, e′2) else liftυ2⊕υ3
υ3

(ϵ, e′3)) | υ

Figure 6. Basic translation rules. Any f and y are assumed fresh.

Note that this function is partial: when a type is passed that combines a user-
defined effect with a polymorphic tail it fails and the compiler raises an error
that the program is too polymorphic. To join computed effects we use the ⊕
operator:

⟨⟩ ⊕ υ2 = υ2
µ⊕ µ = µ

⟨l | υ1⟩ ⊕ ⟨l | υ2⟩= ⟨l | υ1 ⊕ υ2⟩
⟨l | υ1⟩ ⊕ υ2 = ⟨l | υ1 ⊕ υ2⟩ if l ̸∈ υ2

Again, this function is partial but we can show that the usage in the translation
over a well-typed koka program never leads to an undefined case.

12



Type translation. The type operator J·K translates effectful- to monadic types.

JακK = ακJτ→ ϵ τ ′K = JτK → ϵ̃ mon⟨ϵ, ϵ, Jτ ′K⟩Jcκ⟨τ1, . . . , τn⟩K = cκ⟨Jτ1K, . . . , JτnK⟩ with c ̸= →J∀ακ . σK = ∀ακ . JσK with κ ̸= eJ∀αe . σK = ∀αe . tdict⟨αe⟩ → ⟨⟩JσK
For function types τ→ ϵ τ ′ the effect ϵ is split to the build-in effect portion ϵ̃ and
the user-defined portion ϵ. The effect of the translated type is only the build-in
portion ϵ̃ while the result is monadically wrapped according to the user-defined
portion ϵ using the mon operator

mon⟨⟨⟩, ϵ, σ⟩ = σ
mon⟨⟨lu1, ... , lun⟩, ϵ, σ⟩ = M⟨lu1, ... , lun⟩⟨ϵ, σ⟩ where n ≥ 1
mon⟨µ, ϵ, σ⟩ = (evaluated at instantiation)

The mon operation derives a monadic result type and effect. For polymorphic
effect types, mon cannot be computed until instantiation. We therefore keep this
type unevaluated until instantiation time. As such, it is really a dependent type
(or a type parametrized over types). In our case, this is a benign extension to
λκu since λκu is explicitly typed. After instantiation, the type argument is not
polymorphic, thus mon will return a concrete type.

tdict⟨⟩ is a dependent type used to get the type of a polymorphic dictionary:

tdict⟨⟨⟩⟩ = tdict⟨Muid⟩
tdict⟨⟨lu1, ..., lun⟩⟩ = tdict⟨M⟨lu1, ..., lun⟩⟩ where n ≥ 1
tdict⟨µ⟩ = (evaluated at instantiation)

The type translation function J·K reveals how the to eff and from eff are inter-
nally implemented. If we apply type translation to their signatures, we see that
both become identity functions. The type translation of to eff is JMeff⟨ϵ, α⟩→ ⟨eff|ϵ⟩αK
which is equivalent to Meff⟨ϵ, α⟩→ ϵ Meff⟨ϵ, α⟩, i.e. to eff is implemented simply
as λx. x. Similarly, from eff is implemented as λf. f().

Monadic Abstractions. Figure 5 defines two syntactic abstractions liftυt
υs(ϵ, e)

lifts the expression e from the source υs to the target υt computed effect. If the
computed effects are the same e is returned. If effects are different υs ̸= υt and
the source effect is empty, the lifting is performed via a call to the unit field of
the dictionary of the target effect dictυt . Otherwise, the lifting is performed via
the morphism υs ▷ υt. Note that the monadic unit and the morphism operators
are effect polymorphic thus lift is also parametric on an effect ϵ :: e that is
used to instantiate the effect variable of unit and ▷. Furthermore, lift fails if the
morphism υs ▷ υt is not defined.

bindυ
υx(ϵ, ex, x, e) binds the expression ex to the variable x that appears in e.

The expression ex (resp. e) has computed (minimum) effect υx (resp. υ) and ϵ is
the combined (maximum) effect of the binding. If ex does not have any computed
effect binding is simply a val-binding, otherwise both expressions are lifted to
the effect υx ⊕ υ and binding is performed via a call in the bind field of the
dictionary of the target effect dictυx⊕υ.

As an optimization, if υ = ⟨⟩ our system uses the monadic map instead of
lifting ϵ to υx and then using bind. As in lift the combined effect ϵ is used to

13



instantiate the effect variable of the monadic operators. This optimization is
similar to the ones used to avoid unnecessary “administrative” redexes, which
customary CPS-transform algorithms go to great lengths to avoid [22].

3.3.1. Monadic Translation Finally, we define the translation relation e⇝ϵ e′ | υ
as shown in Figure 6, where ϵ is inherited and υ synthesized.

Values. Values have no effect, and compute ⟨⟩. Rules (Con) and (Var) are
simple: they only translate the type of the expression and leave the expression
otherwise unchanged. Rule (Lam) states that when translating λϵx : τ. e the
type τ of the parameter is also translated. Moreover, the effect ϵ dictates the
maximum effect in the translation of the body e. Finally, we lift the body of the
function from the computed minimum effect to ϵ.

Type Operations. Type abstraction and application preserve the computed
effect of the wrapped expression e, and the Koka type system guarantees that
type abstraction only happens over total expressions. In (TLam-E) we abstract
over an effect variable µ, thus we add an extra value argument, namely, the
dictionary of the effect that instantiates µ, i.e. dictµ : tdict⟨µ⟩. Symmetrically,
the rule (TApp-E) that translates application of the effect ϵ′ applies the dictio-
nary dictϵ′ : tdict⟨ϵ′⟩ of the effect ϵ′. Note that if the computed effect ϵ′ is a set
of user-defined effects, say ⟨amb⟩, then the rule directly applies the appropriate
dictionary dictamb, i.e. the dictionary value that Koka created from the amb
effect definition. If the computed effect ϵ′ is an effect variable µ, then the rule
applies the appropriate variable dictionary dictµ, i.e. the variable abstracted by
a rule (TLam-E) lower in the translation tree. By the way we defined computed
effects, the final case is the computed effect ϵ′ to be the empty effect ⟨⟩, and
then the identity dictionary dictuid is applied. This is because in the computed
effects world the total effect ⟨⟩ is the identity effect uid. In our rules we used the
⟨⟩ effect as it is more intuitive.

Application. The rule (App) translates the application e1 e2. The minimal
computed effect of the application is the union of the computed effects of the
function e1 (that is υ1), the argument e2 (that is υ2) and the computed effect of
the body of the the function. The maximum effect of the function is υ3.

then the unified effect for the id application would be amb and we would
unnecessarily pass an amb dictionary to id and bind the result.

Finally, the rule (Val) translates val-binding val x = e1; e2 by binding e1 to
x in e2. Similarly, the rule (If) translates if e1 then e2 else e3 by first binding e1 to
a fresh variable y, since e1 may have user-defined effects and then lifting both
branches to the computed effect υ that is the union of the computed effects of
the guard υ1 and the two branches υ2 and υ3.

3.4. Soundness

From previous work on type inference for Koka [15] we have that the resulting
explicitly typed Koka is well-typed, i.e.
Lemma 1. (Explicit Koka is well-typed) If Γ ⊢ k : σ | ϵ⇝ e then ⊢ e : σ| ϵ.
Here, the relation Γ ⊢ k : σ | ϵ⇝ e is the type inference relation defined in [15]
where the source term k gets type σ with effect ϵ and a corresponding explicitly
typed term e. The new part in this paper is that our translation preserves types
according to the J·K type translation:

14



Theorem 1. (Type Preservation) If ⊢ e : σ and e ⇝ϵ e′ | ⟨⟩, then ⊢ e′ : JσK.
Proof. In the supplementary technical report [27] we give a proof of sound-
ness for a more general Theorem (General Type Preservation): if ⊢ e : σ and
e ⇝ϵ e′ | υ, then ⊢ e′ : mon⟨υ, ϵ, JσK⟩. Theorem 1 follows as a direct implication
for a computed effect υ = ⟨⟩. □

4. Related work

Many effect typing disciplines have been proposed that study how to delimit the
scope of effects. Early work is by Gifford and Lucassen [9, 16] which was later ex-
tended by Talpin [26] and others [18, 25]. These systems are closely related since
they describe polymorphic effect systems and use type constraints to give prin-
cipal types. The system described by Nielson et al. [18] also requires the effects
to form a complete lattice with meets and joins. Wadler and Thiemann [29] show
the close connection between monads [17, 28] and the effect typing disciplines.

Java contains a simple effect system where each method is labeled with the
exceptions it might raise [11]. A system for finding uncaught exceptions was
developed for ML by Pessaux et al. [19]. A more powerful system for tracking
effects was developed by Benton [3] who also studies the semantics of such effect
systems [4]. Recent work on effects in Scala [23] shows how restricted polymor-
phic effect types can be used to track effects for many programs in practice.

Our current work relies heavily on a type directed monadic translation. This
was also described in the context of ML by Swamy et al. [24], where we also
showed how to combine multiple monads using monad morphisms. However,
Koka uses row-polymorphism to do the typing, while [24] uses subtyping. A
problem with subtyping is that it leads to too complicated types.

A similar approach to [24] is used by Rompf et al. [22] to implement first-class
delimited continuations in Scala which is essentially done by giving a monadic
translation. Similar to our approach, this is also a selective transformation; i.e.
only functions that need it get the monadic translation. Both of the previous
works are a typed approach where the monad is apparent in the type. Early work
by Filinksi [6, 7] showed how one can embed any monad in any strict language
that has mutable state in combination with first-class continuations (i.e. callcc).
This work is untyped in the sense that the monad or effect is not apparent in
the type. In a later work Filinksi [8] proposes a typed calculus where monads
are used to give semantics to effects. This proposal has many similarities with
our current work, but does not explore effect inference and polymorphism, which
both are features crucial for a usable effect system.

Algebraic effect handlers described by Plotkin et al. [20] are not based on
monads, but on an algebraic interpretation of effects. Even though monads are
more general, algebraic effects are still interesting as they compose more eas-
ily. Bauer and Pretnar describe a practical programming model with algebraic
effects [1] and a type checking system [2]. Even though this approach is quite
different than the monadic approach that we take, the end result is quite similar.
In particular, the idea of handlers to discharge effects, appears in our work in
the form of the from primitives induced by an effect declaration.

15



References
1. Andrej Bauer and Matija Pretnar. Programming with algebraic effects and han-

dlers. CoRR, 1203.1539, 2012. URL http://arxiv.org/abs/1203.1539.
2. Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and han-

dlers. Logical Methods in Computer Science, 10 (4), 2014.
3. Nick Benton and Peter Buchlovsky. Semantics of an effect analysis for exceptions.

In TLDI , 2007. doi:10.1145/1190315.1190320.
4. Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. Rela-

tional semantics for effect-based program transformations with dynamic allocation.
In PPDP, 2007. doi:10.1145/1273920.1273932.

5. Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP, 1997.
6. Andrzej Filinski. Representing monads. In POPL, 1994.
7. Andrzej Filinski. Controlling effects. Technical report, 1996.
8. Andrzej Filinski. Monads in action. 2010.
9. David K. Gifford and John M. Lucassen. Integrating functional and imperative

programming. In LFP, 1986. doi:10.1145/319838.319848.
10. Jean-Yves Girard. The System F of variable types, Fifteen years later. TCS, 1986.
11. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. 1996.
12. Michael Hicks, Gavin Bierman, Nataliya Guts, Daan Leijen, and Nikhil Swamy.

Polymonadic programming. In MSFP, 2014.
13. Oleg Kiselyov and Chung-chieh Shan. Embedded probabilistic programming. In

Domain-Specific Languages. 2009. doi:10.1007/978-3-642-03034-5_17.
14. Daan Leijen. Koka: Programming with row-polymorphic effect types. Technical

Report MSR-TR-2013-79, Microsoft Research, 2013.
15. Daan Leijen. Koka: Programming with row polymorphic effect types. In MSFP,

2014. doi:10.4204/EPTCS.153.8.
16. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL, 1988.
17. Eugenio Moggi. Notions of computation and monads. Inf. Comput., 1991.
18. Hanne Riis Nielson, Flemming Nielson, and Torben Amtoft. Polymorphic subtyp-

ing for effect analysis: The static semantics. In LOMAPS, 1997.
19. François Pessaux and Xavier Leroy. Type-based analysis of uncaught exceptions.

In POPL, 1999. doi:10.1145/292540.292565.
20. Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In ESOP,

2009.
21. John C. Reynolds. Towards a theory of type structure. In Programming Sympo-

sium, 1974.
22. Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymor-

phic delimited continuations by a type-directed selective cps-transform. ICFP,
2009.

23. Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects.
In ECOOP, 2012. doi:10.1007/978-3-642-31057-7_13.

24. Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. Lightweight
monadic programming in ML. In ICFP, 2011. doi:10.1145/2034773.2034778.

25. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Inf. Com-
put., 1994. doi:10.1006/inco.1994.1046.

26. J.P. Talpin. Theoretical and practical aspects of type and effect inference. PhD
thesis, Ecole des Mines de Paris and University Paris VI, Paris, France, 1993.

27. Niki Vazou and Daan Leijen. From monads to effects and
back – technical report. Technical report, July 2015. URL
http://goto.ucsd.edu/~nvazou/padl16/techrep.pdf.

28. Philip Wadler. The essence of functional programming. POPL, 1992.
29. Philip Wadler and Peter Thiemann. The marriage of effects and monads. TOLC ,

2003. doi:10.1145/601775.601776.

16

http://arxiv.org/abs/1203.1539
http://dx.doi.org/10.1145/1190315.1190320
http://dx.doi.org/10.1145/1273920.1273932
http://dx.doi.org/10.1145/319838.319848
http://dx.doi.org/10.1007/978-3-642-03034-5_17
http://dx.doi.org/10.4204/EPTCS.153.8
http://dx.doi.org/10.1145/292540.292565
http://dx.doi.org/10.1007/978-3-642-31057-7_13
http://dx.doi.org/10.1145/2034773.2034778
http://dx.doi.org/10.1006/inco.1994.1046
http://goto.ucsd.edu/~nvazou/padl16/techrep.pdf
http://dx.doi.org/10.1145/601775.601776

	From Monads to Effects and Back
	Niki VazouDaan Leijen

