
Liquid Haskell 101

Niki Vazou
University of Maryland

Refinement Type Checker

Liquid Haskell 101

OK

Error
Code

Code Logic SMTTyping
OK

Error

1. Source Code to Type constraints

2. Type Constraints to Verification Condition (VC)

3. Check VC validity with SMT Solver

Liquid Haskell 101

Code Logic SMTTyping
OK

Error

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

Code Typing

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

Code Typing

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

Code Typing

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

Code Typing

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

Code Typing

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

Typing Logic

Encode Subtyping as Logical VC

If VC valid then Subtyping holds

Typing Logic

Encode Subtyping as Logical VC

x:{v|p} {v|p} <: {v|q}

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

Typing Logic

x:{v|p}

Means*:If x reduces to a value then p[x/v]

Encoded as: “x has a value” => p[x/v]

* Flanagan “Hybrid Type Checking” (POPL ’06)

Typing Logic

Means: if y:{v|p} then y:{v|q}

Encoded as: p => q

{v|p} <: {v|q}

Typing Logic

Encode Subtyping …

… as Logical VC

(“x has a value” => len x = 4)
 => (v = 8) => (v <= len x)

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

Typing Logic

Encode Subtyping …

… as Logical VC

(“x has a value” => len x = 4)
 => (v = 8) => (v <= len x)

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

Typing Logic

Encode Subtyping …

… as Logical VC

(“x has a value” => len x = 4)
 => (v = 8) => (v <= len x)

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}

Logic SMT

How to encode “x has a value” ?

(In a decidable manner)

(“x has a value” => len x = 4)
 => (v = 8) => (v <= len x)

Logic SMT

CBV: Binders Are Values!

i.e. x is guaranteed to be a value

(“x has a value” => len x = 4)
 => (v = 8) => (v <= len x)

Logic SMT Invalid

CBV: Binders Are Values!

i.e. x is guaranteed to be a value

 len x = 4
 => (v = 8) => (v <= len x)

Code Logic SMTTyping

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "Niki"
 in take x 8

CBV: Checker soundly reports Error

Error

CỈV: Binders must be values

Ignoring “has a value” is sound!

CBN: Binders may not be values

Ignoring “has a value” is unsound!

 spin :: Int -> Int

 spin x = spin x

Ignoring “has a value” is unsound!

OK

As spin does not return any value

 spin :: Int -> {v:Int|false}

 spin x = spin x

Ignoring “has a value” is unsound!

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int | false}

 heartbleed = let x = "Niki"
 y = spin 0
 in take x 8

OK? or Error?

Ignoring “has a value” is unsound!

OK under CBV evaluation

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int | false}

 heartbleed = let x = "Niki"
 y = spin 0
 in take x 8

Ignoring “has a value” is unsound!

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int | false}

 heartbleed = let x = "Niki"

 in take x 8

Error under CBN evaluation

 y = spin 0

Ignoring “has a value” is unsound!

CBV-style typing is unsound under CBN!

Reports Erroneous code as OK

Ignoring “has a value” is unsound!

Ignoring “has a value” is unsound!

How to encode “has a value” ?

Most expressions provably reduce to a value

How to encode “has a value” ?

If x reduces to a value,
Then encode “x has a value” by true

Most expressions provably reduce to a value

How to encode “has a value” ?

Solution: Stratified Types

x:{v:Int |p}
Must reduce to a Value

x:{v:Int↑|p}
May-not reduce to a Value

x:{v:Int |p}

x:{v:Int↑|p}

 to Logic

encoded as p[x/v]

encoded as true

Stratified Types

Code Typing

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int↑|false}

 heartbleed = let x = "Niki"
 y = spin 0
 in take x 8

 x:{v|len v = 4}
 y:{v:Int↑|false } |- {v|v = 8} <: {v|v <= len x}

Typing Logic

 len x = 4
 true => v = 8 => v <= len x

 x:{v|len v = 4}
 y:{v:Int↑|false } |- {v|v = 8} <: {v|v <= len x}

Logic SMT

 len x = 4
 true => v = 8 => v <= len x

Invalid

Code Logic SMTTyping

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int↑|false}

 heartbleed = let x = pack "Niki"
 y = spin 0
 in take x 8

Error

How to enforce stratification?

Terminating expressions must have a value

Solution
Check termination with Refinement Types!

x:{v:Int|p}
Must have a Value

How to enforce stratification?

 Soundness
Under Lazy Evaluation

Liquid Haskell101

1. Soundness
Under Lazy Evaluation

2. Expressiveness
Refinement Reflection

With decidable & predictable verification.

With decidable & predictable verification.

With decidable & predictable verification.

Code Logic SMTTyping
OK

Error

Formula SMT
Valid

Invalid
Unknown

With decidable & predictable verification.

Formula SMT

*From Decidable Logic

*

With decidable & predictable verification.

Valid

Invalid

Typing Logic

Encode Subtyping …

… as Logical Verification Condition

 x1:{v|p1},…, xn:{v|pn} |- {v|q1} <: {v|q2}

SMT

p1 ∧ … ∧ pn => q1 => q12

… as Logical Verification Condition

p1 ∧ … ∧ pn => q1 => q12

{v:a | p }

For decidability, p from decidable theories

{v:a | p }

For decidability, p from decidable theories

Boolean Logic
(QF) Linear Arithmetic

Uninterpreted Functions …

For decidable & predictable verification.

1. Soundness
Under Lazy Evaluation

2. Expressiveness
Refinement Reflection

With decidable & predictable verification.

Liquid Haskell101

