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1. Source Code to Type constraints 

2. Type Constraints to Verification Condition (VC) 

3. Check VC validity with SMT Solver
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 take :: t:Text -> {v | v <= len t} -> Text
   

 heartbleed = let x = "Niki" 
              in  take x 8
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Typing Logic

Encode Subtyping as Logical VC 

If VC valid then Subtyping holds



Typing Logic

Encode Subtyping as Logical VC 

x:{v|p}      {v|p} <: {v|q}      

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}



Typing Logic

x:{v|p}      

Means*:If x reduces to a value then p[x/v]

Encoded as: “x has a value” => p[x/v]

* Flanagan “Hybrid Type Checking” (POPL ’06) 



Typing Logic

Means: if y:{v|p} then y:{v|q}

Encoded as: p => q

{v|p} <: {v|q}      



Typing Logic

Encode Subtyping … 

… as Logical VC 

(“x has a value” => len x = 4) 
                 => (v = 8) => (v <= len x)

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}
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Typing Logic

Encode Subtyping … 

… as Logical VC 

(“x has a value” => len x = 4) 
                 => (v = 8) => (v <= len x)

 x:{v|len v = 4} |- {v|v = 8} <: {v|v <= len x}



Logic SMT

How to encode “x has a value” ?

(In a decidable manner)

(“x has a value” => len x = 4) 
                 => (v = 8) => (v <= len x)



Logic SMT

CBV: Binders Are Values! 

i.e. x is guaranteed to be a value

(“x has a value” => len x = 4) 
                 => (v = 8) => (v <= len x)



Logic SMT Invalid

CBV: Binders Are Values! 

i.e. x is guaranteed to be a value

                    len x = 4
                 => (v = 8) => (v <= len x)



Code Logic SMTTyping

 take :: t:Text -> {v | v <= len t} -> Text
 

 heartbleed = let x = "Niki" 
              in  take x 8
 

CBV: Checker soundly reports Error

Error



CỈV: Binders must be values

Ignoring “has a value” is sound!



CBN: Binders may not be values

Ignoring “has a value” is unsound!



 

 spin :: Int -> Int
 

 spin x = spin x
 

Ignoring “has a value” is unsound!



OK

As spin does not return any value

 

 spin :: Int -> {v:Int|false}
 

 spin x = spin x
 

Ignoring “has a value” is unsound!



 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int | false}

 heartbleed = let x = "Niki" 
                  y = spin 0
              in  take x 8
 

OK? or Error? 

Ignoring “has a value” is unsound!



OK under CBV evaluation 

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int | false}

 heartbleed = let x = "Niki" 
                  y = spin 0
              in  take x 8
 

Ignoring “has a value” is unsound!



 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int | false}

 heartbleed = let x = "Niki" 
               
              in  take x 8
 

Error under CBN evaluation 

                  y = spin 0

Ignoring “has a value” is unsound!



CBV-style typing is unsound under CBN! 

Reports Erroneous code as OK 

Ignoring “has a value” is unsound!



Ignoring “has a value” is unsound!

How to encode “has a value” ?



Most expressions provably reduce to a value

How to encode “has a value” ?



If        x reduces to a value,  
Then encode “x has a value” by true

Most expressions provably reduce to a value

How to encode “has a value” ?



Solution: Stratified Types 

x:{v:Int |p}     
Must reduce to a Value

x:{v:Int↑|p}     
May-not reduce to a Value



x:{v:Int |p}     

x:{v:Int↑|p}     

                         to Logic 

encoded as    p[x/v]

encoded as    true

Stratified Types 



Code Typing

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int↑|false}

 heartbleed = let x = "Niki" 
                  y = spin 0
              in  take x 8
 

 x:{v|len v = 4}
 y:{v:Int↑|false } |- {v|v = 8} <: {v|v <= len x}



Typing Logic

 len x = 4
 true            => v = 8 => v <= len x

 x:{v|len v = 4}
 y:{v:Int↑|false } |- {v|v = 8} <: {v|v <= len x}



Logic SMT

 len x = 4
 true            => v = 8 => v <= len x

Invalid



Code Logic SMTTyping

 take :: t:Text -> {v | v <= len t} -> Text
 spin :: Int -> {v:Int↑|false}
 

 heartbleed = let x = pack "Niki" 
                  y = spin 0
              in  take x 8
 

Error

How to enforce stratification?



Terminating expressions must have a value

Solution 
Check termination with Refinement Types!

x:{v:Int|p}     
Must have a Value

How to enforce stratification?



      Soundness  
Under Lazy Evaluation
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1. Soundness  
Under Lazy Evaluation

2. Expressiveness  
Refinement Reflection

With decidable & predictable verification.



With decidable & predictable verification.



With decidable & predictable verification.

Code Logic SMTTyping
OK

Error



Formula SMT
Valid

Invalid
Unknown

With decidable & predictable verification.



Formula SMT

*From Decidable Logic

*

With decidable & predictable verification.

Valid

Invalid



Typing Logic

Encode Subtyping … 

… as Logical Verification Condition 

 x1:{v|p1},…, xn:{v|pn} |- {v|q1} <: {v|q2}

SMT

p1 ∧ … ∧ pn => q1 => q12



… as Logical Verification Condition 

p1 ∧ … ∧ pn => q1 => q12

{v:a | p } 

For decidability, p from decidable theories



{v:a | p } 

For decidability, p from decidable theories

Boolean Logic
(QF) Linear Arithmetic

Uninterpreted Functions …

For decidable & predictable verification.



1. Soundness  
Under Lazy Evaluation

2. Expressiveness  
Refinement Reflection

With decidable & predictable verification.
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