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Abstract
We present Low-Level Liquid Types, a refinement type system for
C based on Liquid Types. Low-Level Liquid Types combine re-
finement types with three key elements to automate verification of
critical safety properties of low-level programs: First, by associat-
ing refinement types with individual heap locations and precisely
tracking the locations referenced by pointers, our system is able to
reason about complex invariants of in-memory data structures and
sophisticated uses of pointer arithmetic. Second, by adding con-
structs which allow strong updates to the types of heap locations,
even in the presence of aliasing, our system is able to verify prop-
erties of in-memory data structures in spite of temporary invariant
violations. By using this strong update mechanism, our system is
able to verify the correct initialization of newly-allocated regions
of memory. Third, by using the abstract interpretation framework
of Liquid Types, we are able to use refinement type inference to
automatically verify important safety properties without imposing
an onerous annotation burden. We have implemented our approach
in CSOLVE, a tool for Low-Level Liquid Type inference for C pro-
grams. We demonstrate through several examples that CSOLVE is
able to precisely infer complex invariants required to verify impor-
tant safety properties, like the absence of array bounds violations
and null-dereferences, with a minimal annotation overhead.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifica-
tion

General Terms Languages, Reliability, Verification

Keywords Liquid Types, Type Inference, Dependent Types, C

1. Introduction
Static verification is a crucial last line of defense at the lowest lev-
els of the software stack, as at those levels we cannot fall back
on dynamic mechanisms to protect against bugs, crashes, or mali-
cious attacks. Recent years have seen significant progress on au-
tomatic static verification tools for systems software. These tools
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employ abstract interpretation [5, 18] or software model check-
ing [3, 17, 7, 33] to infer path-sensitive invariants over program
variables like status flags and counters and thereby verify control-
sensitive safety properties. Unfortunately, these approaches have
been proven insufficient for verifying data-sensitive properties of
values stored in lists, trees, etc., as this requires the precise infer-
ence of invariants of data values stored within unbounded collec-
tions of heap-allocated cells.

In previous work we introduced Liquid Types [29], a refinement
type system for ML that marries the ability of ML types to infer
coarse invariants for polymorphic data structures (and higher-order
functions) with the ability of predicate abstraction and SMT solvers
to infer path-sensitive invariants of individual variables. We demon-
strated that this symbiotic combination enables the highly auto-
mated verification of complex data-sensitive properties of high-
level, functional programs [20]. Unfortunately, the very nature of
low-level, imperative code, typically written in C, makes the trans-
lation of type-based mechanisms to the setting of systems software
verification extremely challenging.
Lack of Types First, due to the presence of casts and pointer
arithmetic, low-level systems code is essentially untyped. C’s type
system is designed only to allow the compiler to determine the
number of bytes that should be read or written by each instruction,
and hence, unlike the type systems of higher-level languages, C’s
types provide no invariants about data values.
Mutation Second, mutation makes the very notion of type refine-
ment problematic. The key idea in refinement types is to adorn the
basic underlying types with refinement predicates over program
variables. For example, in an ML program, the refinement type
{ν :int | x ≤ ν} describes an integer that is greater than the pro-
gram variable x. However, this type is meaningless if the value of
x can change over time.
Unbounded Collections Third, even if we could meaningfully
track mutation, we cannot always uniquely identify the object be-
ing mutated. In particular, the presence of unbounded collections
means that we must represent many elements of a collection by a
single type. This makes it impossible to strongly update the type
of an element in the collection, creating a major loss of precision
in the presence of the temporary invariant violations common in
low-level programs.

We introduce Low-Level Liquid Types (LTLL), a static refine-
ment type system for C that enables the precise verification and
inference of data-sensitive properties of low-level software. LTLL
tackles the above challenges via a three-tiered design.

First, LTLL is founded on a new Basic type system that classifies
values and heaps. A value is either a datum of a given size , e.g., a 4-
byte integer or a 1-byte character, or a reference corresponding to a
pair of a heap location and an offset within the location. Intuitively,
an offset corresponds to a field (resp. cell) of the structure (resp.
array) resident at the location. A heap is a map from locations
to a sequence of offset-value bindings that define the contents of



the given location. By precisely tracking arithmetic on offsets,
Basic types provide coarse invariants about the basic shapes of data
values.

Second, each Basic type is refined with a predicate that captures
precise properties of the values defined by the type. LTLL makes
a clear separation between immutable state, which is tracked using
a traditional type environment, and mutable state, which is tracked
in a flow-sensitive heap. We ensure soundness by restricting the
refinements to pure predicates that refer only to immutable values.
Of course, in C all entities are mutable. We recover precision for
stack-allocated variables by first carrying out an SSA renaming,
which creates different (immutable) versions for the variables at
different program points.

Third, we recover precision for heap-allocated locations by us-
ing the Basic type information to strongly update the types of the
heap’s contents on writes through pointers. Since such strong up-
dates are unsound when several physical heap locations are repre-
sented by a single type, LTLL distinguishes between abstract loca-
tions which summarize a collection of physical memory locations
and concrete locations which describe exactly one physical mem-
ory location. LTLL enables strong updates by enforcing the require-
ment that all pointer reads and writes are to concrete locations, and
by employing two mechanisms, inspired by version control sys-
tems, to account for aliasing: unfold, which “checks out” a con-
crete reference to a particular location from the set described by an
abstract location, and its dual, fold, which “commits” the changes
made to the particular location back into the abstract location af-
ter ensuring that the particular location satisfies the invariants of
the abstract location. Together, the automatically-inserted fold and
unfold annotations ensure that the invariants for an abstract loca-
tion soundly apply to all the elements that correspond to that loca-
tion, while simultaneously allowing strong updates. This is crucial,
as strong updates are essential for both establishing and tolerating
temporary violations of the invariants that are ubiquitous in low-
level code.

Finally, LTLL uses the abstract interpretation framework of Liq-
uid Types to permit automatic inference of the refinements. The
typing rules directly correspond to an algorithm that generates a
system of subtyping constraints over templates containing variables
that stand for the unknown refinements. These constraints reduce to
a system of logical implication constraints that are solved via pred-
icate abstraction in order to yield the refinement types, and hence
precise invariants, for different program elements.

To demonstrate the utility of LTLL, we have implemented it in
CSOLVE, a prototype static verifier for C. CSOLVE takes as input
a C program and a set of logical predicates and returns as output
the inferred dependent types of local variables and heap contents
along with a report of any type errors that occurred. Through a set
of challenging case studies, we show how the combination of types
and predicate abstraction enables the precise, path-sensitive veri-
fication and inference of control-sensitive properties of individual
variables and data-sensitive properties of aggregate structures.

2. Overview
We start with a high-level overview of Low-Level Liquid Types,
and then, via a sequence of examples, we illustrate how they enable
the precise static verification and inference of program invariants in
the presence of challenging low-level programming constructs, in-
cluding pointer arithmetic, memory allocation, temporary invariant
violations, aliasing and data structures.

Basic Types Our system is based on a new Basic type system for
C where every program variable is either a basic data value of
some size, e.g., a 4-byte integer denoted by int, or a reference
comprising a location and an index within the location denoted by

ref(`, i), where ` is the location and i the index within the location.
An index is either a natural number n, which is a singleton offset
used to model pointers to specific fields of a structure, or of the form
n+m, which is a sequence of offsets {n+ lm}∞l=0 used to model
pointers into an array of items of size m that starts at offset n.
Thus, ref(`, 4) is a (possibly null) pointer that refers to a location
` at (field) offset 4, while ref(`, 0+4) is a (possibly null) pointer
that refers to a location within an array of 4-byte integers.
Basic Heaps To ensure the soundness of types in the presence of
mutation, our representation of program state is partitioned into
an environment, which is a standard sequence of type bindings
for immutable variables, and a heap, which is a mapping from
locations ` to a set of index-type pairs that describe the contents
of the location, called a block. For example, the heap

`1 7→ 0:int, 4:int
`2 7→ 0+1 :char

has two locations. The first, `1, contains a structure with two integer
fields (at offsets 0 and 4 respectively). The second, `2, contains an
array of one-byte characters (denoted char).
Refinement Types and Heaps In our system, program invari-
ants are captured via refinement types [25, 14, 4, 29] denoted by
{ν :τ | e} where τ is the Basic type being refined, ν is a special
value variable that denotes the value being described, and e is the
refinement predicate, a Boolean-valued expression containing the
value variable. Intuitively, the refinement type describes the set of
values c of the Basic type τ such that the predicate e[c/ν] evaluates
to true. Thus, {ν :int | 0 ≤ ν} describes the set of non-negative
integers, and {ν :ref(`, 0) | ν 6= 0} describes the set of non-null
references to a location ` at offset 0. A refinement heap is a heap
where each location is mapped to a sequence of offset-refinement-
type pairs. For example, `1 7→ 0:{ν :int | 0 ≤ ν} is a heap with
a location `1 which contains a non-negative integer at offset 0.
Liquid Types A logical qualifier is a Boolean-valued expression
over the program variables, the value variable ν, and a placeholder
variable ?. We say that a qualifier q matches the qualifier q′ if
replacing some subset of the free variables in q with ? yields q′. For
example, the qualifier ν ≤ x+ y matches the qualifier ν ≤ ?+ ?.
We write Q? for the set of all qualifiers not containing ? that match
some qualifier in Q. In the rest of this section, let Q be the set

{0 ≤ ν, ν = ?+ ?, ν = BS(ν),

BS(ν) = BS(?),BE(ν) = BS(ν) + ?}
The terms BS(·) and BE(·) are uninterpreted function applications
denoting the start and end addresses of memory blocks; we will
explain these shortly. A liquid type over Q (abbreviated to just
liquid type) is a refinement type where the refinement predicates are
conjunctions of qualifiers from Q?. Our system enables inference
by requiring that the certain entities, e.g., loop-modified variables,
functions and blocks in aggregate structures, have liquid types.

2.1 Local Invariants
We begin by showing how our system uses local refinements for
individual program variables to verify the safety of the pointer
dereferences in the make string function shown in Figure 1. The
function takes an integer parameter n, allocates a new block of
memory of size n, iterates over the block using str to initialize
it, and returns a reference, res, to the block.
Basic Types First, we describe the Basic types computed for each
variable. The function calls malloc to create a new heap location
`1 and returns a pointer to the location with offset 0. Thus, res gets
the Basic type ref(`1 , 0). str is initialized with res but is updated
inside the loop with an increment of 1. Hence, it gets assigned the
Basic type ref(`1 , 0+1). The loop index i gets the Basic type int.



char *make_string(int n) {
char *res;
char *str;

1: if (n < 0) return NULL;
2: res = (char *)malloc(n*sizeof(char));
3: str = res;
4: for(int i = 0; i < n; i++) {
5: *str++ = ’\0’;

}
6: return res;
}

Figure 1. Example: make string

typedef struct {
int len;
char *str;

} string;

string *new_string(int n, char c){
string *s;
char *str;

0: if (n < 0) return NULL;
1: s = (string *)malloc(sizeof(string));
2: s->len = n;
3: str = make_string(n);
4: s->str = str;
5: init_string(s,c);

return s;
}

void init_string(string *s, char c){
for (int i = 0; i < s->len; i++) {

s->str[i] = c;
}

}

Figure 2. Example: new string

typedef struct _slist {
struct _slist *next;
string *s;

} slist;

slist *new_strings(int n) {
string *s;
slist *sl, *t;

1: sl = NULL;
2: for (int i = 1; i < n; i++) {
3: s = (string *)malloc(sizeof(string));
4: s->len = i;
5: s->str = make_string(i);

6: t = (slist *)malloc(sizeof(slist));
7: t->s = s
8: t->next = sl;
9: sl = t;

}

return sl;
}

Figure 3. Example: new strings

Pointer Allocation and Arithmetic To specify when it is safe to
dereference a pointer, we refine the output type of malloc so that
it contains information about the size of the allocated block. In
particular, in our system malloc returns a value of type

{ν :ref(`, 0) | BLen(ν, n)}
where n is the size argument passed to malloc and BLen is the
following block length predicate:

BLen(ν, n)
.
= BS(ν) = ν ∧ BE(ν) = ν + n

The refinement states that the return value is equal to the start of
the location it points to (BS(ν)), and that the end of the allocated
region (BE(ν)) is n bytes from the beginning. We adopt a logical
model of memory where allocated blocks are considered to be
infinitely far apart. We reflect this in our type system by refining the
output types of pointer arithmetic operations to stipulate that when
a pointer x is incremented by a value i the result has refinement

PAdd(ν, x, i)
.
= ν = x+ i∧BS(ν) = BS(x)∧BE(ν) = BE(x)

which states that the result is an appropriately offset pointer into the
same block. Finally, to specify the safety of pointer dereferences,
we stipulate that whenever a pointer x is dereferenced for reading
or writing, it has the bounds-safe type

{ν :ref(`, 0+1) | BS(ν) ≤ ν ∧ ν < BE(ν)}

Safety Verification To verify that the pointer dereference on line 5
is safe, we must verify that str has the bounds-safe type; this will
require determining that str = res + i. This is challenging for
a type system, as both str and i are mutated by the loop. Our
system addresses this problem by using SSA renaming to compute
different types for the different versions of mutated variables. In
the sequel, let xj be the SSA name of x at line j. Thus, from the
malloc at line 2 our system deduces that res2 has type

{ν :ref(`1 , 0) | BLen(ν, n)} (1)

i.e., that res is a pointer to the start of a new location `1 whose size
is n bytes. This same type is assigned to str3. Next, our system
uses the qualifiers Q and an SMT solver to infer that at line 5 i5
and str5 have the respective types

{ν :int | 0 ≤ ν < n}
{ν :ref(`1 , 0+1) | PAdd(ν, res2, i5)}

Notice that these types are loop invariants. They hold the first
time around the loop as initially i is 0 and str is equal to
res. The types are inductive invariants, as each loop iteration
increments i and res. Thus, our system uses an SMT solver
to combine the above facts with (1) and deduce that at line 5
BS(str5) ≤ str5 ∧ str5 < BE(str5), i.e., that str5 has the
bounds-safe type and hence the pointer dereferences at line 5 of
make string are safe.
Function Types Finally, note that make string returns the pointer
res (i.e., res2) on line 6. Thus, using the type from (1) and the fact
that the location `1 was freshly generated via malloc , our system
concludes that make string has the type:

∀`1 .(n :int)/emp→
{ν :ref(`1 , 0) | BLen(ν, n)}/`1 7→ 0+1 :char (2)

That is, the function takes an integer n and an empty heap (i.e., does
not touch any pre-existing heap cells) and returns a pointer to the
start of a new char array of size n.

2.2 Heap-block Invariants
Next, we show how our system uses refinements to verify safety
properties of blocks of data residing in the heap. Consider the
new string function shown in Figure 2. This function takes a
parameter, n, and produces a string structure encoding a string
of length n. The string structure has two fields: len, the length
of the string, and str, a pointer to the contents of the string.
The programmer intends that the fields obey the following two
invariants:

(I1) the len field is non-negative, and
(I2) the str field points to a char array of size len.

Note that these invariants do not hold at all points during the
lifetime of the structure; instead, the programmer establishes them
on lines 1-4, and then calls the procedure init string that fills
in the string with the supplied character c.

Next, we show how our system precisely tracks updates to the
structure, tolerating the early stages in which the invariant does not
hold, in order to verify the safety of the pointer dereferences within
init string.

First, the malloc in line 1 creates a new location on the heap,
`2 , and gives s the type ref(`2 , 0), stating that it points into this
location at offset 0. Initially, this location contains an 8-byte block



(the size of the string structure), and so at line 2 the heap is

`2 7→ uninitialized 8-byte block

In line 2, we assign n to the len field of s, which creates a new
binding in the heap for `2 at the offset corresponding to the field
len, namely 0, since len is the first element of the structure. Thus,
at line 3 the heap is

`2 7→0:{ν :int | ν = n}, uninitialized 4-byte block

Next, in line 3, the call to make string creates a new location and
assigns to str a pointer to the new location, with the type shown in
2 (and 1). Thus, at line 4 the heap contains two locations

`1 7→0+1 :char

`2 7→0:{ν :int | ν = n}, uninitialized 4-byte block

In line 4, the value of str is assigned to s->str, which creates
a binding at the corresponding offset in `2 , namely 4, as the first
field, len, was an int which is 4 bytes long. Thus, at line 5 the
heap is

`1 7→0+1 :char

`2 7→0:{ν :int | ν = n}, 4:{ν :ref(`1 , 0) | ν = str}

Finally, at line 5 we have the call to init string. At the callsite,
our system uses the qualifiers in Q, and the type of str to infer that
the previously shown heap binding for `2 is subsumed by

`2 7→0:{ν :int | ν = n}, 4:{ν :ref(`1 , 0) | BLen(ν, n)}

As the value at offset 0 equals n, the above block is subsumed by

`2 7→0:{ν :int | ν = n}, 4:{ν :ref(`1 , 0) | BLen(ν,@0)}

where n is replaced by @0, a name that denotes the value within
the same block at offset 0. Finally, our system uses the test at line 0
to deduce that n is non-negative at the callsite, so init string is
called with the heap h defined as

h
.
= `2 7→ 0:{ν :int | 0 ≤ ν}, 4:{ν :ref(`1 , 0) | BLen(ν,@0)},
`1 7→ 0+1 :char

Note that, as the len field of a string structure is located at off-
set 0 and its str field is located at offset 4, the bindings for `2

capture exactly the structure invariants I1, I2 intended by the pro-
grammer. Moreover, even though the invariants don’t hold every-
where, our system is able to use strong updates to establish them at
function call boundaries. Thus, our system infers that the function
init string has the type

∀`1 , `2 .(s :ref(`2 , 0))/h→ void/h

and, via reasoning analogous to that for make string, our system
verifies the safety of array accesses in init string.

2.3 Data Structure Invariants
In new string, s pointed to exactly one heap location, `1 ,
throughout the execution of the function. Thus, we could soundly
perform strong updates to the block describing the contents of `1 ;
this allowed us to determine that the strings built by new string
satisfied the desired invariants. Unfortunately, we cannot soundly
use strong updates when dealing with collections of locations.

Consider the function new strings shown in Figure 3. This
function takes an integer parameter, n, and creates a list of strings
of lengths from 1 to n, all of which satisfy the invariants I1, I2. This
is accomplished by looping from 1 to n, allocating memory for a

new string and assigning the pointer to this memory to s (line 3),
initializing it as in new string (lines 4,5), and inserting s into a
list of strings (lines 6,7,8).

Note that s points to many different concrete locations over the
course of executing the function; this is in contrast to the previous
functions, in which pointers only pointed to a single concrete loca-
tion while the function was executed. We formalize this distinction
by saying that s points to an abstract location ˜̀. That is, in our sys-
tem, s has the Basic type ref(˜̀, 0), which states that it refers to the
offset 0 within (one of) many possible locations.

Observe that it is not sound to perform strong updates to an
abstract location’s type. To see why, suppose that we had strongly
updated ˜̀as we did when analyzing new string. Then we would
assign ˜̀a block type as follows:

˜̀ 7→ 0:{ν :int | ν = i}, . . .

There are two problems with this type. First, every string has a
different length, and yet we only assign a single length for all
strings. Second, at the end of the function, i has the value n, while
none of the strings in the list has length n! Thus, while we need
strong updates to establish the desired invariants for each string,
we clearly cannot soundly perform strong updates on the types of
abstract locations.

We solve this problem with the following crucial observation.
Suppose that the code uses a pointer s to access a collection of
locations ˜̀. As long as we do not modify s or use other pointers to
˜̀, only one particular concrete location from the set represented by
˜̀can be modified at a time. Thus, when a pointer to ˜̀ is first used,
we can unfold the abstract location into a fresh concrete location,
`j , which inherits ˜̀’s invariant. As long as ˜̀ is only accessed by a
pointer to `j , we can soundly perform strong updates on `j’s type.
However, as soon as another pointer to ˜̀ is used, the possibility of
aliasing means we can no longer rely on `j’s type to be accurate.
Thus, before we access an abstract location via another pointer of
type ˜̀, we fold the concrete location `j back into the collection
by verifying that `j satisfies ˜̀’s invariants and removing it from
the heap. The other pointer then gets its own unfolded copy of the
location, and can strongly update it, until it gets folded back into
the collection, and so on. Our system automatically places folds
and unfolds in the code in a manner that ensures that: (1) every
heap access occurs via a reference to a concrete location, (2) every
abstract location has at most one corresponding concrete location
in the heap at any point in time. In this way, our system can soundly
establish invariants about unbounded data structures in spite of
temporary invariant violation even in the presence of aliasing.

We now illustrate the above mechanism using the code in Fig-
ure 3. We will say that, within the body of the loop, s points to
some concrete location, `j , which is an instance of ˜̀. We will use
strong updates, as in the previous examples, to verify that `j has
the desired invariants, i.e., that

`j 7→ 0:{ν :int | 0 ≤ ν}, 4:{ν :ref(`2, 0) | BLen(ν,@0)}.

Finally, at the end of the loop — i.e., before we access another
pointer into ˜̀ in the next iteration — we fold the concrete location
`j into the collection by ensuring that it satisfies ˜̀’s invariants, i.e.,
by stipulating that at the end of of the loop, the block `j is a subtype
of the block ˜̀. In this manner, our system performs strong updates
locally and infers using Q that at the end of the new strings, the
heap is of the form

˜̀ 7→0:ref(˜̀, 0), 4:ref( ˜̀1, 0)

˜̀1 7→0:{ν :int | 0 ≤ ν}, 4:{ν :ref( ˜̀2, 0) | BLen(ν,@0)}
˜̀2 7→0+1 :char



a ::= Pure Expressions
| 〈w〉n integer constant
| ref(r, n) reference constant
| x variable
| @i block offset
| a1 + a2 integer arithmetic
| a1 +p a2 pointer arithmetic
| a1 ∼ a2 pointer comparison
| assert(a) assertion
| F (a . . .) unint. application

e ::= Expressions
| a pure expression
| if a then e1 else e2 if-then-else
| let x = e1 in e2 binding
| letu x = [unfold `] a in e location unfold
| [fold `] location fold
| ∗a pointer read
| ∗a1 := a2 pointer write
| malloc(`, a) allocation
| [` . . .] f(a . . .) function call

f ::= Functions
| fun(x . . .){e} : S definition

p ::= Programs
| letf f = f in p function binding
| f() main call

Figure 4. NanoC syntax

Thus, our system infers that the function returns a list (˜̀) of pointers
to string structures (`1) each of which satisfy invariants I1 and I2.

Plan This concludes a high-level overview of LTLL. Next we
formalize our core language (Section 3) and static type system and
state the type soundness theorem (Section 4). Next, we describe
our experimental evaluation via a set of challenging case studies
(Section 5), We then survey the diverse lines of research to which
LTLL is related (Section 6) before concluding (Section 7).

3. Language
In this section, we present the syntax and types of NanoC, a simple
C-like language with integers and pointers.

3.1 Syntax
The syntax of NanoC is shown in Figure 4. We give an overview of
the language’s features below.

Pure Expressions We distinguish the pure expressions of NanoC,
which do not access the heap, from its potentially impure expres-
sions. The pure expressions of NanoC, denoted by a, include in-
teger constants, variables, integer and pointer arithmetic, integer
and pointer comparisons, and assertions, which allow the static
checking of arbitrary predicates. NanoC uses the C convention
that nonzero values represent truth and all other values represent
falsehood. Thus, the generic arithmetic operator, denoted by +, in-
cludes comparisons and boolean operations. Uninterpreted appli-
cations and block offsets do not appear in programs; they are used
solely in the refinements discussed in Section 3.2. Similarly, refer-
ence constants pointing to run-time heap locations r do not appear
in source programs, but are the result of evaluating reference-typed
expressions. Note that pure expressions are guaranteed to evaluate
to a value.

` ::= Locations
| ˜̀ abstract location
| `j concrete location

i ::= Indices
| n singleton
| n+m lower-bounded sequence

τ ::= Basic Types
| 〈n〉i integer
| ref(`, i) reference

T ::= Refined Types
| {ν :τ | a} refined Basic type

b ::= Blocks
| i :T . . . block

h ::= Heaps
| emp empty heap
| h ∗ ` 7→ b location binding

S ::= Function Schemas
| (x :T . . .)/h→ T/h function type
| ∀`.S location quantification

Figure 5. NanoC types

Expressions The impure expressions of NanoC, denoted by e,
include the pure expressions, as well as if-then-else expressions,
let bindings, reads from and writes to memory, memory allocation,
location folding and unfolding, and function calls. Note that all
bindings are to immutable variables — all mutation is factored into
the heap. Next, we examine location unfolding and function calls
in more detail.

Location Fold and Unfold Our goal is to verify invariants which
hold on in-memory data structures. These invariants are represented
as types attached to abstract heap locations, each of which may rep-
resent several concrete (actual, run-time) heap locations. Verifying
properties of the data at these abstract locations in the presence
of temporary invariant violation would seem to require performing
strong updates on the types of abstract locations. Unfortunately,
this would be unsound, since a single abstract location can repre-
sent several concrete locations.

However, at run-time a reference will only point to a single
concrete location at a time. Thus, operations on abstract locations
through a single reference will only affect a single concrete loca-
tion. Intuitively, if we can get access to this concrete location, we
can soundly perform strong updates on it.

Our intuition follows a version control metaphor. Before using a
pointer, we can “check out a copy” of its abstract location, giving a
concrete location for the pointer which has the same type as the ab-
stract location — a “working copy”. As long as the abstract location
is accessed only through this pointer to the working copy, it will be
sound to perform strong updates on the type of the new concrete
location. Finally, if it becomes necessary to use another pointer to
the same abstract location, we “check in” the concrete location by
checking that it satisfies the same invariant as the corresponding
abstract location. The concrete location is then discarded so that no
further modification can be made to the working copy.

The “check out” operation is implemented via the letu x =
[unfold `] a in e construct, where a is a reference to abstract
location ˜̀. The expression creates a new concrete location corre-



sponding to ˜̀; a reference to this new location is bound to x in e.
The “check in” operation is implemented via the [fold `] expres-
sion, which verifies that the concrete location corresponding to ˜̀

satisfies the same invariant as ˜̀. These procedures and the distinc-
tion between abstract and concrete locations are discussed in more
detail in the context of their static typing rules in Section 4.1.
Function Calls Since functions take reference parameters, they can
operate on arbitrary memory locations. Thus, we allow function
types to be quantified over the locations they operate on and aug-
ment the function call expression with syntax for instantiating the
quantified locations: the expression [` . . .] f(x . . .) calls function
f with parameters x . . ., instantiating the location variables in the
type schema of f with locations ` . . ..
Programs A NanoC program, denoted by p, is a sequence of func-
tion definitions followed by a call to one of the previously-defined
functions. The program is evaluated by evaluating the function call.

3.2 Types
The types of NanoC are shown in Figure 5. NanoC has a system of
refined base types, T , dependent heaps, h, and dependent function
schemas, S.
Locations and References The NanoC locations, `, denote areas
of the heap. We use ˜̀ to denote an abstract location; abstract
locations cannot be read from or written to. We use `j to denote
a concrete location; only concrete locations can be read from or
written to. Every concrete location `j (resp. `ij) corresponds to
some abstract location ˜̀ (resp. ˜̀i), and we require for soundness
that there is at most one concrete location corresponding to a
particular abstract location at any given program point. We call
references to abstract locations abstract references and references
to concrete locations concrete references.
Indices The integer and reference types of NanoC make use of
indices, i, which are a shorthand notation for single integers and
arithmetic sequences. The index n represents the singleton off-
set set {n}; the index n+m represents the sequence of offsets
{n+ lm}∞l=0. We write i+ to refer to an index which represents
a sequence.
Basic Types The base types, τ , of NanoC include integer and
reference types. We use 〈n〉i to denote the type of n-byte integers
x such that x ∈ i. We use ref(`, i) to denote the type of references
to location ` at an offset x ∈ i within that location.
Refined Types A refined type, T , has the form {ν :τ | a}, where
τ is a Basic type and a is a pure expression called a refinement
predicate. Note that we can directly embed refinement predicates
as quantifier free formulas in the (decidable) theory of equality,
linear arithmetic and uninterpreted functions (EUFA). Intuitively,
the type {ν :τ | a} denotes values v of Basic type τ such that
a[v/ν] evaluates to true. We use the following type abbreviations:
int abbreviates 〈W 〉−∞+1 , where W is the length in bytes of
a word, char abbreviates 〈1〉−∞+1 , and void abbreviates 〈0〉0.
When it is unambiguous from the context, we use τ to abbreviate
the type {ν :τ | true}. Similarly, when the Basic type τ is clear
from the context, we use {a} to abbreviate {ν :τ | a}.
Blocks A block, b, represents the contents of a heap location. The
types of the block’s contents at various offsets are given by bindings
i :T which state that the values at the offset(s) i have the type T .
Within a block, no two index bindings may overlap.
Heaps A heap type, h, represents the contents of the run-time heap,
giving a block type to each location in the heap. The contents
of heap location ` are given by a binding to a block b, written
` 7→ b. We can form the concatenation of two heaps h1 and h2

as h1 ∗ h2; the resulting heap contains all bindings present in

either h1 or h2. Our heaps enjoy the following properties: (1) no
location may be bound twice in a heap, (2) every abstract location
in the heap has at most one corresponding concrete location in the
heap, and (3) every concrete location in the heap has exactly one
corresponding abstract location in the heap. We say that a run-time
heap satisfies a heap type if every value in the heap has the type
specified by the corresponding heap type binding.
Function Schemas We combine refined base types and heap types
to form dependent function types and schemas S. A dependent
function type consists of an input and output portion. The input
portion of a dependent function is a pair (xi :Ti . . .)/h of a depen-
dent tuple giving the parameter types and the input heap, i.e., the
heap contents required to call the function. The output portion of
a dependent function is a pair T/h, called a world, containing the
return type of the function and the output heap, i.e., the heap con-
tents after the function returns. The types in the output world of a
dependent function type may refer to variables bound in the input
tuple.

Since functions can take reference parameters, they may operate
on arbitrary heap locations. Thus, we allow function schemas to be
formed by quantifying a function type over the heap locations it
contains.

4. Type System
In this section, we present the typing rules of NanoC, outline a
proof of their soundness, and give an overview of how our system
enables inference.

4.1 Typing Rules
We begin with a description of NanoC’s type environments, rules
for type well-formedness, and subtyping. We then discuss several
of the most interesting typing rules.
Environments Our typing rules make use of two types of environ-
ments: local environments and global environments. A local envi-
ronment, Γ, is a sequence of type bindings x :T and guard predi-
cates e. The former are standard; guard predicates capture the re-
sults of conditional guards under which an expression is evaluated.
A global environment, Φ, is a sequence of bindings f :S mapping
functions to their type schemas.

We assume that suitable renaming has been performed so that
no name is bound twice in an environment. An environment is
well-formed if each bound type is well-formed in the prefix of the
environment that precedes the binding.

Γ ::= ε | x :T ; Γ | a; Γ (Local Environment)
Φ ::= ε | f :S; Φ (Global Environment)

Well-Formedness Judgments The judgments of Figure 6 ensure
that types, heaps, and worlds are well-formed in local environments
Γ and heaps h. Intuitively, a type is well-formed in a local environ-
ment Γ if its refinement predicate a is a Boolean formula in Γ,
written Γ ` e. Additionally, we require that reference types point
to heap locations present in h and integer types have non-negative
size.

A block is well-formed if no two index bindings overlap and
each type is well-formed with respect to the local environment and
preceding indices. We distinguish between concrete blocks, bound
to concrete heap locations, which must have (pure) refinements
over immutable variables bound in the environment, and abstract
blocks, bound to abstract heap locations, which have refinements
which may additionally use offset names (e.g., @0) to refer to val-
ues at other offsets within the block. We disallow offset names in
the refinements for concrete blocks for two reasons. First, they are
unnecessary, as we can use names bound in the environment to pre-
cisely describe a particular location. Second, they are problematic,



as the values at the offsets can be changed by strong updates, thus
invalidating the refinements. To ensure that no elements overlap,
the block well-formedness rules make use of an auxiliary function,
Ind(i, T ), which produces the set of offsets occupied by a value
of type T located at offsets x ∈ i. For example, Ind(0, 〈4〉0) pro-
duces the set {0, 1, 2, 3}, i.e., the set of offsets occupied by a 4-byte
integer located at offset 0.

A heap is well-formed if each block is well-formed, no location
is bound twice, each abstract location has at most one correspond-
ing concrete location, and each concrete location has a correspond-
ing abstract location. Note that we check blocks bound to abstract
locations using abstract block well-formedness and blocks bound
to concrete locations using concrete block well-formedness.

A schema is well-formed if all parameters are well-formed with
respect to the previous parameters and the input heap, the input
heap is well-formed with respect to the parameters, and the output
world is also well-formed with respect to the parameters.

Subtyping Judgments The subtyping judgments of NanoC are
shown in Figure 8. The rules use set-theoretic inclusion checks be-
tween arithmetic sequences represented by indices and logical im-
plication checks over the refinement predicates. To ensure decid-
ability, we embed the implication checks into a decidable logic of
Equality, Linear Arithmetic and Uninterpreted Functions (EUFA).
We write [[a]] for the embedding of a pure expression a into EUFA.
We lift the embedding to environments as follows:

[[x :{ν :τ | a};Γ]]
.
= [[a[x/ν]]] ∧ [[Γ]]

[[a; Γ]]
.
= [[a]] ∧ [[Γ]]

[[ε]]
.
= true

Most of the rules in Figure 8 are straightforward. Rule [<:-
NULLPTR] is used to coerce the integer value 0 into an arbi-
trary pointer type, allowing the use of null pointers. Rule [<:-
ABSTRACT] allows a concrete pointer to be treated as abstract.

Covariant Heap Subtyping Our use of the covariant heap sub-
typing rule [<:-HEAP] may seem unsound at first blush. Typical
type systems are flow-insensitive. In such systems, a reference has
a single type over the entire scope in which it is defined, and hence,
using covariant subsumption to unsafely “upcast” reference types
can cause unsoundness. In our setting, covariant subtyping is sound
as we treat the heap in a flow-sensitive manner. We assign different
types to the current heap before evaluating an expression and the
resulting heap after the expression has been evaluated. This allows
a heap location to be updated to reflect a change in the type of the
stored value, avoiding the aforementioned unsoundness.

Pure Typing Judgments The typing judgments for pure expres-
sions are shown in Figure 7. The rules are quite standard [25, 14,
29, 4]. Note that the refinement predicates for these expressions
precisely track the value of the expression. The only non-trivial
rule is [T-PTR-ARITH] which handles pointer arithmetic. The re-
finement for the result uses the refinement PAdd(ν, a1, a2) (Sec-
tion 2) which states that the value obtained by adding an offset a2

to a base pointer a1 yields an appropriately offset pointer into the
same block. Recall that BS(ν) (resp. BE(ν)) denotes the address
where the block referred to by ν begins (resp. ends).

The rules [T-ARITH], [T-PTR-ARITH], and [T-PTR-COMP]
use the index operators + and∼, which are binary operations on in-
dices which approximate arithmetic operations and the comparison
operator, respectively.

Typing Judgments The typing judgments for expressions and pro-
grams are shown in Figures 9 and 10. The program typing rules are
straightforward. The expression typing judgment Γ, h ` e : T/h′

states that, in local environment Γ, if the heap initially satisfies h,
then evaluating e produces a value of type T and a heap satisfying

Type Well-Formedness Γ, h ` T

0 ≤ n Γ;ν :〈n〉i ` a
Γ, h ` {ν :〈n〉i | a}

[WF-INT]

` ∈ Dom(h) Γ;ν :ref(`, i) ` a
Γ, h ` {ν :ref(`, i) | a} [WF-REF]

Abstract Block Well-Formedness Γ, h `A b

Γ, h ` T Ind(n, T ) ∩ Dom(b) = ∅
x fresh Γ;x :T , h `A b[x/@n]

Γ, h `A n :T , b
[WF-FIELD]

Γ, h ` T
Ind(n+m, T ) ∩ Dom(b) = ∅ Γ, h `A b

Γ, h `A n+m :T , b
[WF-ARRAY]

Concrete Block Well-Formedness Γ, h `C b

Γ, h ` T
Ind(i, T ) ∩ Dom(b) = ∅ Γ, h `C b

Γ, h `C i :T , b
[WF-CONCBLOCK]

Heap Well-Formedness Γ ` h

Γ ` emp
[WF-EMPTY]

˜̀∈ Dom(h) `k /∈ Dom(h)
Γ ` h Γ, h ∗ `j 7→ b `C b

Γ ` h ∗ `j 7→ b
[WF-CONCRETE]

˜̀ /∈ Dom(h) Γ ` h Γ, h ∗ ˜̀ 7→ b `A b
Γ ` h ∗ ˜̀ 7→ b

[WF-ABSTRACT]

World Well-Formedness Γ ` T/h

Γ, h ` T Γ ` h
Γ ` T/h [WF-WORLD]

Schema Well-Formedness ` S

x1 :T1 . . . ` h
for each xi, x1 :T1 . . . xi−1 :Ti−1, h ` Ti

x1 :T1 . . . ` T ′/h′

` ∀` . . . .(x1 :T1 . . .)/h→ T ′/h′
[WF-SCHEMA]

Figure 6. Well-Formedness

h′. The majority of the rules are straightforward; the most interest-
ing rules are those that deal with memory access.

Both typing judgments are parametrized by a function γ map-
ping run-time heap locations r to corresponding locations ` in the
static heap typing, used in [T-REF]. This function is a technical
device used in the soundness proof, and is always ∅ when type-
checking source code entered by the user, which cannot contain
reference constants.

4.2 Type Checking Memory Operations
Next, we discuss the rules for memory allocation, heap operations,
function calls, and location unfolding. The key idea that enables our
system to verify and infer invariants about in-memory data struc-
tures in the presence of temporary invariant violation is our distinc-



Pure Typing Γ `γ a : T

Γ `γ a : T1 Γ ` T1 <: T2 Γ ` T2

Γ `γ a : T2
[T-PURESUB]

0 ≤ w
Γ `γ 〈w〉n : {ν :〈w〉n | ν = 〈w〉n}

[T-INT]

γ(r) = `

Γ `γ ref(r, n) : {ν :ref(`, n) | ν = ref(r, n)} [T-REF]

Γ(x) = {ν :τ | a}
Γ `γ x : {ν :τ | ν = x} [T-VAR]

Γ `γ a1 : 〈n〉i1 Γ `γ a2 : 〈n〉i2
Γ `γ a1 + a2 : {ν :〈n〉+(i1,i2) | ν = a1 + a2}

[T-ARITH]

Γ `γ a1 : ref(`, i1) Γ `γ a2 : 〈n〉i2
Γ `γ a1 +p a2 : {ν :ref(`,+(i1, i2)) | PAdd(ν, a1, a2)} [T-PTR-ARITH]

Γ `γ a1 : ref(`, i1) Γ `γ a2 : ref(`, i2)

Γ `γ a1 ∼ a2 : {ν :〈W 〉∼(i1,i2) | ν = a1 ∼ a2}
[T-PTR-COMP]

Γ `γ a : {ν :int | ν 6= 0}
Γ `γ assert(a) : void

[T-ASSERT]

Figure 7. Pure Typing Rules

tion between concrete locations and abstract locations. Thus, to
better understand the rules for memory operations, we begin with a
more thorough description of abstract and concrete locations.
Concrete Locations are names that refer to exactly one physical
memory location. For example, a single item in a linked list has
one physical location and thus can be identified with a concrete
location. The block bound to a concrete location describes the
current state of the contents of exactly one physical location.
Abstract Locations are names that refer to zero or more concrete
locations. For example, all items in a linked list may share the
same abstract location, although each item is at a different concrete
location. The block bound to an abstract location is an invariant that
applies to all elements which share that abstract location.

Since we wish to verify data structure invariants in spite of
temporary invariant violation, we will allow memory to be accessed
only through concrete locations. This will enable our type system to
perform strong updates to the types of concrete locations, providing
robustness with respect to temporary invariant violation. Because
we wish to verify properties of unbounded collections, which are
represented using abstract locations, we need a strategy to handle
pointers to abstract locations.
Strategy for Collections We employ a two-pronged strategy for
handling pointers to abstract locations, and thereby collections.
First, as long as only a single pointer to an abstract location is used,
we can be assured that only one corresponding concrete location is
being accessed. We will use our location unfold operation to obtain
a concrete location corresponding to a pointer’s referent. As long
as the abstract location is only accessed through this “unfolded”
pointer, we can safely perform strong updates on the new concrete
location. Second, if we must use another pointer to access the ab-
stract location, we can no longer be assured that a single concrete
location will be updated. When this happens, we will use the lo-
cation fold operation to ensure that the contents of the concrete
location created earlier meet the abstract location’s invariant, dis-
allow further use of the unfolded pointer (without another unfold),
and allow the new pointer to be soundly unfolded.

Subtyping Γ ` T1 <: T2

i1 ⊆ i2 Valid([[Γ]] ∧ [[a1]]⇒ [[a2]])

Γ ` {ν :〈n〉i1 | a1} <: {ν :〈n〉i2 | a2}
[<:-INT]

i1 ⊆ i2 Valid([[Γ]] ∧ [[a1]]⇒ [[a2]])

Γ ` {ν :ref(`, i1) | a1} <: {ν :ref(`, i2) | a2}
[<:-REF]

Γ ` {ν :ref(`j , i) | a} <: {ν :ref(˜̀, i) | a}
[<:-ABSTRACT]

Γ ` {ν :〈W 〉0 | a} <: {ν :ref(˜̀, i) | a}
[<:-NULLPTR]

Block Subtyping Γ ` b1 <: b2

Γ ` emp <: emp
[<:-BLOCK-EMPTY]

Γ ` T1 <: T2

x fresh Γ;x :T1 ` b1[x/@n] <: b2[x/@n]

Γ ` n : T1, b1 <: n : T2, b2
[<:-FIELD]

Γ ` T1 <: T2 Γ ` b1 <: b2

Γ ` n+m : T1, b1 <: n+m : T2, b2
[<:-ARRAY]

Heap Subtyping Γ ` h1 <: h2

Γ ` b1 <: b2 Γ ` h1 <: h2

Γ ` h1 ∗ ` 7→ b1 <: h2 ∗ ` 7→ b2
[<:-HEAP]

World Subtyping Γ ` T1/h1 <: T2/h2

Γ ` T1 <: T2 Γ ` h1 <: h2

Γ ` T1/h1 <: T2/h2
[<:-WORLD]

Figure 8. Subtyping

In the following, we describe the typing rules for the key op-
erations of location unfolding and folding and demonstrate how
they allow us to soundly perform strong updates. We then describe
the remaining heap-accessing operations: memory allocation, heap
read and write, and function calls.

Unfolding The expression letu x = [unfold `] a in e, which
“acquires” a concrete pointer to the location ˜̀ that a points to, is
typed by rule [T-UNFOLD]. The rule first typechecks a in Γ to
determine where it points. The block b bound to this location is
located in the initial heap, h, to find the invariant satisfied by the
abstract location. With some modification, this same block is bound
to a new concrete location, `j , to ensure that this concrete location
initially satisfies the same invariants as the abstract location did.

The modification consists of a sequence of substitutions. The
block b may contain types which reference previous elements by
their indices (i.e., may contain types containing names like @i).
Such types only have meaning in the context of the block where the
indices are bound; if the type is extracted from the block — by typ-
ing a read operation, for example — it will be meaningless, since
the indices are not bound to types in the environment. To give these
types meaning outside of the block, we create fresh variable names
xi for each non-sequence index i and extend the environment with
appropriately-substituted bindings for these names. Each concrete
location has a “selfified” refinement stating that the value at each
index i is equal to the corresponding name xi. Note that sequence
indices are not bound to selfified types, because a sequence index
binding represents multiple data values.



Finally, a pointer to `j is bound to x in the body e. Well-
formedness checks ensure that no other concrete location corre-
sponding to ˜̀ exists and that the new bindings do not escape the
scope of the body.

Note that the pointer being unfolded must be non-null. Because
null pointers are treated as references to arbitrary, possibly unin-
habited, abstract locations with arbitrary invariants, allowing a null
pointer to be unfolded would allow the introduction of arbitrary
predicates into the environment, leading to unsoundness. By allow-
ing only non-null pointers to be unfolded, we ensure that we only
unfold pointers to concrete locations which had previously been
allocated, initialized, and folded. Such pointers are guaranteed to
genuinely satisfy the invariants of their abstract locations and so
there is no risk of unsoundness in unfolding them.

Folding The expression [fold `], which “releases” the concrete
location currently assigned to ˜̀, is typed by rule [T-FOLD]. The
rule uses subtyping to check that the concrete location `j satisfies
the invariant specified by its corresponding abstract location ˜̀and
removes concrete location `j from the output heap, preventing
further use of pointers to `j .

Memory Allocation The expression malloc(`, x) is typed by rule
[T-MALLOC], which creates a new concrete location correspond-
ing to newly-allocated memory. The new concrete location corre-
sponds to abstract location ˜̀, which is mapped to block b, giving
the desired invariant for the new concrete location. This invariant
is not yet established for the concrete location, which represents
freshly-allocated memory; thus, the concrete location is mapped to
b>, which is b with all refinements set to true, and it is up to the
caller to establish the invariant. The expression returns a reference
to the beginning of the concrete location (index 0); the refinement
on this reference states that the reference is a safe pointer to the
start of a block of size x, where safe is defined as

Safe(ν)
.
= ν 6= 0 ∧ BS(ν) ≤ ν < BE(ν)

The uniqueness of concrete location bindings within the heap is en-
sured using heap well-formedness; i.e., if there is an active concrete
location corresponding to the abstract location being allocated, it
must be “folded up” before malloc is invoked.

Initial Heap The input heap of the program’s main function gives
the type of the heap at the start of execution. Since at the begin-
ning of execution no locations have been allocated and no invari-
ants established, this initial heap cannot contain concrete locations.
It may, however, contain abstract locations, since they need not
describe the contents of any concrete locations. Rule [T-MAIN],
which typechecks the call to the main function, ensures the initial
heap contains only abstract locations.

Pointer Read The expression ∗x is typed by rule [T-READ]. This
rule ensures that the pointer is valid; if so, the type of the read is
given by the type bound in the heap at the reference’s location,
index pair. The heap is left unaltered.

Pointer Write The expression ∗x1 := x2 is typed by rules [T-
WRITE-FIELD] and [T-WRITE-ARRAY]. If the reference identifies
exactly one location within a block — i.e., it has a singleton index
n — the rule [T-WRITE-FIELD] can be used to return a new,
strongly-updated heap where the type of the referent has been
updated to the type of the value being assigned. Otherwise, a strong
update is unsound; the rule [T-WRITE-ARRAY] is used to ensure
that the new value has the same type as the previous value. Note that
we could use fold/unfold to allow strong writes to arrays, but we
eschew this for simplicity. Both rules ensure that the dereferenced
pointer is valid.

Function Call The expression [` . . .] f(y . . .) is typed by rule [T-
CALL], which is inspired by the modular “footprint”-based frame

rule from separation logic. This rule splits the initial heap into two
portions: hm, the portion of the heap which is modified by the
function, and hu, the portion of the heap which is left unmodified
by the function. To ensure soundness, we check that hm and hu
are individually well-formed; this prevents placing a concrete loca-
tion in hu and its corresponding abstract location in hm, allowing
the function to unsoundly unfold an already-unfolded location. The
rule also generates a substitution mapping formal (location) param-
eters to actual (location) parameters. This substitution is used to
check that the actual parameters and heap are subtypes of the for-
mal parameters and heap. The result of the call is the return type
and the function’s output heap, both with the actual (location) pa-
rameters substituted for the formals. The resultant output heap is
joined with the unmodified portion of the input heap to obtain the
caller’s heap after the function returns.

4.3 Type Soundness
We ensure the soundness of our type system by proving the stan-
dard progress and preservation theorems. Due to space restrictions,
we can only present a high-level view of the soundness theorems;
detailed proofs, as well as our standard call-by-value small-step se-
mantics, can be found in [28].

We relate run-time heaps and heap types using a heap satisfac-
tion relation h |=γ h

∗. Intuitively, this relation says that the run-
time block assigned to r in run-time heap h has the block type
assigned to γ(r) in the heap type h∗.

Our transition relation takes an expression e, a run-time heap
h, a heap type h1, and a mapping from run-time heap locations to
static heap type locations γ1 and returns a new tuple of the same
form representing the state of the program and typing of the heap
after evaluating e. The transition relation is parametrized over a
global environment Φ mapping functions to their definitions. We
denote the single step transition relation by ↪→Φ and use ↪→∗Φ to
denote its reflexive, transitive closure.

PROPOSITION 1. (Preservation)

If (e, h, γ1, h1) ↪→Φ (e′, h′, γ2, h2),
Φ, ∅, h1 `γ1 e : T ∗/h∗,

h |=γ1 h1

then Φ, ∅, h2 `γ2 e′ : T ∗/h∗,
h′ |=γ2 h2.

PROPOSITION 2. (Progress)

If Φ, ∅, h1 `γ1 e : T ∗/h∗

h |=γ1 h1

e is not a value
then (e, h, γ1, h1) ↪→Φ (e′, h′, γ2, h2)

for some e′, h′, γ2, and h2.

(We elide well-formedness statements in the above for clarity
and brevity; the details appear in the technical report [28].)

Type soundness implies the following safety properties: (1) all
memory accesses occur on non-null pointers that are within the
bounds of their allocated memory regions, and (2) no assertion
failures occur at runtime.

4.4 Type Inference
Next, we give a brief overview of type inference in NanoC. Type
inference occurs in three phases: the first infers Basic types for
the program; the second inserts location fold and unfold operations
where necessary; and the third infers refinement types using liquid
type inference.
Basic Type Inference In previous work [29, 20], we based our
type inference techniques on the rich type information provided
by ML’s type system. Because C programs are essentially untyped,



Expression Typing Φ,Γ, h `γ e : T/h′

Γ `γ a : T

Φ,Γ, h `γ a : T/h
[T-PURE]

Φ,Γ, h `γ e : T1/h1

Γ ` T1/h1 <: T2/h2 Γ ` T2/h2

Φ,Γ, h `γ e : T2/h2
[T-SUB]

Γ `γ a : 〈n〉i Φ,Γ;a 6= 0, h `γ e1 : T̂ /ĥ′

Φ,Γ;a = 0, h `γ e2 : T̂ /ĥ′

Φ,Γ, h `γ if a then e1 else e2 : T̂ /ĥ′
[T-IF]

Φ,Γ, h `γ e1 : T1/h1

Φ,Γ;x :T1, h1 `γ e2 : T̂2/ĥ2 Γ `γ T̂2/ĥ2

Φ,Γ, h `γ let x = e1 in e2 : T̂2/ĥ2

[T-LET]

Γ `γ a : {ν :ref(`j , i) | Safe(ν)}
h = h1 ∗ `j 7→ . . . , i :T , . . .

Φ,Γ, h `γ ∗a : T/h
[T-READ]

Γ `γ a1 : {ν :ref(`j , n) | Safe(ν)}
Γ `γ a2 : τ

h = h1 ∗ `j 7→ . . . , n :{ν :τ | a}, . . .
h′ = h1 ∗ `j 7→ . . . , n :{ν :τ | ν = a2}, . . .

Φ,Γ, h `γ ∗a1 := a2 : void/h′
[T-WRITE-FIELD]

Γ `γ a1 : {ν :ref(`j , n
+m) | Safe(ν)}

Γ `γ a2 : T̂

h = h1 ∗ `j 7→ . . . , n+m : T̂ , . . .

Φ,Γ, h `γ ∗a1 := a2 : void/h
[T-WRITE-ARRAY]

Γ `γ a : {ν :ref(˜̀, iy) | ν 6= 0}
h = h0 ∗ ˜̀ 7→ i :Ti . . . , i

+ :T+ . . .
θ = [xi/@i . . .]

Γ1 = Γ;xi :θTi . . . xi fresh `j fresh
h1 = h ∗ `j 7→ i :{ν = xi} . . . , i+ :θT+ . . .

Φ,Γ1;x :{ν :ref(`j , iy) | ν = a}, h1 `γ e : T̂2/ĥ2

Γ1 ` h1 Γ ` T̂2/ĥ2

Φ,Γ, h `γ letu x = [unfold `] a in e : T̂2/ĥ2

[T-UNFOLD]

h = h0 ∗ ˜̀ 7→ b̂1 ∗ `j 7→ b2 Γ ` b2 <: b̂1

Φ,Γ, h `γ [fold `] : void/h0 ∗ ˜̀ 7→ b̂1
[T-FOLD]

`j fresh h = h0 ∗ ˜̀ 7→ b

Γ ` h ∗ `j 7→ b> Γ `γ a : {ν :int | ν > 0}
T = {ν :ref(`j , 0) | Safe(ν) ∧ BLen(ν, n)}

Φ,Γ, h `γ malloc(`, a) : T/h ∗ `j 7→ b>
[T-MALLOC]

Γ ` hm Γ ` hu
Φ(f) = ·,∀`f . . ..xj :Tj . . ./hf→T ′/h′f

θ = [aj . . ./xj . . .][` . . ./`f . . .] Γ ` hu ∗ θh′f
for each j,Γ `γ aj : θTj Γ ` hm <: θhf

Φ,Γ, hu ∗ hm `γ [` . . .] f(aj . . .) : θT ′/hu ∗ θh′f
[T-CALL]

Figure 9. Expression Typing Rules

we first use a type inference pass to assign rich Basic types to local
variables and expressions and to discover the types of the heap’s
contents.

Program Typing Φ ` p : T/h

` Ŝ Ŝ = ∀` . . ..xj : T̂j . . ./ĥ→T̂ ′/ĥ′

Φ;f : Ŝ, xj : T̂j . . . , ĥ `∅ e : T̂ ′/ĥ′ ∗ h0

xj : T̂j . . . ` T̂ ′/ĥ′

xj : T̂j . . . ` h0 Φ;f : Ŝ ` p : T/h

Φ ` letf f = fun(xj . . .){e} : Ŝ in p : T/h
[T-FUN]

h0 abstract Φ(f) = ()/h0→T/h
Φ ` f() : T/h

[T-MAIN]

Figure 10. Program Typing

We first use the declared C types of all functions in the pro-
gram to generate corresponding Basic type schemas. This process
is largely automatic and rarely requires annotations to be added.
The generated function schemas are then used to infer Basic types
for local variables, expressions, and heap contents as follows: First,
local variables and expressions are assigned types where the as-yet-
unknown indices and locations are represented by variables. A sys-
tem of subtyping and heap location inclusion constraints over these
types is generated from the source program in a syntax-directed
manner. Next, these constraints are simplified to a set of location
equality (aliasing), index inclusion, and heap location inclusion
constraints over the unknowns. Finally, the simplified constraints
are solved using a fixed point algorithm to obtain solutions for the
heap contents and the unknown index and location variables, giv-
ing the types of the local variables, expressions, and heap contents
in the body of the function.

Location Fold and Unfold Inference Next, our system automati-
cally inserts location fold and unfold expressions in order to ensure
that every dereference is on a concrete pointer and that only one
concrete location is unfolded at a time, as required by our typing
rules. To do this, our system visits each block in the CFG of each
function. Our system traverses the statements in the block in order,
maintaining a list of which concrete location, if any, is unfolded for
each abstract location. At the beginning of the block, there are no
unfolded concrete locations; the sole exception is the entry block
of a function, which may take a pointer to an unfolded location.
At each dereference, our system checks if the dereferenced pointer
points to the currently-unfolded concrete location for its abstract
location. If not, our system inserts a fold to fold up the old concrete
location, if any, and inserts an unfold operation on the dereferenced
pointer, creating a new active concrete location which is assigned
to this pointer. At the end of the block, all locations are folded.

Liquid Type Inference Finally, we use liquid type inference to in-
fer refinement types and thus automatically discover data structure
invariants. This step is similar to previous work [29, 20]; we give
a brief outline here. As before, we observe that our type check-
ing rules encode an algorithm for type inference and so we per-
form type inference by attempting to produce a type derivation. At
various points in the derivation, we encounter types (resp. heaps,
schemas) which cannot be synthesized directly from the form of
the expression and the current environment but must be inferred.
We insist that these types (resp. heaps, schemas) be liquid, denoted
T̂ (resp. ĥ, Ŝ), i.e., their refinements must be liquid refinements
consisting of a conjunction of logical qualifiers. Whenever we en-
counter a type which must be inferred, we create a new template
type, which is the Basic type inferred earlier where a fresh variable
is used to represent the as-yet-unknown liquid refinement. We gen-
erate subtyping constraints over the template types using the sub-
typing premises in our type rules; the subtyping rules are used to



reduce these constraints to simple implication constraints between
refinement expressions and unknown refinement variables. These
constraints are solved via abstract interpretation to yield a liquid
refinement for each refinement variable. Replacing each variable
with its solution yields a refinement typing for the program.

5. Evaluation
We implemented our type system in CSOLVE, a prototype static
verifier for C programs. CSOLVE takes as input a C source file and a
set of logical qualifiers, which CSOLVE uses to perform liquid type
inference. CSOLVE outputs the inferred liquid types of functions,
local variables, and heap locations and reports any refinement type
errors that occur.

We applied CSOLVE to several challenging benchmarks, drawn
from [19], [21], [26], and the example of Section 2, which illustrate
common low-level coding idioms. The results are shown in Fig-
ure 11. In each case, CSOLVE was able to precisely reason about
complex invariants of in-heap data structures and memory access
patterns to statically verify memory safety by proving the absence
of null pointer dereferences and array bounds violations. (In the
case of ft, we show only array bounds safety; see Section 5.1.) We
explain several of the benchmarks below.
String Lists Using CSOLVE, we verified the safety of a program
implementing a C idiom for linked list manipulation which is par-
ticularly common in operating system code [9] and which requires
precise reasoning about pointer arithmetic. Recall the example of
Section 2, which contained functions for creating and initializing
strings and for creating lists of strings. We add to that example
the function string succ, shown below, which takes a pointer to
the str field of a stringlist and returns the next string in the
list. (Explicit null checks checks have been omitted for brevity)
This function is used in init succ, which creates a list of several
strings and initializes the second one using init string. CSOLVE
precisely tracks pointer arithmetic to verify init succ, by proving
that that the input to init string has the type from Section 2.

slist *string_succ(string **s) {
1:slist *parent = (slist **)s - 1;
2:return parent->next->s;
}

void init_succ() {
slist *sl;
string *succ;
sl = new_strings(3);
succ = string_succ(&sl1->s);
init_string(succ, ’\0’);

}

The string succ function expects an argument s of type
ref( ˜̀1, 4) in a heap of the form

˜̀1 7→0:ref( ˜̀1, 0), 4:ref( ˜̀2, 0)

˜̀2 7→0:{ν :int | 0 ≤ ν}, 4:{ν :ref( ˜̀3, 0) | BLen(ν,@0)}
˜̀3 7→0+1 :char

From Section 2, we know that the return type of new strings pro-
vides a pointer of this type, assigned to sl, in the appropriate heap.
Thus, we begin in string succ with the assignment to parent on
line 1. Since s is cast to a stringlist∗, which is 4 bytes long,
and decremented, the type of the pointer assigned to parent is
ref( ˜̀1, 0). Continuing on line 2, the type of parent->next is the
same, since the next pointer points to a structure of the same type.
Finally, the type of parent->next->s is given by the type at off-
set 4 of ˜̀1, since s is the second item in the stringlist struc-
ture. Thus, string succ returns a pointer of type ref( ˜̀2, 0) —
a pointer to a string— in a heap of the form shown above. This

Program Lines Qualifiers Assumes Time (s)

stringlist 72 1 0 2
strcpy 77 3 0 4
adpcm 198 13 0 42
pmap 250 3 0 34
mst 309 1 0 16
power 620 7 2 111
ft 652 2 6 310
ks 742 9 7 721

Total 2,920 39 15 1,240

Figure 11. Results. Lines is the number of source lines without
comments. Qualifiers is the number of logical qualifiers used.
Assumes is the number of manual assumptions inserted. Time (s)
is the time in seconds CSOLVE requires to verify safety.

pointer is passed to init string; as the pointer and heap meet
the required invariants, CSOLVE verifies safety. Thus, CSOLVE pre-
cisely reasons about pointers and in-heap data structures and auto-
matically verifies this example using the qualifiers Q from Sec-
tion 2.
Audio Compression Using CSOLVE, we verified the memory
safety of routines for ADPCM audio encoding and decoding. The
encoder, outlined below, takes as input an audio stream consisting
of an array of 16-bit samples and outputs a compressed stream us-
ing 4 bits to represent each sample. The encoder relies on complex
loop invariants to ensure memory safety.

void encoder (int nsamples, short *in0, char *out0){
short *in = in0;
char *out = out0;
int bufferempty = 1;
char buffer;
for (int len = nsamples; 0 < len; len--){

Read *in++;
if (!bufferempty) {

//Write to buffer elided
*out++ = buffer;

} else {
//Write to buffer elided

}
bufferempty = !bufferempty;

}
if (!bufferempty) *out++ = buffer;

}

The encoder takes three parameters: nsamples, the total num-
ber of samples in the input; in0, a pointer to the start of the input
buffer, an array of 16-bit short values; and out0, a pointer to the
output buffer, an array of 8-bit char values. The number of ele-
ments in the input buffer is twice the number of elements in the out-
put buffer. The pointer in, initially set to in0, is used to read data
from the input buffer; the pointer out, initially set to out0, is used
to write data to the output buffer. The for loop iterates through
each element of the input buffer. At each iteration, the loop reads
16 bits (a single short value) from the input buffer and advances
in. Each iteration also computes a new 4-bit value for the output;
however, since out is a char pointer, the encoder must write 8 bits
at a time. Thus, the encoder buffers output into a local char value
and only writes to out every other iteration. The flag bufferempty
indicates whether to write to and advance out. The final if writes
to the output in case there is a value in the buffer which has not been
written, i.e., if there are an odd number of samples in the input.

CSOLVE verifies the safety of dereferences of in and out, by
inferring that in and out have the respective types

{ν = in0 + nsamples− len}
{2 ∗ (ν − out0) = nsamples− len− (1− bufferempty)}



which encode the crucial loop-invariants that relate the values of the
respective pointers with the number of iterations and the flag. By
inferring similar invariants CSOLVE verifies the decoding routine.
Virtual Memory Using CSOLVE, we verified the array safety of
pmap, a 317-line program implementing a virtual memory subsys-
tem of the JOS OS kernel [19] that comprises functions for al-
locating and freeing virtual address spaces, allocating and freeing
a physical page backing a virtual page, and mapping two virtual
pages onto the same physical page.

To ensure the safety of array accesses in pmap we must pre-
cisely reason about the values contained in the collection of envi-
ronment structures that represents virtual address spaces. Each en-
vironment includes a mapping from virtual pages to physical pages,
env pgdir, represented as an array of fixed length. Each index of
env pgdir is mapped to either the physical page allocated to the
virtual page or -1 if no physical page has been allocated. Environ-
ments are joined together in doubly-linked fashion to form a list of
virtual address spaces.

The physical address space is described by an array of size
N , pages. Operations like allocating and freeing physical pages
use entries from an env pgdir field to index into pages. Thus,
to prove array safety, we must verify that the items in every
env pgdir in every environment are valid indices into pages. For-
mally, we must verify that every pointer to an environment points
to a heap location ˜̀whose description is

˜̀ 7→ 0:ref(˜̀, 0); 4 :ref(˜̀, 0); 8+4 :{ν :int | ν < N}

where the pointers at offsets 0 and 4 are pointers to the next and
previous environments, respectively, and the integers at indices
in 8+4 are the entries in env pgdir. Note that we cannot prove
that every entry in env pgdir is non-negative, as -1 is used to
indicate an unused virtual page. However, every item in env pgdir
is verified to be non-negative before use as an index into pages.

Using CSOLVE, we were able to verify that the above heap
typing holds and thus determine that every array access in pmap is
within bounds. This is challenging because the majority of array
accesses are indirect, using an entry in an env pgdir field to
index into an array of physical page data. This requires precise
reasoning about the values of all elements contained in an in-heap
data structure. Further, array offsets are frequently checked for
validity in a different function from the one in which they are used
to access an array, requiring flow-sensitive reasoning about values
across function boundaries. Nevertheless, CSOLVE is able to verify
the safety of all array accesses in pmap.

5.1 Limitations
In the following we discuss some limitations of our current system.
Flow-Sensitive Invariants Our system allows flow-sensitive
strong updates to the type of a single member of an in-memory
data structure. However, the type of the whole data structure is flow-
invariant: each individual element must reestablish the data struc-
ture’s type before the next member of the structure is accessed. For
example, suppose that a list contains cells each of which has a data
field with the value 0, and suppose that an loop iterates over the
list and sets each data field to 1. Our system can only verify that at
all points in time, each cell has the value 0 or 1. In particular, our
system cannot determine that before (resp. after) the iteration, the
data fields have the value 0 (resp. 1). We plan to extend our system
with this kind of flow-sensitivity in future work.
Structural Subtyping Some C programs take advantage of struc-
tural subtyping: a function expects a pointer to a data structure and
is called with pointers to “subtypes” of that structure which may
contain additional fields that are not accessed by the function. Be-
cause the callee may modify some fields of the structure, it is not

sound to keep the refinements on the untouched fields as they were
before the call, since they may depend on the modified fields. On
the other hand, eliminating these refinements could lead to unnec-
essary losses in precision when fields are read but not written. How
to manage the combination of mutability, dependent refinements,
and structural subtyping is left to future work.
Inserting Folds and Unfolds The heuristic for inserting location
fold and unfold operations outlined in Section 4.4 is sometimes too
conservative, particularly in its requirement that locations be folded
before the entry and exit of a block. Consider the following code:

if (x->next != NULL) { assert(x->next != NULL); }

Because x’s location will be folded between the condition and the
assert, the fact that x->next is non-null will be lost. This limita-
tion prevents us from verifying the absence of null pointer derefer-
ences in the ft benchmark. In future work, we aim to replace this
heuristic with a more robust algorithm like that of [2].

6. Related Work
Static Dependent Types were first applied to formal verification
in the context of mechanized proof assistants.In the late nineties
there were projects that defined programming languages with re-
stricted forms of dependent types. DML [32] showed how decid-
able checking could be achieved through the use of indexed-types
and using a decidable logic for the indices. DML is a high-level
language, and moreover, requires the user to provide manual an-
notations describing the types of recursive procedures and induc-
tive datatypes. ATS [35] combines linear types with stateful views
and explicit programmer-provided proof terms to specify and ver-
ify safety properties of an imperative language. In contrast to the
above, we have previously demonstrated [29, 20] that for high-level
languages the abstract interpretation enabled by Liquid Types can
drastically reduce the annotations and automate verification. Our
work brings those benefits to the low-level, imperative setting.
Dynamic Dependent Types offer an alternative to static verifi-
cation where the hardest checks are deferred to run-time. Prior
work [25, 14] explores dynamic and hybrid refinement types for
higher-order functional languages. The DEPUTY system [10] im-
plements hybrid dependent types for C. The DEPUTY type system
was designed to track the information required to place appropriate
run-time checks (assert statements) in the program. Thus, unlike
LTLL, which is designed for static verification, the DEPUTY type
system is flow- and path- insensitive, and oblivious to aliasing, heap
updates and data structures. Further, unlike LTLL, the DEPUTY type
system only supports a form of local type inference; users must
write dependent type annotations for procedures. Once DEPUTY
has placed the assert statements in the code, a precise static veri-
fier like CSOLVE can discharge the checks at compile time.
Location-Sensitive Types encode pointer relationships within the
type system and use the tracked information to determine the points
where strong updates are possible. LTLL locations are inspired
by the way in which locations are used to enable strong updates
in [30], a system that was designed to type the machine code gener-
ated from a high-level language. Consequently, this system makes
the assumption that all locations on the heap are concrete, which is
not valid in the setting of low-level systems code. Our technique of
using unfold and fold to allow temporary strong updates within an
aliased collection is closely related to the notions of restrict [16, 2],
focus [12], and thawing and freezing [1]. Restrict combines fold
and unfold into a single lexically scoped operation, but this criti-
cally relies upon the existence of a high-level new operation that
creates fully initialized locations. In contrast, LTLL requires a fold
to add fresh locations returned by malloc to collections after they
have been initialized. In this sense, the fold operation is a spe-



cial case of the adopt [12] or freeze [1] operation that can be au-
tomatically inserted into low-level code without any programmer
annotation. Finally, none of the above systems address the issue
of pointer arithmetic; our approach of using blocks composed of
fixed and periodic offsets is similar to that adopted by [31] in the
context of dataflow-based alias analysis. Note that while tracking
pointer arithmetic precisely is not essential to establish memory
safety [11], it is essential to ensure the stronger invariants over
fields that are inferred and verified by LTLL.
Floyd-Hoare Logic based verification techniques encode the entire
machine state as monolithic logical predicates. These approaches
are extremely expressive and precise, since arbitrarily complex
specifications for collections can be encoded using universally
quantified logical formulas. For the same reason, they can require
significant manual intervention. Verification proceeds by compos-
ing the user-provided loop-invariants, pre- and post-conditions with
the code to compute verification conditions. When possible, these
conditions are discharged automatically [15, 9]. However, due to
the brittleness of automatic quantified reasoning, one must some-
times resort to interactive theorem proving [23, 34, 13]. LTLL uses
the underlying type system as a robust algorithm for quantifier gen-
eralization and instantiation, refinement predicates to achieve pre-
cision, and abstract interpretation to automate inference.
Abstract Interpretation based approaches to static verification fall
into two categories. The first category includes extremely precise
techniques for analyzing control-sensitive properties of individual
variables [5, 3, 17, 7, 33, 18] which typically handle the heap very
imprecisely. The second category includes extremely precise shape
analyses that can characterize the heap using abstract domains
tailored to the data-structures being analyzed [22, 27, 6, 8, 24]. In
contrast, LTLL is an automatic technique that uses a combination
of low-level types and predicate abstraction to compute invariants
for data stored inside collections without using information about
the shape of the underlying structure. In future work we would like
to investigate ways to improve the precision of LTLL by enriching
it with shape (or reachability) information, which would allow us
to determine when a location has been removed from a collection.

7. Conclusion
In this paper, we broadened the scope of Liquid Types from the ver-
ification of pure functional programs in a high-level language to the
verification of impure imperative programs in a low-level language.
We did this by carefully combining several powerful constructs:
precise models of typed heaps with concrete and abstract locations,
a fold and unfold mechanism for coping with temporary invari-
ant violation, and Liquid Types for inferring precise data struc-
ture invariants. We demonstrated that this combination enables the
largely-automatic verification of memory safety properties through
several realistic examples requiring precise reasoning about invari-
ants of in-memory data structures.
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