
Refinement Types
for

TypeScript

Panagiotis Vekris Benjamin Cosman Ranjit Jhala

University of California, San Diego

PLDI’16
Thursday, June 16

2

Extensible static analyses for modern scripting languages

3

Extensible static analyses for modern scripting languages

Wide scale

Looks like

Compiles to

3

Extensible static analyses for modern scripting languages

Higher Order Functions

Wide scale PL Interest

Object Oriented

Looks like

Compiles to

Generics

Optionally Typed

4

Extensible static analyses for modern scripting languages

Verification Documentation

TS
No runtime
overhead

5

Extensible static analyses for modern scripting languages

Fixed type tests

5

Extensible static analyses for modern scripting languages

User specified invariants

Fixed type tests

5

Extensible static analyses for modern scripting languages

User specified invariants

Fixed type tests

5

Extensible static analyses for modern scripting languages

User specified invariants

Fixed type tests

5

Extensible static analyses for modern scripting languages

User specified invariants

Fixed type tests

Example

Compute the index of the minimum element of an array

6

7

folds over the elements of an array

7

8

Calls with an appropriate
function and initialization

8

Verification goal

Prove that all array accesses are within bounds

Example

Compute the index of the minimum element of an array

9

Array bounds analysis:

10

Array bounds analysis:

Constraint between
two values

11

Constraint between
two values

12

Array bounds analysis:

Constraint between
two values

12

Array bounds analysis:

Constraint between
value and closure

Constraint between
value and closure

13

Constraint carries over
through call to

function parameters

Constraint between
value and closure

13

Constraint checked
on invocation

Constraint carries over
through call to

function parameters

14

Constraint checked
on invocation

Constraint carries over
through call to

function parameters

14

Problem

To check array access we must track
relations between closures and values

14

Problem

To check array access we must track
relations between closures and values

Solution
Refinement types

Refinement Types

Value variable

Base type

Logical predicate

15

Refinement Types

“Set of values of type such that formula is true”

Value variable

Base type

Logical predicate

15

Refinement Types

“Set of values of type such that formula is true”

Value variable

Base type

Logical predicate

E.g.: 

“Set of valid indexes for an array ”

15

How can we type ?

16

TypeScript type

How can we type ?

16

TypeScript type

How can we type ?

Acc

Basic typing offers some guarantees

16

Accepts Acc

TypeScript type

How can we type ?

Acc

Basic typing offers some guarantees

16

Returns AccAccepts Acc

TypeScript type

How can we type ?

Acc

Basic typing offers some guarantees

16

TypeScript type

How can we type ?

Does not capture:
“valid index of ”

Basic typing offers some guarantees
but not value related ones

17

TypeScript type

How can we type to account for valid indexes?

Refinement type

18

TypeScript type

How can we type to account for valid indexes?

Refinement type

18



TypeScript type

How can we type to account for valid indexes?

Refinement type

19

Captures the relation between closure and value

Our contribution
Design a refinement type system for TypeScript

20

Challenges

Assignments

Mutability

Overloading

Annotation Overhead

21

Challenges Solutions we used

Assignments
SSA Transformation

Mutability
Extend type system with
immutability guarantees

Overloading
Two-phased typing

Annotation Overhead Liquid Types

22

Challenges Solutions we used

Assignments
SSA Transformation

Mutability
Extend type system with
immutability guarantees

Overloading
Two-phased typing

Annotation Overhead Liquid Types

23

24

Assignments

25

-

-

+

+

+

+

+

25

25

What is the type of ?

Types for

What is the type of ?

26

Types for

What is the type of ?

27

Types for

What is the type of ?

28

Types for

What is the type of ?

29

Types for

Νo single type for

30

Joining types of causes loss of precision

Νο single type for

31

Joining types of causes loss of precision

Use different versions of

Νο single type for

31

Use different versions of

32

Types for

Use different versions of

33

Use different versions of

Types for -

34

Types for -

35

Each version of has a single precise type & gets assigned once

Types for -

35

Static Single Assignment (SSA)

Types for -

35

Static Single Assignment (SSA)

How do we check these types?

generates subtyping constraint

Assignment

36

Reminder

Subtyping Constraints

Generated constraints

37

Subtyping Constraints

: loop induction variable

φ()

Generated constraints

38

Subtyping Constraints

: loop induction variable

φ()

Generated constraints

38

Subtyping Constraints

: loop induction variable

φ()

Generated constraints

39

⊢

Subtyping Constraints

: loop induction variable

φ()

Generated constraints

Loop condition

Path Sensitivity

39

⊢

Subtyping Constraints

Generated constraints

Loop condition

40

⊢

⊢

Subtyping Constraints

Generated constraints

Safe Array Access

Loop condition

41

⊢

⊢

⊢

Subtyping Constraints

Generated constraints

Loop condition

Substitute

42

⊢

⊢

⊢

Subtyping Constraints

⊢

⊢

⊢

After substitution

43

Subtyping Constraints

⊢

⊢

⊢

Convert to logical implications

⇒
⇒
⇒
⇒
⇒

⇒
⇒
⇒

44

Subtyping Constraints

⊢

⊢

⊢

Convert to logical implications

Solved via SMT

⇒
⇒
⇒
⇒
⇒

⇒
⇒
⇒

44

Challenges Solutions we used

Assignments
SSA Transformation

Mutability
Extend type system with
immutability guarantees

Overloading
Two-phased typing

Annotation Overhead Liquid Types

45

Mutability

46

Why is the access safe?

47

Why is the access safe?

is initialized to

47

1

Why is the access safe?

is initialized to

is bounded by ’s length

47

1 2

Why is the access safe?

is initialized to

is bounded by ’s length

increases only

47

1 2 3

Why is the access safe?

is initialized to

is bounded by ’s length

increases only

4. Length of does not mutate in loop
47

1 2

4

3

48

What if array’s length mutates in loop?

Silently
updates

48

What if array’s length mutates in loop?

Silently
updates

Check becomes stale

48

What if array’s length mutates in loop?

Silently
updates

Check becomes stale

Unsafe access!

48

What if array’s length mutates in loop?

Problem: stale checks break value reasoning

Silently
updates

49

Check becomes stale

Unsafe access!

Extend type system to enforce immutability constraints

50

M. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java.
OOPSLA, 2005.

Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D. Ernst. Object and
Reference Immutability using Java Generics. ESEC/FSE, 2007.

Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership and Immutability
in Generic Java. OOPSLA, 2010.

C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and J. Duffy. Uniqueness
& Reference Immutability for Safe Parallelism. OOPSLA, 2012.

C. S. Gordon, M. D. Ernst, and D. Grossman. Rely-Guarantee References for
Refinement Types over Aliased Mutable Data. PLDI, 2013.

F. Militão, J. Aldrich, and L. Caires. Rely-Guarantee Protocols. ECOOP, 2014.

Literature in Object & Reference Immutability

51

M. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java.
OOPSLA, 2005.

Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D. Ernst. Object and
Reference Immutability using Java Generics. ESEC/FSE, 2007.

Literature in Object & Reference Immutability

 Simple extension to type system

 Encoded in base types – refinements leverage immutability guarantees

52

Immutability Generic Java [Zibin’07]

Mutability as
type parameter

53

Immutability Generic Java [Zibin’07]

Mutability as
type parameter

This can mutate? Others can mutate?

53

Immutability Generic Java [Zibin’07]

Mutability as
type parameter

Only immutable
portions in refinement

This can mutate? Others can mutate?

53

Immutability Generic Java [Zibin’07]

54

Immutability Generic Java [Zibin’07]

Call to is flagged as an error,
because may only be

applied to receivers

54

Challenges Solutions we used

Assignments
SSA Transformation

Mutability
Extend type system with
immutability guarantees

Overloading
Two-phased typing

Annotation Overhead Liquid Types

55

Overloading

Value Based

56

Value Based Overloading

Function reflects upon and behaves according to types of its arguments

57

Value Based Overloading

Function reflects upon and behaves according to types of its arguments

#args Signature

2

3

57

Value Based Overloading

Function reflects upon and behaves according to types of its arguments

#args Signature

2

3

1st behavior – 3 args:
is of type

57

Value Based Overloading

Function reflects upon and behaves according to types of its arguments

#args Signature

2

3

2nd behavior – 2 args:
is of type

57

Q1: What makes it challenging?

Q2: How pervasive is it?

Value Based Overloading

Function reflects upon and behaves according to types of its arguments

58

Type Analysis
(base types)

Value Analysis
(refinements)

59

Q1: What makes it challenging?

Type Analysis
(base types)

Value Analysis
(refinements)

Refinements use invariants established by base types
E.g. tracking the access requires to be array

59

Q1: What makes it challenging?

Type Analysis
(base types)

Value Analysis
(refinements)

Refinements use invariants established by base types
E.g. tracking the access requires to be array

Type reasoning requires tracking logical relationships
E.g. base type of depends on the value of

59

Q1: What makes it challenging?

Type Analysis
(base types)

Value Analysis
(refinements)

Refinements use invariants established by base types
E.g. tracking the access requires to be array

Type reasoning requires tracking logical relationships
E.g. base type of depends on the value of

Circular dependency complicates formal reasoning & implementation

59

Q1: What makes it challenging?

Q2: How pervasive is it?

60

Study set:

DefinitelyTyped: The repository for high quality TypeScript type definitions

Q2: How pervasive is it?

60

Study set:

DefinitelyTyped: The repository for high quality TypeScript type definitions

How do we check overloaded functions?

61

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

61

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

Phase 1a. Make clones of body for each overload

61

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

Phase 1a. Make clones of body for each overload

61

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

Phase 1b. Check body under clone signature

62

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

Phase 1b. Check body under clone signature

Error: expecting type ,
passed of type

62

Two-Phased Typing [ECOOP’15]

Value- and path-insensitive type-checking

How do we check overloaded functions?

Replace errors with , trusting they are indeed dead-code

63

Two-Phased Typing [ECOOP’15]

Phase 1b. Check body under clone signature

How do we check overloaded functions?

Phase 2. Refinement Type Checking

Prove dead-code with flow- and path-sensitive analysis

64

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

Phase 2. Refinement Type Checking

Prove dead-code with flow- and path-sensitive analysis

Signature implies:

Condition makes branch’s
environment inconsistent

64

Two-Phased Typing [ECOOP’15]

How do we check overloaded functions?

Phase 2. Refinement Type Checking

Prove dead-code with flow- and path-sensitive analysis

Signature implies:

Condition makes branch’s
environment inconsistent

64

Two-Phased Typing [ECOOP’15]

Also in the paper…

Scaling to TypeScript

• Type features
Object literal types
Interface types
Primitive types
Unsound features
Undefined & null types
Co- & Contra-variant subtyping
Unchecked overloads

type

65

• Array support

• Flexible object initialization
Internal: Constructors
External: Unique references

Also in the paper…

Scaling to TypeScript

• Type features
Object literal types
Interface types
Primitive types
Unsound features
Undefined & null types
Co- & Contra-variant subtyping
Unchecked overloads

type

65

Formal Results

Refinement type safety for core language

• Array support

• Flexible object initialization
Internal: Constructors
External: Unique references

Experimental Evaluation

66

Benchmark suite

67

File LOC

366

206

304

576

588

189

293

Total 2522

Benchmark suite

Octane
- NavierStokes: 2D fluid motion simulator
- Splay: splay tree implementation
- Richards: OS kernel simulator
- Raytrace: ray trace renderer

68

File LOC

366

206

304

576

588

189

293

Total 2522

Benchmark suite

Transducers
Composable algorithmic transformations

69

File LOC

366

206

304

576

588

189

293

Total 2522

Octane
- NavierStokes: 2D fluid motion simulator
- Splay: splay tree implementation
- Richards: OS kernel simulator
- Raytrace: ray trace renderer

Benchmark suite

D3: A JavaScript visualization library
- Array operations

Transducers
Composable algorithmic transformations

70

File LOC

366

206

304

576

588

189

293

Total 2522

Octane
- NavierStokes: 2D fluid motion simulator
- Splay: splay tree implementation
- Richards: OS kernel simulator
- Raytrace: ray trace renderer

Microsoft’s TypeScript compiler
- Parts of and

Benchmark suite

71

File LOC

366

206

304

576

588

189

293

Total 2522

D3: A JavaScript visualization library
- Array operations

Transducers
Composable algorithmic transformations

Octane
- NavierStokes: 2D fluid motion simulator
- Splay: splay tree implementation
- Richards: OS kernel simulator
- Raytrace: ray trace renderer

Annotation Overhead

63%

20%

17%

TypeScript signatures

Mutability related

Refinement types

*

* Programs need to be fully typed
– no type in signatures

72

File LOC
Annots
(% LOC)

366 24.6

206 9.7

304 27.3

576 14.6

588 27.6

189 26.5

293 23.4

Total 2522 21.4

Performance

File LOC
Annots
(% LOC)

Time
(sec)

366 24.6 473

206 9.7 6

304 27.3 7

576 14.6 15

588 27.6 12

189 26.5 37

293 23.4 62

Total 2522 21.4

73

Performance

File LOC
Annots
(% LOC)

Time
(sec)

366 24.6 473

206 9.7 6

304 27.3 7

576 14.6 15

588 27.6 12

189 26.5 37

293 23.4 62

Total 2522 21.4

73

More than 100 static
array access sites
with dynamically

computed indexes

Properties Tested

• Property accesses

• Array bounds checks

• Overloads

• Safe Downcasts

 Class based
 Ad hoc type hierarchies

• User specified value properties. E.g. a function:

 returns a positive number
 accepts non-empty arrays

74

Safe Downcasts

Ad hoc type hierarchies

Properties Tested

74

Safe Downcasts

Ad hoc type hierarchies

Example taken from:

75

TypeScript interfaces are plain JavaScript objects
no type information at runtime

75

TypeScript interfaces are plain JavaScript objects
no type information at runtime

Explicit field () to encode type info
needed for dynamic tests

76

77

Invariants

⇒

Invariants

78

⇒

⇒

Invariants

79

⇒

Problem
Unchecked invariants

⇒

80

⇒

Problem
Unchecked invariants

⇒

80

⇒

Problem
Unchecked invariants

⇒

80

⇒

⇒

81

No static or
dynamic error

Problem
Unchecked invariants

82

Solution
Encode invariants in refinement types

No static or
dynamic error

Problem
Unchecked invariants



Encode type information in logic

83

84

Type for accounts for possible sub-interfaces

85

Bitwise AND
The containing

object

⇒

Type for accounts for possible sub-interfaces

86

⇒

Λ ⇒

Type for accounts for possible sub-interfaces

87

⇒

Λ ⇒

Λ ⇒

Λ

87

⇒

Λ ⇒

Λ ⇒

Λ

Check downcast

87

⇒

Λ ⇒

Λ ⇒

Λ

Check downcast

88

⇒

Λ ⇒

Λ ⇒

Λ

Invariant for

Check downcast

89

⇒

Λ ⇒

Λ ⇒

Λ

Invariant for Path condition:Λ

Check downcast

90

Invariant for Path condition:Λ ⇒

⇒

Λ ⇒

Λ ⇒

Λ

Check downcast

91

Invariant for Path condition:Λ ⇒

Encode type information in logic

⇒

Λ ⇒

Λ ⇒

Λ

Check downcast

91

Invariant for Path condition:Λ ⇒

Encode type information in logic

⇒

Λ ⇒

Λ ⇒

Λ

92

Extensible static analysis for a modern scripting language

Challenges Solutions

Assignments SSA Transformation

Mutability Extend type system with immutability guarantees

Overloading Two-phased typing

Annotation Overhead Liquid Types

 Fixed type tests
 User specified invariants

TS

Source:

Demo: Thanks!

Refinement Types for TypeScript

