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Extensible static analyses for modern scripting languages

Higher Order Functions

Wide scale PL Interest

Object Oriented

Looks like

Compiles to

Generics

Optionally Typed
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Extensible static analyses for modern scripting languages

Verification Documentation

TS
No runtime 
overhead
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Extensible static analyses for modern scripting languages

User specified invariants

Fixed type tests



Example

Compute the index of the minimum element of an array
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folds over the elements of an array
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Calls with an appropriate 
function and initialization
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Verification goal

Prove that all array accesses are within bounds

Example

Compute the index of the minimum element of an array
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Array bounds analysis:
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Array bounds analysis:

Constraint between 
two values
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Constraint between 
two values
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two values
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Array bounds analysis:

Constraint between 
value and closure



Constraint between 
value and closure
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Constraint carries over 
through call to 

function parameters

Constraint between 
value and closure
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Constraint checked
on invocation

Constraint carries over 
through call to 

function parameters
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Constraint checked
on invocation

Constraint carries over 
through call to 

function parameters
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Problem

To check array access we must track 
relations between closures and values
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Problem

To check array access we must track 
relations between closures and values

Solution
Refinement types



Refinement Types

Value variable

Base type

Logical predicate
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Refinement Types

“Set of values of type such that formula is true”

Value variable

Base type
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Refinement Types

“Set of values of type such that formula is true”

Value variable

Base type

Logical predicate

E.g.: 

“Set of valid indexes for an array ”

15



How can we type ?
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Acc

Basic typing offers some guarantees
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Returns AccAccepts Acc

TypeScript type

How can we type ?

Acc

Basic typing offers some guarantees
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TypeScript type

How can we type ?

Does not capture: 
“valid index of ”

Basic typing offers some guarantees
but not value related ones

17



TypeScript type

How can we type to account for valid indexes?

Refinement type
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TypeScript type

How can we type to account for valid indexes?

Refinement type
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



TypeScript type

How can we type to account for valid indexes?

Refinement type
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Captures the relation between closure and value



Our contribution
Design a refinement type system for TypeScript
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Challenges

Assignments

Mutability

Overloading

Annotation Overhead
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What is the type of ?



Types for 
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Types for 

What is the type of ?
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Types for 

Νo single type for 
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Joining types of causes loss of precision

Νο single type for 
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Joining types of causes loss of precision

Use different versions of 

Νο single type for 
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Use different versions of 
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Types for 

Use different versions of 
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Use different versions of 

Types for -

34



Types for -

35

Each version of has a single precise type & gets assigned once



Types for -

35

Static Single Assignment (SSA)



Types for -
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Static Single Assignment (SSA)

How do we check these types?



generates subtyping constraint

Assignment
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Reminder



Subtyping Constraints

Generated constraints
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Subtyping Constraints

: loop induction variable

φ( )

Generated constraints

38
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Subtyping Constraints

: loop induction variable

φ( )

Generated constraints
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Subtyping Constraints

: loop induction variable

φ( )

Generated constraints

Loop condition

Path Sensitivity
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Subtyping Constraints

Generated constraints

Loop condition
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⊢
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Subtyping Constraints

Generated constraints

Safe Array Access

Loop condition
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⊢

⊢
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Subtyping Constraints

Generated constraints

Loop condition

Substitute
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⊢

⊢
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Subtyping Constraints

⊢

⊢

⊢

After substitution
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Subtyping Constraints

⊢

⊢

⊢

Convert to logical implications

⇒
⇒
⇒
⇒
⇒

⇒
⇒
⇒
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Subtyping Constraints

⊢

⊢

⊢

Convert to logical implications

Solved via SMT

⇒
⇒
⇒
⇒
⇒

⇒
⇒
⇒
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Challenges Solutions we used

Assignments
SSA Transformation

Mutability
Extend type system with 
immutability guarantees

Overloading
Two-phased typing

Annotation Overhead Liquid Types
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Mutability
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Why is the access safe?
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Why is the access safe?

is initialized to 

is bounded by ’s length

increases only 

4. Length of does not mutate in loop
47

1 2

4

3
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What if array’s length mutates in loop?



Silently
updates
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What if array’s length mutates in loop?



Problem: stale checks break value reasoning

Silently
updates
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Check becomes stale

Unsafe access!



Extend type system to enforce immutability constraints
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Literature in Object & Reference Immutability
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M. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java.
OOPSLA, 2005.

Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D. Ernst. Object and 
Reference Immutability using Java Generics. ESEC/FSE, 2007.

Literature in Object & Reference Immutability

 Simple extension to type system 

 Encoded in base types – refinements leverage immutability guarantees
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Immutability Generic Java [Zibin’07]

Mutability as
type parameter
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Immutability Generic Java [Zibin’07]

Mutability as
type parameter

Only immutable 
portions in refinement

This can mutate? Others can mutate?
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Immutability Generic Java [Zibin’07]
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Immutability Generic Java [Zibin’07]

Call to is flagged as an error,
because may only be 

applied to receivers
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Challenges Solutions we used

Assignments
SSA Transformation

Mutability
Extend type system with 
immutability guarantees

Overloading
Two-phased typing

Annotation Overhead Liquid Types
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Overloading

Value Based 
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Value Based Overloading

Function reflects upon and behaves according to types of its arguments
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Value Based Overloading
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#args Signature

2

3
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Value Based Overloading

Function reflects upon and behaves according to types of its arguments

#args Signature

2

3

1st behavior – 3 args:
is of type 
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Value Based Overloading

Function reflects upon and behaves according to types of its arguments

#args Signature

2

3

2nd behavior – 2 args:
is of type 
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Q1: What makes it challenging?

Q2: How pervasive is it?

Value Based Overloading

Function reflects upon and behaves according to types of its arguments
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Type Analysis
(base types)

Value Analysis
(refinements)
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Refinements use invariants established by base types
E.g. tracking the access requires to be array
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Type Analysis
(base types)

Value Analysis
(refinements)

Refinements use invariants established by base types
E.g. tracking the access requires to be array

Type reasoning requires tracking logical relationships
E.g. base type of depends on the value of 

Circular dependency complicates formal reasoning & implementation
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Q1: What makes it challenging?



Q2: How pervasive is it?

60

Study set: 

DefinitelyTyped: The repository for high quality TypeScript type definitions 



Q2: How pervasive is it?
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How do we check overloaded functions?
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How do we check overloaded functions?

Phase 1b. Check body under clone signature
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Two-Phased Typing [ECOOP’15]



How do we check overloaded functions?

Phase 1b. Check body under clone signature

Error: expecting type , 
passed of type 
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Two-Phased Typing [ECOOP’15]

Value- and path-insensitive type-checking



How do we check overloaded functions?

Replace errors with , trusting they are indeed dead-code
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Two-Phased Typing [ECOOP’15]

Phase 1b. Check body under clone signature



How do we check overloaded functions?

Phase 2. Refinement Type Checking

Prove dead-code with flow- and path-sensitive analysis
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Phase 2. Refinement Type Checking

Prove dead-code with flow- and path-sensitive analysis

Signature implies: 

Condition makes branch’s 
environment inconsistent
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How do we check overloaded functions?

Phase 2. Refinement Type Checking

Prove dead-code with flow- and path-sensitive analysis

Signature implies: 

Condition makes branch’s 
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Two-Phased Typing [ECOOP’15]



Also in the paper…

Scaling to TypeScript

• Type features
Object literal types
Interface types
Primitive types
Unsound features
Undefined & null types
Co- & Contra-variant subtyping
Unchecked overloads

type

65

• Array support

• Flexible object initialization
Internal: Constructors
External: Unique references
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• Type features
Object literal types
Interface types
Primitive types
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Formal Results

Refinement type safety for core language

• Array support

• Flexible object initialization
Internal: Constructors
External: Unique references



Experimental Evaluation
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Benchmark suite
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File LOC
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304
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588

189

293

Total 2522



Benchmark suite

Octane
- NavierStokes: 2D fluid motion simulator
- Splay: splay tree implementation
- Richards: OS kernel simulator
- Raytrace: ray trace renderer
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Benchmark suite

Transducers
Composable algorithmic transformations
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Benchmark suite

D3: A JavaScript visualization library
- Array operations

Transducers
Composable algorithmic transformations
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Microsoft’s TypeScript compiler
- Parts of and 

Benchmark suite
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File LOC

366

206

304

576

588

189

293

Total 2522

D3: A JavaScript visualization library
- Array operations

Transducers
Composable algorithmic transformations

Octane
- NavierStokes: 2D fluid motion simulator
- Splay: splay tree implementation
- Richards: OS kernel simulator
- Raytrace: ray trace renderer



Annotation Overhead

63%

20%

17%

TypeScript signatures

Mutability related

Refinement types

*

* Programs need to be fully typed 
– no type in signatures
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File LOC
Annots
(% LOC)

366 24.6

206 9.7

304 27.3

576 14.6

588 27.6

189 26.5

293 23.4

Total 2522 21.4



Performance

File LOC
Annots
(% LOC)

Time 
(sec)

366 24.6 473

206 9.7 6

304 27.3 7

576 14.6 15

588 27.6 12

189 26.5 37

293 23.4 62

Total 2522 21.4
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Performance

File LOC
Annots
(% LOC)

Time 
(sec)

366 24.6 473

206 9.7 6

304 27.3 7

576 14.6 15

588 27.6 12

189 26.5 37

293 23.4 62

Total 2522 21.4
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More than 100 static 
array access sites 
with dynamically 

computed indexes



Properties Tested

• Property accesses

• Array bounds checks

• Overloads

• Safe Downcasts

 Class based
 Ad hoc type hierarchies

• User specified value properties. E.g. a function:

 returns a positive number
 accepts non-empty arrays

74

Safe Downcasts

Ad hoc type hierarchies



Properties Tested
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Safe Downcasts

Ad hoc type hierarchies

Example taken from:
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TypeScript interfaces are plain JavaScript objects
no type information at runtime
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TypeScript interfaces are plain JavaScript objects
no type information at runtime

Explicit field ( ) to encode type info 
needed for dynamic tests
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Problem
Unchecked invariants

⇒
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Problem
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⇒

⇒
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No static or
dynamic error

Problem
Unchecked invariants
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Solution
Encode invariants in refinement types

No static or
dynamic error

Problem
Unchecked invariants





Encode type information in logic
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Type for accounts for possible sub-interfaces
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Bitwise AND
The containing 

object

⇒

Type for accounts for possible sub-interfaces



86

⇒

Λ ⇒

Type for accounts for possible sub-interfaces
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Check downcast
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Check downcast
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Check downcast
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Check downcast
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Invariant for Path condition:Λ ⇒

Encode type information in logic

⇒

Λ ⇒
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Λ



Check downcast
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Invariant for Path condition:Λ ⇒

Encode type information in logic

⇒

Λ ⇒

Λ ⇒

Λ
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Extensible static analysis for a modern scripting language

Challenges Solutions

Assignments SSA Transformation

Mutability Extend type system with immutability guarantees

Overloading Two-phased typing

Annotation Overhead Liquid Types

 Fixed type tests
 User specified invariants

TS

Source:

Demo: Thanks!

Refinement Types for TypeScript


