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Abstract
We present Refined TypeScript (RSC), a lightweight refinement
type system for TypeScript, that enables static verification of
higher-order, imperative programs. We develop a formal core of
RSC that delineates the interaction between refinement types and
mutability. Next, we extend the core to account for the impera-
tive and dynamic features of TypeScript. Finally, we evaluate RSC
on a set of real world benchmarks, including parts of the Octane
benchmarks, D3, Transducers, and the TypeScript compiler.

1. Introduction
Modern scripting languages – like JavaScript, Python, and Ruby –
have popularized the use of higher-order constructs that were once
solely in the functional realm. This trend towards abstraction and
reuse poses two related problems for static analysis: modularity and
extensibility. First, how should analysis precisely track the flow of
values across higher-order functions and containers or modularly
account for external code like closures or library calls? Second,
how can analyses be easily extended to new, domain specific prop-
erties, ideally by developers, while they are designing and imple-
menting the code? (As opposed to by experts who can at best de-
velop custom analyses run ex post facto and are of little use during
development.)

Refinement types hold the promise of a precise, modular and
extensible analysis for programs with higher-order functions and
containers. Here, basic types are decorated with refinement predi-
cates that constrain the values inhabiting the type [27, 37]. The ex-
tensibility and modularity offered by refinement types have enabled
their use in a variety of applications in typed, functional languages,
like ML [26, 37], Haskell [35], and F] [31]. Unfortunately, attempts
to apply refinement typing to scripts have proven to be impractical
due to the interaction of the machinery that accounts for imperative
updates and higher-order functions [5] (§ 6).

In this paper, we introduce Refined TypeScript (RSC): a novel,
lightweight refinement type system for TypeScript, a typed superset
of JavaScript. Our design of RSC addresses three intertwined prob-
lems by carefully integrating and extending existing ideas from the
literature. First, RSC accounts for mutation by using ideas from
IGJ [39] to track which fields may be mutated, and to allow refine-
ments to depend on immutable fields, and by using SSA-form to
recover path and flow-sensitivity that is essential for analyzing real
world applications. Second, RSC accounts for dynamic typing by
using a recently proposed technique called two-phase typing [36],
where dynamic behaviors are specified via union and intersection
types, and verified by reduction to refinement typing. Third, the
above are carefully designed to permit refinement inference via the
Liquid Types [26] framework to render refinement typing practical
on real world programs. Concretely, we make the following contri-
butions:

function reduce(a, f, x) {
var res = x, i;
for (var i = 0; i < a.length; i++)

res = f(res , a[i], i);
return res;

}
function minIndex(a) {

if (a.length ≤ 0) return -1;
function step(min , cur , i) {

return cur < a[min] ? i : min;
}
return reduce(a, step , 0);

}

Figure 1: Computing the Min-Valued Index with reduce

• We develop a core calculus that formalizes the interaction
of mutability and refinements via declarative refinement type
checking that we prove sound (§ 3).

• We extend the core language to TypeScript by describing how
we account for its various dynamic and imperative features; in
particular we show how RSC accounts for type reflection via in-
tersection types, encodes interface hierarchies via refinements,
and crucially permits locally flow-sensitive reasoning via SSA
translation (§ 4).

• We implement rsc, a refinement type-checker for TypeScript,
and evaluate it on a suite of real world programs from the
Octane benchmarks, Transducers, D3 and the TypeScript com-
piler. We show that RSC’s refinement typing is modular enough
to analyze higher-order functions, collections and external
code, and extensible enough to verify a variety of properties
from classic array-bounds checking to program specific invari-
ants needed to ensure safe reflection: critical invariants that are
well beyond the scope of existing techniques for imperative
scripting languages (§ 5).

2. Overview
We begin with a high-level overview of refinement types in RSC,
their applications (§ 2.1), and how RSC handles imperative, higher-
order constructs (§ 2.2).
Types and Refinements A basic refinement type is a basic type,
e.g. number, refined with a logical formula from an SMT decidable
logic [22]. For example, the types:

type nat = {v:number | 0 ≤ v}
type pos = {v:number | 0 < v}
type natN <n> = {v:nat | v = n}
type idx <a> = {v:nat | v < len(a)}

describe (the set of values corresponding to) non-negative numbers,
positive numbers, numbers equal to some value n, and valid indexes
for an array a, respectively. Here, len is an uninterpreted function



that describes the size of the array a. We write t to abbreviate
trivially refined types, i.e. {v:t | true}; e.g. number abbreviates
{v:number | true}.
Summaries Function Types (x1 : T1, . . . , xn : Tn) ⇒ T, where
arguments are named xi and have types Ti and the output is a T,
are used to specify the behavior of functions. In essence, the input
types Ti specify the function’s preconditions, and the output type
T describes the postcondition. Each input type and the output type
can refer to the arguments xi, yielding precise function contracts.
For example, (x :nat) ⇒ {ν :nat | x < ν} is a function type that
describes functions that require a non-negative input, and ensure
that the output exceeds the input.
Higher-Order Summaries This approach generalizes directly to
precise descriptions for higher-order functions. For example,
reduce from Figure 1 can be specified as Treduce:

<A,B>(a:A[], f:(B, A, idx<a>)⇒B, x:B)⇒B (1)

This type is a precise summary for the higher-order behavior of
reduce: it describes the relationship between the input array a, the
step (“callback”) function f, and the initial value of the accumula-
tor, and stipulates that the output satisfies the same properties B as
the input x. Furthermore, it critically specifies that the callback f is
only invoked on valid indices for the array a being reduced.

2.1 Applications
Next, we show how refinement types let programmers specify and
statically verify a variety of properties — array safety, reflection
(value-based overloading), and down-casts — potential sources of
runtime problems that cannot be prevented via existing techniques.

2.1.1 Array Bounds

Specification We specify safety by defining suitable refinement
types for array creation and access. For example, we view read a[i
], write a[i] = e and length access a.length as calls get(a,i),
set(a,i,e) and length(a) where:

get : (a:T[],i:idx <a>) ⇒ T
set : (a:T[],i:idx <a>,e:T) ⇒ void
length : (a:T[]) ⇒ natN <len(a)>

Verification Refinement typing ensures that the actual parameters
supplied at each call to get and set are subtypes of the expected
values specified in the signatures, and thus verifies that all accesses
are safe. As an example, consider the function that returns the
“head” element of an array:

function head(arr:NEArray <T>){ return arr [0]; }

The input type requires that arr be non-empty:

type NEArray <T> = {v:T[] | 0 < len(v)}

We convert arr[0] to get(arr,0) which is checked under envi-
ronment Γhead defined as arr : {ν :T[] | 0 < len(ν)} yielding the
subtyping obligation:

Γhead ` {ν = 0} v idx〈arr〉
which reduces to the logical verification condition (VC):

0 < len(arr)⇒ ν = 0 ⇒ 0 ≤ ν < len(arr)

The VC is proved valid by an SMT solver [22], verifying subtyping,
and hence, the array access’ safety.
Path Sensitivity is obtained by adding branch conditions into the
typing environment. Consider:

function head0(a:number []): number {
if (0 < a.length) return head(a);
return 0;

}

Recall that head should only be invoked with non-empty ar-
rays. The call to head above occurs under Γhead0 defined as:
a : number[], 0 < len(a) i.e. which has the binder for the for-
mal a, and the guard predicate established by the branch condition.
Thus, the call to head yields the obligation:

Γhead0 ` {ν = a} v NEArray〈number〉
yielding the valid VC: 0 < len(a)⇒ ν = a ⇒ 0 < len(ν).
Polymorphic, Higher Order Functions Next, let us assume that
reduce has the type Treduce described in (1), and see how to verify
the array safety of minIndex (Figure 1). The challenge here is to
precisely track which values can flow into min (used to index into
a), which is tricky since those values are actually produced inside
reduce.

Types make it easy to track such flows: we need only determine
the instantiation of the polymorphic type variables of reduce at
this call site inside minIndex. The type of the f parameter in the
instantiated type corresponds to a signature for the closure step
which will let us verify the closure’s implementation. Here, rsc

automatically instantiates:

A 7→ number B 7→ idx〈a〉 (2)

Let us reassure ourselves that this instantiation is valid, by
checking that step and 0 satisfy the instantiated type. If we sub-
stitute (2) into Treduce we obtain the following types for step and 0,
i.e. reduce’s second and third arguments:

step:(idx <a>,number ,idx <a>)⇒idx <a> 0:idx <a>

The initial value 0 is indeed a valid idx<a> thanks to the
a.length check at the start of the function. To check step, as-
sume that its inputs have the above types:

min:idx <a>, curr:number , i:idx <a>

The body is safe as the index i is trivially a subtype of the required
idx<a>, and the output is one of min or i and hence, of type idx<a>
as required.

2.1.2 Overloading
Dynamic languages extensively use value-based overloading to
simplify library interfaces. For example, a library may export:

function $reduce(a, f, x) {
if (arguments.length ===3) return reduce(a,f,x);
return reduce(a.slice (1),f,a[0]);

}

The function $reduce has two distinct types depending on its pa-
rameters’ values, rendering it impossible to statically type with-
out path-sensitivity. Such overloading is ubiquitous: in more than
25% of libraries, more than 25% of the functions are value-
overloaded [36].
Intersection Types Refinements let us statically verify value-based
overloading [36]. First, we specify overloading as an intersection
type. For example, $reduce gets the following signature, which is
just the conjunction of the two overloaded behaviors:

∧ <A,B>(a:A[], f:(A, A, idx <a>)⇒A)⇒A // 1
∧ <A,B>(a:A[], f:(B, A, idx <a>)⇒B, x:B)⇒B // 2

Dead Code Assertions Second, we check each conjunct separately,
replacing ill-typed terms in each context with assert(false).
This requires the refinement type checker to prove that the corre-
sponding expressions are dead code, as assert requires its argu-
ment to always be true:

assert : (b:{v:bool | v = true}) ⇒ A

To check $reduce, we specialize it per overload context:



function $reduce1 (a,f) {
if (arguments.length ===3) return assert(false);
return reduce(a.slice (1), f, a[0]);

}
function $reduce2 (a,f,x) {

if (arguments.length ===3) return reduce(a,f,x);
return assert(false);

}

In each case, the “ill-typed” term (for the corresponding input con-
text) is replaced with assert(false). Refinement typing easily
verifies the asserts, as they respectively occur under the inconsis-
tent environments:

Γ1
.
= arguments : {len(ν) = 2}, len(arguments) = 3

Γ2
.
= arguments : {len(ν) = 3}, len(arguments) 6= 3

which bind arguments to an array-like object corresponding to the
arguments passed to that function, and include the branch condition
under which the call to assert occurs.

2.2 Analysis
Next, we outline how rsc uses refinement types to analyze pro-
grams with closures, polymorphism, assignments, classes and mu-
tation.

2.2.1 Polymorphic Instantiation
rsc uses the framework of Liquid Typing [26] to automatically
synthesize the instantiations of (2). In a nutshell, rsc (a) creates
templates for unknown refinement type instantiations, (b) performs
type-checking over the templates to generate subtyping constraints
over the templates that capture value-flow in the program, (c) solves
the constraints via a fixpoint computation (abstract interpretation).
Step 1: Templates Recall that reduce has the polymorphic type
Treduce. At the call-site in minIndex, the type variables A, B are
instantiated with the known base-type number. Thus, rsc creates
fresh templates for the (instantiated) A, B:

A 7→ {ν :number | κA} B 7→ {ν :number | κB}

where the refinement variables κA and κB represent the unknown
refinements. We substitute the above in the signature for reduce to
obtain a context-sensitive template:

(a :κA[], (κB, κA, idx〈a〉)⇒ κB, κB)⇒ κB (3)

Step 2: Constraints Next, rsc generates subtyping constraints over
the templates. Intuitively, the templates describe the sets of values
that each static entity (e.g. variable) can evaluate to at runtime. The
subtyping constraints capture the value-flow relationships e.g. at
assignments, calls and returns, to ensure that the template solutions
– and hence inferred refinements – soundly over-approximate the
set of runtime values of each corresponding static entity.

We generate constraints by performing type checking over
the templates. As a, 0, and step are passed in as arguments,
we check that they respectively have the types κA[], κB and
(κB, κA, idx〈a〉)⇒ κB. Checking a and 0 yields the subtyping
constraints:

Γ ` number[] v κA[] Γ ` {ν = 0} v κB

where Γ .
= a :number[], 0 < len(a) from the else-guard that

holds at the call to reduce. We check step by checking its body
under the environment Γstep that binds the input parameters to their
respective types:

Γstep
.
= min :κB, cur :κa, i :idx〈a〉

As min is used to index into the array a we get:

Γstep ` κB v idx〈a〉

As i and min flow to the output type κB, we get:

Γstep ` idx〈a〉 v κB Γstep ` κB v κB

Step 3: Fixpoint The above subtyping constraints over the κ vari-
ables are reduced via the standard rules for co- and contra-variant
subtyping, into Horn implications over the κs. rsc solves the Horn
implications via (predicate) abstract interpretation [26] to obtain
the solution κA 7→ true and κB 7→ 0 ≤ ν < len(a) which is ex-
actly the instantiation in (2) that satisfies the subtyping constraints,
and proves minIndex is array-safe.

2.2.2 Assignments
Next, let us see how the signature for reduce in Figure 1 is ver-
ified by rsc. Unlike in the functional setting, where refinements
have previously been studied, here, we must deal with imperative
features like assignments and for-loops.
SSA Transformation We solve this problem in three steps. First, we
convert the code into SSA form, to introduce new binders at each
assignment. Second, we generate fresh templates that represent
the unknown types (i.e. set of values) for each φ variable. Third,
we generate and solve the subtyping constraints to infer the types
for the φ-variables, and hence, the “loop-invariants” needed for
verification.

Let us see how this process lets us verify reduce from Figure 1.
First, we convert the body to SSA form (§ 3.1)

function reduce(a, f, x) {
var r0 = x, i0 = 0;
while [i2,r2 = φ((i0, r0), (i1, r1))]

(i2 < a.length) {
r1 = f(r2, a[i2], i2); i1 = i2 + 1;

}
return r2;

}

where i2 and r2 are the φ variables for i and r respectively.
Second, we generate templates for the φ variables:

i2 : {ν :number | κi2} r2 : {ν :B | κr2} (4)

We need not generate templates for the SSA variables i0, r0,
i1 and r1 as their types are those of the expressions they are
assigned. Third, we generate subtyping constraints as before; the
φ assignment generates additional constraints:

Γ0 ` {ν = i0} v κi2 Γ1 ` {ν = i1} v κi2
Γ0 ` {ν = r0} v κr2 Γ1 ` {ν = r1} v κr2

where Γ0 is the environment at the “exit” of the basic blocks where
i0,r0 are defined:

Γ0
.
= a :number[], x :B, i0 :natN〈0〉, r0 : {ν :B | ν = x}

Similarly, the environment Γ1 includes bindings for variables i1
and r1. In addition, code executing the loop body has passed the
conditional check, so our path-sensitive environment is strength-
ened by the corresponding guard:

Γ1
.
= Γ0, i1 :natN〈i2 + 1〉, r1 :B, i2 < len(a)

Finally, the above constraints are solved to:

κi2 7→ 0 ≤ ν < len(a) κr2 7→ true

which verifies that the “callback” f is indeed called with values
of type idx〈a〉, as it is only called with i2 : idx〈a〉, obtained by
plugging the solution into the template in (4).

2.2.3 Mutation
In the imperative, object-oriented setting (common to dynamic
scripting languages), we must account for class and object invari-
ants and their preservation in the presence of field mutation. For



type ArrayN <T,n> = {v:T[] | len(v) = n}
type grid <w,h> = ArrayN <number ,(w+2)*(h+2)>
type okW = natLE <this.w>
type okH = natLE <this.h>

class Field {
immutable w : pos;
immutable h : pos;
dens : grid <this.w, this.h>;

constructor(w:pos ,h:pos ,d:grid <w,h>){
this.h = h; this.w = w; this.dens = d;

}
setDensity(x:okW , y:okH , d:number) {

var rowS = this.w + 2;
var i = x+1 + (y+1) * rowS;
this.dens[i] = d;

}
getDensity(x:okW , y:okH) : number {

var rowS = this.w + 2;
var i = x+1 + (y+1) * rowS;
return this.dens[i];

}
reset(d:grid <this.w,this.h>){

this.dens = d;
}

}

Figure 2: Two-Dimensional Arrays

example, consider the code in Figure 2, modified from the Octane
Navier-Stokes benchmark.
Class Invariants Class Field implements a 2-dimensional vector,
“unrolled” into a single array dens, whose size is the product of
the width and height fields. We specify this invariant by requiring
that width and height be strictly positive (i.e. pos) and that dens
be a grid with dimensions specified by this.w and this.h. An
advantage of SMT-based refinement typing is that modern SMT
solvers support non-linear reasoning, which lets rsc specify and
verify program specific invariants outside the scope of generic
bounds checkers.
Mutable and Immutable Fields The above invariants are only
meaningful and sound if fields w and h cannot be modified after
object creation. We specify this via the immutable qualifier, which
is used by rsc to then (1) prevent updates to the field outside the
constructor, and (2) allow refinements of fields (e.g. dens) to
soundly refer to the values of those immutable fields.
Constructors We can create instances of Field, by using new
Field(...) which invokes the constructor with the supplied pa-
rameters. rsc ensures that at the end of the constructor, the created
object actually satisfies all specified class invariants i.e. field re-
finements. Of course, this only holds if the parameters passed to
the constructor satisfy certain preconditions, specified via the in-
put types. Consequently, rsc accepts the first call, but rejects the
second:

var z = new Field(3,7,new Array (45)); // OK
var q = new Field(3,7,new Array (44)); // BAD

Methods rsc uses class invariants to verify setDensity and
getDensity, that are checked assuming that the fields of this en-
joy the class invariants, and method inputs satisfy their given types.
The resulting VCs are valid and hence, check that the methods are
array-safe. Of course, clients must supply appropriate arguments to
the methods. Thus, rsc accepts the first call, but rejects the second
as the x co-ordinate 5 exceeds the actual width (i.e. z.w), namely
3:

z.setDensity (2, 5, -5) // OK
z.getDensity (5, 2); // BAD

Mutation The dens field is not immutable and hence, may be
updated outside of the constructor. However, rsc requires that the
class invariants still hold, and this is achieved by ensuring that the
new value assigned to the field also satisfies the given refinement.
Thus, the reset method requires inputs of a specific size, and
updates dens accordingly. Hence:

var z = new Field(3,7,new Array (45));
z.reset(new Array (45)); // OK
z.reset(new Array (5)); // BAD

3. Formal System
Next, we formalize the ideas outlined in § 2. We introduce our
formal core FRSC: an imperative, mutable, object-oriented subset
of Refined TypeScript, that closely follows the design of CFJ [23],
(the language used to formalize X10), which in turn is based on
Featherweight Java [17]. To ease refinement reasoning, we translate
FRSC to a functional, yet still mutable, intermediate language
IRSC. We then formalize our static semantics in terms of IRSC.

3.1 Formal Language

Source Language (FRSC) The syntax of this language is given
below. Meta-variable e ranges over expressions, which can be vari-
ables x, constants c, property accesses e.f, method calls e.m (e),
object construction new C (e), and cast operations e as T . State-
ments s include variable declarations, field updates, assignments,
conditionals, concatenations and empty statements. Method decla-
rations include a type signature, specifying input and output types,
and a body, i.e. a statement immediately followed by a returned ex-
pression. In class definitions, unlike CFJ, we distinguish between
mutable and immutable members, using ♦f: T and g: S, respec-
tively. We do not formalize method overloading or overriding, so
method names are distinct from the ones defined in parent classes.
As in CFJ, each class and method definition is associated with an
invariant p. Finally, programs are sequences of class declarations
followed by a statement.

e ::= x | c | this | e.f | e.m (e) | new C (e) | e as T
s ::= var x= e | e.f = e | x = e |

if (e) then s else s | s; s | skip
M ::= def m

(
x: T
)
{p} : T= {s; return e}

L ::= class C
(
♦f: T ; g: S

)
{p} extends R

{
M
}

P ::= L; s

Intermediate Language (IRSC) This language retains the expres-
sivity of FRSC, but has no variable assignments. Statements are
replaced by let-bindings and new variables are introduced for each
variable being reassigned in the respective FRSC code. The rest of
the language features are only slightly adjusted, to obtain the fol-
lowing syntax:

u,w ::= x | c | this | u.f | u.m (u) | new C (u) |
u as T | let x = u in u | u.f = u |
if (u) then u else u

M ::= def m
(
x: T
)
{p} : T = u

L ::= class C
(
♦f: T ; g: S

)
{p} extends R {M}

P ::= L; u

SSA Transformation We translate FRSC to IRSC via a Static
Single Assignment transformation (), described in Figure 3. This
process uses a translation state ∆, to map FRSC to IRSC variables.
The translation of expressions e to u is routine: as expected, S-VAR
maps the source level x to the current binding of x in ∆.



SSA Transformation ∆  e ↪→ u ∆  s ↪→ E [ ] /∆ ′ · M ↪→M

[S-VAR]
∆  x ↪→ ∆ (x)

[S-VARDECL]
∆  e ↪→ u ∆ ′ = ∆, x 7→ x0 (x0 fresh)

∆  var x= e ↪→ let x0 = u in [ ] /∆ ′

[S-DOTASGN]
∆  e ↪→ u ∆  e ′ ↪→ u ′

∆  e.f = e ′ ↪→ let = u.f = u ′ in [ ] /∆

[S-ITE]

∆  e ↪→ u ∆  s1 ↪→ E1[ ] /∆1 ∆  s2 ↪→ E2[ ] /∆2(
φ, x

)
= splitOnCommon (∆1, ∆2) φ1 = ∆1

(
φ
)

φ2 = ∆2
(
φ
)

∆ ′ = ∆,φ 7→ φ
′

(
φ

′
fresh

)
∆  if (e) then s1 else s2 ↪→ let φ ′

=
(
if (u) then E1[φ1] else E2[φ2]

)
in [ ] /∆ ′

[S-ASGN]
∆  e ↪→ u xi = ∆ (x) ∆ ′ = ∆, x 7→ xi+1 (xi+1 fresh)

∆  x = e ↪→ let xi+1 = u in [ ] /∆ ′

[S-SEQ]
∆  s1 ↪→ E1[ ] /∆1 ∆2  s2 ↪→ E2[ ] /∆2

∆  s1; s2 ↪→ E1[E2[ ]] /∆2

[S-SKIP] ∆  skip ↪→ [ ] /∆
[S-METH]

∆0 = x 7→ x0 (x0 fresh) ∆0  s ↪→ E [ ] /∆ ∆  e ↪→ u

·  def m
(
x: T
)
{p} : T= {s; return e} ↪→ def m

(
x: T
)
{p} : T = E [u]

Figure 3: Selected SSA Transformation Rules

The translating judgment of statements s has the form: ∆ 
s ↪→ E [ ] /∆ ′. The SSA context E [ ] is an expression containing
a hole [ ] in its body (e.g. let x = u in [ ]). The hole is to be
filled in by the translation of the subsequent statements. Output
environment ∆ ′ reflects the potential introduction of new SSA
variables. Rule S-VARDECL introduces such fresh variable x0 and
assigns it to the binding for the newly declared variable x. Field
assignments do not affect ∆ (rule S-DOTASGN).

The most interesting case is conditionals (rule S-ITE). Each
branch is translated separately producing an SSA context and a
translation state. Meta-function splitOnCommon is used to parti-
tion variables into those whose version differs at the end of the two
branches (φ) and those for which it remains the same (x). The body
of each branch returns a tuple containing the latest versions of the
φ variables for that branch. Fresh variablesφ

′
are introduced as the

join of the updated variables of each branch, updating the returned
SSA environment ∆ ′ appropriately.

Assignment statements increase the versioning of the SSA vari-
able corresponding to the updated source-level variable (rule S-
ASGN). Statement sequencing is emulated with nesting SSA con-
texts (rule S-SEQ); empty statements introduce a hole (rule S-
SKIP); and, finally, method declarations fill in the hole introduced
by the method body with the translation of the return expression
(rule S-METH).

3.2 Static Semantics

Types Our type language (shown below) resembles that of existing
refinement type systems [18, 23, 26]. A refinement type T may
be an existential type or have the form {ν :N | p}, where N is a
class name C or a primitive type B, and p is a logical predicate
(over some decidable logic) which describes the properties that
values of the type must satisfy. Type specifications (e.g. method
types) are existential-free, while inferred types may be existentially
quantified [19].
Logical Predicates Predicates p are logical formulas over terms t.
These terms can be variables x, primitive constants c, the reserved
value variable ν, the reserved variable this to denote the contain-
ing object, field access t.f and uninterpreted function applications
f
(
t
)
.

T, S, R ::= ∃x: T. T | {ν :N | p}
N ::= C | B
p ::= p∧ p | ¬p | t
t ::= x | c | ν | this | t.f | f

(
t
)

Structural Constraints Following CFJ, we reuse the notion of
an Object Constraint System, to encode constraints related to the
object-oriented nature of the program. Most of the rules carry over
to our system; we defer them to the supplemental material. The
key extension in our setting is we partition C has I (that encodes
inclusion of an element I in a class C) into two cases: C hasMut I
and C hasImm I, to account for elements that may be mutated.
These elements can only be fields (i.e. there is no mutation on
methods).
Environments And Well-formedness A type environment Γ con-
tains type bindings x : T and guard predicates p that encode path
sensitivity. Γ is well-formed if all of its bindings are well-formed.
A refinement type is well-formed in an environment Γ if all sym-
bols (simple or qualified) in its logical predicate are (i) bound in
Γ , and (ii) correspond to immutable fields of objects. We omit the
rest of the well-formedness rules as they are standard in refinement
type systems (details can be found in the supplemental material).

Besides well-formedness, our system’s main judgment forms
are those for subtyping and refinement typing [18].
Subtyping is defined by the judgment Γ ` S ≤ T . The rules
are standard among refinement type systems with existential types.
For example, the rule for subtyping between two refinement types
Γ ` {ν :N | p} ≤ {ν :N | p ′} reduces to a verification condition:
Valid(J Γ K ⇒ Jp K ⇒ Jp ′ K), where JΓK is the embedding of
environment Γ into our logic that accounts for both guard predicates
and variable bindings:

JΓK .
=
∧

{p | p ∈ Γ } ∧
∧

{[x/ν]p, | x : {ν :N | p} ∈ Γ }

Here, we assume existential types have been simplified to non-
existential bindings when they entered the environment. The full
set of rules is included in the supplemental material.
Refinement Typing Rules Most rules of our typing judgement
Γ ` u : T , are in Figure 4. We discuss the novel ones.

[T-FIELD-I] Similarly to CFJ, we perform self strengthening [19],
defined with the aid of the C operator:

{ν :N | p} C p ′ .
= {ν :N | p∧ p ′

}

(∃x: S. T) C p .
= ∃x: S. (T C p)

self (T, t) .
= T C (ν = t)

[T-FIELD-M] Here we avoid such strengthening, as the value of
field gi is mutable, so cannot appear in refinements.



Typing rules Γ ` u : T

[T-VAR]
Γ (x) = T

Γ ` x : self (T, x) [T-CST] Γ ` c : ty (c) [T-FIELD-I]
Γ ` u : T Γ, z : T ` z hasImm fi: Ti (z fresh)

Γ ` u.fi : ∃z: T. self (Ti, z.fi)

[T-FIELD-M]

Γ ` u : T
Γ, z : T ` z hasMut gi : Ti

(z fresh)
Γ ` u.gi : ∃z: T. Ti

[T-INV]

Γ ` u : T, u : T
Γ, z : T, z : T ` z has

(
def m

(
z:R
)
{p} : S = u ′), T ≤ R, p

(z, z fresh)

Γ ` u.m (u) : ∃z: T.∃z: T. S

[T-NEW]

Γ ` u :
(
T I, T M

)
` class (C) Γ, z :C ` fields (z) = ♦f:R, g:U

Γ, z :C, zI : self
(
T I, z.f

)
` T I ≤ R, T M ≤ U, inv (C, z) (z, z fresh)

Γ ` new C (u) : ∃zI: T I. {ν :C | ν.f = zI ∧ inv (C, ν)}
[T-CAST]

Γ ` u : S Γ ` T
Γ ` S . T

Γ ` u as T : T

[T-LET]
Γ ` u1 : T1 Γ, x : T1 ` u2 : T2
Γ ` let x = u1 in u2 : ∃x: T1. T2

[T-ASGN]

Γ ` u1 : T1, u2 : T2
Γ, z1 : bT1c ` z1 hasMut f: S, T2 ≤ S (z1 fresh)

Γ ` u1.f = u2 : T2

[T-IF]

Γ ` u : T0, T0 ≤ bool Γ, u ` u1 : T1, T1 ≤ T
Γ,¬u ` u2 : T2, T2 ≤ T Γ ` T (T fresh)

Γ ` if (u) then u1 else u2 : T
[T-LOC]

Σ[l] = T

Γ ;Σ ` l : T

Figure 4: Typing Rules

[T-NEW] Similarly, only immutable fields are referenced in the
refinement of the inferred type at object construction.

[T-INV] Extracting the method signature using the has operator
has already performed the necessary substitutions to account for
the specific receiver object.

[T-CAST] Cast operations are checked statically obviating the
need for a dynamic check. This rule uses the notion of compati-
bility subtyping, which is defined as:

Definition 1 (Compatibility Subtype). A type S is a compatibility
subtype of a type T under an environment Γ (we write Γ ` S . T ),
iff 〈S Γ

−→ bTc〉 = R 6= fail with Γ ` R ≤ T .

Here, bTc extracts the base type of T , and 〈T Γ
−→ D〉 succeeds when

under environment Γ we can statically proveD’s invariants. We use
the predicate inv (D,ν) (as in CFJ), to denote the conjunction of the
class invariants ofC and its supertypes (with the necessary substitu-
tions of this by ν). We assume that part of these invariants is a pred-
icate that states inclusion in the specific class (instanceof (ν,D)).
Therefore, we can prove that T can safely be casted toD. Formally:

〈{ν :C | p}
Γ
−→ D〉 .=

{
D C p if JΓK⇒ JpK⇒ inv (D,ν)
fail otherwise

〈∃x: S. T Γ
−→ D〉 .= ∃x: S. 〈T Γ,x : S

−−−−→ D〉

[T-ASGN] Only mutable fields may be reassigned.

[T-IF] We type conditionals with an upper bound of the types
inferred for each of the two banches. Path sensitivity is encoded
by including p and ¬p in the environment used to check the then-
and else-branch, respectively.

3.3 Type Soundness
The dynamic behavior of IRSC is described by a small step op-
erational semantics of the form H,u 7−→ H ′, u ′, where heaps H
map runtime locations l to objects new C (v). Values v are either
primitive constants c or runtime locations l. We exclude variables
from the set of values, as they are eliminated by substitution when

evaluating a top-level expression. The details of the operational se-
mantics are standard and, hence, deferred to the supplementary ma-
terial. Figure 4 includes rule T-LOC that checks location l under an
environment Γ and a store typing Σ, that maps locations to types.

We establish type soundness results for IRSC in the form of a
subject reduction (preservation) and a progress theorem that con-
nect the static and dynamic semantics of IRSC.

Theorem 1 (Subject Reduction). If (a) Γ ;Σ ` u : T , (b) Γ ;Σ ` H,
and (c) H,u 7−→ H ′, u ′, then for some T ′ and Σ ′ ⊇ Σ: (i) Γ ;Σ ′ `
u ′ : T ′, (ii) Γ ` T ′ . T , and (iii) Γ ;Σ ′ ` H ′.

Theorem 2 (Progress). If Γ ;Σ ` u : T and Γ ;Σ ` H, then either
u is a value, or there exist u ′, H ′ and Σ ′ ⊇ Σ s.t. Γ ;Σ ′ ` H ′ and
H,u 7−→ H ′, u ′.

We defer the proofs to the supplementary material. As a corol-
lary of the progress theorem we get that cast operators are guaran-
teed to succeed, hence they can safely be removed.

Corollary 3 (Safe Casts). Cast operations can safely be erased
when compiling to executable code.

4. Scaling to TypeScript
TypeScript (TS) extends JavaScript (JS) with modules, classes
and a lightweight type system that enables IDE support for auto-
completion and refactoring. TS deliberately eschews soundness [3]
for backwards compatibility with existing JS code. In this section,
we show how to use refinement types to regain safety, by present-
ing the highlights of Refined TypeScript (and our tool rsc), that
scales the core calculus from § 3 up to TS by extending the support
for types (§ 4.1), reflection (§ 4.2), interface hierarchies (§ 4.3),
and imperative programming (§ 4.4).

4.1 Types
First, we discuss how rsc handles core TS features like object
literals, interfaces and primitive types.
Object literal types TS supports object literals, i.e. anonymous
objects with field and method bindings. rsc types object members



in the same way as class members: method signatures need to be
explicitly provided, while field types and mutability modifiers are
inferred based on use, e.g. in:

var point = { x: 1, y: 2 }; point.x = 2;

the field x is updated and hence, rsc infers that x is mutable.
Interfaces TS supports named object types in the form of inter-
faces, and treats them in the same way as their structurally equiva-
lent class types. For example, the interface:

interface PointI { number x, y; }

is equivalent to a class PointC defined as:

class PointC { number x, y; }

In rsc these two types are not equivalent, as objects of type PointI
do not necessarily have PointC as their constructor:

var pI = { x: 1, y: 2 }, pC = new PointC (1,2);
pI instanceof PointC; // returns false
pC instanceof PointC; // returns true

However, ` PointC ≤ PointI i.e. instances of the class may be
used to implement the interface.
Primitive types We extend rsc’s support for primitive types to
model the corresponding types in TS. TS has undefined and null
types to represent the eponymous values, and treats these types as
the “bottom” of the type hierarchy, effectively allowing those val-
ues to inhabit every type via subtyping. rsc also includes these two
types, but does not place them at the bottom of the type hierarchy.
Instead rsc treats them as distinct primitive types inhabited solely
by undefined and null , respectively. Consequently, the follow-
ing code is accepted by TS but rejected by rsc:

var x = undefined; var y = x + 1;

Unsound Features TS has several unsound features deliberately
chosen for backwards compatibility. These include (1) treating
undefined and null as inhabitants of all types, (2) co-variant
input subtyping, (3) allowing unchecked overloads, and (4) allow-
ing a special “dynamic” any type to be ascribed to any term. rsc
ensures soundness by (1) segregating undefined and null , (2) us-
ing the correct variance for functions and constructors, (3) checking
overloads via two-phase typing (§ 2.1.2), and, (4) eliminating the
any type.

Many uses of any (indeed, all uses, in our benchmarks § 5) can
be replaced with a combination of union or intersection types or
downcasting, all of which are soundly checked via path-sensitive
refinements. In future work, we wish to support the full lan-
guage, namely allow dynamically checked uses of any by incor-
porating orthogonal dynamic techniques from the contracts litera-
ture. We envisage a dynamic cast operation castT :: (x: any) ⇒
{ν :T | ν = x}. It is straightforward to implement castT for first-
order types T as a dynamic check that traverses the value, testing
that its components satisfy the refinements [28]. Wrapper-based
techniques from the contracts/gradual typing literature should then
let us support higher-order types.

4.2 Reflection
JS programs make extensive use of reflection via “dynamic” type
tests. rsc statically accounts for these by encoding type-tags in
refinements. The following tests if x is a number before performing
an arithmetic operation on it:

var r = 1; if (typeof x === "number") r += x;

We account for this idiomatic use of typeof by statically track-
ing the “type” tag of values inside refinements using uninter-
preted functions (akin to the size of an array). Thus, values v of

type boolean, number, string, etc. are refined with the pred-
icate ttag(v)= "boolean", ttag(v)= "number", ttag(v)= "
string", etc., respectively. Furthermore, typeof has type (z:A)⇒ {v:string | v = ttag(z)} so the output type of typeof x
and the path-sensitive guard under which the assignment r = x
+ 1 occurs, ensures that at the assignment x can be statically

proven to be a number. The above technique coupled with two-
phase typing (§ 2.1.2) allows rsc to statically verify reflective,
value-overloaded functions that are ubiquitous in TS.

4.3 Interface Hierarchies
JS programs frequently build up object hierarchies that represent
unions of different kinds of values, and then use value tests to de-
termine which kind of value is being operated on. In TS this is en-
coded by building up a hierarchy of interfaces, and then performing
downcasts based on value tests1.

Implementing Hierarchies with bit-vectors The following de-
scribes a slice of the hierarchy of types used by the TypeScript
compiler (tsc) v1.0.1.0:

interface Type { immutable flags: TypeFlags;
id : number;
symbol? : Symbol; ... }

interface ObjectType extends Type { ... }

interface InterfaceType extends ObjectType
{ baseTypes : ObjectType [];

declaredProperties : Symbol []; ... }

enum TypeFlags
{ Any = 0x00000001 , String = 0x00000002
, Number = 0x00000004 , Class = 0x00000400
, Interface= 0x00000800 , Reference= 0x00001000
, Object = Class | Interface | Reference .. }

tsc uses bit-vector valued flags to encode membership within
a particular interface type, i.e. discriminate between the different
entities. (Older versions of tsc used a class-based approach, where
inclusion could be tested via instanceof tests.) For example, the
enumeration TypeFlags above maps semantic entities to bit-vector
values used as masks that determine inclusion in a sub-interface
of Type. Suppose t of type Type. The invariant here is that if
t.flags masked with 0x00000800 is non-zero, then t can be
safely treated as an InterfaceType value, or an ObjectType value,
since the relevant flag emerges from the bit-wise disjunction of the
Interface flag with some other flags.

Specifying Hierarchies with Refinements rsc allows developers to
create and use Type objects with the above invariant by specifying
it a predicate typeInv 2:

isMask <v,m,t> = mask(v,m) ⇒ impl(this ,t)
typeInv <v> = isMask <v, 0x00000001 , Any >

∧ isMask <v, 0x00000002 , String >
∧ isMask <v, 0x00003C00 , ObjectType >

and then refining TypeFlags with the predicate

type TypeFlags = {v:TypeFlags | typeInv <v>}

Intuitively, the refined type says that when v (that is the flags
field) is a bit-vector with the first position set to 1 the corresponding
object satisfies the Any interface, etc.

1 rsc handles other type tests, e.g. instanceof, via an extension of the
technique used for typeof tests; we omit a discussion for space.
2 Modern SMT solvers easily handle formulas over bit-vectors, including
operations that shift, mask bit-vectors, and compare them for equality.



Verifying Downcasts rsc verifies the code that uses ad-hoc hi-
erarchies such as the above by proving the TS downcast opera-
tions (that allow objects to be used at particular instances) safe.
For example, consider the following code that tests if t implements
the ObjectType interface before performing a downcast from type
Type to ObjectType that permits the access of the latter’s fields:

function getPropertiesOfType(t: Type): Symbol [] {
if (t.flags & TypeFlags.Object) {

var o = <ObjectType > t; ... } }

tsc erases casts, thereby missing possible runtime errors. The
same code without the if-test, or with a wrong test would pass
the TypeScript type checker. rsc, on the other hand, checks casts
statically. In particular, <ObjectType>t is treated as a call to a
function with signature:

(x:{A|impl(x,ObjectType)})⇒{v:ObjectType|v=x}

The if-test ensures that the immutable field t.flags masked with
0x00003C00 is non-zero, satisfying the third line in the type defi-
nition of typeInv, which, in turn implies that t in fact implements
the ObjectType interface.

4.4 Imperative Features

Arrays TS’s definitions file provides a detailed specification for the
Array interface. Borrowing notation from Immutability Generic
Java [39] 3, we extend this definition to account for the mutating
nature of certain array operations:

interface Array <K extends ReadOnly ,T> {
@Mutable pop(): T;
@Mutable push(x:T): number;
@Immutable get length (): {nat|v=len(this)}
@ReadOnly get length (): nat; ... }

Mutating operations (push and pop) are only allowed on mutable
arrays, and a.length returns the exact length of an immutable
array a, and just a natural number otherwise.
Object initialization Our formal core (§ 3) treats constructor bodies
in a very limiting way: object construction is merely an assignment
of the constructor arguments to the fields of the newly created
object. In rsc we relax this restriction in two ways: (a) We allow
class and field invariants to be violated within the body of the
constructor, but checked for at the exit. (b) We permit the common
idiom of certain fields being initialized outside the constructor, via
an additional mutability variant that encodes reference uniqueness.
In both cases, we still restrict constructor code so that it does not
leak references of the constructed object (this) or read any of its
fields, as they might still be in an uninitialized state.
(a) Internal Initialization: Constructors Type invariants do not
hold while the object is being “cooked” within the constructor.
To safely account for this idiom, rsc defers the checking of class
invariants (i.e. the types of fields) by replacing: (a) occurrences
of this.fi = ei, with fi = ei, where fi are local variables,
and (b) all return points with a call ctor init

(
fi
)
, where the

signature for ctor init is: (f: T) ⇒ void. Thus, rsc treats field
initialization in a field- and path-sensitive way (through the usual
SSA conversion), and establishes the class invariants via a single
atomic step at the constructor’s exit (return).

3 In IGJ a type reference is of the form C<M,T>, where immutability argu-
ment M works as proxy for the immutability modifiers of the contained fields
(unless overridden) and is one of: Immutable (or IM), when neither this ref-
erence nor any other reference can mutate the referenced object; Mutable
(or MU), when this and potentially other references can mutate the object;
and ReadOnly (or RO), when this reference cannot mutate the object, but
some other reference may. Similar reasoning holds for method annotations.

(b) External Initialization: Unique References Sometimes we
want to allow immutable fields to be initialized outside the con-
structor. Consider the code (adapted from tsc):

function createType(flags:TypeFlags):Type <IM> {
var r: Type <UM> = new Type(checker , flags);
r.id = typeCount ++; return r; }

Field id is expected to be immutable. However, its initialization
happens after Type’s constructor has returned. Fixing the type of r
to Type<IM> right after construction would disallow the assignment
of the id field on the following line. So, instead, we introduce
UniqueMutable (or UM), a new mutability type that denotes that
the current reference is the only reference to a specific object, and
hence, allows mutations to its fields. UM references obey stricter
rules to avoid leaking of unique references. When createType
returns, we can finally fix the mutability parameter of r to IM.

We could also return Type<UM>, extending the cooking phase of the
current object and allowing further initialization by the caller. We
discuss more expressive approaches to initialization in § 6.

5. Evaluation
To evaluate rsc, we have used it to analyze a suite of JS and TS
programs, to answer two questions: (1) What kinds of properties
can be statically verified for real-world code? (2) What kinds of an-
notations or overhead does verification impose? Next, we describe
the properties, benchmarks and discuss the results.

Safety Properties We verify with rsc the following:

• Property Accesses rsc verifies each field (x.f) or method
lookup (x.m(...)) succeeds. Recall that undefined and null
are not considered to inhabit the types to which the field or
methods belong,

• Array Bounds rsc verifies that each array read (x[i]) or write
(x[i] = e) occurs within the bounds of x,

• Overloads rsc verifies that functions with overloaded (i.e. inter-
section) types correctly implement the intersections in a path-
sensitive manner as described in (§ 2.1.2).

• Downcasts rsc verifies that at each TS (down)cast of the form <
T> e, the expression e is indeed an instance of T. This requires
tracking program-specific invariants, e.g. bit-vector invariants
that encode hierarchies (§ 4.3).

Benchmarks We took a number of existing JS or TS programs and
ported them to rsc. We selected benchmarks that make heavy use
of language constructs connected to the safety properties described
above. These include parts of the Octane test suite, developed
by Google as a JavaScript performance benchmark [12], the TS
compiler [21], and the D3 [4] and Transducers libraries [7]:

• navier-stokes which simulates two-dimensional fluid motion
over time; richards, which simulates a process scheduler with
several types of processes passing information packets; splay,
which implements the splay tree data structure; and raytrace,
which implements a raytracer that renders scenes involving
multiple lights and objects; all from the Octane suite,

• transducers a library that implements composable data trans-
formations, a JavaScript port of Hickey’s Clojure library, which
is extremely dynamic in that some functions have 12 (value-
based) overloads,

• d3-arrays the array manipulating routines from the D3 [4]
library, which makes heavy use of higher order functions as well
as value-based overloading,



Benchmark LOC T M R Time (s)
navier-stokes 366 3 18 39 473
splay 206 18 2 0 6
richards 304 61 5 17 7
raytrace 576 68 14 2 15
transducers 588 138 13 11 12
d3-arrays 189 36 4 10 37
tsc-checker 293 10 48 12 62
TOTAL 2522 334 104 91

Figure 5: LOC is the number of non-comment lines of source (computed
via cloc v1.62). The number of RSC specifications given as JML style
comments is partitioned into T trivial annotations i.e. TypeScript type sig-
natures, M mutability annotations, and R refinement annotations, i.e. those
which actually mention invariants. Time is the number of seconds taken to
analyze each file.

• tsc-checker which includes parts of the TS compiler (v1.0.1.0),
abbreviated as tsc. We check 15 functions from compiler/core.ts
and 14 functions from compiler/checker.ts (for which we
needed to import 779 lines of type definitions from compiler/types.ts).

Results Figure 5 quantitatively summarizes the results of our eval-
uation. Overall, we had to add about 1 line of annotation per 5 lines
of code (529 for 2522 LOC). The vast majority (334/529 or 63%)
of the annotations are trivial, i.e. are TS-like types of the form (x
:nat)⇒ nat; 20% (104/529) are trivial but have mutability infor-
mation, and only 17% (91/529) mention refinements, i.e. are defini-
tions like type nat = {v:number|0≤v} or dependent signatures
like (a:T[],n:idx<a>)⇒T. The numbers show rsc has annota-
tion overhead comparable with TS.
Code Changes We had to modify the source in various small (but
important) ways in order to facilitate verification.

• Control-Flow: Some programs had to be restructured to work
around rsc’s currently limited support for certain control flow
structures (e.g. break). We also modified some loops to use
explicit termination conditions.

• Constructors: As rsc does not yet support default constructor
arguments, we modified relevant new calls in Octane to sup-
ply those explicitly. We also refactored navier-stokes to use
traditional OO style constructors instead of JS records with
function-valued fields.

• Non-null Checks: In splay we added 5 explicit non-null
checks for mutable objects as proving those required precise
heap analysis that is outside rsc’s scope.

• Ghost Functions: navier-stokes has more than a hundred
(static) array access sites, most of which compute indices via
non-linear arithmetic (i.e. via computed indices of the form
arr[r*s + c]); SMT support for non-linear integer arithmetic
is brittle (and accounts for the anomalous time for navier-
stokes). We factored axioms about non-linear arithmetic into
ghost functions whose types were proven once via non-linear
SMT queries, and which were then explicitly called at use
sites to instantiate the axioms (thereby bypassing non-linear
analysis.)

6. Related Work
RSC is related to several distinct lines of work.
Types for Dynamic Languages Original approaches incorporate
flow analysis in the type system, using mechanisms to track alias-
ing and flow-sensitive updates [1, 33]. Typed Racket’s occurrence
typing narrows the type of unions based on control dominating type
tests, and its latent predicates lift the results of tests across higher

order functions [34]. DRuby [10] uses intersection types to rep-
resent summaries for overloaded functions. TeJaS [20] combines
occurrence typing with flow analysis to analyze JS [20]. Unlike
RSC none of the above reason about relationships between val-
ues of multiple program variables, which is needed to account for
value-overloading and richer program safety properties.

Program Logics At the other extreme, one can encode types as
formulas in a logic, and use SMT solvers for all the analysis (sub-
typing). DMinor explores this idea in a first-order functional lan-
guage with type tests [2]. The idea can be scaled to higher-order
languages by embedding the typing relation inside the logic [6].
DJS combines nested refinements with alias types [29], a restricted
separation logic, to account for aliasing and flow-sensitive heap up-
dates to obtain a static type system for a large portion of JS [5].
DJS proved to be extremely difficult to use. First, the program-
mer had to spend a lot of effort on manual heap related annota-
tions; a task that became especially cumbersome in the presence
of higher order functions. Second, nested refinements precluded
the possibility of refinement inference, further increasing the bur-
den on the user. In contrast, mutability modifiers have proven to
be lightweight [39] and two-phase typing lets rsc use liquid refine-
ment inference [26], yielding a system that is more practical for real
world programs. Extended Static Checking [9] uses Floyd-Hoare
style first-order contracts (pre-, post-conditions and loop invariants)
to generate verification conditions discharged by an SMT solver.
Refinement types can be viewed as a generalization of Floyd-Hoare
logics that uses types to compositionally account for polymorphic
higher-order functions and containers that are ubiquitous in modern
languages like TS.

Analyzing TypeScript Feldthaus et al. present a hybrid analysis to
find discrepancies between TS interfaces [38] and their JS imple-
mentations [8], and Rastogi et al. extend TS with an efficient grad-
ual type system that mitigates the unsoundness of TS’s type sys-
tem [25].

Object Immutability rsc builds on existing methods for statically
enforcing immutability. In particular, we build on Immutability
Generic Java (IGJ) which encodes object and reference immutabil-
ity using Java generics [39]. Subsequent work extends these ideas
to allow (1) richer ownership patterns for creating immutable cyclic
structures [40], (2) unique references, and ways to recover im-
mutability after violating uniqueness, without requiring an alias
analysis [13]. The above extensions are orthogonal to rsc; in the
future, it would be interesting to see if they offer practical ways for
accounting for immutability in TS programs.

Object Initialization A key challenge in ensuring immutability is
accounting for the construction phase where fields are initialized.
We limit our attention to lightweight approaches i.e. those that do
not require tracking aliases, capabilities or separation logic [11,
29]. Haack and Poll [16] describe a flexible initialization schema
that uses secret tokens, known only to stack-local regions, to initial-
ize all members of cyclic structures. Once initialization is complete
the tokens are converted to global ones. Their analysis is able to
infer the points where new tokens need to be introduced and com-
mitted. The Masked Types approach tracks, within the type system,
the set of fields that remain to be initialized [24]. X10’s hardhat
flow-analysis based approach to initialization [41] and Freedom
Before Commitment [30] are perhaps the most permissive of the
lightweight methods, allowing, unlike rsc, method dispatches or
field accesses in constructors.

7. Conclusions and Future Work
We have presented RSC which brings SMT-based modular and
extensible analysis to dynamic, imperative, class-based languages



by harmoniously integrating several techniques. To ensure sound-
ness, as in X10’s class-constraints, RSC’s refinements are restricted
to immutable variables and fields [32]. However, this alone is far
too restrictive for TS. First, we make mutability parametric [39],
and extend the refinement system accordingly. Second, we cru-
cially obtain flow-sensitivity via SSA transformation, and path-
sensitivity by incorporating branch conditions. Third, we account
for reflection by encoding tags in refinements and two-phase typ-
ing [36]. Fourth, our design ensures that we can use liquid type
inference [26] to automatically synthesize refinements. Conse-
quently, we have shown how rsc can verify a variety of proper-
ties with a modest annotation overhead similar to TS. Finally, our
experience points to several avenues for future work, including:
(1) more permissive but lightweight techniques for object initial-
ization [41], (2) automatic inference of trivial types via flow anal-
ysis [15], (3) verification of security properties, e.g. access-control
policies in JS browser extensions [14].

References
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type Infer-

ence for Javascript. In Proceedings of the 19th European Conference
on Object-Oriented Programming, 2005.

[2] G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy. Se-
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