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Abstract. Proving software free of security bugs is hard. Languages that ensure
that programs correctly enforce their security policies would help, but, to date,
no security-typed language has the ability to verify the enforcement of the kinds
of policies used in practice—dynamic, stateful policies which address a range of
concerns including forms of access control and information flow tracking.
This paper presents FINE, a new source-level security-typed language that, through
the use of a simple module system and dependent, refinement, and affine types,
checks the enforcement of dynamic security policies applied to real software.
FINE is proven sound. A prototype implementation of the compiler and several
example programs are available from http://research.microsoft.com/fine.

1 Introduction

The security of a well-designed software system often revolves around the concept of
a reference monitor, a security-critical kernel that mediates access to resources while
enforcing a suitable policy. Reference monitors are expected to be compact and imple-
mented in a form amenable to review. However, increasingly, reference monitors are
tasked with enforcing complex policies that simultaneously address various aspects of
security, mixing, for example, role- and history-based access control with information
flow tracking. Policies are authored separately from the programs they govern, they are
composed in non-trivial ways, and, as policies change over time, authorization deci-
sions require reasoning about state. This makes it difficult to establish that a reference
monitor enforces a policy correctly.

To illustrate the kinds of security concerns that arise in practice, consider the policy
used by CONTINUE [14], a widely used program for managing academic conferences.
CONTINUE’s security policy is defined using Datalog-like rules in XACML. This pol-
icy stands separately from the implementation of the server program, making it hard
to connect the policy to the program objects it governs. The policy is also particularly
complex in that it makes extensive use of stateful features. For example, the conference
management process is staged into a number of phases—in each phase, different policy
rules apply. During the submission phase of a conference, authors may submit papers,
but this right is revoked after the submission deadline is passed. In the bidding phase,
papers are assigned to reviewers after accounting for conflicts of interest. During the
rebuttal phase, reviews are disclosed to authors, but care must be taken to ensure that



PC-confidential remarks and scores are not revealed. With such a complex policy to
enforce, it is not surprising that the developers of CONTINUE report that almost all the
interesting bugs they encountered were related to authorization in some form [7]. Poli-
cies used with other kinds of software, such as systems that manage medical records,
applications that control the outsourcing of software development, and military systems,
arguably have even more complex authorization requirements. Formally verifying that
the reference monitors of such systems correctly enforce their policies would help alle-
viate concerns of security vulnerabilities.

This paper presents FINE, a new source-level security-typed programming language
that can be used to implement programs like reference monitors and to check that these
programs correctly enforce their security policies. FINE distinguishes itself from prior
languages in this line, including FlowCaml [18], Jif [5], Fable [21], Aura [13], and
RCF [1], primarily in its ability to express a combination of stateful authorization (none
of the prior languages model state) and information flow (which is the focus of Flow-
Caml and Jif, and can be encoded in Fable and Aura, but not, as far as we are aware, in
RCF). The technical contribution of FINE is a new type system (§3) that uses dependent
and refinement types to express authorization policies by including first-order logical
formulas in the types of program expressions. FINE uses affine types, a weakening of
linear types [24], to model changes to the state of an authorization policy. (Variables
with an affine type can be used at most once.) The combination of affine and dependent
types is subtle and can require tracking uses of affine assumptions in both types and
terms. Our formulation keeps the metatheory simple by ensuring that affine variables
never appear in types, while still allowing the state of a program to be refined by logical
formulas. We also formalize a module system for FINE that provides a simple but strong
information-hiding property—we exploit this property to model information flow.

Programming with these advanced typing constructs can impose a significant bur-
den on the programmer. For this reason, languages like Fable and Aura position them-
selves as intermediate languages because verification depends on intricate security proofs
too cumbersome for programmers to write down. Indeed, checking the 2000 lines of
code in our benchmark programs produces nearly 200 proof obligations, a proof bur-
den that would overwhelm most programmers. To alleviate this concern, FINE draws
on the experience of languages like F7 (an implementation of RCF) and uses Z3 [6], an
SMT solver, to automatically discharge proof obligations. The careful combination of
refinement and affine types in FINE allows us to use a mature classical prover like Z3.
Refinement formulas in FINE only involve the standard logical connectives, avoiding
the need for still-experimental linear-logic provers.

We describe our experience using FINE to build several example programs (§4),
including a model of the reference monitor of CONTINUE. The complete semantics of
FINE, proofs of theorems, and additional examples appear in a technical report [20].

2 FINE, by example

We begin by presenting FINE using several examples. Our first example is a simple
form of password-based authentication. Next, we discuss permission-based access con-
trol enriched with information flow tracking. Finally, we show how to enforce stateful
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authorization policies by presenting code examples from our main case-study, a model
of the CONTINUE conference management server.

2.1 Authentication, access control, and information flow

FINE’s syntax is similar to languages in the ML family. In order to specify and enforce
security policies, FINE programmers define modules that provide mediated access to
security-sensitive resources. The module Authentication shown below mediates access
to authentication routines.
Simple password authentication

1 module Authentication
2 type prin = U: string→ prin ∣ Admin: prin
3 private type cred :: prin→ ★ = Auth: p:prin→ cred p
4 val login: p:prin→ string→ option (cred p)
5 let login p pw = if (check pwd db p pw) then Some (Auth p) else None

The type prin is a standard variant type that represents principal names as either a
string for the user’s name, or the distinguished constant Admin. The type cred (line 3) is a
dependent-type constructor with kind prin→ ★ , e.g., (cred Admin) is a legal type of kind
★ (the kind of normal types, distinguished from the kind of affine types, introduced in
§2.2) and represents a credential for the Admin user. Values of the cred p type are con-
structed using the Auth data constructor. This constructor is given a dependent function
type—the argument p is the name of the principal and is in scope to the right of the
function arrow. By declaring cred private, the Authentication module indicates that its
clients cannot directly use the Auth constructor. Instead, the only way a client module
can obtain a credential is by calling the login function (given a dependent function type
on line 4). The implementation of login (line 5) calls an external function (not shown)
to check the password, and, if the password check succeeds, returns a credential for the
user p. By indexing cred with the name of the principal which it authenticates, we can
statically detect common security errors. For example, a client cannot use login to obtain
a credential for U ‘‘Alice’’ and later pass it off as a credential for Admin—the type of the
former, cred (U ‘‘Alice’’), distinguishes it from the latter, which has type cred Admin.

We use Authentication to implement the FileRM module (shown on the next page), a
reference monitor that mediates access to a file system. The policies implemented by
reference monitors in FINE have two components: the types given to values exposed in
the module’s interface (e.g., the type of fread on line 7), and policy axioms introduced
by the assume construct (e.g., assume AdminRW on line 6). A security review of a FINE
module must confirm that the types and assumptions adequately capture the intent of
a high-level policy. Importantly, client code need not be reviewed—typing ensures that
clients comply with the reference monitor’s security policy.

The FileRM module aims to provide a basic level of access protection on files by
ensuring that principals that read and write to files have the requisite permissions. This
basic protection is implemented by lines 1-7 of FileRM. The remainder of the module
enriches the access control mechanism to track information flows so that, for example,
users cannot reveal secrets by copying data from a secret file into a public file.
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Permission-based access control and information flow on files

1 module FileRM
2 open Authentication (∗ Use non -private symbols from Authentication’s namespace ∗)
3 (∗ Propositions and assumptions for file permissions ∗)
4 type CanRead:: prin→ Sys.file→ ★
5 type CanWrite:: prin→ Sys.file→ ★
6 assume AdminRW: forall f:Sys.file. CanRead Admin f && CanWrite Admin f
7 val fread simple: p:prin→ cred p→{f:Sys.file ∣ CanRead p f} → string
8 (∗ Types and operators to track information flow ∗)
9 type label = F : Sys.file→ label ∣ J : label→ label→ label

10 private type tracked :: ∗ → label→∗ = L : �→ p:label→ tracked � p
11 val fmap: (� →� )→ l:label→ tracked � l→ tracked � l
12 val tensor: l:label→m:label→ tracked (� →� ) l→ tracked �m→ tracked � (J l m)
13 (∗ Types and axioms for a partial order on labels ∗)
14 type CanFlow:: label→ label→ ★
15 assume Lattice: forall l:label, m1:label, m2:label. (CanFlow l l) &&
16 ((CanFlow l m1 && CanFlow l m2)⇒ CanFlow l (J m1 m2)) &&
17 ((CanFlow m1 l && CanFlow m2 l)⇒ CanFlow (J m1 m2) l)
18 assume Atomicflow: forall f:Sys.file, g:Sys.file.
19 (forall p:prin. CanRead p g⇒ CanRead p f)⇒ CanFlow (F f) (F g)
20 (∗ Secure wrappers for system calls ∗)
21 val fread: p:prin→ cred p→ f:{x:Sys.file ∣ CanRead p x}→ tracked string (F f)
22 let fread p c f = L (Sys.fread f) (F f)
23 val fwrite: p:prin→ cred p→ f:{x:Sys.file ∣ CanWrite p x}→
24 l:{y:label ∣ CanFlow y (F f)} → tracked string l→ unit
25 let fwrite p c f l (L s x) = Sys.fwrite f s

FileRM defines dependent-type constructors CanRead and CanWrite to describe ac-
cess permissions. Permissions are granted using assumptions like AdminRW, which
states that the Admin user has read- and write-permissions on all files. Client programs
can use axioms like AdminRW to produce evidence of the propositions required to call
functions like fread simple, which wrap the underlying system calls. Client programs are
assumed to not have direct access to these system calls—this can be established using
standard systems techniques like sandboxing [25]. The type of fread simple is used to
enforce an access control policy. A caller of fread simple is required to pass in a creden-
tial for a user p and a file handle f, where f has the refined type {x:Sys.file ∣ CanRead p x}
indicating that p has permission to read f.

We used fread simple mainly to illustrate how refinement types can express sim-
ple authorization policies. When leaks due to information flows are a concern, FileRM
would not include fread simple in the API exposed to client programs. Clients would
have to use fread instead, which augments fread simple with information flow controls.

The encoding of information flow shown in FileRM is based on a model developed
with the Fable calculus [21]. Information flow policies are specified and enforced by
tagging sensitive data with security labels that record provenance. The type label (line
9) represents the provenance of data derived from one or more files, F x for data from
file x, and J l1 l2 for data derived from the files in both l1 and l2. The dependent-type
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constructor tracked associates labels with data. For example, tracked string (F x) repre-
sents a string that originated from the file x. Importantly, tracked is defined as a private
type. Client programs can only manipulate tracked values using functions that appear in
the interface of FileRM, e.g., fmap, a functor that allows functions to be lifted into the
tracked type and tensor, a combinator that treats the tracked type as an indexed applica-
tive functor. Prior work on Fable showed that encodings of this style can be proved to
correctly enforce security properties like noninterference.

Next, we define a type CanFlow and assumptions to describe a partial order on labels.
The Lattice assumption states that the J constructor behaves as the least-upper-bound re-
lation on a join semi-lattice and that flows are permissible from lower labels to higher
ones. The Atomicflow assumption states that data can flow from a file f to a file g only if
all principals that can read g can also read f. The types of fread and fwrite use these con-
structs to track information flow. The type of fread shows that the content of f is returned
as a string tagged with its provenance, i.e., tracked string (F f). The type of fwrite requires
that the string written to a file f has provenance l, where the refinement CanFlow y (F f)
on the type of l requires it to only contain data visible to the readers of f.

Specific file permissions and a client program

1 open Authentication, FileRM
2 assume R a: CanRead (U ‘‘Alice’’) ‘‘a.txt’’ &&
3 (forall p:prin.CanRead p ‘‘a.txt’’⇒ p=U ‘‘Alice’’ ∣∣ p=Admin)
4 assume R ab: CanRead (U ‘‘Alice’’) ‘‘ab.txt’’ && CanRead (U ‘‘Bob’’) ‘‘ab.txt’’ &&
5 (forall p:prin.CanRead p ‘‘ab.txt’’⇒ p=U ‘‘Alice’’ ∣∣ p=U ‘‘Bob’’ ∣∣ p=Admin)
6 val strcat: string→ string→ string
7 let sudo (c:cred Admin) =
8 let a, ab = fread Admin c ‘‘a.txt’’, fread Admin c ‘‘ab.txt’’ in
9 let a ab = tensor (F ‘‘a.txt’’) (F ‘‘ab.txt’’) (fmap strcat (F ‘‘a.txt’’) a) ab in

10 fwrite Admin c ‘‘a.txt’’ (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)) a ab

Additional policy assumptions and client code. The code sample above includes ax-
ioms R a and R ab to define access permissions for some files. (We assume here that
Sys.file and string are synonyms.) We also show a client program,sudo, which runs with
the credentials of Admin, concatenates data from files a.txt and ab.txt, and writes the re-
sult to the file a.txt. In addition to Admin, the file a.txt is readable only by the user Alice
and ab.txt only by Alice and Bob. Thus, sudo is secure since it writes to a.txt data that
can be read by Alice and Admin. In contrast, if sudo were to write the result to ab.txt, the
contents of a.txt are leaked to Bob, and this program should be detected as insecure.

At each call to fread, the solver appeals to AdminRW to show that Admin has read
permission on the files. To concatenate tracked strings, we use the fmap and tensor oper-
ators from the FileRM API.3 The type of a ab is tracked string (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)).
At line 10, we need to prove CanFlow (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)) (F ‘‘a.txt’’), which is dis-
charged automatically by Z3. Trying to write a ab to ab.txt instead results in a type error.

3 Our implementation currently lacks support for implicit parameters in function calls. Defining
all label parameters to be implicit would produce more terse programs. For example, concate-
nation of tracked strings would read tensor (fmap strcat a) ab.
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2.2 Stateful authorization in the CONTINUE conference manager

We now present a more substantial example in FINE: a model of the CONTINUE confer-
ence management server. We first present a reference monitor ConfRM which mediates
access to a database of paper submissions and reviews. Next, we show ConfPolicy, a set
of policy axioms used to configure the reference monitor. Finally, we discuss ConfWeb,
a web server processing requests and accessing the database via the reference monitor.
A model of stateful authorization. The design of the ConfRM reference monitor is
based on a framework due to Dougherty et al. [7] for reasoning about the correctness
of Datalog-style dynamic policies. This model specifies policies as inference rules that
derive permissions from basic authorization attributes. For example, attributes may in-
clude assertions about a principal’s role membership or the phase of the conference, and
inference rules could grant permissions to principals depending on the current phase
and role activations. Over time, whether due to a program’s actions or due to external
events, the set of authorization attributes can change. For example, to access a resource,
a principal may alter the state of the authorization policy by activating a role; or, the PC
chair can change the phase of the conference. In this state, the policy may grant a spe-
cific privilege to the principal, but a subsequent role deactivation revokes the privilege.
Dougherty et al. show that this model captures many common policies and can be used
to reason about policy correctness.

This model of stateful authorization can be represented directly in FINE. The type
st represents the set of basic authorization attributes (line 10 in the listing on the next
page). Attributes include values like Role (U ‘‘Alice’’) Author to represent a role activa-
tion, or values like Assigned r p to indicate that a paper p has been assigned to a reviewer
r. The type perm represents permissions (the relations derived using inference rules from
the basic authorization attributes). For example, Permit (U ‘‘Alice’’) (Submit p) represents
a permission granted to an author. ConfRM also defines two propositions for stating in-
variants about the current state of the policy. Line 12 shows the type In, a proposition
about list membership, e.g., In a s states that a is a member of the list s. We elide stan-
dard assumptions that axiomatize list membership, but show a simple recursive function
check that decides list membership (line 13-15). The proposition Derivable s p (line 16)
asserts that a permission p is derivable from the collection of authorization attributes s.
We define two type abbreviations for refinements of the st type: rst<p> are those states
in which p is derivable, and inst<a> are those states that include a.

For a flavor of refinement type checking, consider the check function. The essence
of typing this function is proving that the true sub-expression can be given the type
{b:bool ∣ In a l}. We accomplish this by typing the value true in a context that records
equalities between l and hd::tl (induced by the pattern match); an assumption that the
expression (equals a hd) has the type {b:bool ∣ b=true⇔ a=hd} (by a type given to the built-
in equals operator); an assumption that (equals a hd) evaluates to true (since we are typing
the then-branch); and the axioms for list membership. We determine if the goal (In a l)
is deducible from the assumptions by including the negation of the goal among the
assumptions and requiring the solver to prove the resulting theory unsatisfiable.
Modeling state updates with affine types. The type constructor StateIs (line 19) ad-
dresses two concerns. A value of type StateIs s represents an assertion that s contains the
current state of authorization facts. ConfRM uses this assertion to ensure the integrity
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of its authorization facts. StateIs is declared private, so untrusted clients cannot use the
Sign constructor to forge StateIs assertions. Moreover, since the authorization state can
change over time, FINE’s type system provides a way to revoke StateIs assertions about
stale states. For example, after a reviewer r has submitted a review for a paper p, we may
add the fact Reviewed r p to the set of authorization facts s, revoke the assertion StateIs s,
and use StateIs ((Reviewed r p)::s) instead.
A fragment of a reference monitor for a conference management server

1 module ConfRM
2 open Authentication
3 type role = Author ∣ Reviewer ∣ Chair
4 type phase = Submission ∣ Reviewing ∣Meeting
5 type paper = {id:int; title:string; author:prin; contents:string}
6 type attr = Role : prin→ role→ attr ∣ Assigned : prin→ paper→ attr
7 ∣ Phase : phase→ attr ∣ Reviewed : prin→ paper→ attr
8 type action = Submit: paper→ action ∣ Review: paper→ action
9 ∣ ReadScore: paper→ action ∣ CloseSub: action

10 type st = list attr
11 type perm = Permit : prin→ action→ perm
12 type In :: attr→ st→ ★
13 val check: a:attr→ l:st→{b:bool ∣ b=true⇒ In a l}
14 let rec check a l = match l with []→ false
15 ∣ hd::tl→ if equals a hd then true else check a tl
16 type Derivable :: st→ perm→ ★
17 type rst<p:perm> = {s:st ∣ Derivable s p}
18 type inst<a:attr> = {s:st ∣ In a s}
19 private type StateIs:: st→ A = Sign: s:st→ StateIs s
20 val submit: q:prin→ cred q→ p:paper→ s:rst<Permit q (Submit p)>→ StateIs s→ StateIs s
21 val review: r:prin→ cred r→ p:paper→ q:string→ s:rst<Permit r (Review p)>→
22 StateIs s→ (s’:inst<Reviewed r p> ∗ StateIs s’)
23 val close sub: c:prin→ cred c→ s:rst<Permit c CloseSub>→
24 StateIs s→ (s’:inst<Phase Reviewing> ∗ StateIs s’)

FINE types are classified into two basic kinds: ★ , the kind of normal types, and A, the
kind of affine types. By declaring StateIs :: st→ A we indicate that StateIs constructs an
affine type from a value of type st. When the state of the authorization policy changes
from s to t, ConfRM constructs a value Sign t to assert StateIs t, while destructing a
StateIs s value to ensure that the assertion about the stale state s can never be used again.
An external API to the conference DB. Lines 20-24 show the types of functions ex-
posed by ConfRM to clients. Using the refined state type rst<p>, the API ensures that
each function is only called in states where the permission p is derivable. The submit
function requires Permit q (Submit p) to be derivable in the state s. By returning StateIs s,
the type of submit indicates that it does not change the authorization state. The review
function allows a reviewer r to submit a review and then changes the authorization state
to record the submission. The return type of review is a dependent pair consisting of a
new list of authorization attributes s’, and an assertion of type StateIs s’ to indicate that
s’ is the new authorization state. The close sub function has a similar type and allows the
program chair to change the phase of the conference.
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An example policy and a main event loop for the server

1 module ConfPolicy : ConfRM
2 let init:(s:st ∗ StateIs s) = let a = [Role (U ‘‘Andy’’) Chair; ...] in (a, Sign a)
3 assume C1: forall (q:prin), (p:paper), (s:st).
4 In (Phase Submission) s && In (Role q Author) s⇒ Derivable s (Permit q (Submit p))
5 assume C2: forall (r:prin), (p:paper), (s:st).
6 In (Phase Reviewing) s && In (Assigned r p) s⇒ Derivable s (Permit r (Review p))
7 assume ...
8 (∗ Main event loop ∗)
9 module ConfWeb

10 open Authentication, ConfRM, ConfPolicy
11 let rec loop s = match get request() with
12 ∣ Submit paper q credq paper→ let (a,tok) = s in
13 if (check (Phase Submission) a) and (check (Role q Author) a) then
14 let s1 = submit q credq paper a tok in
15 let = resp ‘‘Thanks for your submission!’’ in loop (a, s1)
16 else let = resp ‘‘Submissions are closed, or you are not an author.’’ in loop (a,tok)
17 ∣ Submit review r credr paper review→ ...
18 let = loop ConfPolicy.init

A sample policy. The module ConfPolicy above configures the ConfRM reference moni-
tor with policy assumptions. At line 2, we show init, an initial collection of authorization
attributes a, signed to attest that a is the authorization state. The Sign data construc-
tor requires the privilege of ConfRM—FINE’s module system grants this privilege to
ConfPolicy using the notation module ConfPolicy : ConfRM, which allows ConfPolicy to
use the private constructors of ConfRM. The assumptions C1-C2 show how permissions
can be derived from authorization attributes—different conferences can use the same
ConfRM but get different enforcement semantics by using different policy files.
An event loop to handle web requests. Finally, we show fragments from ConfWeb,
a program that handles web requests to the conference management site. The main
event loop of ConfWeb waits for a request (type elided). If principal q wishes to sub-
mit a paper, we check that the conference is in the Submission phase, and that q is
registered in the role of an Author. We give the built-in boolean operator and the type
x:bool→ y:bool→{z:bool ∣ z=true⇔ x=true && y=true}. We can use this type, the type of
check, and assumption C1, to refine the type of the current state a in the then-branch to
rst<Permit q (Submit paper)>.

2.3 Elements of FINE that enable stateful programming

Before proceeding to a formal semantics for FINE, we discuss a number of elements in
the design of FINE that facilitate, and in some cases simplify, stateful programming.
Non-affine state simplifies programming. Programming with affine types can be dif-
ficult, since affine variables can never be used more than once. Our approach of using
an affine assertion StateIs s to track the current authorization state minimizes the diffi-
culty. Importantly, the collection of authorization facts s is itself not affine and can be
freely used several times, e.g., s is used in several calls to check. Non-affine state also
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enables writing functions like check, which, if s was affine, would destroy the state of
the program. Only the affine token, tok:StateIs s, must be used with care, to ensure that
it is not duplicated.
Non-affine refinements simplify automated proofs. Even ignoring the inability of
prior languages to handle stateful policies, the proof terms required for our examples in
languages like Fable or Aura would be extremely unwieldy. By ensuring that refinement
formulas always apply to non-affine values, our proof system is kept tractable, allow-
ing us to use Z3 to automatically discharge proof obligations. A naı̈ve combination of
dependent and affine types would allow refinements to apply to affine values, necessi-
tating an embedding of linear logic in Z3. Our approach avoids this complication, while
retaining the ability to refine the changing state of a program with logical formulas.
Affine types enable flexible mixing of stateful and pure code. Another approach to
working with stateful policies could be to use an abstract monad. FINE’s module system
certainly supports programming in this style. However, affine types afford greater flex-
ibility. For example, rather than monadically threading a monolithic store through the
program, FINE programs can partition the state and pass only the relevant parts of the
store to functions that need it. We use this idiom to good effect in one of our benchmark
programs (FileAutomaton in §4), in which a bit of state representing the current state of
a file is associated with the file handle rather than using a monolithic store to maintain
the state of all file handles. Another benchmark, a model of an email client, uses affine
types to model capabilities [15] that grant programs restricted access to certain sensitive
stateful operations, such as sending emails.

3 Formalizing FINE

Our compiler translates FINE programs in type-preserving manner to .NET bytecode
(CIL) [8]. Although we do not report on our type-preservation results in this paper, this
design plays a significant role in various aspects of FINE’s type system. This section
formalizes FINE, presents a soundness result for the type system, and an information-
hiding property for the module system. We begin by presenting a core syntax for FINE.

3.1 Core syntax

Our formulation of FINE’s module system is based on Grossman et al’s [11] syntactic
approach to type abstraction. In this formulation, module names correspond to “prin-
cipals” and are ranged over by the meta-variables p, q, and r. Source expressions are
annotated with the names of the modules to which they belong—in the form ⟨e⟩p, the
expression e delimited within brackets is privileged to use p’s private types concretely.
A principal constant is denoted p, and we include two distinguished principals: ⊤ in-
cludes the privileges of all other principals, and ⊥ has no privileges. Values are parti-
tioned into families corresponding to principals. A pre-value for code with p-privilege,
up, is a variable or a fully-applied data constructor D. Values for p are either its pre-
values, abstractions, or pre-values uq for some other principal q, enclosed within brack-
ets to denote that uq carries q-privilege. The dynamic semantics of FINE (§3.3) tracks
the privilege associated with an expression using these brackets and allows us to prove
(§3.4) that programs without p-privilege treat p-values abstractly.
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Core syntax of FINE

p, q, r ::= p ∣ ⊤ ∣ ⊥ principals
up ::= x ∣ D �̄ v̄p pre p-values
vp ::= up ∣ �x:�.e ∣ ��::�.e ∣ ⟨uq⟩q p-values
e ::= vp ∣ let x = e1 in e2 ∣ fix f :�.e ∣ vp vq ∣ vp � ∣ ⟨e⟩p terms

match vp with D �̄ x̄→ e1 else e2
�, � ::= � ∣ x:� → � ′ ∣ ∀�::�.� ∣ {x:� ∣�} ∣ !� ∣ T ∣ � � ′ ∣ � vp types
� ::= ★ ∣ A ∣ ★→ � ∣ A→ � ∣ � → � kinds
S ::= T ::� ∣ D:(p, �) ∣ p ⊑ q ∣ S, S′ ∣ ⋅ signature
� ::= �::� ∣ x:(p, �) ∣ vp

.
= v′p ∣ �, � ′ ∣ ⋅ type env.

Expressions e are standard for a polymorphic lambda calculus. Types � include depen-
dent function types x:� → � ′, where x names the formal parameter and is bound in
� ′. Polymorphic types ∀�::�.� decorate the abstracted type variable � with its kind �.
Refinement types are written {x:� ∣�}, where � is a type in which x is bound. An affine
qualifier can be attached to a type using !� . Type constructors T can be applied to other
types using � � ′ or terms using � vp. Note that type-level terms are always values, not
expressions—this restriction explains our use of A-normal form [10] for the expression
language. This form allows every intermediate result to be named and for these names
to appear, potentially, as type indices. Types are partitioned into normal types (kind ★)
and affine types (kind A). Type constructors T construct types of kind � from normal
types (★ → �), affine types (A → �), or � -typed terms (� → �). Although included in
our implementation, for simplicity, our formalization omits dependent pairs.
Desugaring FINE modules. The type and data constructor declarations in a FINE mod-
ule are desugared to a signature S. The type constructors of the Authentication module of
§2.1, for example, are desugared to prin::★ and cred::prin → ★. Data constructors D are
associated their type, as well as the privilege p required for their use. For example, the
constructors of the prin type are U:(⊥, string→ prin) and Admin:(⊥, prin), indicating that
these may be used freely in unprivileged code. In contrast, being declared private, the
constructor of the cred type is desugared to Auth : (Authentication, p:prin → cred p), in-
dicating that it may only be used in code marked with the privilege of the Authentication
module. Additionally, signatures use p ⊑ q to record a partial order among principals,
with ⊥ ⊑ p ⊑ ⊤, for all p. We use this to represent sharing between modules, as
achieved by the ConfPolicy : ConfRM declaration from §2.2. This is translated to the re-
lation ConfRM ⊑ ConfPolicy, to indicate that ConfPolicy holds the privileges of ConfRM
(and, in particular, can use ConfRM’s private data constructors).
Desugaring formulas and assumptions. Refinement formulas and assumptions are
represented using type and data constructors, respectively. For example, we use type
constructors like And::★→ ★→ ★ to represent the logical connectives. We model equal-
ity by specializing it to each type, e.g., Eq bool::bool→ bool→ ★ . A polymorphic treat-
ment of equality poses no fundamental difficulty, but we use a monomorphic treat-
ment here for simplicity. Quantification is represented using the binders in dependent
functions and pairs. For example, the AdminRW assumption from §2.1 is desugared to
AdminRW : (⊥, f:file→And (CanRead Admin f) (CanWrite Admin f)). Note that assump-
tions are always public—we leave an exploration of private assumptions to future work.
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Well-formedness conditions on data constructors. The soundness of FINE’s type sys-
tem relies on some restrictions on the use of data constructors D. We mention these
restrictions briefly here, but space constraints leave their formalization and further dis-
cussion to a technical report [20]. First, we disallow partial application of data con-
structors as this complicates our translation to CIL. Next, we require the type of each
data constructor to be of the form: ∀�̄::�̄.x1:�1 → . . . → xn:�n → � , i.e., we require
any type arguments to precede any term arguments, although each term argument xi:�i
may itself contain quantifiers. This restriction is merely a convenience—it simplifies the
shape of our pattern matching constructs. Finally, for each data constructor D with a
type as shown above, we require �̄ ⊆ Free-type-variables(�), i.e., every type argument
must appear as an index on the constructed type � . This is a more significant restriction
and is necessary for showing that well-typed programs enjoy a type-erasure property.

3.2 Static semantics

The static semantics makes use of a typing environment � , which binds type and term
variables, and records the results of pattern matching tests using vp

.
= v′p. Variables

x, like data constructors, are associated with a principal p representing the privilege
required for their use.

Well-formedness of kinds: S ⊢i k, and kinding of types: S;� ⊢ � :: �
Where, i ::= ⋅ ∣ 1, and ★ ≤ ★, A ≤ A, ★ ≤ A

S ⊢⋅ ★ S ⊢i A
S ⊢i �

S ⊢i ★→ �

S ⊢1 �
S ⊢i A→ �

S; ⋅ ⊢ � :: ★ S ⊢i �
S ⊢i � → �

S;� ⊢ � :: � (�)
(K1)

S;� ⊢ T :: S(T )
(K2)

S;� ⊢ � :: ★

S;� ⊢!� :: A
(K3)

S;�, �:� ⊢ � :: �′

�, �′ ∈ {★, A}
S;� ⊢ ∀�::�.� :: ★

(K4)

S;� ⊢ �1 :: � � ≤ �′
S;�, x:(p, �1) ⊢ �2 :: �′

S;� ⊢ x:�1 → �2 :: ★
(K5)

S;� ⊢ �1 :: �′ → �
S;� ⊢ �2 :: �′

S;� ⊢ �1 �2 :: �
(K6)

S;� ⊢ �1 :: � → � S;� ; ⋅ ⊢⊤ vp : �

S;� ⊢ �1 vp :: �
(K7)

S;� ⊢ � :: ★ S;�, x:(p, �) ⊢ � :: ★

S;� ⊢ {x:� ∣�} :: ★
(K8)

The first judgment S ⊢i �, shown above, defines a well-formedness relation on kinds.
This judgment establishes two properties. First, types constructed from affine types
must themselves be affine—this is standard [24]. Without this restriction, an affine value
can be stored in a non-affine value and be used more than once. To enforce this prop-
erty, we index the judgment using i ::= ⋅ ∣ 1, and when checking a kind A → �, we
require � to finally produce an A-kinded type. The second restriction, enforced by the
first premise (S; ⋅ ⊢ � :: ★) of the last rule, ensures that only non-affine values appear in
a dependent type. Note that we omit higher kinds (e.g., (★ → ★) → ★) as these are not
easily translated to CIL.

The judgment S;� ⊢ � :: � states that � has kind �. Types inhabited by terms al-
ways have kind ★ or A. (K3) rules out “doubly-affine” types (!!� ). (K4) allows abstraction
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only over ★ and A-kinded types. (K5) requires that the type �1 of a function’s param-
eter always have kind ★ or A and that functions with affine arguments produce affine
results, both captured by an auxiliary relation on kinds, � ≤ �′. (K7) checks the well-
formedness of dependent types. As in Aura and RCF, we restrict type-level terms to
values e.g., Eq bool (true && false) false is not a well-formed type. This restriction re-
duces expressiveness by ruling out type-level computations, but greatly simplifies the
compilation to CIL. The second premise of (K7) uses the typing judgment—we describe
it shortly. (K8) only allows non-affine types � to be refined by non-affine formulas �.

Expression typing: S;� ;X ⊢p e : �
Where, X ::= ⋅ ∣ x,X; Q(X, �) =!� , Q(⋅, �) = � ; and ?� denotes � or !�

S(D) = (p, �)

S;� ; ⋅ ⊢p D : �
(T1)

� (x) = (p, �) S;� ⊢ � :: ★

S;� ; ⋅ ⊢p x : �
(T2)

� (x) = (p, �)

S;� ;x ⊢p x : �
(T3)

q ⊑ p ∈ S S;� ;X ⊢q e : �

S;� ;X,X ′ ⊢p e : �
(T4)

S;� ⊢ � :: ★ S;�, f :(p, �); ⋅ ⊢p vp : �

S;� ; ⋅ ⊢p fix f :�.vp : �
(T5)

S;� ⊢ �1 :: � � ∈ {★, A}
S;�, x:(p, �1);X,x ⊢p e : �2

S;� ;X ⊢p �x:�1.e : Q(X,x:�1 → �2)
(T6)

� ∈ {★, A}
S;�, �::�;X ⊢p e : � ′

S;� ;X ⊢p ��::�.e : Q(X, ∀�::�.� ′)
(T7)

S;� ;X ⊢p e1 : �1 S;� ⊢ �2 :: �
S;�, x:(p, �1);X ′, x ⊢p e2 : �2

S;� ;X,X ′ ⊢p let x = e1 in e2 : �2
(T8)

S;� ;X ⊢p vq :?x:�1 → �2
S;� ;X ′ ⊢p vr : �1

S;� ;X,X ′ ⊢p vq vr : �2[vr/x]
(T9)

S;� ;X ⊢p vq :?∀�::�.� S;� ⊢ � ′ :: �

S;� ;X ⊢p vq � ′ : � [� ′/�]
(T10)

S;� ;X ⊢q e : �

S;� ;X ⊢p ⟨e⟩q : �
(T11)

S;� ;X ⊢p vq : � ′ S;�, x̄:(p̄, �̄x); x̄ ⊢p D �̄ x̄ : � ′′ S;� ⊢ unify(� ′, � ′′) : x̄
.
= v̄

S;�, x̄:(p̄, �̄x), x̄
.
= v̄, vq

.
= D �̄ x̄;X ′, x̄ ⊢p e1 : � S;� ;X ′ ⊢p e2 : �

S;� ;X,X ′ ⊢p match vq with D �̄ x̄→ e1 else e2 : �
(T12)

S;� ;X ⊢p vq : � S;� ⊢ � :: ★

S;� ;X ⊢p vq : {x:� ∣x = vq}
(T13)

S;� ;X ⊢q e : � ′ S;� ⊢ � ′ <: �

S;� ;X,X ′ ⊢p e : �
(T14)

The typing judgment S;� ;X ⊢p e : � above states that an expression e, when
typed with the privilege of principal p in an environment � and signature S, has type
� . The set X records a subset of the variables in � , and each element of X represents a
capability to use an assumption in � . The rule (T1) requires data constructors to be used
only in code granted the appropriate privilege. In the second premise of (T12), we type
check a pattern D �̄ x̄ to ensure that data constructors are also destructed in a context
with the appropriate privilege.

In (T2) we type a non-affine variable x by looking up its type in the environment and
checking that the privilege of the context matches that of the variable. (T3) is similar, but
additionally allows an affine variable to be used only when a capability for its use ap-
pears inX . Unlike linear typing, affine assumptions need not always be used. (T4) allows
an arbitrary number of assumptions X ′ to be forgotten, and for e to be checked with a
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privilege q that is not greater than privilege p that it has been granted. An expression is
granted privilege by enclosing it in angle brackets, as shown in (T11).

Returning to the second premise of (K7), we check a type-level term vp with the
privilege of ⊤. The intuition is that in well-typed programs, type-level terms have no
operational significance and, as such, cannot violate information-hiding. We also check
vp in (K7) with an empty set of capabilities X . According to the well-formedness rule
of kind � → �, no well-formed type constructors can be applied to an affine value, so a
type-level term like vp never uses an affine assumption.

In (T5), we require fixed variables f to be given a non-affine type, and for the recur-
sive expression to not capture any affine assumptions. In (T6), we check that the type of
the formal parameter is well-formed, and type check the body in an extended context.
We record the privilege p of the program point at which the variable x was introduced
to ensure that x is not destructed in unprivileged code in the function-body e. In the
conclusion of (T6), we use the auxiliary functionQ(X, �), which attaches an affine qual-
ifier to � if the function captures any affine assumptions from its environment. (T7) is
similar. Typing let-expressions is standard, with the addition that the second premise of
(T8) ensures that the let-bound variable x does not escape its scope in the type �2. When
typing an application vq vr in (T9), we split the affine assumptions among the sub-terms.
We allow vq to be a possibly affine function type—the shorthand ?� captures this, and
we use the same notation in (T10).

We illustrate pattern-matching using an example from FileRM. Consider matching
a value vq of type tracked string (F file) against a pattern L string x y. When checking
the true-branch, we record several term equalities that capture the runtime behavior of
pattern matching. These assumptions will be used by our theorem prover in discharging
proofs of refinement formulas (via the type conversion relation, discussed shortly). In
our example, one such equality assumption is, clearly, vq

.
= L string x y. However, with

FINE’s value-indexed types, we can also infer equalities for some of the pattern-bound
variables. In particular, by unifying the type of the scrutinee, tracked string (F file), with
the type of the pattern, tracked string y, we can infer y .

= F file.
In (T12), we split the affine assumptions between vq and the branches. In the second

premise, we type the pattern and in the third premise, unify the type of the scrutinee with
the type of the pattern to compute equalities among the term indices—the definition of
the unification judgment is standard and we omit it from our presentation. The fourth
premise checks e1 with the computed equality assumptions. The last premise checks e2
with no additional assumptions. A variation in which e2 is checked with a disequality
forall x̄.vq ∕= D �̄ x̄ is also feasible. However, in practice, we use n-way exhaustive
pattern matching (match x with P1→ e1 ... Pn→ en) and derive disequalities by relying
on axioms that discriminate data constructors, e.g., forall D1, D2, x̄1, x̄2, �̄1, �̄2.D1 ∕=
D2 ⇒ D1�̄1x̄1 ∕= D2�̄2x̄2.

We use (T13) to give values a precise singleton type using an equality refinement.
This is useful in bootstrapping the type conversion relation, used in the second premise
of (T14), and defined below. Type conversion S;� ⊢ � <: � ′ is a reflexive, transitive
relation without any structural rules, e.g., contra- and co-variant subtyping in function
types. The type system of CIL uses nominal subtyping, and structural rules of this form
are not easily translated. The rule (S3) is our interface to the solver—we discuss this with
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an example shortly. The rule (S4) treats a refined type as a subtype of the underlying
type. Type conversion includes an equivalence relation on types S;� ⊢ � ∼= � ′. In this
judgment, (E5) allows a type-level term vp to be equated with v′p when an assumption
vp

.
= v′p appears in the context.

Type conversion: S;� ⊢ � <: � ′, S;� ⊢ � ∼= � ′ and S;� ⊢ e ∼= e′

Where S;� ∣= � is the first-order logic entailment relation

S;� ⊢ �1 ∼= �2
S;� ⊢ �1 <: �2

(S1)

S;� ⊢ �1 <: �2
S;� ⊢ �2 <: �3
S;� ⊢ �1 <: �3

(S2)

S;� ⊢ � <: � ′

S;�, x:(p, �) ∣= �

S;� ⊢ � <: {x:� ′ ∣�}
(S3)

S;� ⊢ {x:� ∣�} <: �
(S4)

S;� ⊢ � ∼= �
(E1)

S;� ⊢ vp ∼= vp
(E2)

S;� ⊢ �1 ∼= � ′1 S;� ⊢ �2 ∼= � ′2

S;� ⊢ �1 �2 ∼= � ′1 �
′
2

(E3)
S;� ⊢ �1 ∼= � ′1 S;� ⊢ vp ∼= v′p

S;� ⊢ �1 vp ∼= � ′1 v
′
p

(E4)

vp
.
= v′p ∈ � ∨ v′p

.
= vp ∈ �

S;� ⊢ vp ∼= v′p
(E5)

∀i, j S;� ⊢ �i ∼= � ′i S;� ⊢ vj ∼= v′j

S;� ⊢ D �̄ v̄ ∼= D �̄ ′ v̄′
(E6)

The key rule in type conversion related to refinement typing is (S3). This rule allows
a type � to be promoted to a refined type {x:� ′ ∣�} when � is a subtype of � ′, and
when our solver can deduce the formula � from the typing context. The entailment re-
lation S;� ∣= � is standard—we illustrate its behavior using an example from §2.2.
When typing the main loop of ConfWeb, we are required to construct a derivation
of the form S;� ⊢ s : {x:st ∣ In a x}, where (dropping principals for clarity) � =
s:st, a:attr, b:{x:bool ∣ x=true⇒ In a s}, b

.
= true. We construct this derivation by using

(T14) with (T13) in the first premise to derive S;� ⊢ s : {x:st ∣ x=s}, and a derivation
of S;� ⊢ {x:st ∣ x=s} <: {x:st ∣ In a x} in the second premise. This latter derivation
proceeds by using (S3), where we deduce S;�, x:{x:st ∣ x=s} ∣= In a x by using Z3 to
show that the theory (s:st, a:attr, b:bool, b=true⇒ In a s, b=true, x:st, x=s, not(In a x)) is un-
satisfiable. Importantly, FINE’s type system ensures that the theories we generate never
contain any affine assumptions, thus eliminating the need for a linear logic prover.

3.3 Dynamic semantics

The operational semantics of FINE is instrumented to account for two program prop-
erties. First, our semantics places affinely typed values in a memory M . Reads from
the memory are destructive—this allows us to prove that in well-typed programs, affine
values are never used more than once. The semantics also tracks the privilege of ex-
pressions by propagating brackets through reductions, which is useful in showing an
information-hiding property for our module system. The main judgment is written
(M, e)

p
⇝ (M ′, e′), and states that given an initial memory M an expression e steps to

e′ and updates the memory to M ′. The p-superscript indicates that e steps while using
the privilege of the principal p. The omitted rules include reductions for let-bindings,
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standard beta-reduction for type and term applications, unrolling of fixed points, and
pattern matching.

Dynamic semantics (selected rules)
Where a memory M ::= (x, vp),M ∣ ⋅

⟨vp⟩p
p
⇝ vp (R1) ⟨⟨vq⟩q⟩r

p
⇝ ⟨vq⟩q (R2) ⟨�x:�.e⟩q

p
⇝ �y:�.⟨e[⟨y⟩p/x]⟩q (R3)

e
q
⇝ e′

⟨e⟩q
p
⇝ ⟨e′⟩q

(R4)

S; ⋅; ⋅ ⊢ vp : � S; ⋅ ⊢ � :: A
M ′ = M, (x, vq) x fresh

M, vp
p
⇝M ′, x

(R5)
M = M1, (x, vq),M2

M,x
p
⇝ (M1,M2), vq

(R6)

Reduction rules that do not involve reading from or writing to memory are written
e

p
⇝ e′. All the interesting rules that manage privileges and brackets fall into this frag-

ment. Redundant brackets around p-values can be removed using (R1). However, not all
nested brackets can be removed, as (R2) shows. In (R3), a �-binder is extruded from a
function with q-privilege so that it can be applied to a p-value. We have to be careful
to enclose occurrences of the bound variable in e within p-brackets, to ensure that e
treats its argument abstractly. Finally, (R4) allows evaluation to proceed under a bracket
⟨⋅⟩q with q-privilege. The rules (R5) and (R6) model memory operations. The rule (R5) is
applicable non-deterministically. It allocates a new location x for an affine value vp into
the memory M and replaces vp with x. When a location x is in destruct position, (R6)

reads a value vp from M and deletes x.
Theorem 1 establishes the soundness of FINE through the standard progress and

preservation lemmas. In the statement below, all free variables are implicitly universally
quantified. Additionally, we say that a memory M is typeable with an environment
S;� , if S; ⋅; ⋅ ⊢p M(x) : � (x), for each location x ∈ dom(M). In addition to showing
that well-typed programs do not go wrong, our soundness result guarantees that affine
values are destructed at most once—a result that shows that state changes are modeled
accurately. The proof appears in our technical report [20].
Theorem 1 (Soundness): For all well-formed signatures S; environments � ; non-
values e; and memories M typeable with S;� , the following statements are true:

1) If S;� ; dom(M) ⊢p e : � then there exists M ′, e′ such that M, e
p
⇝M ′, e′.

2) If S;� ;X ⊢p e : � and M, e
p
⇝M ′, e′ for some p,M ′, e′, and X ⊆ dom(M);

then, there exists � ′, X ′such that S;� ′;X ′ ⊢p e′ : � and M ′ is typeable with
S;� ′. Furthermore, for �X = (dom(M) ∪ dom(M ′)) ∖ (dom(M) ∩ dom(M ′))
if dom(M ′) ⊇ dom(M) then X ′ = X ∪�X ; otherwise X ′ = X ∖�X .

3.4 Reasoning about the security of FINE programs

FINE allows programmers to specify conditions for correct policy enforcement and
the type system checks that these conditions are satisfied. But, the onus is on the
programmer to get these specifications right. For example, in the FileRM module of
§2.1, wrongly assuming (forall p:prin. CanRead p f⇒ CanRead p g)⇒ CanFlow (F f) (F g)
(instead of the Atomicflow assumption) would destroy any meaningful confidentiality
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property intended for FileRM to enforce. Similarly, in the Authentication module, for-
getting to declare the cred type private would allow adversaries to forge credentials. In
neither case would FINE’s type checker complain. However, the metatheory of FINE
provides a useful set of primitives using which an expert can prove high-level secu-
rity properties. In prior work on the Fable calculus, we adopted a similar approach and
showed how the metatheory of Fable could be used to prove high-level security prop-
erties (e.g., noninterference) for encodings of information flow, provenance tracking,
and role-based access control. We anticipate a similar strategy being effective for FINE.
Additionally, in §4, we discuss how tools like model checkers can complement FINE
and be used to establish that FINE programs correctly enforce high-level security goals.

In addition to type soundness, the metatheory of FINE yields two general purpose
security properties—proofs appear in our technical report. The first, corresponding to
a secrecy property, is value abstraction. The theorem below states that a program e
without p-privilege cannot distinguish p-values. As a corollary, we can also derive an
integrity property, namely that a program without p-privilege cannot manufacture a p-
value to influence the behavior of code with p-privilege. Note that this theorem appeals
only to the pure fragment of our reduction rules—affine typing plays no special role in
value abstraction. Additionally, observe that this result applies to selective information
sharing/hiding between multiple principals, as FINE’s module system includes a lattice
of principals ordered by the p ⊑ q relation. Finally, although this theorem applies to the
abstraction of a single value from the p module exported at type � , the program e can
contain code from several principals.
Theorem 2 (Value abstraction): For well-formed signatures S and non-values e, if e
uses a p-value x but is well-typed without p-privilege, (i.e., S;x:(p, �);x ⊢q e : � ′ and
p ⊑ q ∕∈ S) and, except for ⟨x⟩p, e is free of r-brackets ⟨⋅⟩r, for any r where p ⊑ r ∈ S;
then, for any pair of � -typed values v1p and v2p, (i.e., S; ⋅; ⋅ ⊢p vip : � , i ∈ {1, 2}) such

that e[v1p/x]
q
⇝ e1, there exists e′ such that e1 = e′[v1p/x] and e[v2p/x]

q
⇝ e′[v2p/x].

4 Compiler implementation and application experience

We have implemented a prototype compiler, currently approximately 20,000 lines of
F# code extending a front-end and IL generation libraries derived from the F# com-
piler [23]. The type-preserving translation of FINE to CIL accounts for a significant
fraction of the complexity. Our compiler currently generates .NET assemblies that al-
low FINE programs to easily interface with modules defined in F#. Interoperability with
the rest of .NET allows us to write only security critical parts of an application in FINE,
leaving the rest to other, more commonly used languages.

The table below shows several small reference monitors in FINE, their size, the num-
ber of proof obligations generated during type checking, and parsing and type checking
time (on 3.2 GHz Pentium Core Duo desktop running Windows Vista). Most bench-
marks contain dense security critical code, where nearly every function call demands
proving refinement formulas. Our results show that using an external solver to discharge
these proofs (as opposed to constructing them by hand as in Fable or Aura) is critical
for practical programming. We expect the checking time to improve significantly as we
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move from naı̈ve representations of typing environments (currently association lists) to
more efficient data structures.

Name LOC # pf. obl. parsing/type checker time (s)
AuthAC 34 1 0.28
FileRM 120 36 1.64
FileAutomaton 121 3 0.45
IFlow 127 22 0.84
HealthWeb 318 19 6.41
DynDKAL 336 34 1.26
Lookout 519 23 2.73
ConfRM and ConfWeb 647 57 4.01
ProofLib 9943 0 19.28
Total 2222 (+ 9943) 195 17.62 (+ 19.28)

4.1 Modeling CONTINUE

Our most substantial example is the modeling of the security policy of CONTINUE.
CONTINUE’s authors provided us with a specification of its policy, partly in natural lan-
guage and partly as specification in the Alloy modeling language [12]. Starting from this
specification, we implemented ConfRM to enforce a policy that contains 9 phases and
12 actions. Policy assumptions in ConfPolicy describe when each action is permissible,
and a function exposed in the external interface of ConfRM (with a suitable refinement
type on the state) mediates access to this action. In addition, each action corresponds to
a particular web request handled by ConfWeb.

A significant fragment of the Alloy specification for CONTINUE is devoted to spec-
ifying validity conditions on the authorization state. For example, in any given state,
validity requires the assignment of papers to reviewers to respect the conflict of in-
terest constraints. We found it relatively straightforward to express several of these
validity constraints, although our implementation has yet to cover all the features of
CONTINUE’s specification. One simplifying assumption we make is that there is a
unique phase for the entire conference. In contrast, the Alloy specification associates
a phase with each paper, and different papers can be in different phases at any given
time. Extending our attr type to account for this complexity is possible, though we have
yet to implement this.

Our experience with CONTINUE illustrates an important aspect of FINE. Tools like
Alloy are useful for reasoning abstractly about policies and establishing that these cor-
rectly specify high-level security goals. However, the abstract analysis of policies in
Alloy is disconnected from system implementations that are expected to enforce these
policies. FINE, in contrast, does not attempt to validate policies, but provides assurance
that system implementations properly enforce their policy specifications. We view these
two approaches as complementary and expect their combination to be a potent tool for
security analysis of system implementations. For example, the Alloy specification in-
cludes assertions to check that no sequence of actions allows a principal to read or write
a review when there is a conflict of interest. We plan to investigate using the metatheory
of FINE and the types of ConfRM, in conjunction with a tool like Alloy, to prove such
facts of our implementation.
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4.2 Other benchmarks

The benchmark FileRM extends the example from §2.1 to account for confidentiality
and integrity concerns when tracking information flow. Recall that in FileRM the lattice
of security labels was derived from a specification of access control permissions using
the Atomicflow assumption. To type check FileRM using Z3, we needed to rewrite the
AtomicFlow assumption to the form shown below. To reason about formulas that use
nested quantifiers, Z3 relies on a pattern-based instantiation mechanism that requires all
bound variables (p in Atomicflow) to be guarded by non-equality predicates. Note that
this is not a fundamental limitation of FINE. We are currently investigating the use of
first-order solvers to reason directly about quantified formulas without this restriction.
For example, a customized version of Coq’s firstorder tactic can discharge proofs
of the CanFlow proposition using the assumption AtomicFlow as shown in §2.1.

assume CW:IsPrin Admin && IsPrin (U ‘‘Alice’’) && IsPrin (U ‘‘Bob’’) && ...
assume AtomicFlow: forall f:file, g:file.

(forall p:prin. (IsPrin p && CanRead p g)⇒ CanRead p f)⇒ CanFlow (F f) (F g)

Of the other benchmarks, AuthAC is a small purely permission-based access control
monitor for files combined with password-based authentication. FileAutomaton is a ref-
erence monitor that implements an automaton-like policy on files, where, through the
use of dependent and affine types, a file handle is indexed with a value indicating its
current state, e.g., Open, Closed etc. A similar idiom could be used in ConfRM to asso-
ciate phases with papers, instead of a global phase for the entire conference. IFlow is
an implementation of a traditional information flow policy using a three-point lattice of
labels which does not require the nested quantifiers of FileRM. HealthWeb is a reference
monitor for an application that manages a database of electronic medical records. It
enforces a stateful authorization policy. DynDKAL is an interpreter for an authorization
logic; it uses refinement types to ensure that instantiations of quantified assumptions in
policies is performed correctly. Lookout is the core reference monitor of a plugin-based
email client we have started to build. This program mixes stateful authorization in the
style of ConfRM with information flow tracking in the style of FileRM.

Finally, ProofLib is an automatically generated program, our largest test case by far.
This program makes no use of refinement types and is used as a utility by our type-
preserving compiler to represent proof terms. We include it here to give the reader a
sense of the cost of dependent type checking for larger programs.

5 Related work and conclusions

Several programming languages and proof assistants use dependent types, including
Agda [17], Coq [2], and Epigram [16]. All of these systems can be used to verify full
functional correctness of programs. However, to ensure logical consistency of the type
system, these languages exclude arbitrary recursion, making them less applicable for
general-purpose programming. Projects like YNot [4] and Guru [19] aim to mix ef-
fects like non-termination with dependently typed functional programming; YNot also
supports programming with state in an imperative style. Restrictions in both languages
ensure that proofs are pure, ensuring that logical consistency is preserved. All of these
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systems include automation and tactic languages, but programmers still need to con-
struct interactive proofs for their code. In contrast, FINE targets weaker, security prop-
erties; forgoes logical consistency in favor of practical programming by including re-
cursion; and automatically synthesizes proof terms using an SMT solver. FINE also
provides affine types to allow the enforcement of state-modifying policies, which could
be expressed in YNot, but not easily in the other languages.

Dependent types have also been used for security verification. Jif [5] uses a limited
form of dependent typing to express dynamic information flow policies. Aura [13] is
specialized for the enforcement of policies specified in a policy language based on an
intuitionistic modal logic. This makes Aura less applicable to policies specified in other
logics, e.g., the Datalog-based policy language of Dougherty et al. [7], and Aura can-
not model stateful policies. Aura provides logical consistency by separating types from
propositions and excluding arbitrary recursion in proof terms. However, proof terms in
Aura are always programmer-provided. As such, Aura is positioned as an intermedi-
ate language, rather than a source-level language. Fable [21], is another intermediate
language for security verification that uses dependent types. Fable uses a two-principal
module system. FINE’s module system generalizes Fable’s, with support for a lattice of
multiple principals. FINE is also related to �AIR [22], a calculus that targets the enforce-
ment of declassification policies. �AIR’s combination of affine and dependent types does
not lend itself to integration with a solver and it was never implemented.

Refinement types in FINE are related to a similar construct in RCF [1]. Refinement
formulas in RCF are drawn from an unsorted logic, rather than using dependent-type
constructors, as we do. The lack of dependent type constructors in RCF makes it dif-
ficult to derive typeable proof terms, crucial to our goal of a type-preserving compiler
for FINE. Additionally, without dependent type constructors, it appears impossible to
enforce information flow policies in RCF, although RCF’s implementation, F7, does
include dependent type constructors. RCF also lacks support for stateful authorization
policies, although recent work shows how stateful policies can be modeled in F7 using
a refined state monad [3]. However, the soundness of this encoding relies on a trusted
compilation of the program in a linear, store-passing style. FINE’s type system also al-
lows the use of refined state monads, but, as discussed in §2.3, affine types in FINE also
admit other stateful programming idioms.

FINE is also related to hybrid-typed languages that use refinement types, like Sage [9].
Sage uses a trusted external solver to discharge proofs; we extract typeable proof terms
from Z3 rather than trusting it. Another difference is that Sage automatically insert run-
time checks when the solver fails to discharge a proof obligation. Failed runtime checks
can cause subtle leaks of information, so automatic insertion of runtime checks is not
yet a feature of FINE, where security is the primary concern—we plan to investigate
adding support for automatic policy checking in the future.

Conclusions. This paper has presented FINE, a language for enforcing rich, stateful
authorization and information flow policies. Our experience constructing several refer-
ence monitors provides initial evidence that programming in FINE is practical, due in
part to the use of an automated solver to ease the proof burden, and that FINE can be
used to check the enforcement of security policies commonly applied to software.
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