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A. Additional Definitions
We presented many parts of System !D and DJS in §3, §4,
and §5. In this appendix, we consider some details that
did not fit in that presentation, as well as our treatment of
break and label expressions to facilitate the desugaring of
control operators in JavaScript. Then, in Appendix B, we
outline how to extend System !D to support better location
polymorphism.

A.1 Syntax
In addition to the expression syntax in Figure 7, System !D
includes the following forms:

e ∶∶= ⋯ ∣ @x ∶ e ∣ break @x v

An expression @x ∶ e labels the enclosed expression, and
a break expression break @x v terminates execution of
the innermost expression labeled @x within the function
currently being evaluated and produces the result v. If no
such labeled expression is found, evaluation becomes stuck.
Label and break expressions are included to translate the
control flow operations of DJS.

To analyze label and break expressions, the expression
typing relation uses a label environment Ω (in addition to
type and heap environments), where each binding records
the world that the expression labeled @x is expected to
satisfy.

Ω ∶∶= ∅ ∣ Ω,@x ∶(T /Σ̂)

A.2 Well-Formedness
The well-formedness relations, defined in Figure 14, are
largely straightforward. We use the procedure Binders to
collect all of the binders in a world or heap.

A.3 Subtyping
Figure 15 presents more of the subtyping relations.

Implication. As in System D, subtyping on refinement
types reduces to implication of refinement formulas, which
are discharged by a combination of uninterpreted, first-order
reasoning and syntactic subtyping. If the SMT solver alone
cannot discharge an implication obligation (I-VALID), the

∗ This report supplements our OOPSLA 2012 paper [2].

Well-Formed Types Γ ⊢ T

Γ, x ∶Top ⊢ p

Γ ⊢ {x ∣ p}

Γ ⊢ T Γ, x ∶Top ⊢ S

Γ ⊢ ∃x ∶T . S

Well-Formed Formulas (selected rules) Γ ⊢ p

Γ ⊢ w Γ ⊢ U

Γ ⊢ w ∶∶ U

Γ ⊢ w

Γ ⊢ P (w)

H ∈ Γ Γ ⊢ ` Γ ⊢ w

Γ ⊢ HeapHas(H, `,w)

Well-Formed Locations Γ ⊢ `

Γ ⊢ a Γ ⊢ ã

L ∈ Γ

Γ ⊢ L

Well-Formed Type Terms Γ ⊢ U

Γ1 = Γ,A,L,H Γ1 ⊢W1 Γ1,Binders(W1) ⊢W2

Γ ⊢ ∀[A;L;H]W1 →W2

A ∈ Γ

Γ ⊢ A

Γ ⊢ T

Γ ⊢ Arr(T )

Γ ⊢m

Γ ⊢ Ref m Γ ⊢ Null

Well-Formed Worlds Γ ⊢W

Γ ⊢ S Γ, x ∶Top ⊢ Σ̂

Γ ⊢ x ∶S /Σ̂

Well-Formed Heaps and Heap Bindings Γ ⊢ Σ̂ Γ ⊢ ĥ

H ∈ Γ Γ,Binders(ĥ) ⊢ ĥ no duplicate locations in ĥ

Γ ⊢ (H, ĥ)

Γ ⊢ ` Γ ⊢ T

Γ ⊢ (`↦ x ∶T )

Γ ⊢ ` Γ ⊢ T Γ ⊢ `′

Γ ⊢ (`↦ ⟨x ∶T , `′⟩) Γ ⊢ ∅

Γ ⊢ ˜̀

Γ ⊢ (˜̀↦ frzn)

Γ ⊢ ˜̀ Γ ⊢ `

Γ ⊢ (˜̀↦ thwd `)

Γ ⊢ ĥ1 Γ ⊢ ĥ2

Γ ⊢ ĥ1 ⊕ ĥ2

Figure 14. Well-formedness for System !D

formula is rearranged into conjunctive normal form (I-CNF),
and goals of the form w ∶∶ U are discharged by a combi-
nation of uninterpreted reasoning and syntactic subtyping
(I-IMPSYN).

We write JT K for the embedding of a type as a formula, a
straightforward definition [3] that lifts to environments JΓK,



Subtyping (see Figure 8) Γ ⊢ T1 ⊑ T2

Syntactic Subtyping (extends Figure 8) Γ ⊢ U1 <∶ U2

[U-ARROW]

Γ ⊢ W21 ⊑ W11; π Γ, JW21K ⊢ πW12 ⊑ W22; π′

Γ ⊢ ∀[A;L;H]W11 →W12 <∶ ∀[A;L;H]W21 →W22

Implication Γ⇒ p

CNF(p) = ∧i (pi ⇒ Qi) ∀i. ∃q ∈ Qi. Γ, pi ⇒ q

Γ⇒ p
[I-CNF]

[I-VALID]

Valid(JΓK⇒ p)

Γ⇒ p

[I-HASTYP]

Valid(JΓK⇒ w ∶∶ U ′) Γ ⊢ U ′ <∶ U

Γ⇒ w ∶∶ U

World Subtyping Γ ⊢ W1 ⊑ W2; π

Γ ⊢ T1 ⊑ T2 ĥ1 ∼ ĥ2; π

π′ = π[x1/x2] Γ, Jĥ1K⇒ πJĥ2K

Γ ⊢ x1 ∶T1 /(H, ĥ1) ⊑ x2 ∶T2 /(H, ĥ2)

Heap Matching ĥ1 ∼ ĥ2; π

∅ ∼ ∅; []

ĥ1 ≡ ĥ
′

1 ĥ2 ≡ ĥ
′

2 ĥ′1 ∼ ĥ
′

2; π

ĥ1 ∼ ĥ2; π

ĥ1 ∼ ĥ2; π

ĥ1 ⊕ (˜̀↦ θ) ∼ ĥ2 ⊕ (˜̀↦ θ); π

ĥ1 ∼ ĥ2; π

ĥ1 ⊕ (`↦ x ∶T ) ∼ ĥ2 ⊕ (`↦ y ∶S); π[x/y]

ĥ1 ∼ ĥ2; π

ĥ1 ⊕ (`↦ ⟨x ∶T , `′⟩) ∼ ĥ2 ⊕ (`↦ ⟨y ∶S, `′⟩); π[x/y]

Figure 15. Subtyping for System !D

heap bindings JĥK, heaps JΣ̂K, and worlds JW K. Because
heap binders may refer to each other in any order (recall
that a heap can be thought of as a dependent tuple, where
each component is named with a binder), the embedding of
a heap starts by inserting dummy bindings so that all binders
in scope for the type of each heap binding. For example:

Σ̂0
○

= (H0, (`1 ↦ x ∶T1)⊕ (`2 ↦ y ∶T2))

JΣ̂0K = Jx ∶TopK, Jy ∶TopK, JT1K(x), JT2K(y)

Syntactic Subtyping. The U-ARROW rule for function
types is familiar, treating input worlds contravariantly and
output worlds covariantly.

Worlds. In order to check world subtyping, the judgement
Γ ⊢ x1 ∶T1/(H, ĥ1) ⊑ x2 ∶T2/(H, ĥ2) checks that T1 is a
subtype of T2 and that the heaps agree on the “deep” part
H . Then, it checks that the structure of the “shallow” parts
match — using a heap matching relation that uses a ≡ oper-
ator (not shown) that permutes bindings as necessary — and

Value Typing Γ; Σ ⊢ v ∶∶ T

[T-CONST]

Γ; Σ ⊢ c ∶∶ ty(c)

[T-VAR]

Γ(x) = S

Γ; Σ ⊢ x ∶∶ {y ∣ y = x}

[T-LOC]

StaticLoc(r) =m m ∈ dom(Σ)

Γ; Σ ⊢ r ∶∶ {x ∣x = r ∧ x ∶∶ Ref m}

[T-EXTEND]

Γ; Σ ⊢ (v1, v2, v3) ∶∶ (Dict , Str , T )

Γ; Σ ⊢ v1 ++ v2 ↦ v3 ∶∶ {x ∣x = v1 ++ v2 ↦ v3}

[T-FUN]

U = ∀[A;L;H] x ∶T1 /Σ̂1 →W2 Γ ⊢ U Ω1 = ∅

HeapEnv(Σ̂1) = (z ∶S,Σ1) Γ1 = Γ,A,L,H,x ∶T1, z ∶S
Γ1; Σ1; Ω1 ⊢ e ∶∶ T2 /Σ2 Γ1 ⊢ T2 /Σ2 ⊧ W2; π

Γ; Σ ⊢ λx. e ∶∶ {y ∣ y = λx. e ∧ y ∶∶ U}

World Satisfaction Γ ⊢ T /Σ ⊧ W ; π

Γ ⊢ T ⊑ S Σ ∼ Σ̂; π Γ, x ∶T ⇒ πJΣ̂K

Γ ⊢ T /Σ ⊧ x ∶S /Σ̂; π′

Heap Environment Matching Σ ∼ Σ̂; π h ∼ ĥ; π

h ≡ h′ ĥ ≡ ĥ′ h ∼ ĥ; π

(H,h) ∼ (H, ĥ); π ∅ ∼ ∅; []

h ∼ ĥ; π

h⊕ (`↦ v) ∼ ĥ⊕ (`↦ x ∶T ); π[v/x]

h ∼ ĥ; π

h⊕ (`↦ ⟨v, `′⟩) ∼ ĥ⊕ (`↦ ⟨x ∶T , `′⟩); π[v/x]

h ∼ ĥ; π

h⊕ (˜̀↦ θ) ∼ ĥ⊕ (˜̀↦ θ); π

Figure 16. Value type checking for System !D

creates a substitution π of binders from ĥ2 to ĥ1. Finally, the
heap bindings, which can be thought of as dependent tuples,
are embedded as formulas and checked by implication.

A.4 Value Typing
We supplement our discussion of value typing, defined in
Figure 16, from §4. The T-EXTEND rule for dictionaries is
straightforward. The T-LOC rule assigns run-time location
r (which appears during evaluation, but not in source pro-
grams) a reference type corresponding to its compile-time
location, using the mapping StaticLoc. Notice that, unlike
the version of the rule from Figure 9, the rule T-FUN uses an
empty label environment to type check function bodies, so
that break expressions cannot cross function boundaries.



Expression Typing Γ; Σ; Ω ⊢ e ∶∶ T /Σ′

Rules from Figure 10, updated with label environments:

[T-VAL]
Γ; Σ ⊢ v ∶∶ T

Γ; Σ; Ω ⊢ v ∶∶ T /Σ

Γ; Σ; Ω ⊢ e1 ∶∶ T1 /Σ1 Γ, x ∶T1; Σ1; Ω ⊢ e2 ∶∶ T2 /Σ2

Γ; Σ; Ω ⊢ let x = e1 in e2 ∶∶ ∃x ∶T1. T2 /Σ2

[T-LET]

Γ; Σ ⊢ v ∶∶ S Γ, truthy(v); Σ; Ω ⊢ e1 ∶∶ T1 /Σ1 Γ, falsy(v); Σ; Ω ⊢ e2 ∶∶ T2 /Σ2 T /Σ′ = Join(v, T1 /Σ1, T2 /Σ2)

Γ; Σ; Ω ⊢ if v then e1 else e2 ∶∶ T /Σ′
[T-IF]

[T-REF]
` ∉ dom(Σ) Γ; Σ ⊢ v ∶∶ T Σ′ = Σ⊕ (`↦ v)

Γ; Σ; Ω ⊢ ref ` v ∶∶ Ref `/Σ′
Γ; Σ ⊢ v ∶∶ Ref ` Σ ≡ Σ0 ⊕ (`↦ v′)

Γ; Σ; Ω ⊢ deref v ∶∶ {y ∣ y = v′}/Σ
[T-DEREF]

[T-SETREF]

Γ; Σ ⊢ (v1, v2) ∶∶ (Ref `, T )

Σ ≡ Σ0 ⊕ (`↦ v) Σ′ = Σ0 ⊕ (`↦ v2)

Γ; Σ; Ω ⊢ v1 ∶= v2 ∶∶ {x ∣x = v2}/Σ′

`1 ∉ dom(Σ) Γ; Σ ⊢ (v1, v2) ∶∶ (Dict , Ref `2)
Σ ≡ Σ0 ⊕ (`2 ↦ ⟨v′, `3⟩) Σ′ = Σ⊕ (`1 ↦ ⟨v1, `2⟩)

Γ; Σ; Ω ⊢ newobj `1 v1 v2 ∶∶ Ref `1 /Σ′
[T-NEWOBJ]

Γ; Σ ⊢ v1 ∶∶ ∀[A;L;H]W1 →W2 Γ; Σ ⊢ v2 ∶∶ T2 Γ ⊢ [T /A] Γ ⊢ [m/M] Γ ⊢ [Σ̂/H]

W ′

2 = Freshen(W2) (W ′

1,W
′′

2 ) = Unroll(HInst(LInst(TInst((W1,W
′

2),A, T ), L, `),H, Σ̂))

Γ ⊢ T2 /Σ ⊧ W ′

1; π W ′

1 = x ∶T11 /Σ̂11 π′ = π[v2/x] π′W ′′

2 = x′ ∶T12 /Σ̂12 HeapEnv(Σ̂12) = (y ∶S,Σ12)

Γ; Σ; Ω ⊢ [T ; `; Σ̂] v1 v2 ∶∶ ∃x′ ∶T12. ∃y ∶S. {z ∣ z = x
′

}/Σ12

[T-APP]

Additional rules:

[T-AS]
Γ ⊢ T Γ; Σ; Ω ⊢ e ∶∶ T /Σ

Γ; Σ; Ω ⊢ e as T ∶∶ T /Σ

Γ; Σ; Ω ⊢ e ∶∶ S /Σ′ Γ ⊢ S ⊑ T Γ ⊢ T

Γ; Σ; Ω ⊢ e ∶∶ T /Σ′
[T-SUB]

[T-FREEZE]

Γ; Σ ⊢ v ∶∶ Ref ` Γ(˜̀) = (T, `′)

Σ ≡ Σ0 ⊕ (˜̀↦ θ)⊕ (`↦ ⟨v′, `′⟩) θ = frzn or θ = thwd `

Γ; Σ ⊢ v′ ∶∶ T Σ′ = Σ0 ⊕ (˜̀↦ frzn)

Γ; Σ; Ω ⊢ freeze ˜̀θ v ∶∶ {ν ∶∶ Ref ˜̀∧ ν ≠ null}/Σ′

[T-THAW]

Γ; Σ ⊢ v ∶∶ Ref ˜̀ Γ(˜̀) = (T, `′)

Σ ≡ Σ0 ⊕ (˜̀↦ frzn) Σ′ = Σ0 ⊕ (˜̀↦ thwd `)⊕ (`↦ ⟨x, `′⟩)
S = {y ∣ ite (v = null) (y = null) (y ∶∶ Ref `)}

Γ; Σ; Ω ⊢ thaw ` v ∶∶ ∃x ∶T . S /Σ′

[T-LABEL]

Ω′ = Ω,@x ∶(T /Σ̂) Γ; Σ; Ω′ ⊢ e ∶∶ T /Σ′

Γ ⊢ Σ′ ⊧ Σ̂; π HeapEnv(Σ̂) = (x ∶S,Σ′′)

Γ; Σ; Ω ⊢ @x ∶ e ∶∶ ∃x ∶S. T /Σ′′

Ω(@x) = T /Σ̂

Γ; Σ ⊢ v ∶∶ T Γ ⊢ Σ ⊧ Σ̂; π

Γ; Σ; Ω ⊢ break @x v ∶∶ {false}/Σ
[T-BREAK]

Figure 17. Expression type checking for System !D

A.5 Expression Typing
When we presented expression typing in §4.4, we ignored
break and label expressions, so the typing judgement re-
ferred only to type and heap environments. To account for
control operators, the expression typing judgement is of the
form Γ; Σ; Ω ⊢ e ∶∶ T /Σ′, where a label environment is an
additional input. We define the typing rules in Figure 17 and
supplement our previous discussion. The T-AS and T-SUB
rules are straightforward. Aside from the rules for label and
break expressions, label environments Ω play no interesting
role. The rules we discussed in §4.4 carry over directly to the
formulation with label environments.

Weak Location Bindings. For simplicity, we assume that
the initial type environment contains all the weak location
bindings (˜̀↦ ⟨T, `⟩) required by the program.

Thaw and Freeze. To safely allow a weak location ˜̀ to
be treated temporarily as strong, System !D ensures that ˜̀

has at most one corresponding thawed location at a time; if

there is none, we say ˜̀ is frozen. The rule T-THAW thaws
˜̀ to a strong location ` (which we syntactically require be
distinct from all other thawed locations for ˜̀) and updates
the heap environment with thaw state thwd ` to track the
correspondence. Subtyping allows null weak references, so
the output type is null if the original reference is; otherwise,
it is a reference to `. Finally, the new heap also binds a value
x of type T , the invariant for all values stored at ˜̀, and the
output type introduces an existential so that x is in scope in
the new heap.

The rule T-FREEZE serves two purposes, to merge a
strong location ` into a weak (frozen) location ˜̀ and to re-
freeze a thawed (strong) location ` that originated from ˜̀,
as long as the heap value stored at ` satisfies the invariant
required by ˜̀. The strong reference is guaranteed to be non-
null, so the output type remembers that the frozen reference
is, too. Compared to the presentation in [1], we have com-



bined freeze and re-freeze into a single freeze expression
that includes an explicit thaw state θ.

The result of thawing a weak location is either a strong
reference or null. Although we could statically require that
all strong references be non-null before use (to rule out
the possibility of null-dereference exceptions), we choose to
allow null references to facilitate idiomatic programming.
Therefore, we modify the input type for the object primitives
in objects.dref to allow a null argument. For exam-
ple, consider the updated input type for hasPropObj below,
where T?

○

= {T (ν)∨ν = null}. Notice that we add the pred-
icate x ≠ null to the output type, because if hasPropObj
evaluates without raising an exception, then x is guaranteed
to be non-null. In this way, System !D precisely tracks the
invariants of thawed objects (cf. passengers from §2.7).

(x ∶Ref ?, k ∶Str)/(x↦ ⟨d ∶Dict , ẋ⟩)

→ {x ≠ null ∧ (ν iff ObjHas(d, k, cur , ẋ))}/same

Type Instantiation. The TInst procedure processes has-
type predicates in formulas as follows:

TInst(w ∶∶ A,A,{x ∣ p}) = p[w/x]

TInst(w ∶∶ B,A,T ) = w ∶∶ B

Join. The T-IF rule uses a Join operator, defined in Fig-
ure 18, that combines the type and heap environments along
each branch (T1/Σ1 and T2/Σ2) such that the type and out-
put heap for the overall if-expression (T /Σ′) are in prenex
form. The operator starts by using JoinTypes to move ex-
istential binders for the types to the top-level. Rearranging
variables in this way is sound because we assume that, by
convention, all let-bound variables in a program are distinct.
Then, we use JoinHeaps to combine the bindings in a heap
environment one location at a time. We show a few repre-
sentative equations in Figure 18, abusing notation in several
ways. For example, we write h / ` to denote that ` is not
bound in h. When a location ` is bound in both heaps to
values v1 and v2, respectively, JoinHeaps introduces a new
binding y whose type is the join of v1 and v2. When a lo-
cation ` is bound in only one heap, we use the dummy type
Top to describe the (non-existent) value in the other heap.
There is no danger that ` will be unsoundly dereferenced
after the if-expression, since JoinTypes guards the types of
references Ref ` with the appropriate guard predicates.

Control Operators. The T-LABEL rule for @x ∶ e binds
the label @x to an expected world T /Σ̂ in the label environ-
ment Ω′ used to check e, and expects that all exit points of
e produce a value and heap environment that satisfy the ex-
pected world. The exit points are all break@x v expressions
in e, as well as the “fall-through” of expression e for control
flow paths that do not end with break; the T-BREAK rule
handles the former cases, and the second and third premises
of T-LABEL handle the latter. If all exit points satisfy the
expected world, we use the HeapEnv procedure to convert

Desugaring (extends Figure 12) ⟪ e ⟫ = e

⟪ function (x) /∗ ∶ T ∗ / { e } ⟫ = [DS-FUNC]

λ(this,arguments).
let ( x0, . . .) = (ref ax0 (get arguments “0”), . . .) in
@return ∶ ⟪e⟫

⟪ function F(x) /∗ ∶ #ctor T ∗ / { e } ⟫ = [DS-CTOR]

let f = λ(this,arguments).
let ( x0, . . .) = (ref ax0 (get arguments “0”), . . .) in
@return ∶ ⟪e⟫ in

let p = newobj aFproto {} (pro(Object)) in
let d = { “ code ” = f as ⟪T⟫; “prototype” = p } in

newobj aF d (pro(Function))

⟪ return e ⟫ = break @return ⟪e⟫ [DS-RETURN]

⟪ /∗ ∶ T ∗ / while (econd) { ebody } ⟫ = [DS-WHILE]

@break ∶ letrec loop ∶∶ T = λ().
if ⟪econd⟫ then (⟪ebody⟫; loop ())

else undefined in loop ()

⟪ break ⟫ = break @break undefined [DS-BREAK]

⟪ /∗ ∶ #thaw ` e ∗ / ⟫ = thaw ` ⟪e⟫ [DS-THAW]

⟪ /∗ ∶ #freeze ~̀θ e ∗ / ⟫ = freeze ˜̀θ ⟪e⟫ [DS-FREEZE]

⟪ assert(e) ⟫ = ⟪e⟫ as {ν = true} [DS-ASSERT]

Figure 19. Desugaring DJS to System !D

the heap type into a heap environment, like in the T-APP
rule. Notice that T-BREAK derives the type {false} because
a break immediately completes the evaluation context, thus
making the subsequent program point unreachable.

A.6 Desugaring
In Figure 19, we show more of the desugaring rules.

Functions and Constructors. As discussed in §5, we
desugar non-constructor functions (DS-FUNC) to scalar
function values and constructor functions (DS-CTOR) to ob-
jects. Following λJS [4], we wrap each desugared function
body with the label @return , which facilitates the desug-
aring of return statements (DS-RETURN). We desugar
named, recursive DJS functions via the standard letrec

encoding using fix; we omit this rule from Figure 19.
DS-CTOR first creates a fresh object at location aF with

prototype Function.prototype, then stores the desugared
constructor function in the “ code ” field, and finally cre-
ates an empty object at location aFproto that is stored in the
“prototype” field, to be used when creating an object with
this constructor (DS-NEW).

Loops. Following λJS , the DS-WHILE desugars while

loops to recursive functions (we write letrec as syntac-
tic sugar for the standard encoding using fix). As such, a
(function type) annotation describes the invariants that hold
before and after each iteration. A @break label around the
desugared loop body facilitates the desugaring of break



Join(b, S1 /Σ1, S2 /Σ2) = ∃x ∶T . ∃y ∶T ′. S /Σ where JoinTypes(b, S1, S2) = ∃x ∶T . S

and JoinHeaps(b,Σ1,Σ2) = (∃y ∶ T ′,Σ)

JoinTypes(b, S1, S2) = {(b = true⇒ JS1K) ∧ (b = false⇒ JS2K)}

JoinTypes(b, (∃x1 ∶T1. S1), S2) = ∃x1 ∶(JoinTypes(b, T1,Top)). JoinTypes(b, S1, S2)

JoinTypes(b, S1, (∃x2 ∶T2. S2)) = ∃x2 ∶(JoinTypes(b,Top, T2)). JoinTypes(b, S1, S2)

JoinTypes(b, (∃x1 ∶T1. S1), (∃x2 ∶T2. S2)) = ∃x1 ∶(JoinTypes(b, T1,Top)). ∃x2 ∶(JoinTypes(b,Top, T2)). JoinTypes(b, S1, S2)

JoinHeaps(b, (`↦ v1)⊕ h1, (`↦ v2)⊕ h2) = (∃y ∶JoinTypes(b,{x ∣x = v1},{x ∣x = v2}), (`↦ y)⊕ JoinHeaps(b, h1, h2))

JoinHeaps(b, (`↦ v1)⊕ h1, h2/ `) = (∃y ∶JoinTypes(b,{x ∣x = v1},Top), (`↦ y)⊕ JoinHeaps(b, h1, h2))

JoinHeaps(b, h1/ `, (`↦ v2)⊕ h2) = (∃y ∶JoinTypes(b,Top,{x ∣x = v2}), (`↦ y)⊕ JoinHeaps(b, h1, h2))

Figure 18. Environment join

statements (DS-BREAK). We elide similar mechanisms for
do-while loops, for loops, for-in loops, and continue

statements.

B. Extensions
We now outline two ways to increase the expressiveness of
location polymorphism in System !D.

B.1 Weak Location Polymorphism
So far, we have universally quantified function types over
strong locations. We can make several changes to allow
quantification over weak locations as well. First, we extend
the syntax of locations.

˜̀ ∶∶= ⋯ ∣ L̃ m ∶∶= ` ∣ ˜̀ M ∶∶= L ∣ L̃

We use L̃ to range over weak location variables, and we
extend the grammar of weak locations ˜̀ to include them (in
addition to weak location constants ã). We also define m
(resp. M ) to range over arbitrary locations (resp. location
variables). Next, we extend the syntax of function types and
function application.

e ∶∶= ⋯ ∣ [T ;m; Σ̂] v1 v2

U ∶∶= ⋯ ∣ ∀[A;M ;H] Ψ/W1 →W2

Ψ ∶∶= (˜̀↦ ⟨T, `⟩) ∣ Ψ1 ⊕Ψ2 ∣ ∅

A function type is now parametrized over arbitrary location
variables M and a weak heap Ψ of bindings that describe
weak location variables. To match, function application now
includes location arguments m rather than `; typing must
ensure that strong location variables L (resp. weak location
variables L̃) are instantiated only with strong locations `
(resp. weak locations ˜̀).

A function type refers to a weak heap only in the domain
of the function, because weak locations are flow-insensitive
and do not vary at different program points. Before, we as-
sumed that the initial typing environment contained bindings

for all weak locations. The new syntax of function types re-
places this convention by abstracting over weak locations.
Consequently, the function application rule must check that
the declared weak heap Ψ of a function type is satisfiable
given the current heap environment Σ at a call site (after
substitution of all polymorphic variables).

B.2 Existential Locations
Universally quantifying over all locations, including simple
locations, clutters function types and applications with addi-
tional arguments, and also exposes locations that are “inter-
nal” or “local” to the desugared System !D program and not
accessible in the original DJS program.

Consider the following example; we refer to the original
function as f and the desugared version as f ′.

function(x) {

var y = x

return y.f }

fun x -> let _x = ref x

in let _y = ref (deref _x)

in getElem (deref _y, "f")

We might annotate the DJS function f with the type

∀L,L′. Ref L/(L↦ ⟨Dict , L′⟩)

→ Top /(L↦ same)

and the desugared version would have the type

∀L,L′, Lx, Ly. Ref L/(L↦ ⟨Dict , L′⟩)

→ Top /(L↦ same)⊕ (Lx ↦ Ref L)⊕ (Ly ↦ Ref L)

that uses additional location variables for the references in-
serted by the translation. Although it is straightforward to
mechanically desugar function types in this manner, the ad-
ditional location parameters at function calls increase the
manual annotation burden or, more likely since we cannot
expect DJS programmer to write them, the burden on the
type system to infer them.

Instead, we can introduce existential location types into
the system and write the following type for the desugared
function f ′.



∀L,L′. Ref L/(L↦ ⟨Dict , L′⟩)

→ ∃Lx, Ly. Top /(L↦ same)⊕ (Lx ↦ Ref L)⊕ (Ly ↦ Ref L)

Notice that the output world uses existentials to name the
(strong, simple) locations inserted by desugaring. As a re-
sult, a call to this function need not instantiate the local lo-
cations; instead, the type system can generate fresh location
constants (i.e., skolemize) for the existential locations.

We provide a sketch of how to extend System !D with
existential locations. First, we extend the syntax of types.

T ∶∶= ⋯ ∣ ∃`. T

We intend that existential locations only appear in positive
positions of function types, which we can compute in similar
fashion to the Poles procedure from System D [3] that tracks
polarity of types nested within formulas. Effectively, we
require that every function type be of the form

∀[A;L;H] x ∶({y ∣ p})/Σ̂→ x′ ∶(∃`. {y′ ∣ p′})/Σ̂′

where the input type is a refinement type and the output type
is in a prenex form that requires all existentially-quantified
locations to appear at the top-level and which prohibits
existentially-quantified values. Intuitively, the locations `
correspond to local reference cells that a function allocates
when invoked and are inaccessible to callers.

To introduce existential locations for simple references
(which are only used by desugaring), we use a new typing
rule. For technical reasons, we use a let-expression to type
check reference allocation along with a subsequent expres-
sion e as a way to describe the scope of `.

Γ; Σ ⊢ v ∶∶ T Γ, x ∶Ref `; Σ⊕ (`↦ v); Ω ⊢ e ∶∶ S /Σ′

Γ; Σ; Ω ⊢ let x = ref ` v in e ∶∶ ∃`. S /Σ′

To facilitate algorithmic type checking, we ensure that exis-
tential locations are always prenex quantified in types. The
Join procedure, used for conditionals, rearranges existential
locations allocated on different branches to maintain this in-
variant.

Finally, we need to handle subtyping of existential loca-
tion types. The simplest approach is to require that two types
have the same quantifier structure.

Γ ⊢ T1 ⊑ T2

Γ ⊢ ∃`. T1 ⊑ ∃`. T2

For first-order functions, we can work around this limitation
by playing tricks with dummy locations. For higher-order
functions, however, the presence of existential locations lim-
its expressivness by constraining the use of the heap. Ab-
stracting over the mutable state of higher-order functions,
however, can can be quite heavyweight (see e.g., Hoare Type
Theory [5]); adding more lightweight support in our setting
is left for future work.
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