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Abstract
We present Dependent JavaScript (DJS), a statically typed
dialect of the imperative, object-oriented, dynamic language.
DJS supports the particularly challenging features such as
run-time type-tests, higher-order functions, extensible ob-
jects, prototype inheritance, and arrays through a combina-
tion of nested refinement types, strong updates to the heap,
and heap unrolling to precisely track prototype hierarchies.
With our implementation of DJS, we demonstrate that the
type system is expressive enough to reason about a variety
of tricky idioms found in small examples drawn from several
sources, including the popular book JavaScript: The Good
Parts and the SunSpider benchmark suite.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – Inheri-
tance, Polymorphism; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams – Logics of Programs

Keywords Refinement Types, JavaScript, Strong Updates,
Prototype Inheritance, Arrays

1. Introduction
Dynamic languages like JavaScript, Python, and Ruby are
widely popular for building both client and server applica-
tions, in large part because they provide powerful sets of
features — run-time type tests, mutable variables, extensi-
ble objects, and higher-order functions. But as applications
grow, the lack of static typing makes it difficult to achieve
reliability, security, maintainability, and performance. In re-
sponse, several authors have proposed type systems which
provide static checking for various subsets of dynamic lan-
guages [5, 16, 22, 23, 30, 36].

Recently, we developed System D [9], a core calculus
for dynamic languages that supports the above dynamic id-
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ioms but in a purely functional setting. The main insight in
System D is to dependently type all values with formulas
drawn from an SMT-decidable refinement logic. We use an
SMT solver to reason about the properties it tracks well,
namely, control-flow invariants and dictionaries with dy-
namic keys that bind scalar values. But to describe dynamic
keys that bind rich values like functions, System D encodes
function types as logical terms and nests the typing relation
as an uninterpreted predicate within the logic. By dividing
work between syntactic subtyping and SMT-based validity
checking, the calculus supports fully automatic checking of
dynamic features like run-time type tests, value-indexed dic-
tionaries, higher-order functions, and polymorphism.

In this paper, we scale up the System D calculus to
Dependent JavaScript (abbreviated to DJS), an explicitly
typed dialect of a real-world, imperative, object-oriented,
dynamic language. We bridge the vast gap between System D
and JavaScript in three steps.

Step 1: Imperative Updates. The types of variables in
JavaScript are routinely “changed” either by assignment or
by incrementally adding or removing fields to objects bound
to variables. The presence of mutation makes it challenging
to assign precise types to variables, and the standard method
of assigning a single “invariant” reference type that overap-
proximates all values held by the variable is useless in the
JavaScript setting. We overcome this challenge by extending
our calculus with flow-sensitive heap types (in the style of
[2, 12, 15, 31, 32]) which allow the system to precisely track
the heap location each variable refers to as well as alias-
ing relationships, thereby enabling strong updates through
mutable variables. Our formulation of flow-sensitive heaps
combined with higher-order functions and refinement types
is novel, and allows DJS to express precise pre- and post-
conditions of heaps, as in separation logic [17].

Step 2: Prototype Inheritance. Each JavaScript object
maintains an implicit link to the “prototype” object from
which it derives. To resolve a key lookup from an object at
run-time, JavaScript transitively follows its prototype links
until either the key is found or the root is reached without
success. Thus, unlike in class-based languages, inheritance
relationships are computed at run-time rather than provided
as declarative specifications. The semantics of prototypes is



challenging for static typing, because to track the type of a
key binding, the system must statically reason about a po-
tentially unbounded number of prototype links! In DJS, we
solve this problem with a novel decomposition of the heap
into a “shallow” part, for which we precisely track a finite
number of prototype links, and a “deep” part, for which we
do not have precise information, represented abstractly via
a logical heap variable. We unroll prototype hierarchies in
shallow heaps to precisely model the semantics of object op-
erations, and we use uninterpreted heap predicates to reason
abstractly about deep parts. In this way, we reduce the rea-
soning about unbounded, imperative, prototype hierarchies
to the underlying decidable, first-order, refinement logic.

Step 3: Arrays. JavaScript arrays are simply objects whose
keys are string representations of integers. Arrays are com-
monly used both as heterogeneous tuples (that have a fixed
number of elements of different types) as well as homoge-
neous collections (that have an unbounded number of ele-
ments of the same type). The overloaded use of arrays, to-
gether with the fact that arrays are otherwise syntactically
indistinguishable and have the same prototype-based seman-
tics as non-array objects, makes it hard to statically reason
about the very different ways in which they are used. In DJS,
we use nested refinements to address the problem neatly by
uniformly encoding tuples and collections with refinement
predicates, and by using intersection types that simultane-
ous encode the semantics of tuples, collections, and objects.

Expressiveness. We have implemented DJS (available at
ravichugh.com/djs) and demonstrated its expressiveness
by checking a variety of properties found in small but sub-
tle examples drawn from a variety of sources, including the
popular book JavaScript: The Good Parts [10] and the Sun-
Spider benchmark suite [34]. Our experiments show that
several examples simultaneously require the gamut of fea-
tures in DJS, but that many examples conform to recurring
patterns that rely on particular aspects of the type system.
We identify several ways in which future work can handle
these patterns more specifically in order to reduce the an-
notation burden and performance for common cases, while
falling back to the full expressiveness of DJS in general.
Thus, we believe that DJS provides a significant step towards
truly retrofitting JavaScript with a practical type system.

2. Overview
Let us begin with an informal overview of the semantics
of JavaScript. We will emphasize the aspects that are the
most distinctive and challenging from the perspective of type
system design, and describe the key insights in our work that
overcome these challenges.

JavaScript Semantics by Desugaring. Many corner cases
of JavaScript are clarified by λJS [21], a syntax-directed
translation, or desugaring, of JavaScript programs to a
mostly-standard lambda-calculus with explicit references.

basics.dref	
objects.dref	
prelude.dref	

program.dref	

program.js	 System	  !D	  
Type	  

Checker	  

DJS	  Desugarer	  

Figure 1. Architecture of DJS

As λJS is a core language with well-understood semantics
and proof techniques, the translation paves a path to a typed
dialect of JavaScript: define a type system for the core lan-
guage and then type check desugared JavaScript programs.

We take this path by developing System !D (pronounced
“D-ref”), a new calculus based on λJS . Although the oper-
ational semantics of System !D is straightforward, the dy-
namic features of the language ensure that building a type
system expressive enough to support desugared JavaScript
idioms is not. We solve this problem by scaling the purely
functional technique of nested refinement types up to the im-
perative, object-oriented, setting of real-world JavaScript.

Figure 1 depicts the architecture of our approach: we
desugar a Dependent JavaScript (DJS) file program.js to
the System !D file program.dref, which is analyzed by the
type checker along with a standard prelude comprising three
files (basics.dref, objects.dref, and prelude.dref)
that model JavaScript semantics.

Terminology. JavaScript has a long history and an evolv-
ing specification. In this paper, we say “JavaScript” to
roughly mean ECMAScript Edition 3, the standard version
of the language for more than a decade [24]. We say “ES5”
to refer to Edition 5 of the language, recently released by the
JavaScript standards committee [13]; Edition 4 was never
standardized. We say “ES6” to refer to features proposed for
the next version of the language, scheduled to be finalized
within the next one or two years. DJS includes a large set of
core features common to all editions.

2.1 Base Types, Operators, and Control Flow
Consider the following function adapted from [9] and anno-
tated in DJS. A function type annotation is written just above
the definition inside a JavaScript comment demarcated by an
additional : character. We typeset annotations in math mode
for clarity, but the ASCII versions parsed by our type checker
are quite similar.

/*: x ∶Top → {ν ∣ ite Num(x) Num(ν) Bool(ν)} */

function negate(x) {

if (typeof x == "number") { return 0 - x; }

else { return !x; } }

The typeof operator is a facility used pervasively to direct
control flow based on the run-time “tag” of a value. If the
input to negate is a number, so is the return value. If not, the
function uses an interesting feature of JavaScript, namely,

ravichugh.com/djs


val typeof :: (* x ∶Top → {ν = tag(x)} *)

val ! :: (* x ∶Top → {ν iff falsy(x)} *)

val (||) :: (* x ∶Top → y ∶Top → {ite falsy(x) (ν = y) (ν = x)} *)

val (&&) :: (* x ∶Top → y ∶Top → {ite truthy(x) (ν = y) (ν = x)} *)

val (===) :: (* x ∶Top → y ∶{tag(ν) = tag(x)} → {ν iff (x = y ∧ x ≠ NaN)} *)

val (==) :: (* x ∶Top → y ∶Top → {Bool(ν) ∧ (tag(x) = tag(y)⇒ ν iff (x = y ∧ x ≠ NaN))} *)

val (+) :: (* x ∶Str → y ∶Str → Str *)

val (+) :: (* x ∶Num → y ∶Num → {Num(ν) ∧ ((Int(x) ∧ Int(y))⇒ (Int(ν) ∧ ν = x + y))} *)

val fix :: (* ∀A. (A → A) → A *)

Figure 2. Excerpt from basics.dref

that all values have a boolean interpretation. The values
false, null, undefined, the empty string “”, 0, and the
“not-a-number” value NaN are considered falsy, and evaluate
to false when used in a boolean context; all other values are
truthy. The operator ! inverts “truthiness,” so the else branch
returns a boolean no matter what the type of x is. The ability
to treat arbitrary values as booleans is commonly used, for
example, to guard against null values.

The negate function demonstrates that even simple
JavaScript programs depend heavily on sophisticated control-
flow based reasoning. Syntactic type systems are capable of
tracking control flow to a limited degree [22, 36], but none
can handle complex invariants like the relationship between
the input and output of negate. To have any chance of cap-
turing such invariants, types must be able to depend on other
program values. Powerful dependent type systems like Coq
can express extremely rich invariants, but are too heavy-
weight for our goals since they require the programmer to
discharge type checking obligations interactively.

Refinement Types. We adopt a more lightweight mecha-
nism called refinement types that has been previously ap-
plied to purely functional dynamic languages [5, 9]. We
demonstrate that refinement types afford us the expressive-
ness needed to precisely track control-flow invariants in the
JavaScript setting and, unlike more powerful dependent sys-
tems, without sacrificing decidable type checking. In partic-
ular, once the programmer has written type annotations for
function definitions, type checking is carried out automat-
ically via a combination of syntactic subtyping and SMT-
based [11] logical validity checking.

In System !D, every value is described by a refinement
type of the form {ν ∣p}, read “ν such that p”, where p
is a formula that can mention ν. For example, 3 can be
given the type {ν ∣ tag(ν) = “number”} and true the type
{ν ∣ tag(ν) = “boolean”}, where tag is an uninterpreted
function symbol in the refinement logic, not a function in the
programming language. We define abbreviations in Figure 3
to make the refinement binder implicit and the types concise.

Primitives. We use refinements to assign precise, and
sometimes exact, types to System !D primitive functions,

{p}
○

= {ν ∣ p} Num(x)
○

= tag(x) = “number”

Top(x)
○

= true Bool(x)
○

= tag(x) = “boolean”

T
○

= {T (ν)} Str(x)
○

= tag(x) = “string”

if p then q1 else q2
○

= ite p q1 q2
○

= (p⇒ q1) ∧ (¬p⇒ q2)

x iff p
○

= ite p (x = true) (x = false)

falsy(x)
○

= x ∈ {false ∨ null ∨ undefined ∨ “” ∨ 0 ∨ NaN}

truthy(x)
○

= ¬falsy(x)

Figure 3. Abbreviations for common types

defined in the file basics.dref (Figure 2). Notice that
typeof returns the tag of its input. Some examples beyond
ones we have already seen include tag(null) = “object”
and tag(undefined) = “undefined”. The type of the
negation operator ! inverts “truthiness.” The types of the op-
erators && and || are interesting, because as in JavaScript,
they do not necessarily return booleans. The “guard” opera-
tor && returns its second operand if the first is truthy, which
enables the idiom if (x && x.f) { ... } that checks
whether the object x and its “f” field are non-null. Dually,
the “default” operator || returns its second operand if the
first is falsy, which enables the idiom x = x || default

to specify a default value. The + operator is specified as an
intersection of function types and captures the fact that it
performs both string concatenation and numerical addition,
but does not type check expressions like 3 + “hi” that rely
on the implicit coercion in JavaScript. We choose types for
System !D primitives that prohibit implicit coercions since
they often lead to subtle programming errors.

Equality. JavaScript provides two equality operators: ==
implicitly coerces the second operand if its tag differs from
the first, and strict equality === does not perform any coer-
cion. To avoid reasoning about implicit coercions, we give a
relatively weaker type to ==, where the boolean result relates
its operands only if they have the same tag.

Integers. JavaScript provides a single number type that has
no minimum or maximum value. However, programmers
and optimizing JIT compilers [38] often distinguish integers
from arbitrary numbers. In System !D, we describe integers
with the abbreviation Int(x)

○

= Num(x) ∧ integer(x). We
introduce the uninterpreted predicate integer(x) in the types



function also_negate(x) {

if (typeof x == "number")

x = 0 - x;

else

x = !x;

return x;

}

 let also_negate = fun x -> (* Γ1 = ∅; Σ1 = ∅ *)

 let _x = ref x in (* Γ2 = x ∶Top; Σ2 = (`x ↦ x) *)

 if typeof (deref _x) == "number" then (* Γ3 = Γ2, x ∶Ref `x; Σ3 = Σ2 *)

 _x := 0 - (deref _x) (* Γ4 = Γ3,Num(x); Σ4 = ∃x4 ∶Num. (`x ↦ x4) *)

 else

 _x := !(deref _x) (* Γ6 = Γ3,¬Num(x); Σ6 = ∃x6 ∶{ν iff falsy(x)}. (`x ↦ x6) *)
 ; (* Γ7 = Γ3; Σ7 = ∃x

′
∶{ite Num(x)Num(ν)Bool(ν)}. (`x ↦ x′) *)

 deref _x in (* Γ8 = Γ3; Σ8 = Σ7 *)

 let _also_negate = ref {"__code__": also_negate}

Figure 4. DJS function also negate; Desugared to System !D; Verifying x ∶Top → {ite Num(x) Num(ν) Bool(ν)}

of integer literals, and functions like + propagate “integer-
ness” where possible. Furthermore, numeric functions use
the (decidable) theory of linear arithmetic to precisely reason
about integers, which is important for dealing with arrays.

Tracking Control Flow. System !D tracks control flow
precisely by recording that the guard of an if-expression is
truthy (resp. falsy) along the then-branch (resp. else-branch),
enabling System !D to verify the annotation for negate as
follows. Because of the call to typeof, System !D tracks
that Num(x) holds along the then-branch, so x can be safely
passed to the subtraction operator which produces a number
as required. For the else-branch, System !D records that
¬Num(x). The negation operator, which can be applied
to any value, produces a value of type {ν iff ¬falsy(x)}
which is a subtype of Bool . Thus, both branches satisfy the
specification provided by the programmer.

2.2 Imperative Updates
JavaScript is an imperative language where variables can
be reassigned arbitrary values. Consider the DJS function
also_negate in Figure 4 that is like negate but first as-
signs the eventual result in the variable x, and its translation
to System !D on the right (ignore the comments for now).

Several aspects of the translation warrant attention. First,
since the formal parameter x, like all JavaScript variables,
is mutable, the translation of the function body begins with
an explicit reference cell _x initialized with x, and each read
of x is desugared to a dereference of _x. Presentations of
imperative languages often model assignable variables di-
rectly rather than with explicit references. Both approaches
are equivalent; we choose the latter to make the presenta-
tion more similar to λJS [21] and System D [9]. Second,
notice that scalar constants like 0 and true and operators
like typeof and == are translated directly to corresponding
ones in System !D. Third, notice that each assignment to the
variable x translates to a set reference (i.e., assignment) op-
eration to update the contents of the heap cell. Finally, since
every JavaScript function is actually an object, the transla-
tion stores the function value in a distinguished “ code ”
field, which we assume is inaccessible to source programs.
Instead of this assumption, we could treat each function as
a pair of a function value and an associated object, but we

follow the λJS encoding for simplicity. For System !D to
verify that also_negate satisfies the specification, it must
precisely reason about heap updates in addition to control-
flow as before.

Reference Types. The traditional way to handle references
in the λ-calculus [28] is to (a) assign a reference cell some
type Ref T , (b) require that only values of type T be stored in
it, and then (c) conclude that dereferences produce values of
type T . This approach supports so-called weak updates, be-
cause even if a stored value satisfies a stronger type S than
T (i.e., if S is a subtype of T ), subsequent dereferences pro-
duce values of the original, weaker type T . Put another way,
this approach requires that the type assigned to a reference
cell be a supertype of all the values written to the cell. Un-
fortunately, weak updates would preclude System !D from
verifying also_negate. The initialization of _x on line 2
stores the parameter x which has type Top, so _x would be
assigned type Ref Top. The assignments on lines 4 and 6
type check because the updated values satisfy the trivial type
Top, but the dereference on line 8 produces a value with type
Top, which does not satisfy the specified return type. Thus,
we need a way to reason more precisely about heap updates.

Strong Updates. Allowing assignment to change the type
of a reference is called strong update, which is sound only
when a reference is guaranteed to point to a single heap cell
and when there are no accesses through other aliases that re-
fer to the same cell. The Alias Types approach [32] provides
a means of managing these concerns. Rather than Ref T , a
reference type is written Ref `, where ` is the (compile-time)
name of a location in the heap, and a separate (compile-
time) heap maps locations to types, for example, (` ↦ T ).
Strong updates are realized by allowing heaps to change
flow-sensitively, and the aliasing problem is mitigated by
maintaining the invariant that distinct location names ` and
`′ do not alias. System !D employs this approach by using a
type environment Γ that grows and shrinks as usual during
type checking but remains flow-insensitive, and a heap envi-
ronment Σ that can be strongly updated per program point.

Figure 4 shows how System !D checks the desugared
version of also_negate. The figure shows, at each line i,
the type environment Γi used to check the expression on the
line, and the heap environment Σi that exists after checking



the expression. After starting with the empty heap Σ1 = ∅,
the allocation on line 2 creates a fresh location `x in the new
heap Σ2

○

= Σ1 ⊕ (`x ↦ x) and adds x ∶Ref `x to the type
environment. We use the symbol ⊕ to construct unordered
sets of heap bindings. To exploit the precision of dependent
types, we map locations to values rather than types (i.e.,
(`↦ x) rather than (`↦ Top)).

When checking the if-expression guard on line 3, the
deference retrieves the initial value x from the heap Σ2, so as
a result of the tag-test, System !D adds Num(x) to the type
environment Γ4 along the true-branch and ¬Num(x) to Γ6

along the false-branch. In the true-branch, the subtraction
on line 4 is well-typed because Num(x), and produces a
number x4 that is stored in the heap Σ4 at location `x. In
the false-branch, x is negated on line 6, producing a boolean
x6 that is stored in the heap Σ6 at location `x. System !D
combines the branches by joining the heaps Σ4 and Σ6,
producing Σ7 that describes the heap no matter which branch
is taken. The dereference on line 8 retrieves x′, a value of
type {ite Num(x) Num(ν) Bool(ν)}, as required by the
return type annotation.

In this way, System !D syntactically tracks strong updates
to the heap, while reducing subtyping obligations to impli-
cation queries in an ordinary, pure refinement logic [9] that
does not model imperative updates.

2.3 Simple Objects
JavaScript’s objects exhibit several interesting semantic
properties. Consider the following object initialized with
a single key (also known as field or property). We assume
that assert is a pre-defined function that aborts when its ar-
gument is falsy; JavaScript does not provide such a function
as built-in, but it is trivial to define.

var x = {"f": 1};

assert (x.f == 1 && x.g == undefined);

x.g = 2; delete x.f;

assert (x.g == 2 && x.f == undefined);

x.f.g; // raises exception

var k = "h"; x[k] = 3; assert (x[k] == 3);

Notice that when retrieving the non-existent “g” key from
x, JavaScript returns undefined as opposed to raising an
exception. Attempting to retrieve a key from undefined,
or null, however, does raise an exception. Keys can be
added or removed to objects, and can even be arbitrary
dynamically-computed values, not just string literals, that are
converted to strings if necessary. Dynamic keys are pervasive
— objects are commonly used as hash tables with unknown
sets of keys — but they are quite challenging to track inside
a static type system.

Nested Refinements. To support dynamic keys, we adopt
the System D primitives [9] for (functional) dictionary oper-
ations, shown in the first four lines of the file objects.dref
(Figure 5). The primitive function application get d k re-

trieves the key k from dictionary d, where sel(d, k) de-
scribes the exact binding as a value in the refinement logic;
set d k y produces a new dictionary that extends d with a
binding for k, shadowing previous bindings, if any, where
upd(d, k, y) describes the new dictionary; del d k pro-
duces a new dictionary with a binding removed, using the
logical symbol bot (distinct from all source-level values)
to denote its absence; and mem d k indicates the presence
or absence of a binding, where we write the abbreviation
has(d, k)

○

= sel(d, k) ≠ bot .
The key innovation of nested refinements in System D

allows syntactic type terms U (like function types) to be
written within refinement formulas using an uninterpreted
“has-type” predicate x ∶∶ U , while staying within the de-
cidable McCarthy theory of arrays [27]. The has-type pred-
icate allows System D to describe dictionaries that map
dynamic keys to arbitrary values. For example, we write
{Dict(ν) ∧ sel(ν, k) ∶∶ Bool → Bool} to describe a dictio-
nary d with key k that binds a boolean-to-boolean function,
and {ν = upd(d,“g”,4)} to describe a dictionary d′ that is
just like d but with an additional binding. Prior approaches
such as [5] were limited to dynamic keys that store first-order
(non-function) values. We refer the reader to [9] for the tech-
nical development of nested refinements.

Mutability and Dynamic Keys. The combination of nested
refinements and strong updates allows us to precisely track
objects with dynamic keys despite the presence of impera-
tive updates. Consider the desugaring of our example above;
we omit the assertions for clarity.

 let _x = ref (ref {"f": 1}) in

 _x := set (deref (deref _x)) "g" 2;

 _x := del (deref (deref _x)) "f";

 let _k = "h" in

 _x := set (deref (deref _x))

 (coerceToStr (deref _k)) 3;

The allocation on line 1 adds three bindings to the type
environment — d ∶{ν = upd(empty ,“f”,1)}, ptr ∶Ref `,
and obj ∶Ref `′, where ` and `′ are fresh locations —
and produces the heap Σ1

○

= (`′ ↦ ptr)⊕ (`↦ d). No-
tice that the dictionary is stored via an additional level
of indirection to facilitate the encoding of side-effecting
JavaScript object operations. The object extension on line
2 adds d′ ∶{ν = upd(d,“g”,2)} to the type environment and
strongly updates the heap to Σ2

○

= (`′ ↦ ptr)⊕ (`↦ d′).
The deletion on line 3 and the extension on line 5 (through a
dynamic key) have similar effects on the static heap, thereby
statically verifying the assertions.

2.4 Function Types
In order to fully understand the challenges of JavaScript
objects, we must pause to take a closer look at function
types. The function types we have seen so far — for negate
and the primitives in basics.dref — have not mentioned



val set :: (* d ∶Dict → k ∶Str → y ∶Top → {ν = upd(d, k, y)} *)

val del :: (* d ∶Dict → k ∶Str → {ν = upd(d, k, bot)} *)

val has :: (* d ∶Dict → k ∶Str → {ν iff has(d, k)} *)

val get :: (* d ∶Dict → k ∶Str → {ite has(d, k) (ν = sel(d, k)) (ν = undefined)} *)

val setPropObj :: (* (x ∶Ref , k ∶Str , y ∶Top)/(x↦ ⟨d ∶Dict , ẋ⟩) → {ν = y}/(x↦ ⟨d′ ∶{ν = upd(d, k, y)}, ẋ⟩) *)

val delPropObj :: (* (x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict , ẋ⟩) → Bool /(x↦ ⟨d′ ∶{ν = upd(d, k, bot)}, ẋ⟩) *)

val hasPropObj :: (* (x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict , ẋ⟩) → {ν iff ObjHas(d, k, cur , ẋ)}/same *)

val getPropObj :: (* (x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict , ẋ⟩)
→ {ite ObjHas(d, k, cur , ẋ) (ν = ObjSel(d, k, cur , ẋ)) (ν = undefined)}/same *)

val getIdxArr :: (* ∀A. (x ∶Ref , i ∶Int)/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ite ¬packed(a) (ν ∶∶ A ∨Undef (ν)) (ite (0 ≤ i < len(a)) (ν ∶∶ A) (Undef (ν)))}/same *)

val getLenArr :: (* ∀A. (x ∶Ref , k ∶{ν = “length”})/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ite packed(a) (ν = len(a)) Int(ν)}/same *)

val getPropArr :: (* ∀A. (x ∶Ref , k ∶{Str(ν) ∧ ν ≠ “length”})/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ite HeapHas(H, ẋ, k) (ν = HeapSel(H, ẋ, k)) (ν = undefined)}/same *)

val getElem :: (and (type getPropObj) (type getIdxArr) (type getLenArr) (type getPropArr))

val setIdxArr :: (* ∀A. (x ∶Ref , i ∶Int , y ∶A)/(x↦ ⟨a ∶Arr(A), ẋ⟩)
→ {ν = y}/(x↦ ⟨a′ ∶{ν ∶∶ Arr(A) ∧ arrSet(ν, a, i)}, ẋ⟩) *)

Figure 5. Excerpt from objects.dref

heaps, because their inputs and outputs are scalar values.
However, JavaScript objects are reference values, and are
passed to and returned from functions through the heap.
Thus, to account for heaps and side-effects, a System !D
function type has the following form.

∀[A;L;H] x1 ∶T1 /Σ̂1 → x2 ∶T2 /Σ̂2

This type describes a function that, given an argument x1 of
type T1 in a calling context that satisfies the input heap type
Σ̂1, produces an output value x2 of type T2 and a modified
heap type Σ̂2. A function type can be parameterized by se-
quences of type variables A, location variables L, and heap
variablesH . A heap type Σ̂ is like a heap environment Σ but
maps locations to binder-type pairs rather than values (e.g.,
(`↦ y ∶T ) rather than (`↦ v)); the binders name the values
stored in the heap before and after a function call. The binder
x1 and all of the binders in the input heap Σ̂1 are in scope
in the output world x2 ∶T2/Σ̂2. Intuitively, a world describes
a tuple where every component except the first resides in a
heap. We often omit binders when they are not referred to. To
match the structure of function types, function applications
must instantiate type, location, and heap variables. However,
our implementation infers instantiations in almost all cases
using standard local type inference techniques (§ 6). When
we write DJS examples in the sequel, we omit instantiations
at applications wherever our current implementation infers
them. We sweeten function type syntax with some sugar:

• When used as an output heap, the token same refers
to the sequence of locations in the corresponding input

heap, where each binding records that the final value is
exactly equal to the initial value.

• In an input world, a reference binding x ∶Ref without a
location introduces a location variableL that is quantified
by the type, and x (a value of type Ref L) can be used as
a location in heaps to refer to this variable L. Further,
the dotted variable ẋ introduces a location parameter,
corresponding to the prototype of x.

• A heap variable H is implicitly added to a function type
when it contains none, and H is added to both the in-
put and output heaps; this variable corresponds to the
“frame” from separation logic [17]. In this case, the to-
ken cur refers to H .

For example, compare the type for hasPropObj (Figure 5)
followed by its expansion.

(x ∶Ref , k ∶Str)/(x↦ ⟨d ∶Dict , ẋ⟩)

→ {ν iff ObjHas(d, k, cur , ẋ)}/same

∀L,L′,H. (x ∶Ref L, k ∶Str)/H ⊕ (L↦ ⟨d ∶Dict , L′⟩)

→ {ν iff ObjHas(d, k,H,L′)}/H ⊕ (L↦ ⟨d′ ∶{ν = d}, L′⟩)

2.5 Prototype-Based Objects
JavaScript sports a special form of inheritance, where each
base object is equipped with a link to its prototype object.
This link is set when the base object is created and cannot be
changed or accessed by the program. When trying to retrieve
a key k not stored in an object x itself, JavaScript transitively
searches the prototype chain of x until it either finds k or it
reaches the root of the object hierarchy without finding k.



The prototype chain does not play a role in the semantics of
key update, addition, or deletion.1

For example, consider the initially empty object child
created by the function beget (described in the sequel) with
prototype object parent. The prototype of object literals,
like parent, is the object stored in Object.prototype

(note that the “prototype” key of Object is not the
same as its prototype object). Thus, all keys in parent and
Object.prototype are transitively accessible via child.

var parent = {"last": " Doe"};

var child = beget(parent);

child.first = "John";

assert (child.first + child.last == "John Doe");

assert ("last" in child == true);

assert (child.hasOwnProperty("last") == false);

The JavaScript operator k in x tests for the presence of k
anywhere along the prototype chain of x, whereas the native
function Object.prototype.hasOwnProperty tests only
the “own” object itself. Keys routinely resolve through pro-
totypes, so a static type system must precisely track them.
Unfortunately, we cannot encode prototypes directly within
the framework of refinement types and strong update, as the
semantics of transitively traversing mutable and unbounded
prototype hierarchies is beyond the reach of decidable, first-
order reasoning.

Shallow and Deep Heaps. We solve this problem by syn-
tactically reducing reasoning about prototype-based objects
to the refinement logic. Our key insight is to decompose
the heap into a “shallow” part, the bounded portion of the
heap for which we have explicit locations, and a “deep” part,
which is the potentially unbounded portion which we can
represent by uninterpreted heap variables H . We explicitly
track prototype links in the “shallow” heap by using bind-
ings of the form (` ↦ ⟨d, `′⟩), where the prototype of the
object at ` is stored at `′. We cannot track prototype links
explicitly in the “deep” heap, so instead we summarize in-
formation about deep prototype chains by using the abstract
(uninterpreted) heap predicate HeapHas(H, `, k) to encode
the proposition that the object stored at location ` in H tran-
sitively has the key k, and the abstract (uninterpreted) heap
function HeapSel(H, `, k) to represent the corresponding
value retrieved by lookup.

As an example, recall the child object and its prototype
parent. Suppose that the prototype of parent is an un-
known object grandpa, rather than Object.prototype

as written. If child, parent, and grandpa are stored
at locations `1, `2, and `3 with underlying “own” dic-
tionary values d1, d2, and d3, then we write the heap
{`1 ↦ ⟨d1, `2⟩, `2 ↦ ⟨d2, `3⟩, `3 ↦ ⟨d3, `4⟩,H} — we use
set notation to abbreviate the concatenation of heap bindings

1 Many implementations expose the prototype of an object x with a non-
standard x. proto property, and prototypes do affect key update in ES5.
We discuss these issues further in §7.

with ⊕. Despite not knowing what value is the prototype of
grandpa, we name its location `4 that is somewhere in the
deep part of the heap H .

Key Membership and Lookup. When describing simple
objects, we used the original System D primitives (mem and
get) to desugar key membership and lookup operations. But
in fact, to account for the transitive semantics of key mem-
bership and lookup facilitated by prototype links, System !D
uses new primitives hasPropObj and getPropObj defined
in objects.dref (Figure 5). These primitives differ from
their purely functional System D counterparts in two ways:
each operation goes through a reference to a dictionary on
the heap, and the abstract predicates ObjHas and ObjSel
are used in place of has and sel . These abstract predicates
are defined over the disjoint union of the shallow and deep
heaps as follows and, intuitively, summarize whether an ob-
ject transitively has a key and, if so, the value it binds.

ObjHas(d, k,H, ẋ)
○

= has(d, k) ∨HeapHas(H, ẋ, k)

ν = ObjSel(d, k,H, ẋ)
○

= if has(d, k) then ν = sel(d, k)

else ν = HeapSel(H, ẋ, k)

Transitive Semantics via Unrolling. Let us return to the
example of the child, parent and grandpa prototype
chain to understand how unrolling captures the semantics
of transitive lookup. The DJS key membership test on the
left desugars to System !D on the right as follows.

k in child hasPropObj (deref _child, deref _k)

The result of the function call has the following type.

{ν iff ObjHas(d1,k,{(`2 ↦ ⟨d2, `3⟩), (`3 ↦ ⟨d3, `4⟩),H}, `2)}

We expand this type by unrolling ObjHas to the following.

{ν iff has(d1,k) ∨ has(d2,k) ∨ has(d3,k) ∨HeapHas(H, `4,k)}

The first three disjuncts correspond to looking for k in the
shallow heap, and the last is the uninterpreted predicate that
summarizes whether k exists in the deep heap. Similarly, key
lookup in DJS on the left is desugared as follows.

child[k] getPropObj (deref _child, deref _k)

We unroll the type of the System !D expression as follows.

{if has(d1,k) then ν = sel(d1,k) else

if has(d2,k) then ν = sel(d2,k) else

if has(d3,k) then ν = sel(d3,k) else

ite HeapHas(H, `4,k) (ν = HeapSel(H, `4,k)) Undef (ν)}

Thus, our technique of decomposing the heap into shallow
and deep parts, followed by heap unrolling, captures the ex-
act semantics of prototype-based object operations modulo
the unknown portion of the heap. Thus, System !D precisely
tracks objects in the presence of mutation and prototypes.



var __hasOwn =

/*: (this ∶Ref , k ∶Str)/(this ↦ ⟨d ∶Dict , ˙this⟩) → {ν iff has(d, k)}/same

∧ ∀A. (this ∶Ref , i ∶Int)/(this ↦ ⟨a ∶Arr(A), ˙this⟩) → {ite packed(a) (ν iff 0 ≤ i < len(a)) Bool(ν)}/same

∧ ∀A. (this ∶Ref , k ∶Str)/(this ↦ ⟨a ∶Arr(A), ˙this⟩) → {ν iff k = “length”}/same */ "#extern";

function Object() { ... }; Object.prototype = {"hasOwnProperty": __hasOwn, "constructor": Object, ... };

var __push = /*: ∀A. (this ∶Ref , x ∶A)/(this ↦ ⟨a ∶Arr(A), ˙this⟩)

→ Int /(this ↦ ⟨a′ ∶{ν ∶∶ Arr(A) ∧ arrSize(ν, a,1)}, ˙this⟩) */ "#extern";

var __pop = /*: ∀A. (this ∶Ref , x ∶A)/(this ↦ ⟨a ∶Arr(A), ˙this⟩)
→ {ite packed(a) (ν ∶∶ A) (ν ∶∶ A ∨Undef (ν))}

/ (this ↦ ⟨a′ ∶{ν ∶∶ Arr(A) ∧ arrSize(ν, a,−1)}, ˙this⟩) */ "#extern";

function Array() { ... }; Array.prototype = {"push": __push, "pop": __pop, "constructor": Array, ... };

Figure 6. Excerpt from prelude.js, which desugars to the prelude.dref file in the standard prelude

Additional Primitives. The new update and deletion prim-
itives setPropObj and delPropObj (Figure 5) affect only
the “own” object, since the prototype chain does not partici-
pate in the semantics. We model native JavaScript functions
like Object.prototype.hasOwnProperty with type an-
notations in the file prelude.js (Figure 6). Notice that the
function type for objects (the first in the intersection) checks
only the “own” object for the given key.

Constructors. JavaScript provides the expression form
new Foo(args) as a second way of constructing objects,
in addition to object literals whose prototypes are set to
Object.prototype. The semantics are straightforward,
but quite different than the traditional new syntax suggests.
Here, if Foo is any function (object), then a fresh, empty ob-
ject is created with prototype object Foo.prototype, and
Foo is called with the new object bound to this (along
with the remaining arguments) to finish its initialization.
We desugar constructors and new with standard objects and
functions (following λJS [21]) without adding any special
System !D constructs or primitive functions.

Inheritance. Several inheritance relationships, including
ones that simulate traditional classes, can be encoded with
the construction mechanism, as shown in the popular book
JavaScript: The Good Parts [10]. Here, we examine the pro-
totypal pattern, a minimal abstraction which wraps construc-
tion to avoid the unusual syntax and semantics that leads
to common errors; we discuss the rest in § 6. The function
beget (the basis for Object.create in ES5) returns a fresh
empty object with prototype o.

 /*: ∀L. o ∶Ref /(o↦ ⟨d ∶Dict , ȯ⟩)
 → Ref L/(L↦ ⟨{ν = empty}, o⟩)⊕ (o↦ same) */

 function beget(o) {

 /*: #ctor this ∶Ref → {ν = this} */

 function F() { return this; };

 F.prototype = o;

 return new /*:L*/ F(); }

The #ctor on line 4 instructs desugaring to: initialize the
function object with a “prototype” key that stores an
empty object literal (since it will be called as a constructor);
and expand the type annotation as follows to require that
this initially be empty, as is common for all constructors.

this ∶Ref /(this ↦ ⟨{ν = empty}, ˙this⟩)→ {ν = this}/same

The assignment on line 6 strongly updates Foo.prototype
(overwriting its initial empty object) with the argument o.
Thus, the object constructed (at location L) on line 7 has
prototype o, so beget has the ascribed type. In most cases,
new can be used without a location annotation and a fresh
one is chosen. In this case, we annotate line 7 with L (from
the type of beget), which our implementation does not infer
because there is no input corresponding to L.

2.6 Arrays
The other workhorse data structure of JavaScript is the ar-
ray, which is really just an object with integer “indices” con-
verted to ordinary string keys. However, arrays pose several
tricky challenges as they are commonly used both as finite
tuples as well as unbounded collections.

var arr = [17, "hi", true];

arr[3] = 3; arr.push(4);

assert (arr.length == 5 && arr[5] == undefined);

As for any object, retrieving a non-existent key returns
undefined rather than raising an “out-of-bounds” excep-
tion. Like other objects, arrays are extensible simply by
writing “past the end.” Array literal objects have proto-
type Array.prototype, which includes a push (resp. pop)
function for adding an element to (resp. removing an ele-
ment from) the end of an array.

Loops are used to iterate over arrays of unknown size. But
since lookups may return undefined, it is important to track
when an access is “in-bounds.” JavaScript bestows upon
arrays an unusual “length” property, rather than a method,



to help. Reading it returns the largest integer key of the array,
which is not necessarily its “size” because it may contain
“holes” or even non-integer keys. Furthermore, assigning a
number n to the “length” of an array either truncates it if
n is less than its current length, or extends it (by padding
with holes) if it is greater. Despite the unusual semantics,
programmers commonly use arrays as if they are traditional
“packed” arrays with integer “indices” zero to “size” minus
one. The type system must reconcile this discrepancy.

Array Types. We introduce a new syntactic type term
Arr(T ) and maintain the following four properties for ev-
ery value a that satisfies the has-type predicate a ∶∶ Arr(T ).
We refer to strings that do not coerce to integers as “safe,”
and we use an uninterpreted predicate safe to describe such
strings (e.g., safe(“foo”) whereas ¬safe(“17”)).

(A1) a contains the special “length” key.

(A2) All other “own” keys of a are (strings that coerce to)
integers.

(A3) For all integers i, either a maps the key i to a value of
type T , or it has no binding for i.

(A4) All inherited keys of a are safe (i.e., non-integer) strings.

An array can have arbitrary objects in its prototype chain,
so to ensure (A4), we require that all non-array objects bind
only safe strings. This sharp distinction between between ar-
ray objects (that bind integer keys) and non-array objects
(that bind safe string keys) allows System !D to avoid rea-
soning about string coercions, and does not significantly
limit expressiveness because, in our experience, programs
typically conform to this division anyway. To enforce this
restriction, the type for keys manipulated by primitives in
objects.dref and prelude.js is actually SafeStr , rather
than Str as shown in Figure 5 and Figure 6, where SafeStr ○=
{Str(ν) ∧ safe(ν)}. We discuss an alternative approach in
§7 that allows non-array objects to bind unsafe strings.

Packed Arrays. Arrays a that additionally satisfy the unin-
terpreted predicate packed(a) enjoy the following property,
where len(a) is an uninterpreted function symbol.

(A5) For all integers i, if i is between zero and len(a) minus
one, then a maps i to a value of type T . Otherwise, a has
no binding for i.

Tuple Arrays. Using additional predicates, System !D
gives precise types to array literals, which are often used
as finite tuples in idiomatic code. For example, we can de-
scribe pairs as follows:

(Int , Int)
○

= {ν ∶∶ Arr(Int) ∧ packed(ν) ∧ len(ν) = 2}

(Bool , Str)
○

= {ν ∶∶ Arr(Top) ∧ packed(ν) ∧ len(ν) = 2

∧ Str(sel(ν,0)) ∧Bool(sel(ν,1))}

Thus, the technique of nested refinements allows us to
smoothly reason about arrays both as packed homogeneous
collections as well as heterogeneous tuples.

Array Primitives. We define several array-manipulating
primitives in objects.dref (some of which we show
in Figure 5) that maintain and use the array invariants
above. For key lookup on arrays, we define three primi-
tives: getIdxArr looks for the integer key i on the own
object a and ignores the prototype chain of a because (A4)
guarantees that a will not inherit i, and returns a value sub-
ject to the properties (A3) and (A5) that govern its integer
key bindings; getLenArr handles the special case when the
string key k is “length”, which (A1) guarantees is bound
by a, and returns the the true length of the array only if it is
packed; and getPropArr deals with all other (safe) string
keys k by reading from the prototype chain of the array
(re-using the heap unrolling mechanism) ignoring its own
bindings because of (A2).

For array updates, we define setIdxArr that uses the fol-
lowing macros to preserve packedness (A5) when possible.

arrSet(a′, a, i)
○

= if 0 ≤ i < len(a) then arrSize(a′, a,0)else

if i = len(a) then arrSize(a′, a,1)else true

arrSize(a′, a, n)
○

= packed(a)⇒

(packed(a′) ∧ len(a′) = len(a) + n)

In particular, the updated array a′ is packed if: (1) the orig-
inal array a is packed; and (2) the updated index i is either
within the bounds of a (in which case, the length of a′ is the
same as a) or just past the end (so the length of a′ is one
greater than a). In similar fashion, we specify the remaining
primitives for update and deletion to maintain the array in-
variants, and the ones for key membership to use them, but
we do not show them in Figure 5.

In prelude.js (Figure 6), we use precise types to model
the native push and pop methods of Array.prototype

(which maintain packedness, as above), as well as the be-
havior of Object.prototype.hasOwnProperty on arrays
(the last two cases of the intersection type). Thus, the pre-
cise dependent types we ascribe to array-manipulating oper-
ations maintain invariants (A1) through (A5) and allow DJS
to precisely track array operations.

Desugaring. It may seem that we need to use separate
primitive functions for array and non-array object opera-
tions, even though they are syntactically indistinguishable in
JavaScript. Nevertheless, we are able to desugar DJS based
purely on expression syntax (and not type information) by
unifying key lookup within a single primitive getElem and
giving it a type that is the intersection of the (three) array
lookup primitives and the (one) non-array lookup primitive
getPropObj. We define getElem in Figure 5, where we
specify the intersection type using and and type as syntac-
tic sugar to refer to the previous type annotations. We de-
fine similar unified primitives for setElem, hasElem, and
delElem (not shown in Figure 5). Desugaring uniformly
translates object operations to these unified general primi-
tives, and type checking of function calls ensures that the
appropriate cases of the intersection type apply.



2.7 Collections
As discussed in §2.2, strong updates are sound only for ref-
erences that point to exactly one object, which is far too re-
strictive as real programs manipulate collections of objects.
In this section, we describe weak references in DJS to refer
to multiple objects, a facility that enables programming with
arrays of mutable objects as well as recursive types.

Weak References. In the following example, we iterate
over an array of passenger objects and compute the sum
of their weights; we use a default value max_weight when
a passenger does not list his weight (ignore the unfamiliar
annotations for now).

 /*: (˜̀
pass ↦ frzn) → same */

 for (i=0; i < passengers.length; i++) {

 var p = passengers[i];

 /*: #thaw p */

 if (p.weight) { sum += p.weight; }

 else { sum += max_weight; }

 /*: #freeze p */

 }

We could describe the array passengers with the type Ref `
for a location `. However, this type is not very useful as it
denotes an array of references to a single object.

Weak Locations. To refer to an arbitrary number (zero
or more) objects of the same type, we adopt the Alias
Types [32] solution, which categorizes some locations as
weak to describe an arbitrary number of locations that satisfy
the same type, and syntactically ensures that weak locations
are weakly updated.

We introduce a new kind of heap binding (˜̀↦ ⟨T, `′⟩),
where ˜̀is a weak location, all objects that might reside there
satisfy T , and `′ is the strong location of the prototype of all
objects that reside at location ˜̀. There is no heap binder for
weak locations since there is not a single value to describe.

In our example, we can use (˜̀
pass ↦ ⟨Tpass , `op⟩)

to describe passenger objects, where `op is the location
of Object.prototype and Tpass is the dictionary type
{Dict(ν)∧has(ν,“weight”)⇒ Num(sel(ν,“weight”))}.
If we assign the type {ν ∶∶ Arr(Ref ˜̀

pass) ∧ packed(ν)},
to passengers, then p has type Ref ˜̀

pass , and thus each
(desugared) use of p is a dictionary of type Tpass . This
type is quite unsatisfying, however, because the conditional
establishes that along the then-branch, p does possess the
key and therefore should be assigned the more precise type
{Num(sel(d,“weight”))}.

Thaw and Freeze. To solve this problem, we adopt a
mechanism found in derivatives of Alias Types (e.g., [2,
12, 15, 31]) that allows a weak location to be temporarily
treated as strong. A weak location ˜̀ is said to be frozen if
all references Ref ˜̀use the location only at its weak (invari-
ant) type. The type system can thaw a location, producing a
strong reference Ref `k (with a fresh name) that can be used

to strongly update the type of the cell. While a location is
thawed, the type system prohibits the use of weak references
to the location, and does not allow further thaw operations.
When the thawed (strong) reference is no longer needed, the
type system checks that the original type has been restored,
re-freezes the location, and discards the thawed location.
Soundness of the approach depends on the invariant that
each weak location has at most one corresponding thawed
location at a time.

In our example, we do not need to temporarily violate
the type of p, but the thaw/freeze mechanism does help
us relate the two accesses to p. The thaw state annotation
above the loop declares that before each iteration of the loop
(including the first one), the location ˜̀

pass must be frozen.
The thaw annotation on line 4 changes the type of p to a
strong reference to a fresh thawed location `1, which stores
a particular dictionary on the heap (named with a binder)
that is retrieved by both subsequent uses of p. Thus, we can
relate the key membership test to the lookup, and track that
p.weight produces a number. The freeze annotation on line
7 restores the invariant required before the next iteration. We
describe this technique further in §4.

Recursive Types. We reuse the weak location mecha-
nism to describe recursive data structures. Consider the
following adapted from the SunSpider [34] benchmark
access-binary-trees.js, annotated in DJS.

 /*: #define Ttn {“i” ∶Num,“l”,“r” ∶Ref ˜̀
tn} */

 /*: #weak (˜̀
tn ↦ ⟨Ttn, `tnp⟩) */

 /*: #ctor (this ∶Ref , left , right ∶Ref ˜̀
tn, item ∶Num)

 /(˜̀
tn ↦ frzn) → Ref ˜̀

tn /same */

 function TreeNode(left, right, item) {

 this.l = left; this.r = right; this.i = item;

 /*: #freeze this */

 return this;

 }

 /*: this ∶Ref ˜̀
tn → Num */

 TreeNode.prototype.itemCheck = function f() {

 // thaw/freeze annotations inferred

 if (this.l == null) return this.item;

 else { return this.i

 + f.apply(this.l)

 - f.apply(this.r); }

 }

The source-level macro on line 1 introduces Ttn to abbre-
viate the type of TreeNodes, using traditional record type
syntax instead of the underlying McCarthy operators. Line
2 defines the weak location for TreeNodes, using the pre-
dictable location `tnp created by desugaring for the object
TreeNode.prototype. The constructor annotation itself
declares that the return type is a reference to one of these
recursive objects, which System !D verifies by checking
that on line 6 the appropriate fields are added to the strong,
initially-empty object this before it is frozen and returned.



Recursive Traversal. There are two differences in the
itemCheck function above compared to the original ver-
sion, which cannot be type checked in DJS. First, we name
the function being defined (notice the f on line 11), a
JavaScript facility for recursive definitions. Second, we write
f.apply(this.r) instead of this.r.itemCheck() as in
the original, where the native JavaScript function apply al-
lows a caller to explicitly supply a receiver argument. The
trouble with the original call is that it goes through the heap
(in particular, the prototype chain of this) to resolve the re-
cursive function being defined. This function will be stored
in a strong object, and we have no facility (e.g., mu-types)
for strong objects with recursive types; our only mechanism
is for weak objects. If we write f.apply(this.r), how-
ever, the recursive function f is syntactically manifest, and
we can translate the definition with a call to the standard
fix primitive (Figure 2). In §5, we describe how we handle
a limited form of apply that is sufficient for our idiomatic
recursive definitions in DJS. We expect that we can add a
more powerful mechanism for recursive types that supports
the original code as written, but we leave this to future work.

2.8 Rest of the Paper
We have now completed our tour of Dependent JavaScript.
Next, we formally define the syntax of System !D in § 3
and the type system in § 4. In, § 5, we present the syntax
of DJS and its desugaring to System !D. We discuss our
implementation and results in §6, directions for future work
in § 7, and related work in § 8. Additional details may be
found in an accompanying technical report [7].

3. Syntax and Semantics of System !D
We now introduce the formal syntax of values, expressions,
and types of System !D, defined in Figure 7.

Values. Values v include variables x, constants c, lamb-
das λx. e, (functional) dictionaries v1 ++ v2 ↦ v3, and
run-time heap locations r. The set of constants c includes
base values (numbers, booleans, strings, the empty dictio-
nary {}, null, undefined, NaN, etc.) and the primitive
functions from basics.dref and objects.dref (typeof,
get, getElem, etc.). We use tuple syntax (v0, . . ., vn) as
sugar for the dictionary with fields “0” through “n” bound
to the component values. Logical values w are all values and
applications of primitive function symbols F , such as addi-
tion + and dictionary selection sel , to logical values.

Expressions. We use an A-normal expression syntax so
that we need only define substitution of values (not arbi-
trary expressions) into types. We use a more general syntax
for examples throughout this paper, and our implementation
desugars expressions into A-normal form. Expressions e in-
clude values, function application, if-expressions, and let-
bindings. The ascription form e as T allows source-level
type annotations. Since function types will be parameterized

by type, location, and heap variables, the syntax of function
application requires that these be instantiated. Reference op-
erations include reference allocation, dereference, and up-
date, and the run-time semantics maintains a separate heap
that maps locations to values. The expression newobj ` v v′

stores the value v at a fresh location r — where the name
` is a compile-time abstraction of a set of run-time loca-
tion names that includes r – with its prototype link set to
v′, which should be a location. The thaw ` v operation con-
verts a weak reference to a strong strong one; freeze ˜̀θ v
converts a strong reference to a weak one, where thaw state
θ is used by the type system for bookkeeping.

The operational semantics is standard, based on λJS with
minor differences. For example, we make prototype links
manifest in the syntax of heaps (to facilitate heap unrolling
in the type system), whereas λJS stores them inside objects
in a distinguished “ proto ” field. We refer the reader to
[21] for the full details.

Types and Formulas. Values in System !D are described
by refinement types of the form {x ∣p} where x may appear
free in the formula p and existential types ∃x ∶T . S where x
may appear free in S. Rather than introduce additional syn-
tactic categories, we assume, by convention, that existential
types do not appear in source programs; they are created only
during type checking in a controlled fashion that does not
preclude algorithmic type checking [25]. When the choice
of refinement binder does not matter, we write {p} as short-
hand for {ν ∣p}.

The language of refinement formulas includes predicates
P , such as equality and the dictionary predicate has , and the
usual logical connectives. Similar to the syntax for expres-
sion tuples, we use (T1, . . ., Tn) as sugar for the dictio-
nary type with fields “0” through “n” with the correspond-
ing types. As in System D, we use an uninterpreted has-
type predicate w ∶∶ U in formulas to describe values that
have complex types, represented by type terms U , which in-
cludes function types, type variables, null, reference, and ar-
ray types. A reference type names a strong or weak location
in the heap, where a strong location ` is either a constant a
or a variable L and a weak location ˜̀ is a constant ã. We
discussed function types in §2.4; now we use the metavari-
able W to range over worlds. A world x ∶T /Σ̂ describes the
binders and types of a tuple of values, where every compo-
nent except the first (x of type T ) resides in the heap Σ̂.

Heap Types. A heap type Σ̂ is an unordered set of heap
variables H and heap bindings ĥ concatenated with the
⊕ operator. To simplify the presentation, we syntactically
require that each heap has exactly one heap variable, so we
write a heap type as the pair (H, ĥ), where H is the “deep”
part for which we have no information and ĥ is the “shallow”
part for which have precise location information. The heap
binding (` ↦ x ∶T ) represents the fact that the value at
location ` has type T ; the binder x refers to this value in the
types of other heap bindings. The binding (` ↦ ⟨x ∶T , `′⟩)



Values v ∶∶= x ∣ c ∣ v1 ++ v2 ↦ v3 ∣ λx. e ∣ r

Expressions e ∶∶= v ∣ [T ; `; Σ̂] v1 v2 ∣ if v then e1 else e2 ∣ let x = e1 in e2 ∣ e as T

∣ ref ` v ∣ deref v ∣ v1 ∶= v2 ∣ newobj ` v v′ ∣ freeze ˜̀θ v ∣ thaw ` v

Types S,T ∶∶= {x ∣ p} ∣ ∃x ∶T . S

Formulas p, q ∶∶= P (w) ∣ w ∶∶ U ∣ HeapHas(H, `,w) ∣ p ∧ q ∣ p ∨ q ∣ ¬p

Logical Values w ∶∶= v ∣ F (w) ∣ HeapSel(H, `,w)

Syntactic Type Terms U ∶∶= ∀[A;L;H]W1 →W2 ∣ A ∣ Null ∣ Ref ` ∣ Ref ˜̀ ∣ Arr(T )

Heap Bindings ĥ ∶∶= (`↦ x ∶T ) ∣ (`↦ ⟨x ∶T , `′⟩) ∣ (˜̀↦ θ) ∣ ĥ1 ⊕ ĥ2 ∣ ∅

Thaw States θ ∶∶= frzn ∣ thwd `

Worlds W ∶∶= x ∶T /Σ̂ x, y, z ∈ Identifiers A,B ∈ TypeVariables

Heaps Σ̂ ∶∶= (H, ĥ) a ∈ LocationConstants H ∈ HeapVariables

Strong Locations ` ∶∶= a ∣ L r ∈ DynamicHeapLocations L ∈ LocationVariables

Weak Locations ˜̀ ∶∶= ã F ∈ LogicalFunctionSymbols P ∈ LogicalPredicateSymbols

c ∈ ValueConstants ⊃ { true,false,null,undefined,1,2,“hanna”,(==),!,typeof,get,getElem,fix }

Figure 7. Syntax of System !D

additionally records a prototype link `′. The binding (˜̀↦ θ)
records the current thaw state of weak location ˜̀, to help
maintain the invariant that it has at most one thawed location
at a time. We abuse the notation (H, ĥ1) ⊕ ĥ2 to mean
(H, ĥ1 ⊕ ĥ2).

Uninterpreted Heap Symbols. To describe invariants about
the deep part of a heap, System !D introduces two unin-
terpreted heap symbols. The predicate HeapHas(H, `, k)
represents the fact that the chain of objects in H start-
ing with ` has the key k. Similarly, the function symbol
HeapSel(H, `, k) refers to the value retrieved when looking
up key k in the heap H starting with `.

4. Type Checking
In this section, we discuss the well-formedness, typing, and
subtyping relations of System !D. The type system reuses the
System D [9] subtyping algorithm to factor subtyping obli-
gations between a first-order SMT solver and syntactic sub-
typing rules. The novel technical developments here are: the
formulation of flow-sensitive heap types in a dependent set-
ting; the use of uninterpreted heap symbols to regain preci-
sion in the presence of imperative, prototype-based objects;
the encoding of array primitives to support idiomatic use of
JavaScript arrays; and the use of refinement types to assign
precise types to JavaScript operators.

Environments. The type checking relations make use of
type environments Γ and heap environments Σ.

Γ ∶∶= ∅ ∣ Γ, x ∶T ∣ Γ, p ∣ Γ,A ∣ Γ, L ∣ Γ,H ∣ Γ, (˜̀↦ ⟨T, `⟩)
Σ ∶∶= (H,h)

h ∶∶= ∅ ∣ h1 ⊕ h2 ∣ (`↦ v) ∣ (`↦ ⟨v, `′⟩) ∣ (˜̀↦ θ)

A type environment binding records either: the derived type
for a variable; a formula p to track control flow along a
conditional branch; a polymorphic variable introduced by a
function type; or the description of a weak location (which
does not change flow-sensitively), namely, that every object
stored at ˜̀ satisfies type T and has prototype link `. A heap
environment is just like a heap type, except a strong location
` binds the value v it stores (as opposed to the type of v).

4.1 Well-Formedness
As usual in a refinement type system, we define well-
formedness relations (see [7]) that govern how values may
be used inside formulas. The key intuition is that formulas
are boolean propositions and mention only variables that are
currently in scope. Locations in a heap type Σ̂ must either
be location constants or location variables bound by the type
environment, and may not be bound multiple times. All heap
binders may refer to each other. Thus, the values in a heap
can be regarded as a dependent tuple. For the input world
x1 ∶T1/Σ̂1 of a function type, the binder x1 and the binders
in Σ̂1 may appear in the output world W2.

4.2 Subtyping
Several relations (see Figure 8 and [7]) comprise subtyping.

Subtyping and Implication. As in System D, subtyping on
refinement types reduces to implication of refinement formu-
las, which is discharged by a combination of uninterpreted,
first-order reasoning and syntactic subtyping. Our treatment
of existential types follows the algorithmic (decidable) ap-
proach in [25]. In particular, when on the left side of an
obligation, the S-EXISTS rule adds the existential binding
to the environment; there is no support for existentials on



Subtyping Γ ⊢ T1 ⊑ T2

[S-REFINE]

y fresh Γ, p[y/x]⇒ q[y/x]

Γ ⊢ {x ∣ p} ⊑ {x ∣ q}

[S-EXISTS]

Γ, x ∶T ⊢ S1 ⊑ S2

Γ ⊢ ∃x ∶T . S1 ⊑ S2

Syntactic Subtyping (selected rules) Γ ⊢ U1 <∶ U2

[U-ARRAY]

Γ ⊢ Arr(T ) <∶ Arr(T )

[U-VAR]

Γ ⊢ A <∶ A

[U-STRONGREF]

Γ ⊢ Ref ` <∶ Ref `

[U-NULL]

Γ ⊢ Null <∶ Ref ˜̀

[U-WEAKREF]

Γ ⊢ Ref ˜̀<∶ Ref ˜̀

Figure 8. Subtyping for System !D

Value Typing (selected rules) Γ; Σ ⊢ v ∶∶ T

[T-CONST]
Γ; Σ ⊢ c ∶∶ ty(c)

Γ(x) = S

Γ; Σ ⊢ x ∶∶ {y ∣ y = x}
[T-VAR]

[T-FUN]

U = ∀[A;L;H] x ∶T1 /Σ̂1 →W2 Γ ⊢ U

HeapEnv(Σ̂1) = (z ∶S,Σ1) Γ1 = Γ,A,L,H,x ∶T1, z ∶S
Γ1; Σ1 ⊢ e ∶∶ T2 /Σ2 Γ1 ⊢ T2 /Σ2 ⊧ W2

Γ; Σ ⊢ λx. e ∶∶ {y ∣ y ∶∶ U}

Figure 9. Value type checking for System !D

the right. The way in which type checking introduces exis-
tentials guarantees that they always appear on the left.

References and Arrays. As in Alias Types [32], we en-
force the invariant that distinct strong locations do not alias,
so references to them are never related by subtyping. In con-
trast, weak locations describe zero or more locations, and
it is safe to treat null as a subtype of any weak location
(U-NULL). That is, weak references are nullable but strong
ones are not. Arrays are invariant in their type parameter (U-
ARRAY), as usual, but can be related with additional predi-
cates. For example, {ν ∶∶ Arr(Int)∧len(ν) = 2} is a subtype
of {ν ∶∶ Arr(Int)}.

Heaps. The heap subtyping judgement (defined in [7]) re-
lates two heap types (H1, ĥ1) and (H2, ĥ2) if: (1) the heaps
agree on the “deep” part, that is, ifH1 =H2; (2) the structure
of the “shallow” parts ĥ1 and ĥ2 match modulo permutation;
and (3) the heap bindings in ĥ1 and ĥ2, which can be thought
of as dependent tuples, are related by subtyping.

4.3 Value Typing
The value typing judgement Γ; Σ ⊢ v ∶∶ T (defined in
Figure 9 and [7]) verifies that the value v has type T in
the given environments. Since values do not produce any
effects, this judgement does not produce an output heap
environment. Each primitive constant c has a type, denoted
by ty(c), that is used by T-CONST. In our implementation,

ty(c) is defined in the standard prelude files (basics.dref,
objects.dref, and prelude.dref). The standard T-VAR
rule assigns singleton types to variables. The rule T-FUN
uses the procedure HeapEnv that takes a “snapshot” of the
input heap type Σ̂1 by collecting all of its binders z ∶S to add
to the type environment and producing a heap environment
Σ1 for type checking the body. Dually, the world satisfaction
judgement Γ1 ⊢ T2/Σ2 ⊧ W2 (defined in [7]) checks that
the resulting type and heap environment T2/Σ2 satisfiesW2,
modulo permutation of heap bindings.

4.4 Expression Typing
The expression typing judgement Γ; Σ ⊢ e ∶∶ T /Σ′ (in
Figure 10 and [7]) verifies that the evaluation of expression e
produces a value of type T and a new heap environment Σ′.
We write U as shorthand for the type {ν ∶∶ U}, and Σ ≡ Σ′

for heap equality modulo permutation of bindings.

Prenex Quantified Types. The T-LET rule uses an existen-
tial to describe the type T1 of the variable x that goes out of
scope after the body expression is checked. Alternatively, the
more traditional approach (e.g., [9]) requires that the variable
be eliminated (e.g., via subsumption), but we use existentials
because it simplifies several other typing rules.

So that existentials appear only on the left side of subtyp-
ing obligations, we ensure that the typing rules derive prenex
quantified types of the form ∃x ∶T . S, where all the types T
and S are refinement types, not existential types. In particu-
lar, to combine the worlds of two branches, the Join opera-
tor (defined in [7]), rearranges existentials to ensure that the
resulting world is in prenex form. For example, for a condi-
tional with guard b, the join of (∃x1 ∶T1. Top /(`↦ x1)) and
(∃x2 ∶T2. Top /(`↦ x2)) is (∃y ∶T12. Top /(`↦ y)) where
T12

○

= {if b then T1(ν) else T2(ν)}.

Imperative Operations. We use two kinds of reference
cells in System !D: simple references that store base val-
ues and functions without prototype links, and object ref-
erences that store dictionaries paired with prototype links.
We require that all imperative operations go through strong
locations. We do not need weak, simple locations since they
cannot appear in DJS programs and they are not needed for
desugaring; and we do not need weak, object locations be-
cause we can use our thawing mechanism instead.

Three rules manipulate simple references. To check the
reference allocation ref ` v, the rule T-REF ensures that ` is
not already bound in the heap, and then adds a binding that
records exactly the value being stored. The rule T-DEREF
checks that the given value is a reference to a simple loca-
tion, and then retrieves the stored value; this is the imperative
analog to the “selfifying” T-VAR rule. The rule T-SETREF
strongly updates a simple location.

The rule T-NEWOBJ stores the dictionary v1 in the heap
at location `1 along with a prototype link to the location `2
that v2 refers to. Although no typing rules manipulate object
locations, several primitives (getElem, setElem, etc.) do.



Expression Typing (selected rules) Γ; Σ ⊢ e ∶∶ T /Σ′

[T-VAL]
Γ; Σ ⊢ v ∶∶ T

Γ; Σ ⊢ v ∶∶ T /Σ

Γ; Σ ⊢ e1 ∶∶ T1 /Σ1 Γ, x ∶T1; Σ1 ⊢ e2 ∶∶ T2 /Σ2

Γ; Σ ⊢ let x = e1 in e2 ∶∶ ∃x ∶T1. T2 /Σ2

[T-LET]

Γ; Σ ⊢ v ∶∶ S Γ, truthy(v); Σ ⊢ e1 ∶∶ T1 /Σ1 Γ, falsy(v); Σ ⊢ e2 ∶∶ T2 /Σ2 T /Σ′ = Join(v, T1 /Σ1, T2 /Σ2)

Γ; Σ ⊢ if v then e1 else e2 ∶∶ T /Σ′
[T-IF]

[T-REF]
` ∉ dom(Σ) Γ; Σ ⊢ v ∶∶ T Σ′ = Σ⊕ (`↦ v)

Γ; Σ ⊢ ref ` v ∶∶ Ref `/Σ′
Γ; Σ ⊢ v ∶∶ Ref ` Σ ≡ Σ0 ⊕ (`↦ v′)

Γ; Σ ⊢ deref v ∶∶ {y ∣ y = v′}/Σ
[T-DEREF]

[T-SETREF]

Γ; Σ ⊢ (v1, v2) ∶∶ (Ref `, T )

Σ ≡ Σ0 ⊕ (`↦ v) Σ′ = Σ0 ⊕ (`↦ v2)

Γ; Σ ⊢ v1 ∶= v2 ∶∶ {x ∣x = v2}/Σ′

`1 ∉ dom(Σ) Γ; Σ ⊢ (v1, v2) ∶∶ (Dict , Ref `2)
Σ ≡ Σ0 ⊕ (`2 ↦ ⟨v′, `3⟩) Σ′ = Σ⊕ (`1 ↦ ⟨v1, `2⟩)

Γ; Σ ⊢ newobj `1 v1 v2 ∶∶ Ref `1 /Σ′
[T-NEWOBJ]

Γ; Σ ⊢ v1 ∶∶ ∀[A;L;H]W1 →W2 Γ; Σ ⊢ v2 ∶∶ T2 Γ ⊢ [T /A] Γ ⊢ [m/M] Γ ⊢ [Σ̂/H]

W ′

2 = Freshen(W2) (W ′

1,W
′′

2 ) = Unroll(HInst(LInst(TInst((W1,W
′

2),A, T ), L, `),H, Σ̂))

Γ ⊢ T2 /Σ ⊧ W ′

1; π W ′

1 = x ∶T11 /Σ̂11 π′ = π[v2/x] π′W ′′

2 = x′ ∶T12 /Σ̂12 HeapEnv(Σ̂12) = (y ∶S,Σ12)

Γ; Σ ⊢ [T ; `; Σ̂] v1 v2 ∶∶ ∃x′ ∶T12. ∃y ∶S. {z ∣ z = x
′

}/Σ12

[T-APP]

Figure 10. Expression type checking for System !D

Unroll(HeapHas((H, ĥ), `, k)) = UnrollHas(H, ĥ, `, k)

UnrollHas(H, ĥ, `, k) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

has(d, k) ∨UnrollHas(H, ĥ, `′, k) if (`↦ ⟨d ∶T , `′⟩) ∈ ĥ
HeapHas(H, `, k) else if ` ≠ ○
false else (i.e., ` = ○)

Unroll(ψ(HeapSel((H, ĥ), `, k))) = UnrollSel(ψ,H, ĥ, `, k)

UnrollSel(ψ,H, ĥ, `, k) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

ite has(d, k) ψ(sel(d, k)) (UnrollSel(ψ,H, ĥ, `′, k))

if (`↦ ⟨d ∶T , `′⟩) ∈ ĥ
ψ(HeapSel(H, `, k)) else if ` ≠ ○
ψ(undefined) else (i.e., ` = ○)

Figure 11. Heap unrolling

Function Application. To type check [T ;m; Σ̂] v1 v2, the
T-APP rule must perform some heavy lifting. Three well-
formedness checks ensure that the number of type, location,
and heap parameters must match the number of type, loca-
tion, and heap variables of the function type, and that the
sequence of locations ` contains no duplicates to ensure the
soundness of strong updates [32]. The procedure Freshen
generates fresh binders for the output world so that bindings
at different call sites do not collide.

The substitution of parameters for polymorphic variables
proceeds in three steps. First, the type variablesA inside has-
type predicates are instantiated with the type parameters T
using the procedure TInst. Second, the location variables L
are replaced with the parameters ` by ordinary substitution.
Third, the heap variables H are instantiated with heap pa-
rameters using a procedure HInst that substitutes heap bind-

ings for heap variables. As a result, HeapHas and HeapSel
may refer to arbitrary heaps rather than just heap variables,
as required. These pre-types (and pre-formulas, pre-heaps,
etc.) are expanded using the procedure Unroll, defined in
Figure 11, that transitively follows prototype links in heap
bindings, precisely matching the semantics of object key
membership and lookup. We write the location ○ for the root
of the prototype hierarchy. We use the notation ψ(p) to refer
to a formula context ψ, a formula with a hole, filled with p.

At this point, the polymorphic variables have been fully
instantiated. Next, the argument type T2 and current heap Σ
are checked to satisfy the input world x ∶T11/Σ̂11. If so, the
substitution π maps binders from the input heap Σ̂11 to the
corresponding ones in the current heap Σ. The substitution
is extended with a binding from x to the argument v2 and
applied to the output world. Then, like in the T-FUN rule, we
use HeapEnv to collect the bindings y ∶S in Σ̂12 and convert
it to a heap environment Σ12. Finally, the derived type uses
existentials to describe the values in the output world.

Thaw and Freeze. To safely allow a weak, object location
˜̀ to be treated temporarily as strong, System !D ensures that
˜̀has at most one corresponding thawed location ` at a time
(if there is none, we say ˜̀ is frozen) by recording its thaw
state — either thwd ` or frzn. One interesting aspect of our
formulation is that, to facilitate idiomatic programming, we
choose to allow the use of possibly-null references. Instead,
to require that all references be provably non-null before
use, we can simply update the type signatures for object
primitives. We omit the typing rules for thawing and freezing
from Figure 10; we refer the reader to [7] for more details.

Location Polymorphism. To simplify the presentation of
System !D in this paper, we have limited location polymor-



phism in two ways. First, we allow location variables L to
refer only to strong locations. In [7], we describe how to
add weak location polymorphism to function types and up-
date the typing rules appropriately. Second, we offer only
a single mechanism — namely, universal quantification —
to abstract over both simple locations as well as object lo-
cations. As a result, functions must be quantified over all
simple locations inserted by desugaring (to model impera-
tive JavaScript variables), which clutters function types and,
worse, requires explicit declaration and instantiation of lo-
cations that are “internal” to the desugaring translation and
not accessible in the original DJS program. Instead, in [7],
we show how to use existential quantification in the output
types of functions to describe simple locations, and use uni-
versal quantification in the input types of functions only to
describe object locations, which are visible in DJS.

4.5 Type Soundness
Many standard stuck states are not stuck in JavaScript: a
function can be applied with any number of arguments; an
operator can be used with any values because of implicit
coercion; and, all property lookups succeed (possibly pro-
ducing undefined). Nonetheless, several (non-exceptional)
stuck states remain: applying a non-function value; and re-
trieving a property for a non-object value. System !D is de-
signed to ensure that well-typed programs do not get stuck
and can only fail with exceptions due to retrieving a property
from undefined or null. We can also provide the stronger
guarantees that only bound keys are retrieved and only non-
null objects are accessed (thus ruling out the possibility of
null dereference exceptions) simply by changing the types
of object primitives appropriately.

We expect that System !D satisfies progress and preser-
vation theorems, but we have not yet proven them. The pro-
cess will likely be tedious but not require new proof tech-
niques. Unlike System D, which introduced the problem-
atic nesting of syntactic types inside uninterpreted formulas,
System !D does not introduce any new mechanisms in the
refinement logic. Furthermore, several variations of Alias
Types [23, 32, 37], even in a dependent setting [31], have
been proven sound, and we expect to re-use their techniques
to prove the soundness of System !D.

5. Desugaring DJS to System !D
In Figure 12, we present a selection of the explicitly typed
abstract syntax of DJS along with desugaring rules ⟪ e ⟫ = e
that translate DJS expressions e to System !D expressions e.
Most of the desugaring rules follow λJS [21] closely, so we
limit our discussion to the aspects most relevant to DJS; we
refer the reader to [7] and their work for more details. We use
the metavariable I

○

= [T ;m; Σ̂] to range over instantiation
parameters for function application. Instantiation parameters
are usually inferred by the type checker (§6).

Desugaring (selected rules) ⟪ e ⟫ = e

⟪ c ⟫ = c [DS-CONST]

⟪ x ⟫ = deref x [DS-DEREF]

⟪ e1 = e2 ⟫ = ⟪e1⟫ ∶= ⟪e2⟫ [DS-SETREF]

⟪ var x = e; e′ ⟫ = let x = ref ax ⟪e⟫ in ⟪e′⟫ [DS-REF]

⟪ /∗ ∶ I ∗ / e1[e2] ⟫ = [DS-GETELEM]

/∗ ∶ I ∗ / getElem (⟪e1⟫, ⟪e2⟫)

⟪ /∗ ∶ I ∗ / e1[e2] = e3 ⟫ = [DS-SETELEM]

/∗ ∶ I ∗ / setElem (⟪e1⟫, ⟪e2⟫, ⟪e3⟫)

⟪ /∗ ∶ I ∗ / delete e1[e2] ⟫ = [DS-DELELEM]

/∗ ∶ I ∗ / delElem (⟪e1⟫, ⟪e2⟫)

⟪ /∗ ∶ I ∗ / e2 in e1 ⟫ = [DS-HASELEM]

/∗ ∶ I ∗ / hasElem (⟪e1⟫, ⟪e2⟫)

⟪ /∗ ∶ ` ∗ / { ek ∶ev } ⟫ = [DS-OBJLIT]

newobj ` {⟪ek0⟫↦ ⟪ev0⟫ ++ ⋯ } (pro(Object))

⟪ /∗ ∶ ` ∗ / [ e ] ⟫ = [DS-ARRLIT]

newobj ` {“0”↦ ⟪e0⟫ ++ ⋯ } (pro(Array))

⟪ /∗ ∶ I ∗ / e(e1, . . . , en) ⟫ = [DS-FUNCCALL]

/∗ ∶ I ∗ / 2⟪e⟫7 (window, (⟪e1⟫, . . ., ⟪en⟫))

⟪ /∗ ∶ I ∗ / e[e′](e1, . . . , en) ⟫ = [DS-METHCALL]

let obj = ⟪e⟫ in

let m = getElem (obj , ⟪e′⟫) in
/∗ ∶ I ∗ / 2m7 (obj , (⟪e1⟫, . . ., ⟪en⟫))

⟪ new /∗ ∶ `new I ∗ / e(e1, . . . , en) ⟫ = [DS-NEW]

let foo = ⟪e⟫ in

let obj = newobj `new {} (foo “prototype”) in
/∗ ∶ I ∗ / 2foo7 (obj , (⟪e1⟫, . . ., ⟪en⟫))

⟪ /∗ ∶ I ∗ / e.apply(e1, . . . , en) ⟫ = [DS-APPLY]

/∗ ∶ I ∗ / 2⟪e⟫7 (⟪e1⟫, (⟪e2⟫, . . ., ⟪en⟫))

Figure 12. Desugaring DJS to System !D

The DS-CONST rule for constants, the three DS-*REF
rules for mutable variables, and the four DS-*ELEM rules
for object and array operations are straightforward.

Object Literals. In the rules DS-OBJLIT and DS-ARRLIT,
we write pro(e)

○

= getProp (⟪e⟫, “prototype”) to set
the prototypes of fresh object and array literals, translated
to newobj which creates values with prototype links. Our
implementation inserts a fresh location if none is provided.

Function Application. The last four rules in Figure 12
handle different kinds function calls in JavaScript. The rules
DS-FUNCCALL and DS-METHCALL desugar “direct calls”
and “method calls”, where 2e7

○

= getElem (e, “ code ”).
Notice that non-receiver arguments are packed into a single
“arguments” tuple. In DS-FUNCCALL, we write window for
the “global object” supplied as the receiver for direct calls.
The DS-NEW rule handles object construction by creating a
fresh object with newobj whose prototype is set to the object
in the constructor object’s “prototype” field, and calls the
function in the “ code ” field to finish the initialization.



JavaScript provides two native functions apply and call
in Function.prototype that allow the caller to explicitly
supply the receiver argument. We do not provide general
support apply and call in DJS, because they require mech-
anisms beyond the scope of our (already-large) type sys-
tem; for example, the latter accepts an arbitrary number of
arguments. The primary benefit of (non-constructor) func-
tions as objects in JavaScript is that they inherit apply and
call from Function.prototype, but since we do not sup-
port them, we sacrifice little expressiveness if the type sys-
tem treats every non-constructor function as a scalar func-
tion value, rather than an object with the function stored
in “ code ”. Furthermore, we can then support the lim-
ited use of apply required for our recursive function idioms
in § 2.7 using the rule DS-APPLY that syntactically looks
for “apply” and explicitly sets the receiver. Because the
type systems prohibits (non-constructor) functions from be-
ing used as objects, there is no danger that the apply be
“hijacked” by overwriting the “apply” property.

Control Operators. Throughout the paper, we wrote only
JavaScript functions that have either a single return state-
ment or a return statement along every control flow path.
In general, however, return statements — as well as loop-
ing constructs and other control operators — can appear in
arbitrary positions. In System !D, we handle the general case
using break and label expressions, following λJS [21]. We
omitted the formulation from our presentation for ease of
exposition; see [7] for details.

6. Evaluation
In this section, we describe our implementation, the bench-
marks we have annotated and type checked so far that
demonstrate the expressiveness of DJS, and identify several
ways for future work to improve the tool.

6.1 Implementation
We have implemented a type checker for DJS, available at
ravichugh.com/djs, that is currently approximately 6,600
(non-whitespace, non-comment) lines of OCaml code. We
borrow the λJS [21] JavaScript parser, use their desugar-
ing as a starting point for our own, and use the Z3 SMT
solver [11] to discharge logical validity queries. We specify
the System !D primitive functions in the files basics.dref
and objects.dref, and JavaScript built-in functions like
Object.prototype.hasOwnProperty in prelude.js

(desugared to prelude.dref). These three files comprise
a standard prelude included with every desugared DJS pro-
gram for type checking.

Local Inference. Function definitions require explicit type
annotations, and we employ bidirectional type checking [29]
techniques to infer types for local expressions. At a function
application, we infer missing type and location parameters
by “greedily” matching the types of arguments against any

Adapted Benchmark Un Ann Queries Time
JS: The Good Parts
prototypal 18 36 731 2
pseudoclassical 15 23 706 2
functional 19 43 862 8
parts 11 20 605 3

SunSpider
string-fasta 10 18 263 1
access-binary-trees 34 50 2389 23
access-nbody 129 201 4225 39

V8
splay 17 36 571 1

Google Closure Library
typeOf 15 31 1975 52

Other
negate 9 9 296 1
passengers 9 19 310 3
counter 16 24 272 1
dispatch 4 8 219 1

Totals 306 518 13424 137

Figure 13. Benchmarks (Un: LOC without annotations;
Ann: LOC with annotations; Queries: Number of Z3 queries;
Time: Running time in seconds)

Arr(T ) and Ref L type terms in the the declared input type
and input heap. Because these type terms are invariant in
their parameters (recall the U-ARRAY and U-STRONGREF
rules from Figure 8), the greedy choice is always the right
one. For a function type with exactly one heap variable H
(like all the ones we have encountered) and input heap type
(H, ĥ), we infer the corresponding heap argument by simply
collecting all locations in the current heap environment that
do not match the explicit location bindings in ĥ. In our
benchmarks, we are able to omit most type and location
arguments and all heap arguments.

6.2 Benchmarks
To demonstrate the expressiveness of DJS, we have anno-
tated and checked several small examples — inspired by
JavaScript: The Good Parts [10], the Google Closure Li-
brary [19], and the SunSpider [34] and V8 [20] benchmarks
— that exercise a variety of invariants, besides those demon-
strated by previous examples (e.g., negate, passengers,
etc.). We also ported the counter and dispatch examples
from System D [9] to DJS to demonstrate the nesting of
function types inside objects with dynamic keys. Figure 13
summarizes our results, where for each example: “Un” is the
number of (non-whitespace, non-comment) lines of code in
the unannotated benchmark; “Ann” is the lines of code in the
annotated DJS version (including comments because they
contain annotations); “Time” is the running time rounded to
the nearest second, tested on a 2.66GHz machine with 4GB
of RAM running Ubuntu; and “Queries” is the number of
validity queries issued to Z3 during type checking.

Expressiveness. We highlight some of the features of DJS
that our benchmarks leverage. Besides the prototypal pattern
discussed in § 2.5, Crockford [10] presents three additional

ravichugh.com/djs


inheritance patterns using JavaScript’s construction mecha-
nism. Each of these examples relies on the support for im-
perative, prototype-based objects in DJS.

The behavior of the typeOf function is like the typeof

operator except that it returns the more informative result
“null” for null and “array” for arrays; the operator re-
turns “object” in both cases. The type specification for
typeOf depends on the ability to express intersections of
function types in DJS, and verifying it requires control-flow
tracking in the presence of mutation as well as a precise
specification for the native (ES5) function Array.isArray,
which we model in prelude.js.

The makeCumulative function in string-fasta.js it-
erates over an object with an unknown number of keys that
all store integers, and sums them in place within the object.
While iterating over the keys of the object, the function uses
a variable to store the key from the previous iteration, a sub-
tle invariant that DJS is able to express by describing the
heap before and after each iteration. Compared to the orig-
inal version, we allow the bindings to store arbitrary values
and use a tag-test to sum only the integer bindings. To spec-
ify the original version requires universally quantified for-
mulas, which DJS avoids to retain decidable type checking.

The splay benchmark defines the following interesting
tree node constructor. Rather than initializing each “own”
object with null left and right subtrees, the constructor’s
prototype object stores the defaults.

function Node(k,v) { this.k = k; this.v = v; }

Node.prototype.left = null;

Node.prototype.right = null;

After construction, however, Nodes are often extended with
explicit subtrees. Using the flexibility of refinements, we as-
sign each Node a type with the predicate has(ν,“left”)⇒
sel(ν,“left”) ∶∶ Ref ˜̀, where ˜̀ is the weak location that
describes Nodes, to ensure that retrieving the “left” key
produces another Node regardless of whether it is stored on
the object or not (and similarly for “right”).

Our largest example is access-nbody, which defines a
constructor function NBodySystem that creates a container
object to store an array of Body objects. The prototypes
of both constructors are augmented with methods, and the
thaw/freeze mechanism is heavily used while iterating over
the array of Body objects to read and write their fields.

6.3 Annotation Burden
As Figure 13 shows, our annotated benchmarks are approx-
imately 1.7 times as large (70% overhead) as their unanno-
tated versions on average. In our experience, a significant
majority of the annotation burden is boilerplate — unrelated
to the interesting typing invariants — that fall into the fol-
lowing five patterns. Our implementation includes prelim-
inary support for automatically inserting several common
patterns of annotations by tracking a limited amount of type

information during desugaring (that require no changes to
type checking). This effort has already significantly reduced
the annotation overhead, but there is plenty of room for fur-
ther improvements in future work.

Closures. If a function refers to a variable from an outer
scope, its heap type must explicitly list its location and type.
In the following example, the desugarer uses the predictable
locations api and ae when desugaring pi and e, and the
function type must contain the binding for api .

var pi = 3.14, e = 2.718;

/*: Top /(api ↦ n ∶Num) → Num /same */

function getPi() { return pi; }

To ease this burden, we collect the free variables in each
function definition and automatically add the corresponding
heap bindings that are missing. In situations where we can-
not insert a suitably precise type for a location, we allow the
programmer to annotate a variable declaration var i = /∗ ∶

T ∗ / e and we propagate T to functions that refer to i.

Loops. Because loops desugar to functions, they require a
heap type annotation (like for arbitrary closures) to describe
invariants that hold before and after every iteration. We infer
heap types for basic patterns like the following.

/*: (ai ↦ {Int(ν) ∧ i ≥ 0})⊕ (asum ↦ Num)

⊕ (ans ↦ Ref `)
⊕ (`↦ ⟨{ν ∶∶ Arr(Num) ∧ packed(ν)}, `′⟩) */

for (i=0; i < ns.length; i++) { sum += ns[i]; }

Thaw and Freeze. Every weak reference must first be
thawed before access, which quickly becomes burdensome.
As a simple aid, we surround an access to a weak refer-
ence with thaw and freeze operations, which is sufficient for
simple cases involving reads and weak updates. For more
complex invariants, like the relationship between accesses
to a weak reference (as in the passengers example from
§2.7), a single thaw and freeze pair must surround both ac-
cesses. In the future, we plan to insert these operations at
basic block and function boundaries in the style of [31] so
that objects are tracked with strong references as long as
possible.

Untampered Natives. Functions that use JavaScript prim-
itive functions like Object.prototype.hasOwnProperty
and Array.prototype.push and expect them not to be
overwritten, must explicitly constrain their input heaps as
such. In most cases, programmers expect natives to remain
“untampered,” so desugaring could augment all function
types with these constraints.

Constructor Prototypes. The purpose of a constructor C is
to allow its instances to inherit properties of C.prototype
(stored at location aCpro), but functions like useC that
use such an instance must then explicitly list the type of
C.prototype.



/*: #define TC {Dict(ν) ∧⋯ } */

/*: #ctor this ∶Ref /(this ↦ ⟨Emp, aCpro⟩)

→ {ν = this}/(this ↦ ⟨TC , aCpro⟩) */

function C() { ...; return this; }

C.prototype.f = /*: Tf */ ...;

C.prototype.g = /*: Tg */ ...;

/*: x ∶Ref /(x↦ ⟨TC , aCpro⟩)⊕

(aCpro ↦ ⟨Tf(sel(ν,“f”)) ∧ Tg(sel(ν,“g”)), `op⟩)
→ Top /same */

function useC(x) { ... x.f ... }

This is a predictable pattern that should be easy to incorpo-
rate into desugaring, though we have not yet done so.

6.4 Performance
The running time of our type checker is acceptable for small
examples, but less so as the number of queries to the SMT
solver increases. We have not yet spent much effort to im-
prove performance, but we have implemented a few opti-
mizations that have already reduced the number of SMT
queries. First, even though desugaring works perfectly well
without any type information, we use DJS type annotations
to translate object and array operations to specific primi-
tives, where possible, rather than the more general ones (e.g.,
getPropObj and getIdxArr rather than getElem) so that
type checking has fewer cases to try, and we insert type and
location parameters so that they need not be inferred. Sec-
ond, we modify the T-VAR rule, which normally assigns the
“selfified” type {ν = x} to variable x that is already bound
in Γ. Although this precision is crucial, the variable x often
has a simple syntactic type (e.g., Ref `) that is “hidden” be-
hind the equality. Instead, if Γ(x) is of the form {ν ∶∶ U ∧p},
we assign {ν ∶∶ U ∧ p ∧ ν = x} so that subsequent typing
rules can syntactically look for U rather than going through
additional SMT queries as in the general case [9].

We expect that syntactically handling more common
cases will further improve performance. For example, even
though the dynamic keys are crucial in certain situations,
many examples use objects with finite and fixed key names,
which we should be able to handle with far fewer queries to
the SMT solver than in the current implementation.

7. Conclusion and Future Work
In this paper, we have shown how to scale up prior work
on System D — a type system for dynamic languages in a
functional setting — to the real-world JavaScript setting —
with imperative updates, prototype-based objects, and arrays
— through a combination of strong updates and prototype
chain unrolling. We have demonstrated that our new system,
System !D, is expressive enough to support the invariants
from a series of small but varied examples drawn from ex-
isting JavaScript benchmarks. We have found that the full
range of features in DJS are indeed required, but that many

examples fall into patterns that do not simultaneous exercise
all features. Therefore, we believe that future work on desug-
aring and on type checking can treat common cases specially
in order to reduce the annotation burden and running time,
and fall back to the full expressiveness of the system when
necessary. We believe that Dependent JavaScript is the most
promising approach, to date, for supporting real-world dy-
namic languages like JavaScript.

Features for Future Work. DJS already supports a large
subset of JavaScript that can be used for projects where all
the code is controlled (e.g., server-side applications), and
future work on integrating with run-time environments could
allow DJS code to run alongside full untyped JavaScript.
Next, we describe several features that we currently do not
support, in addition to general use of apply and call as
discussed in §5.

To allow mutation of prototype links via the non-standard
“ proto ” property, we could add a setproto expression
to the language and detect cycles during heap unrolling.

The eval statement allows a string to be parsed and
executed, which is useful but dangerous if misused. Since
DJS is flow-sensitive, we can constraint eval with heap
invariants before and after the statement, and then perform
staged type checking in the style of [8] at run-time.

ES5 introduces optional per-object and per-property at-
tributes (for example, to prevent modifications or deletions)
that can likely be incorporated into our encoding of dictio-
naries. One benefit of such an extension is that the type sys-
tem could reason more precisely about which objects are in a
prototype chain. For example, we could then allow non-array
objects to bind unsafe strings as long as we prevent them
from appearing in the prototype chain of arrays, thus weak-
ening the distinction we impose between array and non-array
objects (§2.6). A second benefit is that native objects could
be marked as unmodifiable, statically enforcing the pattern
they are usually “untampered” as discussed in §6.

ES5 getters and setters interpose on object reads and
writes. Since this is a deep change to the semantics of ob-
ject operations (invoking arbitrary functions), adding general
support for these will likely be heavyweight. Interestingly,
one can think of our treatment of the special array “length”
property (§2.6) as a built-in getter/setter.

Each function has an implicit arguments array that binds
all parameters supplied by the caller, regardless of how many
formals the function defines. Current ES6 proposals include
a modified version, where an explicit parameter can bind
a variable number of arguments beyond those named by
formals, similar in style to Python.

The x instanceof Foo operator checks whether or not
Foo.prototype is somewhere along the prototype chain of
x. We could add a primitive to match these semantics.

Scalar values can be explicitly coerced by wrapper func-
tions, such as Boolean, in addition to the implicit coercion
we have discussed.



Undesirable Features. The last three features we dis-
cuss regularly compete for the title of worst among several
“warts” in the language (e.g., [10]) that lead to confusing
code and hard-to-detect bugs. Incidentally, the λJS transla-
tions of all three are straightforward and can be supported in
DJS, but we see no reason to given their demerits.

The with statement adds the fields of an object to the
current scope of a block, allowing them to be accessed with-
out qualification. There is hardly a good reason to use this
feature, and it is banned in ES5 “strict” mode.

All var declarations are implicitly lifted to the top of
the enclosing function, resulting in “function scope” rather
than lexical scope. Although simple to detect when var-
lifting kicks in, we opt for the latter. ES6 will likely add
an explicit let binding form that is not subject to lifting. In
DJS, var is essentially the new let form, but we stick with
the traditional syntax for familiarity.

For a “method call” x.f(y), the receiver x is supplied
for the this argument to the function, but for a “direct
call” x(y), JavaScript implicitly supplies the global object
for this, masking common errors. We choose to statically
reject direct calls to functions that require a this parameter.

8. Related Work
In this section, we discuss topics related to types for imper-
ative dynamic languages, and hence strong updates and in-
heritance. The reader may refer to [9] for background on the
challenging idioms of even functional dynamic languages
and the solution that nested refinements provide.

Location Sensitive Types. The way we handle reference
types draws from the approach of Alias Types [32], in which
strong updates are enabled by describing reference types
with abstract location names and by factoring reasoning into
a flow-insensitive tying environment and a flow-sensitive
heap. Low-level liquid types [31] employs their approach in
the setting of a first-order language with dependent types. In
contrast, our setting includes higher-order functions, and our
formulation of heap types gives variable names to unknown
heaps to reason about prototypes and gives names to all heap
values, which enables the specification of precise relation-
ships between values of different heaps; the heap binders
of [31] allow only relationships between values in a single
heap to be described.

The original Alias Types work also includes support for
weak references that point to zero or more values, for which
strong updates are not sound. Several subsequent propos-
als [2, 3, 14, 15, 31, 33] allow strong updates to weak ref-
erences under certain circumstances to support temporary
invariant violations. We adapt the thaw/freeze mechanism
from [2] and [31] with mostly cosmetic changes.

Prototype Inheritance. Unlike early class-based languages,
such as Smalltalk and C++, the (untyped) language Self al-
lows objects to be extended after creation and feature pro-
totype, or delegation, inheritance. Static typing disciplines

for class-based languages (e.g., [1]) explicitly preclude ob-
ject extension to retain soundness in the presence of width
subtyping, the ability to forget fields of an object. To mit-
igate the tension between object extension and subtyping,
several proposals [6, 18] feature quite a different flavor: the
fields of an object are split into a “reservation” part, which
may be added to an object but cannot be forgotten, and a
“sealed part” that can be manipulated with ordinary sub-
typing. Our approach provides additional precision in two
important respects. First, we precisely track prototype hi-
erarchies, whereas the above approaches flatten them into a
single collection of fields. Second, we avoid the separation of
reservation and sealed fields but still allow subtyping, since
“width subtyping” in System !D is simply logical implica-
tion over refinement formulas; forgetting a field — discard-
ing a has(d, k) predicate — does not imply that ¬has(d, k),
which guards the traversal of the prototype chain.

Typed Subsets of JavaScript. Several (syntactic) type sys-
tems for various JavaScript subsets have been proposed.
Among the earliest is [35], which identifies silent errors that
result from implicit type coercion and the fact that JavaScript
returns undefined when trying to look up a non-existent
key from an object. The approach in [4] distinguishes be-
tween potential and definite keys, similar to the reservation
and sealed discussed above; this general approach has been
extended with flow-sensitivity and polymorphism [39]. The
notion of recency types, similar to Alias Types, was applied
to JavaScript in [23], in which typing environments, in ad-
dition to heap types, are flow-sensitive. Prototype support
in [23] is limited to the finite number of prototype links
tracked by the type system, whereas the heap symbols in
System !D enable reasoning about entire prototype hierar-
chies. Unlike System !D, all of the above systems provide
global type inference; our system does not have principal
types, so we can only provide local type inference [29]. AD-
safety [30] is a type system for ADsafe, a JavaScript sand-
box, that restricts access to some fields. Although expressive
enough to check ADsafe, which heavily uses large object
literals, they do not support strong update and so cannot rea-
son about object extension. Unlike System !D, none of the
above systems include dependent types, which are required
to express truly dynamic object keys and precise control-
flow based invariants.

Recent work on JavaScript verification uses separation
logic [17] to track precise flow-sensitive invariants. They
support only first-order programs, and the expressiveness of
their logic takes them beyond automatic verification, thus
requiring properties to be manually proved.

JavaScript Semantics. We chose the JavaScript “semantics-
by-translation” of λJS [21] since it targets a conventional
core language that has been convenient for our study. An
alternate semantics [26] inherits unconventional aspects of
the language specification [24] (e.g., “scope objects”), which
complicates the formulation of static reasoning.
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