
Status Report: Dependent Types for JavaScript

Ravi Chugh
University of California, San Diego

rchugh@cs.ucsd.edu

David Herman
Mozilla Research

dherman@mozilla.com

Ranjit Jhala
University of California, San Diego

jhala@cs.ucsd.edu

We are developing Dependent JavaScript (DJS), an explicitly-typed
dialect of a large JavaScript subset that features mutable, prototype-
based objects and arrays as well as precise control-flow reasoning.
We desugar DJS programs to a core lambda-calculus with explicit
references following in the style of λJS [3]. Our new type system
operates on desugared programs, building upon techniques from
System D [2] and Alias Types [4]. With our preliminary imple-
mentation, we demonstrate that DJS is expressive enough to reason
about a variety of tricky idioms found in small examples drawn
from several sources, including the popular book JavaScript: The
Good Parts and the SunSpider benchmark suite. In this report, we
provide a brief overview of DJS; more details can be found in [1].

Path Sensitivity. Consider the following function where the type
annotation says that if the input is a number, then so is the re-
turn value, and otherwise it’s a boolean; the “if-then-else” macro
ite p q1 q2 abbreviates the formula (p⇒ q1) ∧ (¬p⇒ q2).

//: x ∶Top → {ν ∣ iteNum(x)Num(ν)Bool(ν)}
function negate(x) {

return (typeof x == "number") ? 0 - x : !x;
}

When checking the true case of the conditional, DJS tracks that x is
a number. Because the subtraction also produces a number, it con-
cludes that the return value has type {ν ∣Num(x) ⇒ Num(ν)}.
In the false case, x is an arbitrary, non-number value, which is safe
to use because the JavaScript negate operator inverts the “truthi-
ness” of any value, not just booleans. So, the return value has type
{ν ∣¬Num(x) ⇒ Bool(ν)}. By combining the types of values
stored in x along both branches, DJS verifies that the return type
satisfies its specification.

Refinement Types. Even the simple example above requires so-
phisticated propositional and equational reasoning that depends on
program values. In DJS, we employ refinement types to encode
these relationships and use an SMT solver to discharge logical
validity queries that arise during (sub)type checking. Refinement
types are quite expressive but, by using formulas drawn from a de-
cidable logic, once the programmer has provided annotations on
functions, type checking proceeds automatically. In comparison,
more expressive dependent type systems like Coq rely on the pro-
grammer or heuristics to interactively discharge proof obligations.

Primitive Operators. In DJS, we use refinements to assign pre-
cise types to primitive operators; we show a few below.

typeof ∶∶ x ∶Top → {ν ∣ ν = tag(x)}

! ∶∶ x ∶Top → {ν ∣ ite falsy(x) (ν = true) (ν = false)}

&& ∶∶ x ∶Top → y ∶Top → {ν ∣ ite falsy(x) (ν = x) (ν = y)}

|| ∶∶ x ∶Top → y ∶Top → {ν ∣ ite falsy(x) (ν = y) (ν = x)}

The above types allow DJS to reason about negate and idioms like
if (x && x.f) to guard key lookups and x = x || default
to set default values. Refinement types provide the flexibility to
choose more restrictive types for operators, if desired, to statically
prevent implicit coercions, which often lead to subtle program-
ming errors. For example, we can restrict the negation operator to
boolean values as follows.

! ∶∶ x ∶Bool → {ν ∣ ite (x = false) (ν = true) (ν = false)}

Flow Sensitivity. Consider the following function that is like
negate but first assigns the eventual result in the variable x.

//: x ∶Top → {ν ∣ iteNum(x)Num(ν)Bool(ν)}
function also_negate(x) {
x = (typeof x == "number") ? 0 - x : !x;
return x;

}

To precisely reason about the different types of values stored in
the (imperative) variable x, DJS maintains a flow-sensitive heap
that can be strongly updated at each program point. As a result,
DJS tracks that the updated value of x along the true case is
{ν ∣Num(x) ⇒ Num(ν)} (where x is the formal parameter
initially stored in x) and along the false case is {ν ∣¬Num(x) ⇒
Bool(ν)}. Thus, as before, DJS verifies that the return value (the
new value of x) satisfies the specification.

Objects. JavaScript objects make heavy use of property extension
and prototype inheritance to transitively resolve lookups.

var parent = {last: " Smith"};
var child = Object.create(parent);
child.first = "Bob";
child.first + child.last; // "Bob Smith"

For object extension, strong updates allow DJS to track that the
“first” property is added to child. For prototypes, DJS precisely
tracks parent links between objects in the heap, and unrolls proto-
type chains to match the semantics of object operations. For exam-
ple, the type of the value retrieved by child.last is

{ ν ∣ if has(child,“last”) then ν = sel(child,“last”)

elif has(parent,“last”) then ν = sel(parent,“last”)

else ν = undefined }

which is a subtype of {ν ∣ ν = sel(parent,“last”)} given what
we know about child and parent. Furthermore, we use unin-
terpreted heap symbols to reason about portions of the heap that
are statically unknown. This allows DJS to verify that the property
lookup in if (k in x) x[k] does not return undefined (unless
the type of x[k] includes undefined, of course) even when noth-
ing is known about the prototype chain of x.

Arrays as Arrays. Arrays are (mostly) ordinary prototype-based
objects with string keys, but JavaScript programmers (and optimiz-
ing JIT compilers) commonly treat arrays as if they are traditional
“packed” arrays with integer “indices” zero to “size” minus one.
DJS reconciles this discrepancy by maintaining the following in-
variants about every array a ∶∶ Arr(T).

1. a contains the special “length” key.

2. All other “own” keys of a are (strings that coerce to) integers.

3. For all integers i, either a maps the key i to a value of type T ,
or it has no binding for i.

4. All inherited keys of a are “safe” (i.e. non-integer) strings.

Furthermore, we use the uninterpreted predicate packed(a) to de-
scribe arrays that also satisfy the following property, where len(a)
is an uninterpreted function symbol.

5. For all integers i, if i is between zero and len(a) minus one,
then a maps i to a value of type T . Otherwise, a has no binding
for i.

These invariants allow DJS to reason locally (without considering
the prototype chain of a) that for any integer, a[i] produces a
value of type {ν ∣ ν ∶∶ T ∨ ν = undefined}, and that if 0 ≤ i <

len(a), then a[i] definitely has type T . We assign types to array-
manipulating operations, including the Array.prototype.push
and Array.prototype.pop functions that all arrays inherit, to
maintain these invariants and treat packed arrays precisely when
possible.

Tuples. Arrays are used as finite tuples in several idiomatic ways.

var a0 = [0, 1, 2];
var a1 = []; a1[0] = 0; a1[1] = 1; a1[2] = 2;
var a2 = []; a2.push(0); a2.push(1); a2.push(2);

For a1 and a2, DJS is able to track that the array updates — even
when going through the Array.prototype.push native function
that is inherited by a — maintain the invariant that the arrays are
packed. Thus, each of the arrays has the following type.

{ν ∣ ν ∶∶ Arr(Int) ∧ packed(ν) ∧ len(ν) = 3}

Benchmarks. We are actively working on our implementation
(available at ravichugh.com/nested). So far, we have tested
on 300 lines of unannotated benchmarks from several sources in-
cluding JavaScript: The Good Parts and the SunSpider and V8
microbenchmark suites. Figure 1 summarizes our current results,
where for each example: “Un” is the number of (non-whitespace,
non-comment) lines of code in the unannotated benchmark; “Ann”
is the lines of code in the annotated DJS version (including com-
ments because they contain DJS annotations); “Time” is the run-
ning time rounded to the nearest second; and “Queries” is the num-
ber of validity queries issued to Z3 during type checking.

Taken together, the set of benchmarks rely on the gamut of fea-
tures in the type system, requiring type invariants that describe re-
lationships between parent and child objects, between the contents
of imperative variables and arrays across iterations of a loop, and
intersections of function types to encode control-flow invariants.

Annotation Burden and Running Time. As Figure 1 shows, our
annotated benchmarks are approximately 1.7 times as large (70%
overhead) as their unannotated versions on average. In our experi-
ence, a significant portion of the annotation burden is boilerplate
— unrelated to the interesting typing invariants — that fall into a
small number of patterns, which we have started to optimize.

Adapted Benchmark Un Ann Queries Time
JS: The Good Parts
prototypal 18 36 731 2
pseudoclassical 15 23 706 2
functional 19 43 862 8
parts 11 20 605 3

SunSpider
string-fasta 10 18 263 1
access-binary-trees 34 50 2389 23
access-nbody 129 201 4225 39

V8
splay 17 36 571 1

Google Closure Library
typeOf 15 31 1975 52

Other
negate 9 9 296 1
passengers 9 19 310 3
counter 16 24 272 1
dispatch 4 8 219 1

Totals 306 518 13424 137

Figure 1. Benchmarks (Un: LOC without annotations; Ann: LOC
with annotations; Queries: Number of Z3 queries; Time: Running
time in seconds)

The running time of our type checker is acceptable for small
examples, but less so as the number of queries to the SMT solver
increases. We have not yet spent much effort to improve perfor-
mance, but we have implemented a few optimizations that have al-
ready reduced the number of SMT queries. There is plenty of room
for future work to further improve both the annotation overhead as
well as performance.

Conclusion. We have found that the full range of features in DJS
are indeed required, but that many examples fall into patterns that
do not simultaneous exercise all features. Therefore, we believe that
future work on desugaring and on type checking can treat common
cases specially in order to reduce the annotation burden and run-
ning time, and fall back to the full expressiveness of the system
when necessary. In addition, we are working to extend DJS with
support for additional features, including more general support for
recursive types, for the apply and call forms (often used, for ex-
ample, to set up inheritance patterns), and variable-arity functions.
We believe that Dependent JavaScript is a promising approach for
supporting real-world dynamic languages like JavaScript.

References
[1] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent Types for

JavaScript. April 2012. http://arxiv.org/abs/1112.4106.
[2] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested Refinements:

A Logic for Duck Typing. In POPL, 2012.
[3] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence

of JavaScript. In ECOOP, 2010.
[4] Frederick Smith, David Walker, and Greg Morrisett. Alias Types. In

ESOP, 2000.

ravichugh.com/nested
http://arxiv.org/abs/1112.4106

