
PENN SAAST

Introduction to
Hardware and Software Algorithms

c© Ravi K. Chugh

rchugh@cs.ucsd.edu

July 2007

Contents

0 Introduction 5

1 There are only 10 types of people 7
1.1 Exercises . 11

2 Floating-point numbers 13
2.1 Exercises . 15

3 Bitwise operators 17
3.1 Exercises . 19

4 Gates and circuits 21
4.1 Exercises . 29

5 Faster addition 31
5.1 Exercises . 35

6 Searching 37
6.1 Exercises . 44

7 Asymptotic analysis 45
7.1 Exercises . 52

8 Recurrence relations 55
8.1 Exercises . 57

9 Sorting 59
9.1 Exercises . 64

10 Quizzes 67
10.1 Quiz 1 – July 13, 2007 . 68
10.2 Quiz 2 – July 20, 2007 . 71
10.3 Quiz 3 – July 26, 2007 . 77

3

11 Solutions 79
11.1 Chapter 1 Solutions . 79
11.2 Chapter 3 Solutions . 80
11.3 Chapter 2 Solutions . 83
11.4 Chapter 4 Solutions . 83
11.5 Chapter 5 Solutions . 86
11.6 Chapter 6 Solutions . 87
11.7 Chapter 7 Solutions . 87
11.8 Chapter 8 Solutions . 87
11.9 Chapter 9 Solutions . 90
11.10Quiz 1 Solutions . 92
11.11Quiz 2 Solutions . 98
11.12Quiz 3 Solutions . 105

4

Chapter 0

Introduction

Here’s an exercise you should try with a few classmates. Each of you write down on a piece
of paper a recipe for making a peanut butter and jelly sandwich. After everyone is done,
trade recipes and have each person try to make a sandwich by following only the directions
that are provided in the recipe. Good luck!

What is an algorithm? You can think of it as a recipe. A recipe is a finite set of instructions
that tell the reader step-by-step how to accomplish something. The recipe you just wrote is
an algorithm intended for a human to read and follow. When asked to following someone
else’s recipe step-by-step, word for word, you probably found that there were some omitted
details that prevented you from actually being able to make a PB&J sandwich. If you were
allowed to interpret the directions and add some of your prior knowledge and experience,
you probably would have been able to make the sandwich just fine. When designing an
algorithm, or a recipe, for a computer to follow, however, each and every step needs to be
explicitly provided. A computer is simply a machine that does what it is told to do in the
way of a computer program. So the art/science of computer programming is expressing
an algorithm to perform some computation in such a way that a computer can follow your
directions, step by step.

As you probably saw, there are usually multiple recipes that achieve the same goal. There
are many different ways of making a PB&J sandwich, so what makes them different? What
makes one recipe better than another? How quick they take to follow? How readable the
instructions are? The minimum amount of mess they create? These are all subjective
measures, but given multiple ways of doing something like this, we can reason about which
methods are preferable and which are not. For example, if one recipe had you do 10 jumping
jacks in between each step, you would think it was a bad recipe. Although it may get the
job done, there would be a lot of unnecessary steps along the way. On the other hand, if
one algorithm was very concise but had you juggling many items at the same time, you
might also think it was a bad recipe because it was hard to follow, even though the resulting
sandwich may have been perfectly fine or even better-tasting than normal. These examples
highlight two ways that we can subjectively analyze algorithms: the language they use and
how long it takes (however “long” is defined) to follow them.

5

These two metrics are relevant to computer programs, as well. There are many different
programming languages, and most algorithms you write can be implemented in many differ-
ent languages. There are different features in different types of languages, so some algorithms
may be easier to express in some rather than others. You may find some languages use more
pleasing syntax and are easy to use, while some aren’t as friendly to readers.

The other metric is how long a computer program takes to execute. How do we define
this precisely? How many instructions the computer must execute? How many seconds it
takes to finish? These measurements are not completely objective, however, because different
computers have different hardware specs that can skew these measurements, leading to unfair
comparisions. Therefore, we use precise mathemetical definitions for the notion of how long
an algorithm takes to run that abstract away details like what kind of computer processor it
is running on. The fields of algorithms and computational complexity have explored many
topics in this area, and a goal of ours will be to learn the basics for how to analyze an
algorithm’s effectiveness. This skill is useful for computer programmers, who often have to
make algorithmic choices when writing programs. These choices can have dramatic effects on
the result of an algorithm, so it is important to understand the complexity of the programs,
or algorithms, you write.

We won’t dive into the formal study of algorithms yet for two reasons: 1) you need to
have an understanding of some fundamental programming concepts before it makes sense
to talking about analyzing their effectiveness; and 2) talking about writing programs for
computers in nonsense without having computers to program. The latter is largely the
study of computer architecture and engineering, but it is useful for programmers to have at
least a basic understanding of how data is represented by the underlying machine. Some of
the details of the hardware have an effect on decisions you make as your program, so now
is as a good time as any to learn a little about computer architecture. We will only scratch
the surface of topics relating to computer hardware, but it will be enough to give us a better
sense of what we are doing as programmers and hopefully excite interest in these fields. Once
we have this under our belt, along with the skills to write programs in Java, we will begin
learning how to analyze algorithms.

6

Chapter 1

There are only 10 types of people

The first is those who know binary, and the second is those who don’t.
Unlike humans, computers store numbers in binary representation. Actually, we think of

computers as understanding binary (do computers really understand anything?), because it
is a convenient representation for what is going on with the physics of a computer at a low
level.

Our system for representing numbers is called the decimal, or base-10, system because we
use 10 different symbols: 0 through 9. Every number can be uniquely encoded by a string of
these 10 digits. If we have a string of decimal digits a = an...a1a0, a represents the number∑n

i=0 ai ∗ 10i. As an example, the string 934 represents 4 ∗ 100 + 3 ∗ 101 + 9 ∗ 102. We say
the rightmost digit of a is the least significant digit and the leftmost is the most significant.

There is nothing special about the symbols 0 through 9 nor the fact that there are 10
of these symbols. We can just as well use strings of only the symbols 0 and 1 to uniquely
represent every number. This is the definition of binary, or base-2, representation, and
the encoding is symmetric to the decimal encoding: a string of binary digits b = bn...b1b0

represents the number
∑n

i=0 bi ∗ 2i. For example, the binary string 1011 = 1 ∗ 20 + 1 ∗ 21 +
0 ∗ 22 + 1 ∗ 23 represents the number 11. Although using base-2 representations of numbers
is not appealing for everyday use (the encodings are much longer because there are only 2
symbols), we can use them to perform all arithmetic operations as usual, just as we can with
any base representation.

A computer processor is an intricate digital circuit comprising things like wires and mil-
lions of transistors. At any given time, each transistor can either block electric current from
passing through the wire or let it through. We can think of the transistor as being in state 0
in the former case and state 1 in the latter. These two possible physical states of a transistor
lead to the portrayal of computers as using a binary representation of numbers, since all
computation at the machine level really is just 1’s (passing voltage along wires) and 0’s (or
not).

In a separate lesson we will see some of the basics of how a computer processor can
perform binary arithmetic. For now we will spend some time getting comfortable with
binary representation. It will be useful to be able to derive, and eventually recognize, the
binary encodings:

7

0 = 0000 4 = 0100 8 = 1000 12 = 1100
1 = 0001 5 = 0101 9 = 1001 13 = 1101
2 = 0010 6 = 0110 10 = 1010 14 = 1110
3 = 0011 7 = 0111 11 = 1011 15 = 1111

Note that, just as with decimal representations, leading zeroes do not affect the value of the
binary representations.

It will also be useful to get familiar with some of the powers of 2:

20 = 1 24 = 16 28 = 256
21 = 2 25 = 32 29 = 512
22 = 4 26 = 64 210 = 1024
23 = 8 27 = 128

In a binary string, each digit is referred to as a bit (short for binary digit). A collection of
eight bits is known as a byte. An n-bit string can represent (at most) 2n different numbers,
since each of the n bits can take on either of two values. (We’ll get to the disclaimer in a
bit.)

To add two binary numbers, we work from right to left just as we do with decimal numbers
adding each pair of digits and propagating any carry. For example, 0 + 1 sums to 1 with no
carry, and 1 + 1 sums to 0 with a carry of 1. Two examples:

0101 1110
+ 1001 + 0101

1110 10011

Notice that with any base representation, summing two numbers can result in a number that
requires one more digit than either of the two summands.

Converting from binary to decimal is straightforward, but the other direction takes a little
more work. Starting with a decimal number, you repeatedly subtract the largest power of 2
from it without letting it become negative. For each power 2i, the binary representation has
a 1 in the ith place if 2i was subtracted and 0 if it was not. An example:

155
− 128 (27 yes)

27
(26 no)
(25 no)

− 16 (24 yes)
11

− 8 (23 yes)
3

(22 no)
− 2 (21 yes)

1
− 1 (20 yes)

0

8

By looking back at which powers of 2 were subtracted, we can read off that the binary
representation of 155 is 1001 1011.

The binary encoding scheme above (formalized by the summation notation) does not
take into account negative numbers; it starts at 0 and proceeds increasingly forever. This
encoding scheme is known as unsigned magnitude.

A simple change to this scheme allows for negative numbers: treat the most significant
bit (MSB) as the sign bit, and the remaining bits as the usual unsigned magnitude encoding.
If the sign bit is 0, the number is positive. If the sign bit is 1, the number is negative. This
encoding is known as signed magnitude. With this representation, adding leading zeroes does
change the value being represented (if the original value is a negative number).

Now that negative numbers can be represented, we can define subtraction on binary
strings just as we do for decimal strings. (Subtraction isn’t well-defined in the unsigned
magnitude scheme, because if the second operand is larger than the first, there is no way to
represent the resulting difference.)

As it turns out, a hardware circuit to perform addition on signed magnitude numbers is
a little complicated. Fortunately, there is a clever representation called 2’s complement that
allows the hardware circuit to easily compute sums of positive and negative numbers.

In 2’s complement, positive numbers are represented as usual. A negative number is
represented by starting with the positive representation, bitwise-complementing each bit,
and then adding 1. To go from a negative number to its (positive) magnitude, do the same
thing: complement each bit and then add 1. For example, to negate 5 (0101), first invert
each bit (1010), and then add 1 (1011). We ellide the details for why this works, but try
several examples to convince yourself that it does.

A positive unsigned magnitude representation effectively has an infinite number of leading
zeroes. Thus, when we have a negative 2’s complement number, it is crucial that we treat
it as having an infinite number of leading ones. Note that for a 2’s complement number, if
the MSB is 0, the number is positive; if the MSB is 1, the number is negative.

The beauty of this representation is that adding 2’s complement numbers works just like
adding unsigned magnitude numbers regardless of the signs of the summands. Two examples:

0111 (7) 1111 (−1)
+ 1011 (−5) + 1011 (−5)

0010 (2) 1010 (−6)

Note that in both examples, the carryovers did not fit in four bits and were just discarded.
Ignoring the carryover is correct with 2’s complement because of the implicit infinite zeroes
before positive numbers and implicit infinite ones before negative numbers. In the case where
more bits are needed to represent a 2’s complement number, the appropriate leading zeroes
or ones need to fill all the new higher order bits. This process is called sign extension. For
example, in going from four bits to eight bits, the representation of 5 goes from 0101 to 0000
0101, and the representation of −5 goes from 1011 to 1111 1011.

Now that we’ve estabished unsigned magnitude, signed magnitude, and 2’s complement as
three binary encoding schemes, let’s examine the range of numbers that can be represented
by an n-bit string in each. For an n-bit unsigned magnitude string, we’ve already seen that
2n numbers can be represented (0 through 2n − 1). The same cannot be said for signed

9

magnitude, because there ends up being two different representations for zero (0000 and
1000), since the sign does not affect the value of zero. Because of this, an n-bit signed
magnitude string can represent only 2n − 1 different numbers. The first bit is reserved for
the sign and the remaining n− 1 bits are used for magnitude, so the range is −(2n−1− 1) to
2n−1 − 1.

With 2’s complement, zero no longer has two representations (0000 is 0 and 1000 is −8),
so an n-bit 2’s complement number can represent 2n different numbers, ranging from −2n−1

to 2n−1 − 1. The asymmetry of this range leads to one case where the conversion from
negative to positive doesn’t work per the recipe: for the smallest negative number that can
be represented. For example, a 4-bit encoding for −8 (1000) returns back −8 (when looking
at only 4 bits). For this reason, the smallest negative number that can be represented by an
n-bit 2’s complement encoding is sometimes called the weird number.

To compare, we’ll summarize the meanings for each of the 16 different 4-bit strings with
each representation scheme (UM, SM, and TC):

0000 = (0, 0, 0) 1000 = (8, 0, -8)
0001 = (1, 1, 1) 1001 = (9,−1,−7)
0010 = (2, 2, 2) 1010 = (10,−2,−6)
0011 = (3, 3, 3) 1011 = (11,−3,−5)

0100 = (4, 4, 4) 1100 = (12,−4,−4)
0101 = (5, 5, 5) 1101 = (13,−5,−3)
0110 = (6, 6, 6) 1110 = (14,−6,−2)
0111 = (7, 7, 7) 1111 = (15,−7,−1)

For 4-bit strings, the ranges for each scheme are: 0 to 15 (UM), −7 to 7 (SM), and −8 to 7
(TC).

Because hardware to do arithmetic on 2’s complement numbers is simpler (so also cheaper
and faster) than for signed magnitude, 2’s complement is used. Now that we understand how
2’s complement works, we can analyze the ranges of values different kinds of Java primitive
types can hold, since all of Java’s integer types use 2’s complement representation. You can
find an overview of Java’s different primitive types at:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html.

In this section, we will only work integral data types.

type bits range
byte 8 −128 to 127

short 16 −32768 to 32767
int 32 approx. −2.1× 109 to 2.1× 109

long 64 approx. −9.2× 1018 to 9.2× 1018

Although Java does not, some languages, like C++ and C#, also provide unsigned versions
of these types. For example, if Java provided it, an unsigned short would have the range
0 to 65535 (using unsigned magnitude).

It’s important to understand what the ranges of different types of data types are, because
exceeding the boundaries can lead to seemingly strange programming bugs. For example,

10

what happens when you add the two bytes 0111 1111 (127) and 0000 1010 (10)? The result-
ing sum cannot fit in just eight 2’s complement bits, so the carryover is lost, and the result is
1000 1001 (−119). This quizzical result, that 127 + 10 = −119, is computed because the size
needed to represent the number 137 overflowed the number of bits available for the data type.

To adhere to 2’s complement representation and the fact that hardware is built with bits in
powers of 2, we make a modification to the title of this section: there are only 0010 types of
people.

1.1 Exercises

1. For each of the following numbers, compute the UM, SM, and TC representations with
(i) 8 bits, and (ii) the minimum number of bits. Write N/A if the number cannot be
represented.

• 25

• −43

• −99

• −127

• −128

• −129

2. For each of the following bit strings, determine what value it encodes in UM, SC, and
TC:

• 0110

• 1000

• 1010

• 0100 1110

• 1100 1110

• 1111 1111

11

12

Chapter 2

Floating-point numbers

So far we have only considered how integral, or whole, numbers are represented in different
encoding schemes. We will now examine how to encode floating-point, or real, numbers in
different bases and how they are represented in computers.

In the decimal system, digits to the right of the decimal point are subject to the following
encoding scheme: a1a2 . . . an =

∑n
i=1 ai

1
10i . Note that digits to the right of the decimal point

are indexed from left to right and begin at 0 instead of 1. Similary, in binary notation, bits
to the right of the “binary point” follow: b1b2 . . . bn =

∑n
i=1 ai

1
2i .

To compute the binary representation of a fraction, we can iteratively multiply the equa-
tion we are trying to solve to compute one bit at a time. (Recall that in the previous section,
we saw how to iteratively divide the equation to get the compute the representation of a
whole number.) For example:

0.375 = b1/2 + b2/4 + b3/8 + b4/16 + · · · multiply by 2
0.75 = b1 + b2/2 + b3/4 + · · · set b1 = 0
0.75 = b2/2 + b3/4 + · · · multiply by 2
1.5 = b2 + b3/2 + · · · set b2 = 1
0.5 = b3/2 + b4/4 + · · · multiply by 2

1 = b3 + b4/2 + · · · set b3 = 1
0 = b4/2 + · · · multiply by 2
0 = b4 + · · · set b4 = 0

Thus, we have that the binary representation of 0.375 is 0.011.
Just as with real decimal numbers, patterns of bits to the right of the binary point may

repeat forever. For example, consider the binary representation of 1
3
:

1/3 = b1/2 + b2/4 + · · ·
2/3 = b1 + b2/2 + · · · b1 = 0
2/3 = b2/2 + b3/4 + · · ·
4/3 = b2 + b3/2 + · · · b2 = 1
1/3 = b3/2 + b4/4 + · · ·
2/3 = b3 + b4/2 + · · ·

13

Notice that we have encountered this last equation already, so the subsequent steps will
produce the same coefficients as before. That is, once we’ve arrived at the same left-hand
side, we can stop because we know what the pattern is. In this case, we would write that
the binary representation is 0.01. As it turns out, 1

3
doesn’t have a finite representation in

either decimal or binary. It does, however, have a finite representation in base-3, or ternary,
notation. What would it be?

As an aside, you have probably seen fractional numbers written in ternary notation with-
out knowing it. If you are familiar with baseball, you will recognize that if a pitcher has
pitched, say, six full innings and two outs in the seventh, his Innings Pitched will be written
6.2. The fractional portion of this stat is kept in ternary notation, and you’ve probably been
decoding ternary without even knowing it! Note that the integral portion of this statistic is
still written in decimal – it would be extremely confusing to report 20.2 as the number of
innings pitched!

The issue now is how to encode so-called floating-point (since the binary point may appear
anywhere in the string) numbers with computer hardware. Allowing the binary point to
appear in arbitrary positions in a collection of bits would require complicated circuits to
perform arithmetic. Complicated circuits leads to more expensive and usually less efficient
circuits, so floating- point numbers are not encoding so flexibily. Instead, floating-point
numbers are always stored in normalized scientific notation, meaning there is only one (non-
zero) digit to the left of the point. A decimal example: 5022.4 is written as 5.0224× 103. A
binary example: 0.0101001 is written as 1.01001× 2−2.

The IEEE 754 standard (designed by the Institute of Electrical and Electronics Engineers)
has been adopted by most computer architectures. This standard floating-point data type,
called float in Java, is 32 bits: 1 for the sign, 8 for the exponent, and 23 for the fraction.
Because of the explicit sign bit, the encoding for the exponent is unsigned magnitude. The
range of a float is huge because of the eight bits reserved for the exponent. A float is
not as precise as, say, an int though because each value in the range cannot be represented
(23 bits isn’t enough – in fact, no finite number of bits is enough!). For any floating-point
representation, there is this tradeoff between range and precision.

The general encoding for a floating-point value is

(−1)S × F × 2E

but there are several low-level details. Because there is only one non-zero digit in binary,
the digit to the left of the binary point in normalized scientific notation will always be 1.
There is no need to waste a bit on this, so the leading 1 is implicitly assumed; the fraction
bits (bits 22 through 0) just contain the values to the right of the binary point. And these
values are read from left to right, unlike for whole numbers, just as the indexing works from
left to right in the summation notation above.

Because an explicit sign bit is used, the value of the exponent encodes unsigned magnitude.
This means that only zero and positive exponents can be represented. Instead, to allow a
balanced range of very small (negative) and very large exponents, the value of the actual
exponent encoded is 127 less than the unsigned value in bits 23 to 30; the exponent is said
to have a bias of 127.

Without any other complications, this bias would allow the exponent to take on values

14

between −127 and 128. However, two exponent values – 0 and 255 – are treated differently.
With an exponent of 255 and a fraction of 0, a 0 sign bit encodes +∞ and a 1 sign bit
encodes −∞. An exponent of 255 and a non-zero fraction encodes NaN (not a number)
for situations like dividing by zero. If the exponent and the fraction are both 0, the value
encoded is 0 (regardless of the sign bit). If the exponent is 0 and the fraction is non-zero,
the value represented is denormalized, meaning a leading 1 is not implicit. A denormalized
value for the float data type takes the exponent −126. Although we will not go into the
details, this facility for denormalized numbers allows for more precise small numbers at the
low end of the float’s range.

As we have seen, the corner cases are quite complicated, but most of the possible en-
codings follow a simple recipe. We also recognize that although floating-point numbers
allow fractional numbers to be represented, they also allow integers of huge magnitude to be
represented, unlike the integral data data types.We summarize the float’s encoding:

S E F meaning
s 1 ≤ e ≤ 254 f (−1)s × 1.f × 2(e−127)

0 0 0 zero
1 0 0 zero
s 0 f!=0 (−1)s × 0.f × 2−126

0 255 0 +∞
1 255 0 −∞
s 255 f!=0 NaN

As an example, we’ll compute the floating-point representation of −12.75. We need to
first compute the binary representation of the magnitude, 12.75, and then rewrite it in
normalized scientific notation. The binary representation for the whole part (12) is 1100,
and the binary representation for the fractional part (.75) is .11. Thus, 1100.11 in base-2 is
12.75 is base-10. To get this into normalized form, we shift the binary point three places to
the left and multiply by 23: 1.10011× 23.

Now that we have the number in normalized scientific notation, we can figure out how the
sign, exponent, and fraction bits should be assigned. Since this is a positive number, s = 0.
We know that the exponent should have a bias of 127, so we want the value that satisfies
e − 127 = 5. Thus, e = 132. The binary representation of 132 is 1000 0010. Finally, since
the leading 1 is implicit, the fraction bits should be set with 10011 and 0’s for the rest. So
the final 32-bit floating-point encoding is:

0 10000010 10011000000000000000000

2.1 Exercises

1. Another floating-point data type called double is even larger. A double is 64 bits with
1 bit for the sign, 11 bits for the exponent, and 52 bits for the fraction. The encoding,
including the special corner cases, is analogous to that of float. Formalize the encoding
scheme by deriving a summary table similar to the table given for float in this section.

15

2. For each of the following decimal values, compute their float and representations. If
you want more practice with binary arithmetic and floating-point encoding, compute
their double representations as well.

• 57.8125

• −2.3

3. What is the largest number that can be represented in a float with a value of 0
in the fraction bits? with a double? Also approximate these numbers in base-10
normalized scientific notation representation. Note: You can use the approximation
that 210 = 1024 ≈ 1000 = 103.

4. F What is the largest positive integer that can be stored in a float? in a double? State
your answers in terms of powers of 2 and also approximate them in decimal notation.

Making use of sums of infinite geometric series will be useful in deriving the answers.
The formula for an infinite geometric sum is

S∞ = r0 + r1 + r2 + · · · =
∞∑

k=0

rk =
1

1− r

where 0 ≤ r < 1. Notice that if each of the r’s has the same coefficient a, the formula
becomes:

∞∑
k=0

ark =
a

1− r

16

Chapter 3

Bitwise operators

As you will learn in Section 4.1.1 of the Guzdial textbook, computer screens display a large
2-dimensional array of pixels, or picture elements. Because there are so many pixels, we
perceive the result to be a smooth image. Each pixel on the screen is set to a certain value
encoded in a scheme known as ARGB, or simply RGB. An enormous spectrum of colors (more
than the eye can differentiate) can be created as different combinations of red, green, and blue
light. Thus, a color can be specified by certain amounts of each of these three components.
The fourth component, the alpha component, is used to specify how transparent the pixel’s
color should appear when composed with colors from, say, other windows or images on the
screen.

Modern displays use 32 bits to store the RGB value for each pixel – eight bits for each
component – and the value that these bits encode can be thought of as unsigned magnitude
values. From our understanding of binary representation, we know that an 8-bit unsigned
string can take on the values 0 through 255. For each of the three color components, the
higher the value, the higher the intensity of that color. For the alpha component, the higher
the value, the lesser the degree of transparency.

When manipulating digital images or the computer screen itself, we often get and set each
of a pixel’s RGB components separately and perform computation on them. We might want
to, for example, create a new java.awt.Color object using one of its constructors, the one
with parameter list int r, int g, int b, int a. Using this particular constructor allows
the use of ints for each component, even though the 32-bit size of an int is much larger than
we need to accomodate the range of numbers 0 to 255. We know that a 4-bit binary string
can represent up to 256 different values, so if we use ints to store the RGB components of a
large number of pixels, an unnecessarily large amount of memory (four times the minimum
amount) would be used.

One improvement is to use shorts instead of ints to store each component. Even though
a short’s 16 bits is still more than required to represent 256 numbers, it is half the size used
up by an int. Although the Color class doesn’t provide a version of the constructor that
explicitly takes shorts, they can be passed wherever ints are expected (because of implicit
upcasting).

What about using bytes, since their 8-bit size is exactly what’s required to represent a
component? Although a Java byte can represent 256 values, because it is a signed data

17

type, it cannot represent the correct 256 values for the task at hand; its range is −128 to
127, as opposed to the 0 to 255 we use for RGB components. What happens if you try to
assign a value greater than 127 to a byte variable?

One compromise is to instead assign each component a value from −128 to 127. This is
not acceptable, however, because it is not intuitive to think about the assigning a pixel a
“negative amount of red light” for example. So the next compromise might be to use the
numbers −128 to 127 when storing the component values in memory and then offsetting
by 128 whenever displaying data to or reading data from users. This solution is also not
satisfying, because forgetting to this somewhere could lead to confusing bugs.

What we want is to use a single 32-bit int to contain the entire RGB value. Fortunately,
most languages, including Java, offer low-level operations to compute directly on the bits,
and we can use these to get around the problems we are having balancing data size and data
representation (that the unsigned byte that we want is not offered by Java). Three topics
that we will now explore are bitwise shifting, bit masks, and hexadecimal notation. Armed
with these, we will see how to elegantly solve our RGB representation problem.

Java provides three bit shift operators: <<, >>, and >>>. << is the left shift operator,
and it moves all of the digits in the binary encoding n positions to the left, where n is the
right-hand operand provided to the operator. For example, 10 << 1 is 20 since the binary
encodings of 10 and 20 are 0000 1010 and 0001 0100. >> is the signed right shift operator,
which moves all bits n positions to the right and fills in the leading bits with zeroes or ones
depending on the sign of the left-hand operator. In comparision, the unsigned right shift
operator >>> fills in leading zeroes regardless. It is useful to note that left shifting has the
effect of multiplying by two n times and right shifting has the effect of dividing by two n

times, up to the limitations of overflow.
Java also provides four bitwise operators. The unary operator ~ (NOT) simply flips every

bit. The three binary bitwise operators – & (AND), | (OR), and ^ (XOR) – encode the
following truth tables for every pair of bits by position:

a b a&b a|b a^b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

For example, -1 & 4 is 4 since the (2’s complement) binary encodings of −1 and 4 are 1111
and 0100.

When manipulating integer data types in a computer’s memory, we often work with
groups of 8, 16, 32, and 64 bits at a time, because computer hardware is built that way.
Manipulating binary data in these sizes quickly becomes impractical, so the octal (base-8)
and hexadecimal (base-16) representation systems are often used to succinctly describe large
numbers of bits. Both of these encoding schemes work symmetrically to decimal and binary,
except that with hexadecimal some new symbols need to be used because there are only ten
numeric characters. The octal system, which uses the the symbols 0 through 7, is useful for
representing groups of three bits. Each of the eight octal symbols represent the following bit
patterns:

18

0 = 000 2 = 010 4 = 100 6 = 110
1 = 001 3 = 011 5 = 101 7 = 111

Because groups of four bits are commonly used, hexadecimal notation is more commonly
used; a single hexademical character represents one of 16 values, the number of states a
4-bit string can take. The symbols 0 through 9 represent themselves, ‘a’ represents 10, ‘b’
represents 11, and so on through ‘f’, which represents 15. The sixteen hexadecimal symbols
represent the following bit patterns:

0 = 0000 4 = 0100 8 = 1000 c = 1100
1 = 0001 5 = 0101 9 = 1001 d = 1101
2 = 0010 6 = 0110 a = 1010 e = 1110
3 = 0011 7 = 0111 b = 1011 f = 1111

In Java source code, integer constants are interpreted in decimal notation. You can
instead tell the compiler to treat integers as octal or hexademical notation. For an octal
integer literal, start the number with a 0. For example, int i = 014 assigns the value 12
to i (since 014 is the octal representation of 12). To enter a hexademical literal, start the
number with 0x. For example, int i = 0xc also assigns 12 to i.

Using the bitwise AND operator together with a hexademical constant is commonly used
to filter away bits that are not currently of interest. For example, suppose we are only
interested in the lowest-order eight bits of a 32-bit integer. To filter away the higher-order
24 bits, we can apply the AND operator to the integer and the bit mask 0xff. The result is
the value of just the lowest eight bits.

Combining the techniques of bit masking and right bit shifiting, we can now devise a
scheme to encode all four components of an ARGB pixel in one 32-bit int, let’s call it argb.
Suppose we store the A component in bits 24 to 31, R in 16 to 23, G in 8 to 15, and B in 0
to 7. We can then read the value of each component with the following expressions:

• argb & 0xff for the B component,

• (argb >> 8) & 0xff for G,

• (argb >> 16) & 0xff for R, and

• (argb >> 24) & 0xff for A.

Notice that these expressions are shifting the appropriate bits into the eight rightmost ones,
and then filtering away everything else using the bit mask. The result of each expression is
that component’s value in the range 0 to 255. Indeed, the Color class offers a constructor
that takes a single int parameter that is interpreted in this way.

3.1 Exercises

1. Suppose that to extract each of the components out of the 32-bit representation we
wanted to use an octal bit mask instead of a hexademical one. What would the four
expressions be to extract each of the components?

19

2. When reading RGB components out of the 32-bit representation, suppose we wanted
to apply a hexadecimal bit mask first and then shift second. What would the four
expressions be to extract each of the components?

3. In the previous section, we saw a method for converting decimal integers to binary. We
now present an alternate way of achieving the same conversion.

We will work through the same example as before, converting the number 155. What
we’d like to compute is the binary string a7 . . . a0 that satisfies the equation:

155 = a72
7 + a62

6 + · · ·+ a12
1 + a0

What we will do is repeatedly divide the entire equation by 2. But to do that, we need
to set the stand-alone coefficient to 1 if the number on the left-hand side is odd (and set
it to 0 if the number is even). Repeating this process until the left-hand side becomes
0 will give us the correct values for each of the coefficients.

155 = a72
7 + a62

6 + a52
5 + a42

4 + a32
3 + a22

2 + a12
1 + a0 set a0 = 1, divide by 2

77 = a72
6 + a62

5 + a52
4 + a42

3 + a32
2 + a22

1 + a1 set a1 = 1, divide by 2
38 = a72

5 + a62
4 + a52

3 + a42
2 + a32

1 + a2 set a2 = 0, divide by 2
19 = a72

4 + a62
3 + a52

2 + a42
1 + a3 set a3 = 1, divide by 2

9 = a72
3 + a62

2 + a52
1 + a4 set a4 = 1, divide by 2

4 = a72
2 + a62

1 + a5 set a5 = 0, divide by 2
2 = a72

1 + a6 set a6 = 0, divide by 2
1 = a7 set a7 = 1, divide by 2

• Use this technique for computing the binary representations for 43, 84, 111, and
300.

4. Riddle: If only you and dead people can read hexadecimal, how many people can read
hexadecimal?

20

Chapter 4

Gates and circuits

In a previous section we asserted that a computer’s state can be thought of as a series of
1’s and 0’s since it comprises transistors that are either passing or blocking current at any
given time. In this section, we take an introductory look at how these two physical states
can be used to create circuits that encode arbitrary logical functions, laying the foundation
for digital computation.

The MOS transistor, short for metal-oxide semiconductor, is the basic block for most
computer processors. Two types of MOS transistors, p-mos and n-mos, are circuit elements
that encode the states of 1 and 0, of allowing current to pass through a wire or not. An n-mos
transistor placed in a circuit between a source of electrical current and a drain exhibits the
following physical properties: if a voltage is applied to the transistor, the circuit is closed, so
current can pass through the transistor; if no voltage is applied to the transistor, the circuit
is open, so current cannot pass through. The behavior for a p-mos transistor is the opposite:
if a voltage is applied, current cannot pass through; if no voltage is applied, current can pass
through. Although we will not explore the physics that explain these electrical properties,
we make use of them to build circuits that encode logical functions.

Recall the single-bit NOT function, which simply inverts its input. The following circuit,
consisting of one n-mos (on bottom) and one p-mos transistor (on top), encodes the NOT
function:

If there is a voltage on the input wire (if the input is 1), the top transistor blocks current
and the bottom transistor allows current to pass. Since the bottom transistor is connected

21

to the drain, the output wire has no voltage (the output is 0). Conversely, if there is no
voltage on the input wire (if the input is 0), the top transistor allows current to pass while
the bottom transistor does not. Since the top transistor is connected to the electrical source,
the output wire has voltage (the output is 1). From now on, we will refer to the states of
the wires as 1 and 0 instead of voltage or no voltage. Circuits that are made of both n-mos
and p-mos transistors are called CMOS circuits, short for complementary MOS.

We have seen truth tables for the 2-input functions AND and OR. Two other functions,
NAND and NOR, have the following truth tables:

a b NAND NOR
0 0 1 1
0 1 1 0
1 0 1 0
1 1 0 0

The NAND function is simply AND followed by NOT, and NOR is OR followed by NOT.
The following CMOS circuit encodes NAND:

The following CMOS circuit encodes NOR:

22

The NAND and NOR functions we have seen so far accept two inputs, but their meanings
extend easily to any number of inputs. For any number of inputs, NAND and NOR can
be implemented by hardware circuitry in the same ways as they are for two inputs. To
implement AND and OR with circuits, we simply add the circuitry for NOT after the circuitry
NAND and NOR, respectively.

NAND is said to be logically complete because any arbitrary logical function can be built
out of a circuit containing just NAND gates. This is an extremely powerful property, because
it means that hardware to perform any kind of computation can be built out of these very
simple logic gates. Similarly, NOR is logically complete, as is the set of gates {AND, OR,
NOT}. These gates are the building blocks of all digital circuits, and because they will be
used so frequently, the following shorthand symbols represent the transistor-level diagrams
that encode each function:

There are two other useful logical functions, XOR and XNOR, in constructing digital
circuits. The truth tables for the 2-input versions of these functions are:

23

a b XOR XNOR
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Note that XNOR should be thought of as “not-XOR”, not “exclusive-NOR”.
We’ve asserted that NAND is logically complete, so we’ll take a look at how to implement

some other (2-input versions of) logical functions using just (2-input) NAND gates. From
top to bottom, we have NOT, AND, OR, NOR, XOR, and XNOR:

We’ll take a closer look at each of these circuits:

• NOT. It is easy to check that 0 NAND 0 = 1 and 1 NAND 1 = 0, which is the behavior
of NOT.

• AND. Clearly, appending a NOT to NAND encodes AND.

• OR. Checking that this circuit behaves like OR takes a little more work. To check, we
work through the truth table that is induced by the circuit. We use the symbols a and
b to mean “NOT a” and “NOT b”.

24

a b a = a NAND a b = b NAND b out = a NAND b
0 0 1 1 0
0 1 1 0 1
1 0 0 1 1
1 1 0 0 1

We see that the outputs are indeed the correct values for the OR function. In fact,
what we have just demonstrated in this truth table is the first of two properties known
as De Morgan’s Laws :

– p AND q = p OR q

– p OR q = p AND q

What the circuit encodes is a AND b, which equals a OR b by the first De Morgan’s
Law.

• NOR. Clearly, appending a NOT to OR encodes NOR.

• XOR. Since this circuit is a little complicated, we will work through the truth table it
induces:

a b c = a NAND b d = a NAND c e = c NAND b out = d NAND e
0 0 1 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 1 1 0

We see that the outputs are indeed the correct values for the XOR function.

• XNOR. Clearly, appending a NOT to XOR encodes XNOR.

Similarly, all these logical functions can also be built using just NOR gates.
We will now attempt to build a CMOS circuit to add binary numbers. We will first build

a circuit that can together two single bits in the hope that we can string several of these
together to add two n-bit numbers. Adding two bits yields: sum (s) and carry-out (co). The
following truth table summarizes addition on two bits a and b:

a b co s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Notice that the column for s has the same values as a XOR b. In other words, s is simply
the XOR function. The column for co is the same as a NAND b. After noticing these two
identities, the circuit that computes s and co can be constructed as follows:

25

If we only want to add two bits together, this circuit does just fine. To be able to add
multiple-bit numbers together, though, the carry-out from the previous position must be
taken into account when summing the next position. The circuit we just constructed, which
does not take a carry-in input, is known as a half adder. What we want to construct now is
a three-input function (the two bits, a and b, and the carry-in, ci) that produces outputs s
and co. The truth table for this function is:

ci a b co s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The following circuit encodes this function:

Verify that this circuit does in fact encode the correct truth table.
This is now a complete adder, called a full adder, for two bits, and they can be strung

together to add multiple-bit numbers. Notice that the full adder is really just two half adders
and an OR. We can redraw the full adder treating the half adder circuit as a single unit:

26

We can now build a 2-bit adder by stringing together a half adder and a full adder:

This technique can be used to build adders for numbers of any size, such as ints (32
bits) or longs (64 bits). These are called ripple-carry adders because the carry from one full
adder gets propagated to the next. As more full adders are strung together, however, the
time required for the result to be computed, known as the latency, increases. In practice,
more complicated and very clever circuits have been designed to add multiple-bit numbers
more quickly. Although these circuits are more complex, the latency is much less, so they
are used in computer processors; you will likely not find ripple-carry adders to add 32-bit
numbers in modern processors.

Building the half adder and full adder circuits were easy because their outputs were
the same as recognizable functions (or simple combinations of them). Even slightly more
complicated functions, though, will require many more gates to encode the desired truth
table. Fortunately, we can build a circuit called a programmable logic array, or PLA, that
allows us to encode an arbitrarily complex truth table in an organized way.

To demonstrate, we look at a 2-input 2-output PLA that has the same behavior as the
half adder circuit above:

27

(Note that in our drawings, we use an open circle as shorthand for the NOT, or inverter,
gate.) This PLA has 2 inputs, 4 AND gates, and 2 OR gates. In general, for an n-input
m-output function, we use a PLA that has 2n AND gates and m OR gates. To encode
any function, the structure of the PLA stays exactly the same except for the connections
entering the OR gates. The AND gates are set up to represent every combination of the n
inputs. To encode which inputs map to which outputs, we “program” these connecting wires
by inserting inverters in places that yield the logical outputs that we want. To program, or
configure, the outputs we want, we can place inverters on some wires before they get passed
to the OR gates. For example, for the s output for the half adder, we want a 1 for inputs 01
and 10 and a 0 for inputs 00 and 11. Therefore, for the wires going into the s OR gate, we
add inverters to the lines that correspond to 00 and 11; leaving the wires for inputs 01 and
10 without inverters allows the value of s to be 1 for these two inputs. For the co output,
we want a 1 for 11 and 0 for everything else. Therefore, for the wires going into the co OR
gate, we place inverters on the wires corresponding to 00, 01, and 10; this allows just the
input 11 to have a co of 1.

Similarly, we can encode the full adder as a 3-input 2-output PLA:

28

4.1 Exercises

1. Draw transistor-level diagrams for the 3-input NAND and NOR gates.

2. Since NOR is logically complete, all logical functions can be encoded as compositions
of NOR gates. Using just NOR gates, draw circuits that implement (2-input versions
of) NOT, OR, AND, NAND, XOR, and XNOR.

3. What is the truth table for the following circuit?

4. What is the truth table for the following circuit?

29

5. Configure a PLA to encode the following truth table:

a b c d e
0 0 1 0 1
0 1 0 0 1
1 0 0 0 0
1 1 0 1 0

6. Draw a circuit that encodes the 3-input function: NOT (a OR (b AND c))

30

Chapter 5

Faster addition

The time it takes for a computer processor to perform addition is crucial to its performance.
The addition hardware is used in virtually every cycle for tasks like figuring out what the
next instruction to execute is and what the addresses of data in memory are. The time
required by the addition hardware is a major factor in what a processor’s clock cycle is.
Taking a simplified view, we can think of a computer’s clock cycle as how long it takes for
a single machine instruction to execute. So having finely-tuned addition circuitry is a high
priority.

We have already seen a circuit to add numbers – the ripple-carry adder – and we would
like to now analyze its performance. The first step towards this goal is deciding on a metric
we can use to compare different circuits. The measure we will use is gate levels, or gate
delay. Specifically, we will say that a circuit’s gate delay is n if n is the number of gates
along the longest path from some input to some output. We make the assumption that all
logic gates require the same amount of time to complete. Although there are lower-level
physical properties that have real consequences, this simplification will still yield very useful
comparisons. Another simplification we make is that a logic gate contributes “one unit of
delay” no matter how many inputs it has. In practice, however, a gate that has a large
number of inputs does degrade performance.

Let’s analyze the gate delay of the circuits we have seen so far:

• The longest path that can be taken in the half adder is 1 gate (in fact, every path is 1
gate deep), so the half adder has a gate delay of 1.

• The full adder that we constructed using two half adders has a gate delay of 3; its
longest path starts with input wire a, goes through one half adder, goes through the
second half adder, and then goes through the OR gate.

• The PLA that encodes the half adder has 2 gate delays, since every path goes through
an AND and an OR. Note that we do not count standalone inverters as contributing to
gate delay.

• The PLA that encodes the full adder also has 2 gate delays for the same reason.

In fact, since every PLA is structured as a level of ANDs followed by a levl of ORs, every
PLA is 2 gate levels. And because we can encode an arbitrary logical function using a PLA,

31

it takes only 2 gate levels to encode any truth table. As alluded to before, this analysis
breaks down in practice when there is a large number inputs to the ANDs and ORs of the
PLA.

Let’s now consider the ripple-carry adder, which adds two n-bit numbers by stringing
together n full adders. (In our first 2-bit ripple carry adder, we actually used a half adder,
not a full adder, for the first bit. We will later see why we use a full adder even for the
first bit. Notice though that this decision will have no effect on the gate delay.) The longest
path through this adder will go from an input to the carry-out of the nth full adder, passing
through each previous full adder along the way. Since each full adder (encoded in a PLA)
has a gate delay of 2, the overall gate delay of an n-bit ripple-carry adder is 2n.

There are many adder circuits that achieve far better performance than ripple-carry
adders. One of the simpler improvements is called the carry-select adder. The idea is
that instead of having all the full adders just waiting for the carry-in to propagate before
beginning their work, in the meantime they can perform the computation for both possible
values of carry-in. Once the actual value of the carry-in is known, then the corresponding
result (that was already calculated) can be selected as the output.

Before we can continue, we need to examine a circuit that can perform this selection
operation. A multiplexor, or mux, is a circuit that does just that: it takes in several inputs
and chooses one (or sometimes more) to output. Consider the following circuit:

Now consider the truth table it induces:

s a b c d out

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 0 0 0
1 1 1 0 1 1

Notice that when s = 0, the value of out is whatever the value of a is. When s = 1, the value
of out is whatever the value of b is. So given two inputs a and b, one of them is selected to
be output depending on the value of s. We call this circuit a 1-bit 2-to-1 mux, since it takes
two 1-bit inputs and chooses one of them. The gate delay of this mux is 2.

For the carry-select adder, values for both sum and carry-out will be computed before
knowing the value of carry-in. When the time comes to select the results to propagate, there

32

will be more than just one bit of information to select, unlike with the 1-bit mux above. A
2-bit 2-to-1 mux can be built using two 1-bit muxes:

Note that the gate delay of this mux is also 2. In this fashion, we can build a mux to select
between any size input. In the case of the 32-bit carry-select adder, we will want to select
between 17-bit inputs (16 sum bits and 1 carry-out bit).

We can now make use of 16-bit ripple-carry adders and 17-bit 2-to-1 muxes to build a
32-bit carry-select adder:

What we have done is separate the addition of the lowest-order eight bits (0 through 15)
and the highest-order eight bits (16 through 31). Each part is processed by a separate 16-bit
ripple-carry adder as opposed to all 32 bits processed by a 32-bit ripple-carry adder. The
addition of bits 0 through the 15 work as normal because the carry-in to the first bit is
known to be 0. The result of summing bits 16 through 31 depends on what the carry-out of
bit 15 is, however. Instead of waiting the 2×16 = 32 gate delays for co15 to be computed, we
instead compute the sum of bits 16 through 31 for both possible values of co15. Therefore,
we need two 16-bit ripple-carry adders to process bits 16 through 31 in parallel. Now we
have all three ripple-carry adders processing at the same time. After the 32 gate delays it

33

takes for co15 to be generated, this value is used as the selecting wire to a mux that chooses
which of the two already-computed sum and carry-out pairs to use.

Has this speculative approach to summing bits 16 through 31 – speculative because com-
putation is carried out before having all the information it needs to continue – improved the
gate delay of addition? To answer this, we need to look at the longest path in this circuit.
The longest path goes from an input to the 0 through 15 ripple-carry adder and through the
mux. The gate delay of this 32-bit carry-select adder is thus (2× 16) + 2 = 34, much better
than the 2× 32 = 64 of a 32-bit ripple-carry adder.

If we wanted to build any n-bit carry-select adder in this way – breaking up each summand
into two equal pieces – the gate delay is that of a ripple-carry adder to process half the bits
plus that of the mux. Thus, an n-bit carry-select adder that breaks the inputs into two
pieces takes 2(n/2) + 2 = n + 2 gate delays.

A natural extension is to try and improve performance even further by splitting the inputs
into even smaller pieces. The following carry-select adder breaks the summands into four
8-bit pieces (note that we omit most wire labels for brevity):

Since the lowest-order bits (0 through 7) will have a carry-in of 0, the sum for these bits
can be computed directly. The sum of bits 8 through 15 depends on co7, so the carry-select
adder computes sums for both values of co7. Similarly, the sum of bits 16 through 23 depends
on co15, and the sum of bits 24 through 31 depends on co23, so these sums are computed
for both values of their respective carry-ins. When the carry-ins have been computed, their
values are used as the selector wires to the muxes.

To see what performance gains, if any, this circuit achieves, we need to identify the longest
path. For this circuit, the longest path goes through the ripple-carry adder for bits 0 through
7 and then through all three muxes. So the gate delay of this 32-bit carry-select adder in
four pieces is 2(8) + 2 + 2 + 2 = 22, which is a significant improvement over the two-piece
version.

The performance gain from breaking the adder into more and more pieces diminshes, and
even becomes a performance loss, because of the additional muxes that must be traversed.
In general, though, for an n-bit carry-select adder in m-pieces, the longest path goes through
the first ripple-carry adder (of size n/m) and through all m− 1 muxes. Thus, the gate delay
is 2(n/m) + 2(m− 1).

There are many other highly-optimized adders used in practice, but we will not examine
them here. But analyzing just the carry-select adder has served two purposes: 1) to get us

34

thinking about how to analyze algorithms (here the algorithms happened to be implemented
in hardware); and 2) to identify a fundamental difference between hardware and software:
that computation can be carried out in parallel in hardware whereas it is sequential in
software. Although computers can run multiple programs “at one time”, this is just an
effect generated by the operating system telling the processor to take turns executing each
program a little bit at a time. On a single-processor machine, only one program is being
executed at a given moment, so software is sequential by nature. In contrast, the carry-select
addition algorithm we examined exploits the parallel nature of hardware – that multiple
addition circuits can be run at the same time without increasing the gate delay – to achieve
a performance gain. Software written for multi-processor computers and multi-computer
networks, however, can achieve a level of parallelism in software. We will not explore these
avenues any further, but the disciplines of computer architecture, operating systems, and
distributed systems await the eager student.

5.1 Exercises

• For n = 32 and n = 64, compute the optimal value of m for an n-bit carry-select adder.
In other words, determine what number of pieces results in a carry-select adder with
the smallest gate delay. Assume that m must be a power of two.

35

36

Chapter 6

Searching

A very common programming operation is looking for a particular item in a list of items. We
will assume that the list of items is already sorted. Because this task if performed so often,
we would like to design an algorithm that performs this task quickly. For our purposes now,
we will also assume that the list of data is stored in an array. This gives us random access to
every element in the array – we can get at every element in the list in a short time (the time
it takes to access a variable in memory). We will examine two algorithms that complete this
task and begin analyzing how they compare to each other.

The simplest approach is to start at the beginning of the array and walk though all its
elements. If we find the element we are looking for, we are done and do not have to continue
looking. If we get to the end of the array and still haven’t found it, we can declare that
the item does not exist in this list. We call this algorithm a linear search since we make a
straight pass through the list.

This is probably not how you would approach a search through a large list, however.
Consider a dictionary, which is a very long list of words in alphabetical order plus some
additional data. If you were looking for a particular word, would you start at the beginning
and start scanning linearly? Of course not. Instead, you would probably flip to somewhere
in the middle of the dictionary and see if you landed on the word you were looking for. If you
did, then you would be done. Otherwise, if the search word was lexicographically (standard
dictionary sorting order) before the one you found, you would repeat this process on just
the pages between the beginning and the current page. If the search word should be after
the one you found, you would repeat this search on the pages between the current one nad
the last one. You would keep repeating this process, eliminating half the remaining pages in
each step, until you either found your word or reached just a single word. In the latter case,
you would deem that the word does not exist in the list.

This technique is known as binary search, and it is a much quicker way to find an item
in a sorted list. Whereas in a linear search only one item is eliminated in each step, about
half the remaining items are eliminated in each binary search step. Binary search exploits
the fact that the data is already sorted to lead to a quicker algorithm. The question now is
how to compare these two algorithms that peform the same task.

Before we even decide on what units we will use to “measure” these algorithms, we can
think about different measurements we will make. These algorithms are functions of some

37

input, and we will want to express how long they take to execute in terms of the size of
the input. For instance, if we are given a sorted array of n elements, we would like to say
something like Algorithm A takes 5n + 30 steps whereas Algorithm B takes n2 − n steps.
Furthermore, it is useful to consider particular properties of the input, because not all inputs
of the same size will require the same time for the algorithm to complete. For example, in
our case, consider two arrays of length n and a particular item we are looking for. If the the
first array contains this item but the second one does not, the searching algorithms will take
different number of steps to complete.

One type of input that we sometimes analyze is the best case input for an algorithm.
For example, the best case for linear search is that the desired element is first in the list.
An input of this kind results in the shortest possible execution of linear search. For binary
search, the best case input is an array with the desired item exactly in the middle. Best
case analysis is not usually very useful because the best case is often much simpler than
other types of inputs. Worst case analysis picks an input that requires the algorithm to take
the maximum number of steps to finish. For example, if the desired element was not in the
list, then both linear and binary search would have to run process the entire array (albeit
in different ways) before concluding that the element is not found; this is the worst case for
the searching problem. Analyzing an algorithm’s worst case provides a lot of information
– it provides an upper bound on how long the algorithm may take – and is the most often
performed analysis. Another possible analysis considers the average case. An average case
analysis may more accurately reflect the running time of an algorithm over a large number
of runs, especially when some inputs are significantly “worse” than others but do not occur
frequently.

We will now give concrete Java implementations of linear and binary search (where the
elements in the sorted array are integers), and we will then analyze them:

public int linearSearch(int x, int[] data) {

for (int i=0; i < data.length; i++) {

if (x == data[i])

return i;

}

return -1;

}

public int binarySearch(int x, int[] data) {

int bot = 0;

int top = data.length - 1;

int mid;

while (bot <= top) {

mid = (bot + top) / 2;

if (x == data[mid]) {

return mid;

}

else if (x < data[mid]) {

top = mid - 1;

}

38

else {

bot = mid + 1;

}

}

return -1;

}

One way to analyze these algorithms is to count the number of items in data that each
algorithm visits. Although there are other statements getting executed in both algorithms,
the number of elements that each compares against may give us a good idea of how much
work each is doing. We will also analyze for the worst case, because we want a guarantee on
how long the algorithm may take no matter what input is provided. For both algorithms,
the worst case input is a data array that does not contain the search term x.

For this worst case input, linearSearch compares x with every element in the array. If
we call n the length of the array (n=data.length), then linearSearch compares against
at most n elements in the input array. Note that this is an upper bound – no input array
can cause more than n elements to be visited – because we performed a worst case analysis.

binarySearch is more complicated to analyze because it does not do the same thing in
every iteration – there are three different branches inside the while loop. The first thing to
check is that this algorithm actually does terminate (checking for termination is worthwhile!).
The guard of the loop checks that bot≤top. This condition holds at the first iteration of the
loop because of the way these variables are initialized. Inside the loop, mid gets a assigned
a value somewhere in between bot and top – ie, bot≤mid≤top. We now need to check all
three conditional branches to make sure the guard condition will not remain true forever. In
the first conditional branch, the method exits. In the second conditional branch, top gets
assigned a value strictly smaller than its old one. Similarly, in the third branch, bot gets
assigned a value strictly larger than its old one. Since in all three branches, the method
either returns or decreases the range between top and bot, this algorithm is guaranteed to
terminate.

The question now is to analyze how many steps it takes to terminate (again assuming
the input is a worst case input). Our first analysis will be just to count the number of
elements visited in the array, just as we did for linearSearch. For binarySearch, we want
to count each iteration of the loop as visiting an item in the array, because if we look at
the logic inside the loop, all comparisions are being performed in terms of a single element,
data[mid]. That is the particular item being visited in one iteration of the loop.

Even this simple analysis is harder than it was for linearSearch. This algorithm throws
away parts of the array by reassigning top or bot appropriately. In particular, let m be the
number of elements between indices bot and top, and let data[mid] not be equal to x (since
we are assuming worst case input). So either of the last two branches will be taken. In these
branches, there are m elements to start with and then either bot or top gets reassigned, so
there are (m − 1)/2 elements left on either side of the midpoint. Because m can either be
even or odd, this number will not always be the same on both sides of the midpoint. An
example:

0 4 6 7 9

39

Suppose we are looking for the number 2 in this array. Following binarySearch, the values
in the array that would be visited are 6, 0, and 4 (for mid=2, 0, and 1). If we were looking
for the number −2 instead, the values in the array that would be visited are 6 and 0. Notice
that although in neither case was the element found, they did not compare against the same
number of elements. The reason for this is because in the second iteration of the loop, bot=0,
top=1, and mid=0. When searching for 2, it would have appear to the right of 0, and there
are still elements to the right of 0 that have not yet been searched (the single element 4).
When searching for −2, however, it would have to appear to the left 0, and there are no more
elements to the left of 0. Because splitting even and odd arrays leads to this asymmetry,
the worst case is not just an array that does not contain the search term, it is one that also
results in the larger sub-array being searched whenever the two sub-arrays are not of equal
length. In the example above, we had an array of two elements in the second iteration. After
comparing against one element, the two sub-arrays had 0 and 1 elements, so we choose the
sub-array with 1 element.

To make the analysis simpler, we will make a couple of assumptions. First we will assume
that data.length is a power of 2 (ie, n = 2k for some k ≥ 0). We will also assume that,
when splitting an array of size m around data[mid], both sub-arrays have exactly m/2
elements. These assumptions make the worst case analysis much simpler. We start with an
array of size n and repeatedly visit one element and split the array in half. This process
continues until we reach an array of 1 element; at this point we can deem the element not
found. How many times do we split the array in half? Because we assumed n = 2k, there
will be log2(n) + 1 = k + 1 splits to get down to an array of just one element. Since one
element is visited before each split, a total of log2(n) + 1 elements in the input array are
visited.

Keep in mind the assumptions we made in achieving this bound. To contrast, the fol-
lowing chart compares the base-2 logarithm function and the actual worst case number of
comparisions (a future assignment will show to compute this number) for each input size
between 1 and 1000:

Notice how close our approximation is to the actual worst case.
To get an idea for how much better binarySearch does than linearSearch, we plot the

40

worst case number of comparisons for each:

So far we have only taken into account the number of elements in data that get visited,
but both algorithms clearly contain other operations. We will now consider how the other
operations – assignments, conditionals, return statements – might affect the performance of

41

the algorithms.
We will adopt a simplified model for how much each statement that gets executed “costs”.

We will say that every assignment, conditional, and return statement costs one operation
regardless of how complicated the expressions within them may be. For example, we will
count both the assignments int a = 2; and int b = 2 * (1 - 3) / 5; as one operation,
even though the second will require more instructions for the machine to execute. Without
knowing exactly how a particular computer architecture performs low-level tasks like adding
two numbers and reading and writing from memory, we do not know exactly how many
operations we should charge for each type of Java expression, so we simply assume they are
all equal. Even if we did know the details of the computer architecture, we will see that we
achieve powerful analysis techniques in spite of these simplifying assumptions.

Let’s take another look at linearSearch, this time taking into account all of the op-
erations it performs. Again we will use the variable n to denote data.length. Let’s first
analyze the for-loop. The initialization of i only occurs once, before the loop body ever
executes, so it costs 1 operation. The conditional expression gets tested every time the loop
body is entered and one last time when it evaluates to false. We are assuming the worst
case input, so the loop body will be executed n times. Thus, the conditional expression is
evaluated n+1 times, costing n+1 operations. The increment of the loop variable i happens
each time the loop body is executed (n times), so the total cost of incrementing is n. Now we
consider the rest of the loop body. The equality check is performed once for every iteration
of the loop, so the total cost of the equality checks is also n. We assume that the branch
never gets taken, so the return statement doesn’t factor into our analysis. Finally, after the
for-loop completes, the return -1; statement requires one operation. Thus, we have the
total cost is 1 + (n + 1) + n + n + 1 = 3n + 3.

We can annotate the algorithm with two counters, one for total cost and one for just
number of comparisons, to demonstrate our analyses:

public int linearSearchCount(int x, int[] data) {

int operations = 0, comparisons = 0;

operations++; // initialization of i

for (int i=0; i < data.length; i++) {

operations++; // for-loop guard test

operations++; // equality check

comparisons++;

if (x == data[i]) {

operations++; // return

System.out.println("ops:\t" + operations);

System.out.println("comps:\t" + comparisons);

return i;

}

operations++; // increment of i

}

operations++; // return

System.out.println("ops:\t" + operations);

System.out.println("comps:\t" + comparisons);

42

return -1;

}

Now we can run linearSearchCount on a worst case input to demonstrate our accounting
techniques:

> int[] data = {1, 3, 5, 7, 9, 11, 13};

> Searching s = new Searching();

> s.linearSearchCount(0, data)

ops: 23

comps: 7

-1

We’ve already talked about the number of comparisons that binarySearch makes. Let’s
now count the total number of steps it takes in the worst case. The assignments of bot

and top take two steps. Let’s not count a step for mid because no value gets assigned to it;
this choice is arbitrary, but once we have made it, we should be consistent. We will use the
approximation discussed above that the loop gets executed log(n) + 1 times, so the guard
for the while loop gets executed log(n) + 2 times. Inside the loop, we count four steps – the
assignment of mid, the first conditional with x, the second conditional with x, and one for
the step inside the else. Outside the loop, the return takes one step. Thus, overall we have
2 + log(n) + 2 + (log(n) + 1)4 + 1 = 5 log(n) + 9 steps. Remember that this analysis makes
use of the approximation that the loop runs log(n) + 1 times.

Annotating binarySearch to compute the number of operations and comparisons on
worst case inputs is left as an exercise.

Now that we have functions for the number of steps for both linearSearch and binarySearch,
let’s take a look at how their performance compares to each other:

43

Note that for very small inputs (about n = 6 and smaller) linearSearch is actually faster
than binarySearch. But for large inputs, binarySearch is dramatically faster.

One interesting thing to note about our implementation of binary search, and most that
you will find textbooks or in examples, is that it contains a bug. The offending line is the
computation of the midpoint: int mid = (bot + top) / 2; The value (bot + top) may
overflow the range of an int, and if it does, the result is a negative number. Dividing this
number by two and then trying to index into an array using a negative number will result
in an ArrayIndexOutOfBoundsException. One way to avoid this possible overflow is: int

mid = bot + ((top - bot)/2); This goes to show that even the most benign programming
tasks – like taking the average of two numbers – have room for bugs! Take a look at the
Google Blog post that discusses this surprising bug and the bug report filed with Sun:

googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

bugs.sun.com/bugdatabase/view_bug.do?bug_id=5045582

6.1 Exercises

1. Design and run experiments to estimate the number of comparisons that binary search
takes on worst case inputs. Recall that worst case input for binary search is not quite
as simple as just arrays that don’t contain the search term, because of the uneven array
splitting scenario. But instead of figuring out exactly what the worst case number of
comparisons is for a particular n, you will approximate it by running several different
test cases where data.length=n and where x is not contained in data (some of these
will be worst case inputs and some will be close but not the actual worst case). After
running several experiements, compute the averge number of comparisons for these
worst-case and “slightly better than worst-case” inputs for sizes n = 1 to n = 100.

You will want to define an annotated version of binary search that counts the number
elements in the array that are visited. You will also want to, instead of just printing out
what the number of comparisons is, modify the return type of binary search to include
this information. This will allow you to run a large number of test cases and compute
the average across all of them.

44

Chapter 7

Asymptotic analysis

In the previous section, we devised a simple system for analyzing two searching algorithms.
We made the simplifying assumptions that every statement takes the same amount of time
to execute, so each statement that gets executed costs one operation. In this section, we will
analyze a few more examples in this manner, and then we will introduce some mathematical
definitions that allow us to analyze algorithms in a more general way.

Let’s take a look at the following method foo and count how many steps it takes in the
worst case.

public void foo(int n, int m) {

for (int i=0; i < n; i++)

for (int j=0; j < m; j++)

System.out.println("hello");

}

What is the worst case for this foo? For any inputs n and m, foo takes the same number of
steps since there are no conditionals and no returns along different paths of the code. So the
worst case is simply what gets executed everytime: everything. We’ll start with the outer
loop. The initialization of i gets executed once, the guard check gets executed n+1 times, and
the increment of i gets executed n times. The loop body runs n times, so whatever the cost
of the inner loop is, we will multiply that by n (once for each iteration of the outer loop). For
each iteration in the outer loop, we now consider the inner loop. The initialization executes
once, the guard check executes m + 1 times, and the increment executes m times. The loop
body executes m times, and the print statement inside the loop takes one step. Thus, the
total number of steps for foo is 1+ (n+1)+n+n(1+ (m+1)+m+m(1)) = 3mn+4n+2.

What if foo was slightly modified so that it only took one parameter, n, and used it for
the guard of both loops? The total number of steps of this modified version (let’s call it
foo2) would then be 3n2 + 4n + 2.

Let’s take a look at another example:

public void goo() {

for (int i=0; i < 100; i++)

for (int j=0; j < 100; j++)

if (i >= j)

45

System.out.println("hello");

}

There are no parameters to goo, so this method will take the same number of steps every
time it is executed and will not be in terms of any variables; it will be some number. For the
i loop, initialization takes one step, checking the guard takes 101 steps, and the increment
takes 100 steps. The loop body of the outer loop runs 100 times, so we will analyze the
loop body and multiple its number of steps by 100. For the j loop, the analysis is the same:
1, 101, and 100. Inside the body of the j loop, the guard for the if always gets checked,
requiring one step each time.

Counting how many times the print statement inside the if is a little complicated, though,
since it does not always get executed. In particular, it only gets executed if i≥j. Let’s take
a look at when i is 0 and count how many values of j are less than or equal to 0. There is
just one such value, when j is 0. How about when i is 1? There are two such values, when
j is 0 and 1. For the last value of i (99), the number of j’s less than or equal to i is 100. In
general, for any i, there are (i+1) values of j that are less than or equal to i – these values
are 0 through i.

We can now put all this together to get the total number of steps:

1 + 101 + 100 + 100(1 + 101 + 100 + 100(1)) + (1 + 2 + 3 + · · ·+ 99 + 100)

= 202 + 100(302) +
∑100

i=1 i
= 30402 + 50(101)
= 35452

Notice that we counted the number of times the print statement executes outside of the
computation for the number of steps of the j loop body. In the way we arranged the sums,
the loop body executes 100 times and we multiplied that by 1 for the step need for checking
the conditional. Because the number of times the print statement executes is not the same
for each j, we cannot simply count in the loop body. So we count all of the print statements
separately and add it to the rest of analysis.

The way we computed the sum from 1 to 100 is using a method commonly known as
Gauss’s trick. We can regroup the summands together in the following way: (1+100)+(2+
99)+ (3+98)+ · · ·+(49+52)+ (50+51). Each of the sums in parentheses is 101 and there
are 50 such terms. Thus, the sum from 1 to 100 is 50 × 101 = 5050. This method extends
to the general case of summing the first n integers:

n∑
i=1

i =
n(n + 1)

2

If we modify goo so that it takes a parameter n and uses it for the bounds of both loops
instead of 100 (let’s call this version goo2), how many steps would it take? Work through
the analysis and verify that it is 7n2/2 + 9n/2 + 2.

We have seen two methods, foo2 and goo2, that take more than n2 steps to run. foo2

takes 3n2 + 4n + 2 steps and goo2 takes 3.5n2 + 4.5n + 2 steps. Thus, we might argue that
foo2 takes much less time than goo2 to run. Let’s plot these two running times and see how
they compare:

46

Indeed, it is apparent that goo2 is slower than foo2 and that the gap between them increases
as the input size gets larger. Let’s take a look at another method and re-evaluate our stance
on this issue.

To analyze the next method, hoo, we introduce one more rule to our simplified approach
to counting steps: if a method g is called from a method f, in the analysis of f, we count the
number of steps for the method call to be the number of steps that g takes to complete in
the worst case, not just one like for all other statements. With this in mind, we can analyze
hoo:

public void hoo(int n) {

for (int i=0; i < (int)Math.pow(2, n); i++) {

System.out.println("about to call goo");

goo();

}

}

(Note that we are already breaking the rule we just created by counting the call to Math.pow

as a constant operation.) The initialization of i takes one step, the guard is checked 2n + 1
times, the increment executes 2n times, and the loop body runs 2n times. Each iteration of
the loop body takes 1+35452 = 35453 steps. Thus, hoo takes 1+(2n +1)+2n +2n(35453) =
35455(2n) + 2 steps.

Let’s now plot the running time of foo2, goo2, and hoo on the same graph:

47

Notice that even for the range n = 1 to 10, hoo’s running time is huge and that of foo2

and goo2 are not even visible because their values are so small! We previously concluded
that goo2 took a lot longer than foo2, but compared to hoo, they are both trivial – hoo

completely dwarfs them.
What if we modify hoo (let’s call it hoo2) so that it doesn’t call goo inside the loop

(because that is adding a huge number of operations)? If we get rid of the call to goo and
keep just the print statement, hoo2 takes 3(2n) + 2 steps to execute. Let’s now compare
foo2, goo2, and hoo2:

Now we can at least see all three functions on the same plot, although for small values of n.
And notice that for very small values of n, hoo2 is actually faster than the others.

Let’s consider a bigger range of n values:

48

Again, we are at the point when hoo2 completely dwarfs the running times of the other two
around, and n = 80 is not even a large input size for practical purposes.

We are now going to rethink the way we’ve been analyzing running times. The simplified
model we have been using counts all operations as requiring the same amount of time even
though it is clear that some operations (like multiplying floating point numbers) take much
more time than others (like ANDing two bits). Furthermore, we assumed that no matter
how big an expression is, it takes the same time to evaluate as any other expression. After
making these somewhat absurd simplifications, we then meticulously counted steps for vari-
ous methods. We then used these results to, for example, say that goo2 is much slower than
foo2 because the coefficients multiplying the n2 and n terms were larger (even though we
are aware that the actual constants were calculated only our simplifying assumptions).

In addition, the striking difference in running time we observed between functions that
take on the order of 2n steps compared to n2 steps gives us the feeling that the actual
constants in front of these terms don’t matter too much. The running times of foo2 and
goo2 are effectively the same when compared to something that takes orders of magnitude
more time, like hoo2.

To accomodate these insights, we improve our analysis techniques by making two assump-
tions:

1. The constants in front of the variables in our running time don’t matter. For example,
an algorithm that takes 500n steps is effectively just as good as one that takes 100n
steps, or even n steps.

2. What we really care about is how algorithms perform for very large inputs.

Incorporating these two assumptions into our analysis leads us to consider just what
happens to running times as the input sizes get large. In other words, what we care about
is how these running times grow over time, so we call this approach asymptotic analysis.

We now formally define how to asymptotically compare two functions f(n) and g(n). We
say f(n) is O(g(n)) (read f(n) is Big-O of g(n)) if there exists some integer constants c > 0
and N > 0 such that for all values of n ≥ N the following is true:

49

f(n) ≤ c× g(n)

If f(n) is O(g(n)), the intuition is that f is as least as small as g, for large values of n. Said
another way, the growth of f will not become larger than the growth of g.

Let’s compute the asymptotic running times for foo2, goo2, and hoo2 to see how this
works. Let T1(n), T2(n), and T3(n) denote the running times of these functions, respectively.
Our first claim is that T1(n) is O(n2). To prove this, we need to find values for c and N such
that for all n ≥ N

3n2 + 4n + 2 ≤ cn2

There are many values for c and N that would satisfy these constraints; we need to find just
one such pair to prove the claim. Let’s start by trying c = 4. With this value of c, we have:

3n2 + 4n + 2 ≤ 4n2

4n + 2 ≤ n2

So we now to need to find an N such that this equality is true for all n ≥ N . Notice that
when n = 5, n2 = 25 and 4n + 2 = 22. For all values of n greater than or equal to 5, the n2

term is bigger than 4n + 2. So we can pick N = 5. This finishes the proof that the running
time of foo2 is O(n2).

Let’s now prove that T2(n) is also O(n2). To prove this, we need to find values for c and
N such that for all n ≥ N

3.5n2 + 4.5n + 2 ≤ cn2

Let’s start by trying c = 4 again. The equality then becomes:

3.5n2 + 4.5n + 2 ≤ 4n2

4.5n + 2 ≤ 0.5n2

9n + 4 ≤ n2

We realize that this last equality holds for all n ≥ 10, so we pick N = 10. Ths finishes the
proof that the running time goo2 is also O(n2).

Let’s now prove that T3(n) is O(2n). To prove this, we need to find values for c and N
such that for all n ≥ N

3(2n) + 2 ≤ c2n

Let’s start by trying c = 4 again. The inequality then becomes:

3(2n) + 2 ≤ 4(2n)
2 ≤ 2n

50

This last is equality is true for n = 1 and greater, so we pick N = 1. This finishes the proof
that the hoo2 runs in O(2n) time.

What about the running time goo, which was a constant function, not one in terms of
any variables? It is easy to show that every constant function is O(1). Given an arbitrary
constant function f(n) with value k (ie, f(n) = k for all values of n), we need to show that
for some c and N , the following is true for all n ≥ N :

k ≤ c× 1

We can satisfy these constraints by choosing c = k and N = 1. Thus, any constant function
is O(1). In particular, the running time of goo is O(1).

Because Big-O analysis discards any constants along the way, when counting the number
of steps an algorithm takes, we don’t have to keep track of the exact number of steps. We
can instead use variables to denote constants, because these constants can be thrown away
in the asymptotic analysis.

Let’s take a second look at foo2 with this in mind. The outer loop takes 2n + c′ steps,
where c′ accounts for constant operations like initialization. The inner loop takes 2n+c′′ steps
using similar reasoning. The print statement takes c′′′ steps, because it is also some constant
number of operations. Thus, the total number of steps is 2n + c′ + n(2n + c′′ + n(c′′′)) =
2n2 + 2n + c′ + c′′n + c′′′n2. We now want to prove that this function is O(n2). We need to
find values c and N such that for all n ≥ N , the following is true:

2n2 + 2n + c′ + c′′n + c′′′n ≤ cn2

If we set c = 2 + 2 + c′ + c′′ + c′′′ we have:

2n2 + 2n + c′ + c′′n + c′′′n ≤ (2 + 2 + c′ + c′′ + c′′′)n2

= 2n2 + 2n2 + c′n2 + c′′n2 + c′′′n2

Since each term on the right is greater than or equal to each corresponding term on the
left, this inequality is always true, so we pick N = 1. So even though we used variables to
represent constant numbers in the initial analysis, we still proved the function to be O(n2)
by using those variables in picking values for c and N .

It’s important to realize that a Big-O relationship identifies an upper bound on the asymp-
totic behavior of a function. This upper bound is not guaranteed to be tight, however. For
example, we could also easily prove that T1(n) is O(n3). But we know this is not the tightest
bound for T1(n), because we have already shown that T1(n) is O(n2). Even worse a bound
for T1(n) is O(2n). This is also easy to show, but this is a terrible bound because we know
that the magnitude of its values are actually much smaller than this.

When we establish Big-O bounds, we are usually interested in finding as tight a bound
as we can, but there is no guarantee that these bounds actually are. To address this, there
are other asymptotic analyses that establish lower bounds for functions. Big-Omega analysis
establishes lower bounds in the analagous way that Big-O establishes upper bounds, but we
will not pursue these lower bounds here. Instead, we will try to establish the tighester upper
bounds we can, but we’ll keep in mind that they may not always be the best possible ones.

51

To conclude this section, let’s derive upper bounds on the running times of linearSearch
and binarySearch from the previous section. The number of steps that linearSearch

takes in the worst case is c′ + 2n + n(c′′) = (2 + c′′)n + c′. We show that this is O(n)
by picking c = 2 + c′ + c′′ and N = 1. The number of steps that binarySearch takes is
c′+(log(n)+c′′)(c′′′). Notice that we count the number of iterations of the loop as log(n)+c′′.
As discussed in the previous section, the exact number is a little difficult to compute when
n is not a power of 2, but we can completely avoid this problem by adding the constant c′′.
No matter how many iterations it actually will take, it will always be a constant number of
iterations – something like one more or one less than – away from log(n). To show that this
running time is O(log(n)), we pick c = c′ + c′′′ + c′′c′′′ and N = 1.

In this section, we have seen how to quantify the running time of algorithms for large
inputs. This approach allows us to compare algorithms without knowing how low-level op-
erations are implemented in the algorithm and in the computer that runs them. Therefore,
an O(n2) algorithm on one computer is an O(n2) algorithm on another computer, so this
analysis allows us to make very strong claims about running times independent of the envi-
ronment. For most purposes, the asymptotic running time of an algorithm is the primary
factor in whether or not the algorithm can be used for practical purposes. On the other
hand, low-level details about how individual operations are carried out and what the con-
stants for an algorithm is are important when trying to aggressively optimize an algorithm
for a specific task on a specific machine. This is a different problem, though, and not the
one that asymptotic analysis is designed to address and solve.

7.1 Exercises

1. Suppose the guard for the if statement in goo was true instead of i>=j. How many
steps would goo take?

2. Suppose goo took two parameters, n and m, and used n for the guard of the outer loop
and m for the guard of the inner loop. How many steps does this modified version (let’s
call it goo3) take if n<m? if n>m?

3. Is it correct to say O(log n) when we really mean log base-2? Show that:

• log2 n is O(log10 n)

• log10 n is O(log2 n)

4. Order the following functions in order of increasing asymptotic growth rate:

• 2n

• n

• 4

•
√

n

• n2 + 3n

• log n

52

• n log n

• n!

• n5 − n4

• 1.5n

5. Given two algorithms that accomplish the same task, would you ever choose the algo-
rithm with the faster asymptotic growth rate? Why or why not?

53

54

Chapter 8

Recurrence relations

So far we have only considered asymptotic growth rates for iterative algorithms. We will
now look at how to analyze recursive algorithms. In this section, we will look at recursive
implementations of linear and binary search and perform Big-O analyses of them.

Although a programmer would not likely think of linear search as a recursive algorithm,
it can easily be programmed as one. Here is a Java implementation of linear search using
recursion:

public int recLinearSearch(int x, int[] data) {

return recLinearSearchAux(x, data, 0);

}

public int recLinearSearchAux(int x, int[] data, int i) {

if (i < 0 || i >= data.length)

return -1;

else if (x == data[i])

return i;

else

return recLinearSearchAux(x, data, i+1);

}

We would now like to analyze the running time. We first note that recLinearSearchAux
is all we need to analyze, since recLinearSearch simply makes a call to it. Because this
method calls itself, we will have to use a slightly modified approach to counting the number
of steps. Let T1(n) refer to the number of steps that recLinearSearchAux makes when x is
not in data and n is data.length - i. In other words, T1(n) is the worst case number of
steps when there are n elements that still need to be checked.

Because we are only interested in the asymptotic running time, we do not need to be
overly meticulous when counting steps. Instead of exact constants, we will use variables to
represent some of the operations. Let c be the number of steps it takes to get to the point
where the recursive call is made, and let c′ be the number of steps when the base case (i =
0) is reached.

We now identify the following relationships:

55

T1(n) = c + T1(n− 1)
T1(n− 1) = c + T1(n− 2)
T1(n− 2) = c + T1(n− 3)

...
T1(2) = c + T1(1)
T1(1) = c + T1(0)
T1(0) = c′

We now have equations for each T1(k) in terms of the running time for smaller subproblems.
T1 is called a recurrence relation because each value of T1 is defined in terms of another one.
What we would like to compute is a closed-form expression for T1(n), since that represents
the total running time. Notice what happens if we sum all n+1 of these equations together.
For all k = 0 to n − 1, the term T1(k) appears exactly once on the left hand side of an
equation and exactly once on the right hand side of an equation. Thus, all of these terms
cancel out. What we are left with is the equation T1(n) = cn + c′, giving the running time
for the entire algorithm. Thus, T1(n) is O(n). This makes sense intuitively because the
algorithm performs the same computation as the iterative version of linear search, using
recursive calls instead of a loop.

In contrast to linear search, binary search is naturally thought of as a recursive process,
so it is much more likely that a programmer would employ recursion in an implementation
of binary search rather than linear search. Here is an implementation:

public int recBinarySearch(int x, int[] data) {

return recBinarySearchAux(x, data, 0, data.length - 1);

}

public int recBinarySearchAux(int x, int[] data, int bot, int top) {

if (bot > top)

return -1;

else {

int mid = (bot + top) >>> 1;

if (x == data[mid])

return mid;

else if (x < data[mid])

return recBinarySearchAux(x, data, bot, mid-1);

else

return recBinarySearchAux(x, data, mid+1, top);

}

}

Just as with recursive linear search, we only need to analyze the running time of recBinarySearchAux.
Let T2(n) be the number of steps that recBinarySearchAux takes to run when top - bot

= n− 1 (ie, there are n remaining elements to search for x). The worst case is when either
recursive call is made (the number of steps along both branches that make a recursive call

56

are the same), and we define c to be the number of steps it takes to get to the recursive call.
Let c′ be the number of steps in the base case (when bot > top).

Because each phase eliminates about half the elements in the array, we can say that
each recursive call has an input size of half the original. Although the number of remaining
elements is not exactly half, we can assume that is because we will only be interested in the
asymptotic growth. We identify the following relationships:

T2(n) = c + T2(n/2)
T2(n/2) = c + T2(n/4)
T2(n/4) = c + T2(n/8)

...
T2(2) = c + T2(1)
T2(1) = c + T2(0)
T2(0) = c′

Since dividing n in half log n times yields 1, when we sum these equations we are left with
T2(n) = c log n + c′. Thus, recursive binary search is O(log n).

So far when analyzing algorithms, we have only been concerned with the running time, or
the number of steps required to execute. Analyzing the memory usage of algorithms is also
important, especially when dealing with large data sets. Memory usage becomes an even
more important factor with recursive algorithms because each method call requires memory
to keep tracking of parameters and local variables defined within each method. We will not,
however, pursue this kind of analysis in this section.

8.1 Exercises

1. In a previous section, we ran an experiment to calculate the largest number of com-
parisons that could be made by a binary search for various sizes of input arrays. Now
write a recursive method to calculate this worst case number of comparisons for binary
search. Analyze the asymptotic growth rate of your algorithm.

2. Fibonacci numbers. This famous sequence of numbers is defined recursively, or induc-
tively, as follows:

Fn =

{
1 if n ∈ {1, 2}
Fn−1 + Fn−2 if n ≥ 3

(a) Write an annotated version of the recursive algorithm to compute the nth Fibonacci
number. This modified version should count the number of times that the method
is called. Plot these counts as a function of n.

(b) A rigorous analysis shows that the recursive version of Fibonacci has an asymptotic
growth rate, making it unusable for practical purposes.

Consider the following non-recursive implementation of Fibonacci. What is its
running time?

57

public int fib2(int n) {

if (n <= 2)

return 1;

int[] cache = new int[n+1];

// cache[0] unused

cache[1] = 1;

cache[2] = 1;

for (int i=3; i <= n; i++)

cache[i] = cache[i-1] + cache[i-2];

return cache[n];

}

(c) Can you write an even better implementation than fib2, one that does not require
an array?

3. (a) What is the running time of mystery?

public void mystery(int n) {

if (n == 0)

return;

mystery(n-1);

for (int i=0; i < n; i++)

System.out.println("hello");

}

(b) What is the running time if the recursive call is changed to mystery(n-2)?

58

Chapter 9

Sorting

When we examined searching algorithms in a previous section, we made the assumption
that the data array was already in sorted order (in particular, increasing sorted order). The
binary search algorithm exploited this property to achieve a very fast running time. When
searching for an item in an unsorted list, however, linear search is the best we can do. With
large lists, linear search becomes a slow operation, so we would like to design algorithms
that sort data, and sort them quickly, so that we can exploit the nice properties of sorted
data in other computational taks, like searching.

The first algorithm we will look at is a very natural one. In one pass through the data,
we find the smallest element and put it into the first position of the array. In the second
pass, we find the second smallest element and put it into the second position of the array.
We repeat this process until we have all elements in the correct sorted order. Because in
each pass we select the minimum remaining element, this algorithm is called selection sort.
Here is a concrete Java implementation:

public static void selectionSort(int[] data) {

int

n = data.length,

minIndex,

minValue,

temp;

for (int i=0; i < n-1; i++) {

minValue = data[i];

minIndex = i;

for (int j = i+1; j < n; j++) {

if (data[j] < minValue) {

minValue = data[j];

minIndex = j;

}

}

temp = data[i];

data[i] = data[minIndex];

59

data[minIndex] = temp;

}

}

We will now analyze the running time of selectionSort. The initialization steps before
the loop take some constant number of operations, as do the steps within in the inner-loop.
So the asymptotic running time depends only the number of times the loops execute. Before
we analyze the loops of selectionSort, let’s consider a simpler nested loop case:

for (int i=0; i < n; i++)

for (int j=0; j < n; j++)

// DO SOMETHING

The number of times that the body of the inner-loop gets executed is n2, so this clearly runs
in O(n2) time.

The loop bounds of selectionSort are slightly, different, however. So the question is
how do the modified loop bounds effect the running time? We have already established that
we just need to count the number of times each loop runs to determine the overall running
time, so we’ll do just that – for each each value of i, we will enumerate all the values of j:

i = 0 1 2 3 · · · n− 2 n− 1
i = 1 2 3 · · · n− 2 n− 1
i = 2 3 · · · n− 2 n− 1

...
. . .

...
...

i = n− 3 n− 2 n− 1
i = n− 2 n− 1

Summing up the number of j indices for each i, we have that the inner-loop body executes
(n − 1) + (n − 2) + · · · + 2 + 1 =

∑n−1
i=1 i = n(n − 1)/2 times. So even though each loop’s

bounds do not range over all n possible values, the total number of iterations is still O(n2).
Thus, we have that selectionSort runs in O(n2) time.

Another simple sorting scheme called bubble sort also moves one element to its correct
position at the end of each pass. Instead of finding the minimum (or maximum) element
before any swapping, bubble sort performs swaps between each pair of indices, “bubbling”
the appropriate element to the end of the array. The algorithm we present here pushes larger
element from the front to the back of the array. Sometimes this approach is called brick sort,
while bubble sort refers to pushing smaller elements from the back of the array to the front.
We will not observe this naming distinction here.

Here’s a concrete implementation of bubble sort:

public static void bubbleSort(int[] data) {

int temp;

int n = data.length;

for (int i=n-1; i >= 0; i--) {

for (int j=0; j < i; j++) {

if (data[j] > data[j+1]) {

60

temp = data[j];

data[j] = data[j+1];

data[j+1] = temp;

}

}

}

}

Note that unlike with selection sort’s one swap per outer-loop iteration, many swaps can
(and often are) performed in an iteration of the i-loop. This process incrementally pushes
larger elements to the end of the array, and gets one element in the absolutely correct spot
in each pass. The loop bounds for bubble sort are again O(n) for each, so bubble sort runs
in O(n2) time.

Bubble sort unnecessarily continues processing even when if the array becomes sorted
without requiring all n iterations of the outer loop. A simple optimization cures this:

public static void bubbleSort2(int[] data) {

int temp;

int n = data.length;

boolean swapped = true;

for (int i=n-1; i >= 0 && swapped; i--) {

swapped = false;

for (int j=0; j < i; j++) {

if (data[j] > data[j+1]) {

temp = data[j];

data[j] = data[j+1];

data[j+1] = temp;

swapped = true;

}

}

}

}

The swapped flag records whether or not there was at least one swap in the previous iteration
of the outer-loop. If not, the array is already in sorted order and the algorithm and can forgo
the remaining iterations. As a result, the best-case input (when data is already sorted) now
runs in O(n) time, although the worst-case still takes O(n2). Note that this speedup for
mostly-sorted data comes at the price of the overhead for maintaining and checked the
swapped flag.

Although the O(n2) running time for these two sorting algorithms does not seem ex-
cessively large (especially after having previously considered some very slow exponential
functions), this quadratic bound becomes a severe limitation when input sizes become large.

Fortunately, there are several sorting algorithms that achieve a much better bound. One
surprisingly easy but fast algorithm is called merge sort. This algorithm exploits the fact
that combining two already-sorted arrays into one combined sorted array is simple. Consider
the following merge operation to perform this task:

61

public static int[] merge(int[] a, int[] b) {

int[] merged = new int[a.length + b.length];

int i = 0, j = 0, k = 0;

while (j < a.length || k < b.length) {

if (j >= a.length)

merged[i++] = b[k++];

else if (k >= b.length)

merged[i++] = a[j++];

else if (a[j] < b[k])

merged[i++] = a[j++];

else

merged[i++] = b[k++];

}

return merged;

}

Because each input array is already sorted, the smallest overall element is either the smallest
in a or the smallest in b. After selecting this element, the next smallest is either the smallest
remaining in a or the smallest remaining in b. This process continues until either of the
inputs is completely consumed, in which case the remaining elements from the other input
consists the remaining elements for the output array.

If we call n the number of elements in both a and b, we can see that merge runs in
O(n) time, since each element in a and b is visited exactly once and a constant number of
operations are needed at each step. The linear running time of merge is the key component
for merge sort.

Merge sort breaks up the input array into two halves, recursively sorts them, and then
uses the merge operation to piece them together. The base case for the recursion is an array
of length one, since a single element is by itself sorted. After a merge call is used to combine
two one-element arrays, the result is a sorted two-element array that is used by its caller.
This process continues up the recursion tree until the original call receives its two sorted
halves, which it combines using merge.

In the following diagram, it is useful to think of merge sort splitting its input array on
the way down the tree, and merge combining sorted arrays along the way up the recursion
tree.

62

Here is a concrete implementation of merge sort that makes use of the merge method
above:

public static int[] mergeSort(int[] data) {

if (data.length < 2)

return data;

int n = data.length;

int half = n / 2;

int[] left = new int[half];

int[] right = new int[n - half];

for (int i=0; i < n; i++) {

if (i < half)

left[i] = data[i];

else

right[i - half] = data[i];

}

return merge(mergeSort(left), mergeSort(right));

}

We would now like to obtain a bound for mergeSort. The amount of work before the
loop can be bounded by some constant c1. Let the number of steps for the loop to run be
c2n. The return statement is the most interesting part, because it contains two recursive
calls and a call to merge. Thus, there are three things to count here: the two recursive calls

63

each with a size of about half the original input (T (n/2)), and linear time merge operation
on the entire input size (c3n). Thus, the recurrence is T (n) = c1 + c2n + 2T (n/2) + c3n.
Notice that since the number of recursive calls is more than one, the intermediate T (k) terms
will not simply cancel if we add up every equation as we have done before. Instead, we will
have to scale each equation to cancel out the additional terms. In particular, each successive
equation will have to be scaled by an additional power of 2. This results in the following
system:

T (n) = c1 + c2n + 2T (n/2) + c3n
2T (n/2) = 2c1 + 2c2(n/2) + 4T (n/4) + 2c3(n/2)
4T (n/4) = 4c1 + 4c2(n/4) + 8T (n/8) + 4c3(n/4)

...
(n/2)T (2) = (n/2)c1 + (n/2)c2(2) + nT (1) + (n/2)c3(2)

nT (1) = 1

These equations simplify to:

T (n) = c1 + c2n + c3n + 2T (n/2)
2T (n/2) = 2c1 + c2n + c3n + 4T (n/4)
4T (n/4) = 4c1 + c2n + c3n + 8T (n/8)

...
(n/2)T (2) = (n/2)c1 + c2n + c3n + nT (1)

nT (1) = 1
T (n) = c1(1 + 2 + · · ·+ n/2) + (log n− 1)c2n + (log n− 1)c3n + 1

The first term in the sum has less than log n elements, and each is less than n. Thus, the
term can be bounded by n log n. We now have

T (n) ≤ n log n + (log n− 1)c2n + (log n− 1)c3n + 1
= n log n + c2n log n + c3n log n− c2n− c3n + 1

Thus, we have that mergeSort runs in O(n log n) time. So merge sort is indeed much faster
than the O(n2) sorting algorithms we have seen.

In fact, it can be shown that the lower bound on any comparison sort – a sorting algorithm
that does not know anything about the range or values of the data, so it must use comparison
as the only means to sort – is O(n log n). Thus, merge sort is one of several asymptotically
optimal sorting algorithms.

9.1 Exercises

1. Which algorithm performs more swaps in general, selectionSort or bubbleSort?

2. The implementations of selectionSort, bubbleSort, and bubbleSort2 all modify the
input array directly, or in place, whereas mergeSort returns the sorted array as a return

64

value. Modify the first three sorting algorithms so they return the sorted array without
modifying the input array.

3. Another type of sorting algorithm is called insertion sort. With this algorithm, at the
end of each phase i, the elements in the first i + 1 positions are in sorted order. This
is trivially true when i = 0. In the i = 1 phase, the element in position 1 is inserted
either to the left or right of the element in position 0. In the i = 2 phase, the element
in position 2 is inserted either to the left of the element in position 0, to the left of the
element in position 1, or to the right of position 1. So in each phase i, the element at
index i is inserted into the correct place within the first i elements. When inserting this
element in the correct position, several elements in the array have to be shifted over to
the right.

Implement insertion sort and analyze its running time.

4. Create annotated versions of each sorting algorithm in this section. Design and run
experiments to compare how they perform in practice.

65

66

Chapter 10

Quizzes

67

10.1 Quiz 1 – July 13, 2007

1. For each 8-bit string, compute its decimal value in UM, SM, and TC:

• 0110 0001

• 1001 1000

• 1000 0000

2. For each decimal number, compute its 4-bit binary representation in SM and TC:

• -1

• -5

3. • What do the following 32 bits represent as a float?

1 11111111 00000000000000000000000

• What do the following 32 bits represent as a float?

1 10000000 10100000000000000000000

• How is the decimal number 6.50 encoded as a float?

4. Consider a 32-bit int variable argb that stores the ARGB components of a pixel as we
saw in class: the A component in bits 24 to 31, R in bits 16 to 23, G in bits 8 to 15, and
B in bits 0 to 7. Give expressions to extract each component using bit shift operators
and a decimal integer bit mask, not a hexadecimal one.

5. Recall that in Java decimal literals are prefixed by nothing, octal literals are prefixed
by 0, and hexadecimal literals are prefaced by 0x.

(a) Do 5, 05, and 0x5 represent the same number? If not, how do you represent 5 in
octal and hex?

(b) Do 21, 021, and 0x21 represent the same number? If not, how do you represent 21
in octal and hex?

6. A collection of four bits is sometimes called a nibble because it is half the size of a byte.
Suppose Java offered a 4-bit integer primitive type called nibble and that its encoding
scheme was 2’s complement. Also suppose Java offered a 4-bit integer primitive type
called unsigned nibble and that its encoding scheme was unsigned magnitude.

(a) What is the range of unsigned nibble?

(b) Next to each of the following statements, write what the value of n is after each
statement gets executed. Assume that these statements are executed in DrJava in
succession.

> unsigned nibble n = 0

> n += 3

68

> n += 3

> n += 3

> n += 3

> n += 3

> n += 3

(c) What is the range of nibble?

(d) Next to each of the following statements, write what the value of n is after each
statement gets executed. Assume that these statements are executed in DrJava in
succession.

> nibble n = 0

> n += 3

> n += 3

> n += 3

> n += 3

> n += 3

> n += 3

7. In addition to primitive types for single-precision floating-point (float) and double-
precision floating-point (double), suppose that Java offered a “half-precision” floating-
point type called half. Suppose a half is 16 bits – 1 for sign, 6 for exponent, and 9
for fraction – and its encoding scheme is analagous to float and double.

(a) For what range of exponents e is the value interpreted as a normalized number?
Recall that normalized here means there is exactly one 1 to the left of the binary
point.

(b) What is the bias of the exponent? In other words, what value is subtracted from
the actual value in the exponent bits?

(c) What do the following 16 bits represent as a half?

1 100011 000100000

8. Consider the following two encoding schemes. For each, can zero and all positive num-
bers be represented? If so, can they be represented uniquely? If not, explain why.

(a) Strings of 0’s, 1’s, 2’s, and 3’s where an−1...a1a0 =
∑n−1

i=0 ai ∗ 3i

69

(b) Strings of 0’s, 1’s, 2’s, and 3’s where an−1...a1a0 =
∑n−1

i=0 ai ∗ 5i

9. The system of using tally marks to count is a form of unary notation. Can fractions
be encoded in a unary system? If so, what might the encoding scheme be? If not, why
not?

70

10.2 Quiz 2 – July 20, 2007

1. Write out the truth table that this circuit encodes:

2. Write out the truth table that this circuit encodes:

71

3. (a) Draw a circuit that takes a 4-bit number, performs the following two operations on
them, and outputs the resulting 4-bit number:

• invert all the bits

• add 1 to the number

You may use boxes labeled FA to denote full adders and boxes labeled HA to denote
half adders. Clearly label all wires. The input and output wires are already drawn
for you.

(b) Explain what this circuit does.

72

4. We have seen a couple of 2-to-1 muxes, circuits that take two inputs and select one of
them to output. See the Reference section for the 1-bit 2-to-1 mux.

We would now like to build a mux that takes 3 inputs and chooses 2 of them not just
one. Let’s call the inputs a, b, and c and the two outputs o1 and o0. Let the following
truth table summarize the behavior we would like this mux to have. Notice that there
are two selector wires, s1 and s0.

s1 s0 o1 o1
0 0 b a
0 1 a c
1 0 c b

When both selector wires are 1, the voltage is connected to ground. You do not need
to do anything more for this case. In the following diagram, fill in the appropriate
connecting wires to achieve the desired behavior for this 1-bit 3-to-2 mux.

73

5. (a) Why can we encode any boolean function using a circuit with a gate delay of 2?

(b) Consider the following 32-bit carry-select adder in two uneven pieces. The lowest-
order 8 bits are computed by an 8-bit ripple-carry adder, and the higher-order 24
bits are computed in parallel by two 24-bit ripple-carry adders. The carry-out from
bit 7 is used to select the appropriate sum of the higher-order 24 bits.

What is the gate delay of this adder?

6. Consider the following alternative implementation of linear search on a sorted array of
integers with no duplicates:

public int backwardsLinearSearch(int x, int[] data) {

for (int i = data.length - 1; i >= 0; i--) {

if (x == data[i])

return i;

}

return -1;

}

(a) Is the best case input for backwardsLinearSearch the same as for linearSearch?
If not, what is it?

(b) Is the worst case input for backwardsLinearSearch the same as for linearSearch?
If not, what is it?

(c) Let the integer x be contained in the integer array data. When do linearSearch

and backwardsLinearSearch take the exact same number of steps when x and
data are passed as arguments?

74

7. For each of the following, write “T” if the statement is true or “F”” if the statement is
false. Make sure your answers are legible.

1. x is O(x)

2. x is O(
√

x)

3. 10 is O(9)

4. 13x2 + 3 is O(0.00001x2)

5. x log x is O(log x)

The following statements pertain to all functions f(x) and g(x):

6. If f(x) is O(g(x)), then g(x) is the tightest possible upper bound of f(x).

7. If f(x) is O(g(x)), then f(x) ≤ g(x) for all x.

8. If f(x) is O(g(x)), then f(x) is O(f(x) + g(x)).

9. If f(x) is O(g(x)), then f(x) = g(x) for some x.

10. If f(x) is O(g(x)), then g(x) is not O(f(x)).

8. Show that 5n2 +2n+70 is O(n2). That is, find integer constants c > 0 and N > 0 such
that for all n ≥ N , the following inequality is true:

5n2 + 2n + 70 ≤ cn2

9. Consider the following methods f and g:

public void f(int n) {

for (int i = 0; i < n; i++)

if (i % 2 == 0)

System.out.println("hello");

}

public void g(int n) {

for (int i = 0; i < n; i++)

f(i);

}

For the next two parts, use the model for counting steps that we have been using in
lecture.

(a) Count the number of steps that f takes when n is even? when n is odd? These
should be functions of n.

75

(b) Count the number of steps that g takes when n is even? when t is odd? These
should be functions of n.

(c) Give a tight asymptotic upper bound for the running time of f. You do not need
to prove that it is correct.

(d) Give a tight asymptotic upper bound for the running time of g. You do not need
to prove that it is correct.

Reference

Here is a 1-bit 2-to-1 mux:

And its behavior:

s out
0 a
1 b

76

10.3 Quiz 3 – July 26, 2007

1. Consider the following class definition.

public class RecurrenceRelations {

private boolean callTwice = true;

public void f(int n) {

if (n > 1) {

System.out.println("before recursive call");

f(n/2);

System.out.println("after recursive call");

}

}

public void g(int n) {

f(2*n);

}

public void h(int n) {

if (n > 1) {

if (callTwice) {

h(n/2);

h(n/2);

callTwice = false;

}

else {

h(n/2);

}

}

}

}

Assume that this is the entire class definition (so callTwice cannot be modified by any
other code).

For each method – f, g, and h – determine its worst-case asymptotic running time in
terms of n and explain why.

Note: assume that n is a power of 2 (ie, n = 2k for some k).

2. We would like to search for an integer x in an unsorted array of integers called data.
For each of the three following algorithms, give the asymptotic running time. Then
decide which of the three is the best for this task.

(a) Linear search through data to look for x.

(b) First sort the data using selectionSort and use binary search to look for x in this
sorted array.

77

(c) First sort the data using mergeSort and use binary search to look for x in this
sorted array.

78

Chapter 11

Solutions

11.1 Chapter 1 Solutions

8 bits min bits

25 UM 0001 1001 1 1001
25 SM 0001 1001 01 1001
25 TC 0001 1001 01 1001
43 UM 0010 1011 10 1011

-43 UM N/A N/A
-43 SM 1010 1011 110 1011
-43 TC 1101 0101 101 0101
99 UM 0110 0011 110 0011

-99 UM N/A N/A
-99 SM 1110 0011 1110 0011
-99 TC 1001 1101 1001 1101
127 UM 0111 1111 111 1111

-127 UM N/A N/A
-127 SM 1111 1111 1111 1111
-127 TC 1000 0001 1000 0001
128 UM 1000 0000 1000 0000

-128 UM N/A N/A
-128 SM N/A 1 1000 0000
-128 TC 1000 0000 1000 0000
129 UM 1000 0001 1000 0001

-129 UM N/A N/A
-129 SM N/A 1 1000 0001
-129 TC N/A 1 0111 1111

79

UM SM TC

0110 6 6 6
1010 10 −2 −6
1000 8 0 −8

0100 1110 78 78 78
1100 1110 206 −78 −50
1111 1111 255 −127 −1

11.2 Chapter 3 Solutions

1.

S E F meaning
s 1 ≤ e ≤ 2046 f (−1)s × 1.f × 2(e−1023)

0 0 0 zero
1 0 0 zero
s 0 f!=0 (−1)s × 0.f × 2−1022

0 2047 0 +∞
1 2047 0 −∞
s 2047 f!=0 NaN

2.

The binary representation of 57 is 11 1001 and of .8125 is 0.1101. To get 111001.1101 in
normalized scientific notation, we move the binary point five places to the left and multiple
by 25: 1.110011101× 25. Since the bias for the exponent is 127 for a float, we set e = 132,
which is 1000 0100 in binary. Since the number is positive, s = 0. Omitting the leading 1,
the leftmost fraction bits are set to 110011101; the remaining 14 bits are 0. Thus, the 32-bit
float representation is:

0 10000100 11001110100000000000000

To encode the same number in a double, we only have to re-compute the value for the
exponent, since doubles have a bias of 1023. Thus, e = 1028, which is 100 0000 0100. The
sign and fraction bits are the same, except that we now have 43 remaining fraction bits to
fill with 0’s.

Calculating the binary representation of −2.3 requires a bit work, since 0.3 is not easily
represented in binary. We note that the whole part (2) is represented by 10. We now
calculate the representation of 0.3, without showing all the intermediate steps of multiplying
equations by 2:

80

0.3 = b1/2 + b2/4 + · · ·
0.6 = b1 + b2/2 + · · · b1 = 0
1.2 = b2 + b3/2 + · · · b2 = 1
0.4 = b3 + b4/2 + · · · b3 = 0
0.8 = b4 + b5/2 + · · · b4 = 0
1.6 = b5 + b6/2 + · · · b5 = 1
1.2 = b6 + b7/2 + · · · b6 = b2

When computing b6, we have arrived at a left-hand value that we have seen before, 1.2. Now
we know that all of the b′is that we’ve computed since the first time we saw 1.2 (1001) will
repeat forever. So the binary representation of 0.3 (0.01001).

Now we have that 2.3 is represented as 10.01001, or, in normalized scientific notation,
1.001001 × 21. To offset the bias, we set e = 128. The sign bit is 1, since −2.3 is negative.
The fraction bits are set to 00 and then the repeating 1001 until all 23 bits are used up.
Note that because the pattern repeats forever, an infinite number of bits would be required
to specify −2.3 exactly. The final float representation is:

1 1000 0000 00100110011001100110010

To encode the same number in a double, we need to re-compute the exponent. To offset
the bias of 1023, we set e = 1024, which is 100 0000 0000. The fraction bits are again set to
00 and then 1001 until the 52 bits run out. Note that the double’s representation is more
precise than the float’s, since it has more significant digits for the representation. But, of
course, it still isn’t exact.

3.

For a float, the largest positive finite number with f = 0 is achieved by setting s = 0 and
e = 254.

(−1)0 × 1.0× 2254−127 = 2127

= 27(210)12

≈ 27(103)12

= 27(1036)
= 128× 1036

= 1.28× 1038

For a double, the largest positive finite number with f = 0 is achieved by setting s = 0 and
e = 2046.

(−1)0 × 1.0× 22046−1023 = 21023

= 23(210)102

≈ 23(103)102

= 23(10306)
= 8× 10306

81

4.

For a float, the largest positive finite number is achieved by setting s = 0, e = 254, and all
23 bits of f to 1. These values encode:

maxfloat = (−1)0 × (1 +
1

21
+

1

22
+ · · ·+ 1

223
)× 2(254−127)

We define the following constants:

A = 1 + 1
21 + 1

22 + · · ·+ 1
223

B = 1 + 1
21 + 1

22 + · · ·
C = 1

224 + 1
225 + 1

226 + · · ·

We have A = B − C, and we can compute B and C since they are infinite geometric sums.
Using the formula for the infinite geometric sum B, where a = 1 and r = 1

2
, we have

B = 2. Using the formula for C, where a = 1
224 and r = 1

2
, we have C = 1

223 . Thus,
A = B − C = 2 − 2−23. Plugging in A into the equation above, we get maxfloat =
(2− 2−23)2127 = 2128 − 2104.

To approximate this value in decimal, be begin by distributing A in the equation for
maxfloat, yielding:

maxfloat = 2127 + 2126 + · · ·+ 2104

We will approximate the summands in decimal.

2127 = 27(210)12

≈ 27(103)12

= 27(1036)
= 128× 1036

= 1.28× 1038

Thus, 2126 ≈ 0.64 × 1038, 2125 ≈ 0.32 × 1038, and so on. For the last summand, 2104 ≈
(1.28/222)×1038. These terms have become so small that their impact on the sum is neglible,
so we can go one step further and assume that this sequence continues infinitely (seen each
additional term’s contribution will be neglibile). With this approximation we have:

maxfloat ≈ (1.28 + 0.64 + 0.32 + · · ·)× 1038

This infinite sum in this equation is 2.56, so we have maxfloat ≈ 2.56× 1038. Recall that
we assumed 21024 ≈ 103 to derive this result; the actual maximum value (computed using a
high-precision calculator) is about 3.4× 1038.

To compute the largest value represented by a double we peform the same computations,
so we will summarize the intermediate results. The largest value is realized by setting s = 0,
e = 2046, and all 52 bits of f to 1. The new coefficient C has value 2−52 while B is still 2.
Thus, A = 2− 2−52. This leads to maxdouble = (2− 2−52)× 21023 = 21024 − 2971.

82

We will approximate the decimal value of maxdouble in the same fashion as before,
approximating each of the summands in:

maxdouble = 21024 + 21023 + · · ·+ 2972

The decimal approximations for the summands are 21024 ≈ 8× 10306, 21023 ≈ 4× 10306, and
so on. Again we assume that there are an infinite number of these summands because their
values become neglibility small. We are left with maxdouble ≈ 16 × 10306 = 1.6 × 10307.
The actual value is about 1.8× 10308. Note that our approximation error is more significant
than it was for float.

11.3 Chapter 2 Solutions

1. The value for the bit mask is still 255, since we will be interested in the lowest-order
eight bits at a time. Since the octal representation of 255 is 377, the expressions we
want are:

• B is argb & 03777

• G is (argb >> 8) & 03777

• R is (argb >> 16) & 03777

• A is (argb >> 24) & 03777

2. • B is (argb & 0xff) >> 0

• G is (argb & 0xff00) >> 8

• R is (argb & 0xff0000) >> 16

• A is (argb & 0xff000000) >>> 24

Note that we have to use unsigned right shift for the A component even though signed
right shift works with the others. Why?

3. • 43: 10 1011

• 84: 101 0100

• 111: 110 1111

• 300: 1 0010 1100

4. Hint: 0xdead

11.4 Chapter 4 Solutions

1.

NAND:

83

NOR:

2. From top to bottom, NOT, OR, AND, NAND, XNOR, XOR:

84

3.

a b c d
0 0 1 1
0 1 1 0
1 0 1 1
1 1 0 1

4. We can reason about the logical meaning of this circuit without examining the truth
table. The first output is logically:

XOR OR XNOR = XOR OR (NOT XOR)
= 1

This last equality holds since for any truth statement a, either a is true or NOT a is true.
The second output is logically:

XOR AND XNOR = XOR AND (NOT XOR)
= 0

This last equality holds since for any truth statement a, exactly one of a and NOT a is true.

5.

85

6. We can use De Morgan’s Laws to rewrite this logical statement:

a OR (b AND c) = a AND (b AND c)
= a AND (b OR c)

This logical expression is encoded by the circuit:

11.5 Chapter 5 Solutions

1.

n = 32 :

m = 1 : 2(32) + 2(0) = 64
m = 2 : 2(16) + 2(1) = 34
m = 4 : 2(8) + 2(3) = 22
m = 8 : 2(4) + 2(7) = 22

m = 16 : 2(2) + 2(15) = 34
m = 32 : 2(1) + 2(31) = 64

86

The optimal value is either 4 or 8.

n = 64 :

m = 1 : 2(64) + 2(0) = 128
m = 2 : 2(32) + 2(1) = 66
m = 4 : 2(16) + 2(3) = 38
m = 8 : 2(8) + 2(7) = 30

m = 16 : 2(4) + 2(15) = 38
m = 32 : 2(2) + 2(31) = 66
m = 64 : 2(1) + 2(63) = 128

The optimal value is 8.

11.6 Chapter 6 Solutions

11.7 Chapter 7 Solutions

11.8 Chapter 8 Solutions

1. public static int worstCase(int size) {

87

if (size == 1) {

return 1;

}

else if (size == 2) {

return 2;

}

else {

int half = (size-1)/2;

if (size % 2 == 1) {

return 1 + worstCase(half);

}

else {

return 1 + worstCase(half + 1);

}

}

}

Let c be the constant number of steps that it takes in the worst case. Thus, we can use
c no matter which branch of execution is taken. When worstCase makes a recursive
call, the running time is T (n) = c + T (n/2). This recurrence relation behaves like the
one we saw for binarySearch, so if we write out all the equations and sum them up,
we are left with T (n) is O(log n).

Although this is a good running time, when calling worstCase on a lot of inputs like
all numbers from 0 to 1000 – like we would if we were trying to chart the actual
number of worst-case comparisons for each input size – there are a lot of repeated
calls to worstCase with the same input. For example, worstCase(4) is computed for
worstCase(9), worstCase(18), worstCase(37), and so on. Repeatedly computing
these values is unnecessary; instead we can store each result in an array the first time
it is computed, and subsequent requests for can simply look up the value in the array.

2. (a) There is really no reason to even annotate fib, since it does little more than make
recursive calls. The difference in saying it takes, for example, 2 steps rather than
1 step before each call is meaningless, so we can simply look at the values of the
Fibonacci numbers themselves to get an idea of the running time of the recursive
method.

88

We can see from this plot that the Fibonacci numbers seem to have exponential
growth. This can be proven using mathematical induction.

(b) There are no recursive calls and the loop makes O(n) iterations with a constant
number of operations in each iteration. Thus, fib2 runs in O(n) time.

(c) public static int fib3(int n) {

if (n <= 2)

return 1;

int a = 1, b = 1, c;

for (int i=2; i < n; i++) {

c = a + b;

a = b;

b = c;

}

return b;

}

3. (a)

T (n) = T (n− 1) + cn
T (n− 1) = T (n− 2) + c(n− 1)
T (n− 2) = T (n− 3) + c(n− 2)

...
T (1) = T (0) + c(1)
T (0) = 1
T (n) = c(1 + 2 + · · ·+ (n− 1) + n) + 1

= c(
∑n

i=1 i) + 1
= c(n(n + 1)/2) + 1

Thus, the running time is O(n2).

(b) We first note that if n is odd, the method would not terminate! If n is even, we

89

identify the following recursive identities:

T (n) = T (n− 2) + cn
T (n− 2) = T (n− 4) + c(n− 2)

...
T (2) = T (0) + c(2)
T (0) = 1
T (n) = c(2 + 4 + 6 + · · ·+ (n− 2) + n) + 1

= c× 2(1 + 2 + 3 + · · ·+ (n/2)) + 1

= 2c(
∑n/2

i=1 i) + 1
= 2c((n/2)((n/2) + 1)/2) + 1

Thus, the running time is still O(n2).

11.9 Chapter 9 Solutions

1. selectionSort performs exactly one swap in each iteration of i, wherease bubbleSort

can perform up to as many as i. Thus, bubbleSort performs more swaps than selectionSort.

2. For each, the only change that needs to be made is to first copy the contents of data

into a new array and use this new array to perform all of the sorting steps. Returning
this new array, and not modifying data at all, leaves the input array in the same state
as it is when it is passed to the method.

3. public static void insertionSort(int[] data) {

int temp;

for (int i = 1; i < data.length; i++) {

temp = data[i];

for (int j = i; j >= 0; j--) {

if (j > 0 && temp <= data[j-1]) {

data[j] = data[j-1];

}

else {

data[j] = temp;

break;

}

}

}

}

By looking at the bounds of each loop, we notice that, just as for bubbleSort and
insertionSort, each loop takes O(n) iterations. Thus, the running time of insertionSort
is O(n2).

90

4.

91

11.10 Quiz 1 Solutions

12 points 1. For each 8-bit string, compute its decimal value in UM, SM, and TC:

(a) 0110 0001

Answer: UM: 97; SM: 97; TC: 97

(b) 1001 1000

Answer: UM: 152; SM: -24; TC: -104

(c) 1000 0000

Answer: UM: 128; SM: 0; TC: -128

10 points 2. For each decimal number, compute its 4-bit binary representation in SM and TC:

(a) -1

Answer: SM: 1001; TC: 1111

(b) -5

Answer: SM: 1101; TC: 1011

15 points 3. (a) What do the following 32 bits represent as a float?

1 11111111 00000000000000000000000

Answer: −∞

92

(b) What do the following 32 bits represent as a float?

1 10000000 10100000000000000000000

Answer: s = 1, e = 128, f = 1
2

+ 1
8

(−1)1 × (1.101)× 21 = (−1)(1 + 1
2

+ 1
8
)(2)

= (−1)(13
8
)(2)

= −26
8

= −3.25

(c) How is the decimal number 6.50 encoded as a float?

Answer: 6.50 = 110.1 = 1.101× 22

s = 0, e = 2 + 127 = 129ten = 10000001, f = 10100...
Alternatively, if we notice that 6.50 = 3.25 × 21, we know that in scientifc notation,

the only difference between 3.25 and 6.50 is the exponent. So we know f will

stay the same, and we set e to be the exponent for 3.25 plus the extra one

(128+1=129).

10 points4. Consider a 32-bit int variable argb that stores the ARGB components of a pixel as we
saw in class: the A component in bits 24 to 31, R in bits 16 to 23, G in bits 8 to 15, and
B in bits 0 to 7. Give expressions to extract each component using bit shift operators
and a decimal integer bit mask, not a hexadecimal one.

Answer:
• A: (argb >> 24) & 255

• R: (argb >> 16) & 255

• G: (argb >> 8) & 255

• B: argb & 255

Some people tried to mask first and then shift. This is very difficult (without a
machine) because the decimal bit masks become very large and messy to compute.
For each component, the following are the bitmasks (in hex and decimal) that must
be used if masking before shifting:

• A: -16777216 = 0xff00000

• R: 16711680 = 0xff0000

• G: 65280 = 0xff00

• B: 255 = 0xff

10 points5. Recall that in Java decimal literals are prefixed by nothing, octal literals are prefixed
by 0, and hexadecimal literals are prefaced by 0x.

(a) Do 5, 05, and 0x5 represent the same number? If not, how do you represent 5 in
octal and hex?

Answer: All the same value.

(b) Do 21, 021, and 0x21 represent the same number? If not, how do you represent 21
in octal and hex?

Answer: 21=025=0x15

93

15 points6. A collection of four bits is sometimes called a nibble because it is half the size of a byte.
Suppose Java offered a 4-bit integer primitive type called nibble and that its encoding
scheme was 2’s complement. Also suppose Java offered a 4-bit integer primitive type
called unsigned nibble and that its encoding scheme was unsigned magnitude.

(a) What is the range of unsigned nibble?

Answer: 0 to 15

(b) Next to each of the following statements, write what the value of n is after the
statement gets executed. Assume that these statements are executed in DrJava in
succession.

> unsigned nibble n = 0

> n += 3 // 3

> n += 3 // 6

> n += 3 // 9

> n += 3 // 12

> n += 3 // 15

> n += 3 // 2

(c) What is the range of nibble?

Answer: −8 to 7

(d) Next to each of the following statements, write what the value of n is after the
statement gets executed. Assume that these statements are executed in DrJava in
succession.

> nibble n = 0

> n += 3 // 3

> n += 3 // 6

> n += 3 // -7

> n += 3 // -4

> n += 3 // -1

> n += 3 // 2

94

10 points 7. In addition to primitive types for single-precision floating-point (float) and double-
precision floating-point (double), suppose that Java offered a “half-precision” floating-
point type called half. Suppose a half is 16 bits – 1 for sign, 6 for exponent, and 9
for fraction – and its encoding scheme is analagous to float and double.

(a) For what range of exponents e is the value interpreted as a normalized number?
Recall that normalized here means there is exactly one 1 to the left of the binary
point.

Answer: 1 ≤ e ≤ 62

(b) What is the bias of the exponent? In other words, what value is subtracted from
the actual value in the exponent bits?

Answer: 31

(c) What do the following 16 bits represent as a half?

1 100011 000100000

Answer: s = 1, e = 35, f = 1
24

(−1)1 × (1.0001)× 235−31 = (−1)(1 + 1
24)(2

4)
= (−1)(24 + 1)
= −24 − 1
= −17

5 points8. Consider the following two encoding schemes. For each, can zero and all positive num-
bers be represented? If not, give an example of a number that cannot be represented.
If so, can they be represented uniquely? If not, explain why or give an example to
demonstrate.

(a) Strings of 0’s, 1’s, 2’s, and 3’s where an−1...a1a0 =
∑n−1

i=0 ai ∗ 3i

Answer: Attempting to encode base-3 with 4 symbols allows all non-negative
numbers to represented but not uniquely. Let’s start counting (the decimal
representation is in parens): 0 (0), 1 (1), 2 (2), 3 (3), 10 (3), 11 (4), 12 (5), 13
(6), 20 (6), ... Notice there are two ways to encode each multiple of 3.

(b) Strings of 0’s, 1’s, 2’s, and 3’s where an−1...a1a0 =
∑n−1

i=0 ai ∗ 5i

Answer: Attempting to encode base-5 with 4 symbols does not work. Let’s start

counting: 0 (0), 1 (1), 2 (2), 3 (3), 10 (5), 11 (6), 12 (7), 13 (8), 20 (10), 21

(11), ..., 33 (18), 100 (25), ... Notice that there are values that get skipped so

they don’t have any representation.

95

3 points 9. The system of using tally marks to count is a form of unary notation. Can fractions
be encoded in a unary system? If so, what might the encoding scheme be? If not, why
not?

Answer: If we apply the typical encoding for fractions, we would have
a1a2...an =

∑n
i=1 ai

1
1i .

1
1i is always 1, however, so this sum doesn’t

actually represent fractional numbers. With only 1 symbol, there
is no fraction that we can repeatedly split (like 1

10
in base-10 and

1
2

in base-2).

96

Reference – You may tear this sheet off.

A float is 32 bits – 1 for sign, 8 for exponent, and 23 for fraction – and has the following
encoding scheme:

S E F meaning
s 1 ≤ e ≤ 254 f (−1)s × 1.f × 2(e−127)

0 0 0 zero
1 0 0 zero
s 0 f!=0 (−1)s × 0.f × 2−126

0 255 0 +∞
1 255 0 −∞
s 255 f!=0 NaN

A double is 64 bits – 1 for sign, 11 for exponent, and 52 for fraction – and has the following
encoding scheme:

S E F meaning
s 1 ≤ e ≤ 2046 f (−1)s × 1.f × 2(e−1023)

0 0 0 zero
1 0 0 zero
s 0 f!=0 (−1)s × 0.f × 2−1022

0 2047 0 +∞
1 2047 0 −∞
s 2047 f!=0 NaN

97

11.11 Quiz 2 Solutions

10 points 1. Write out the truth table that this circuit encodes:

Answer:

a b c d e
0 0 0 1 1
0 1 1 0 1
1 0 1 1 0
1 1 0 0 1

10 points 2. Write out the truth table that this circuit encodes:

Answer:

c b a o
0 0 0 1 1 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 0 0 0

98

3. Consider the following alternative implementation of linear search on a sorted array of
integers with no duplicates:

public int backwardsLinearSearch(int x, int[] data) {

for (int i = data.length - 1; i >= 0; i--) {

if (x == data[i])

return i;

}

return -1;

}

3 points(a) Is the best case input for backwardsLinearSearch the same as for linearSearch?
If not, what is it?

Answer: No. For backwardsLinearSearch, the best case input is
when x is the last element in data (at index data.length - 1.

3 points(b) Is the worst case input for backwardsLinearSearch the same as for linearSearch?
If not, what is it?

Answer: Yes, the worst case for both is if x is not in data. Some
people said that the worst case for backwardsLinearSearch is
when x is the first element in data. This is not as bad as not
finding it at all, because finding the element results in the last
loop increment and conditional check not getting executed.

4 points(c) Let the integer x be contained in the integer array data. When do linearSearch

and backwardsLinearSearch take the exact same number of steps when x and
data are passed as arguments?

Answer: If data has an odd number of elements and x is in the
middle position (index data.length/2).

10 points4. For each of the following, write “T” if the statement is true or “F” if the statement is
false. Make sure your answers are legible.

1. T x is O(x)

2. F x is O(
√

x)

3. T 10 is O(9)

4. T 13x2 + 3 is O(0.00001x2)

5. F x log x is O(log x)

99

5 points 5. (a) Why can any boolean function be encoded using a circuit with a gate delay of 2?

Answer: Because any truth table can be encoded in a PLA, and
a PLA consists of one level of ANDs and one level of ORs.
Every path goes through exactly one AND and one OR, so the
longest path has gate delay 2.

5 points (b) Consider the following 32-bit carry-select adder in two uneven pieces. The lowest-
order 8 bits are computed by an 8-bit ripple-carry adder, and the higher-order 24
bits are computed in parallel by two 24-bit ripple-carry adders. The carry-out from
bit 7 is used to select the appropriate sum of the higher-order 24 bits.

What is the gate delay of this adder?

Answer: The longest path is through one of the 24-bit ripple-carry
adders and through the mux. The 24-bit ripple-carry adder
takes 2(24) = 48 gate delays. The mux takes 2 gate delays, since
a 25-bit mux is built from 25 1-bit muxes in parallel. Thus, the
total gate delay is 50.

100

5 points6. (a) Draw a circuit that takes a 4-bit number, performs the following two operations on
them, and outputs the resulting 4-bit number:

• invert all the bits

• add 1 to the number

You may use boxes labeled FA to denote full adders and boxes labeled HA to denote
half adders. Clearly label all wires. The input and output wires are already drawn
for you.

Answer:

5 points(b) Explain what this circuit does.

Answer: This circuit is useful for converting a positive number b
in TC to −b in TC and for converting a negative number −b in
TC to b in TC. This type of behavior is useful for building a
single circuit that performs addition and subtraction.

101

10 points 7. Show that 5n2 +2n+70 is O(n2). That is, find integer constants c > 0 and N > 0 such
that for all n ≥ N , the following inequality is true:

5n2 + 2n + 70 ≤ cn2

Answer: There are an infinite number of constants c and N that
prove this claim. If we pick c = 77, then the inequality becomes:

2n + 70 ≤ 72n2

This is true for all n ≥ 1, since 2(1) + 70 = 72(12), and both sides of
the inequality are monotone increasing functions. Thus, we can
pick N = 1.

8. Consider the following methods f and g:

public void f(int n) {

for (int i = 0; i < n; i++)

if (i % 2 == 0)

System.out.println("hello");

}

public void g(int n) {

for (int i = 0; i < n; i++)

f(i);

}

For the next two parts, use the model for counting steps that we have been using in
lecture.

5 points (a) What is the number of steps that f takes when n is even? when n is odd? These
should be functions of n.

Answer:
1 for initialization, n + 1 guard checks, and n increments. These

2n + 2 steps are run for both even and odd ns. Now we count
the number of print functions by case.

For n is even, there are n/2 numbers that are even, so there are
0.5n prints. Thus, for n is even, the total number of steps is
2n + 2 + 0.5n = 3.5n + 2.

For n is odd, there are (n+1)/2 even numbers, so there are 0.5n+0.5
prints. Thus, for n is odd, the total number of steps is 2n + 2 +
0.5n + 0.5 = 3.5n + 2.5.

102

5 points(b) What is the number of steps that g takes when n is even? when n is odd? These
should be functions of n.

Answer:
2n+2 is the number of steps not including the time for all the calls

to f.
Counting the total cost of calls to f is tricky, because each time

it is called with a different input – whatever the value of i is.
We use f(i) to denote the number of steps f takes when given
input i.

When n is even, n/2 values of i are even and n/2 are odd. Thus,
the time for all f calls is

f(0) + f(1) + · · ·+ f(n− 2) + f(n− 1)
= 3.5(0) + 2 + 3.5(1) + 2.5 + · · ·+ 3.5(n− 2) + 2 + 3.5(n− 1) + 2.5

= (n/2)(2) + (n/2)(2.5) + 3.5
∑n−1

i=0 i
= n + 1.25n + 3.5(n2/2− n/2)
= 1.75n2 + 0.5n

This plus 2n + 2 gives 1.75n2 + 2.5n + 2 total steps.
When n is odd, (n + 1)/2 values i are even and (n − 1)/2 are odd.

Thus, time for all f calls is

f(0) + f(1) + · · ·+ f(n− 2) + f(n− 1)
= 3.5(0) + 2 + 3.5(1) + 2.5 + · · ·+ 3.5(n− 2) + 2.5 + 3.5(n− 1) + 2

= ((n + 1)/2)(2) + ((n− 1)/2)(2.5) + 3.5
∑n−1

i=0 i
= n + 1 + 1.25n− 1.25 + (n2/2− n/2)
= 1.75n2 + 0.5n− 0.25

This plus 2n + 2 gives 1.75n2 + 2.5n + 1.75 steps.

2.5 points(c) Give a tight asymptotic upper bound for the running time of f. You do not need
to prove that it is correct.

Answer:
n is a tight upper bound, since the running time of f is O(n).

2.5 points(d) Give a tight asymptotic upper bound for the running time of g. You do not need
to prove that it is correct.

Answer:
n2 is a tight upper bound, since the running time of g is O(n2).

103

5 points 9. We have seen a couple of 2-to-1 muxes, circuits that take two inputs and select one of
them to output. See the Reference section for the 1-bit 2-to-1 mux.

We would now like to build a mux that takes 3 inputs and chooses 2 of them not just
one. Let’s call the inputs a, b, and c and the two outputs o1 and o0. Let the following
truth table summarize the behavior we would like this mux to have. Notice that there
are two selector wires, s1 and s0.

s1 s0 o1 o0
0 0 b a
0 1 a c
1 0 c b

When both selector wires are 1, the voltage is connected to ground. You do not need
to do anything more for this case. In the following diagram, fill in the appropriate
connecting wires to achieve the desired behavior for this 1-bit 3-to-2 mux.

Answer:

104

11.12 Quiz 3 Solutions

1. The recurrence relation for f is T (n) = c + T (n/2). We have seen this before (ie,
recursive binary search), so we know that T (n) is O(log n) time.

The time it takes for g to execute is the time it takes f to execute with input 2n. Since
the input 2n is is asymptotically the same size as n, the call to f takes O(log n) time.

The worst-case execution of h includes the if branch, where two recursive calls are
made. Once this branch is taken for the first time, however, it will never be taken again
(since callTwice is set to false and can never be changed back to true). Thus, the
worst-case is when two recursive calls are made the first time and then one recursve call
thereafter. This gives the following relationships:

T (n) = c + 2T (n/2)
2T (n/2) = 2c + 2T (n/4)
2T (n/4) = 2c + 2T (n/8)

...
2T (4) = 2c + 2T (2)
2T (2) = 2c + 2T (1)
2T (1) = 0
T (n) = c + 2c(log n− 2)

= 2c log n− 3c

Thus, h runs in O(log n) time.

2. (a) Linear search takes O(n) time.

(b) selectionSort takes O(n2) time and binary search takes O(log n) time. So overall
this takes O(n2) time.

(c) mergeSort takes O(n log n) time and binary search takes O(log n) time. So overall
this takes O(n log n) time.

Thus, the first algorithm is the best for this particular task.

105

