
Abstract Interpretation

Ranjit Jhala, UC San Diego

April 22, 2013



Fundamental Challenge of Program Analysis

How to infer (loop) invariants ?



Fundamental Challenge of Program Analysis

I Key issue for any analysis or verification

I Many algorithms/heuristics

I See Suzuki & Ishihata, POPL 1977

I Most formalizable in framework of Abstract Interpretation

http://dl.acm.org/citation.cfm?id=512963


Abstract Interpretation

“A systematic basis for approximating the semantics of programs”

I Deep and broad area

I Rich theory

I Profound practical impact

We look at a tiny slice

I In context of algorithmic verification of IMP



IMP: A Small Imperative Language

Recall the syntax of IMP

data Com = Var ‘:=‘ Expr -- assignment

| Com ‘;‘ Com -- sequencing

| Assume Exp -- assume

| Com ‘|‘ com -- branch

| While Pred Exp Com -- loop

Note

We have thrown out If and Skip using the abbreviations:

Skip == Assume True

If e c1 c2 == (Assume e; c1) | (Assume (!e); c2)



IMP: Operational Semantics

States

A State is a map from Var to the set of Values

type State = Map Var Value



IMP: Operational Semantics

Transition Relation

A subset of State × Com × State formalized by

I eval s c == [s’ | command c transitions state s to s’]

eval :: State -> Com -> [State]

eval s (Assume e) = if eval s e then [s] else []

eval s (x := e) = [ add x (eval s e) s ]

eval s (c1 ; c2) = [s2 | s1 <- eval s c1, s2 <- eval s’ c2]

eval s (c1 | c2) = eval s c1 ++ eval s c2

eval s w@(Whle e c) = eval s $ Assume !e | (Assume e; c; w))



IMP: Axiomatic Semantics

State Assertions

I An assertion P is a Predicate over the set of program
variables.

I An assertion corresponds to a set of states

states P = [s | eval s P == True]



IMP: Axiomatic Semantics

Describe execution via Predicate Transformers

Strongest Postcondition

SP :: Pred -> Com -> Pred

SP P c : States reachable from P by executing c

states (SP P c) == [s’ | s <- states P, s’ <- eval s c]



IMP: Axiomatic Semantics

Describe execution via Predicate Transformers

Weakest Precondition

WP :: Com -> Pred -> Pred

WP c Q : States that can reach Q by executing c

states (WP c Q)‘ = [s | s’ <- eval s c, eval s’ Q ]



Strongest Postcondition

SP P c : States reachable from P by executing c

SP :: Pred -> Com -> Pred

SP P (Assume e) = P ‘&&‘ e

SP P (x := e) = Exists x’. P[x’/x] ‘&&‘ x ‘==‘ e[x’/x]

SP P (c1 ; c2) = SP (SP P c1) c2

SP P (c1 | c2) = SP P c1 ‘||‘ SP p c2

SP P w@(W e c) = SP s (Assume !e | (Assume e; c; w))

I Uh Oh! last case is non-terminating . . .



Weakest Precondition

WP c Q : States that can reach Q by executing c

WP :: Com -> Pred -> Pred

WP (Assume e) Q = e ‘=>‘ Q

WP (x := e) Q = Q[e/x]

WP (c1 ; c2) Q = WP c1 (WP c2 Q)

WP (c1 | c2) Q = WP c1 Q ‘&&‘ WP c2 Q

WP w@(W e c) Q = WP (Assume !e | (Assume e; c; w)) Q

I Uh Oh! last case is non-terminating . . .



IMP: Verification (Suspend disbelief regarding loops)

Goal: Verify Hoare-Triples

Given

I c command
I P precondition
I Q postcondition

Prove

I Hoare-Triple {P} c {Q} which denotes

forall s s’. if s ‘in‘ (states P) &&

s’ ‘in‘ (eval s c)

then

s’ ‘in‘ (states Q)



Verification Strategy

(For a moment, suspend disbelief regarding loops)

1. Compute Verification Condition (VC)

I (SP P c) => Q
I P => (WP c Q)

2. Use SMT Solver to Check VC is Valid



Verification Strategy

1. Compute Verification Condition (VC)

I (SP P c) => Q
I P => (WP c Q)

2. Use SMT Solver to Check VC is Valid

Problem: Pesky Loops

I Cannot compute WP or SP for While b c . . .

I . . . Require invariants

Next: Lets infer invariants by approximation



Approximate Verification Strategy

0. Compute Over-approximate Postcondition SP# s.t.

I (SP P c) => (SP# P c)

1. Compute Verification Condition (VC)

I (SP# P c) => Q

2. Use SMT Solver to Check VC is Valid

I If so, {P} c {Q} holds by Consequence Rule

Key Requirement

I Compute SP# without computing SP . . .

I But guaranteeing over-approximation



What Makes Loops Special?

Why different from other constructs? Let

I c be a loop-free (i.e. has no While inside it)

I W be the loop While b c



Loops as Limits

Inductively define the infinite sequence of loop-free Com

W_0 = Skip

W_1 = W_0 | Assume b; c; W_0

W_2 = W_1 | Assume b; c; W_1

.

.

.

W_i+1 = W_i | Assume b; c; W_i

.

.

.



Loops as Limits

Intuitively

I W i is the loop unrolled upto i times

I W == W 0 | W 1 | W 2 | ...

Formally, we can prove (exercise)

1. eval s W == eval s W_0 ++ eval s W_1 ++ ...

2. SP P W == SP P W_0 || SP P W_1 || ...

3. WP W Q == WP W_0 Q && WP W_1 Q && ...

So what? Still cannot compute SP or WP . . . !



Loops as Limits

So what? Still cannot compute SP or WP . . . but notice

SP P W_i+1 == SP P (W_i | assume b; c; W_i)

== SP P W_i || SP (SP P (assume b; c)) W_i

<= SP P W_i

That is, SP P W i form an increasing chain

SP P W_0 => SP P W_1 => ... => SP P W_i => ...

. . . Problem: Chain does not converge! ONION RINGS



Approximate Loops as Approximate Limits

To find SP# such that SP P c => SP# P c, we compute chain

SP# P W_0 => SP# P W_1 => ... => SP# P W_i => ...

where each SP# is over-approximates the corresponding SP

for all i. SP P W_i => SP# P W_i

and the chain of SP# chain converges to a fixpoint

exists j. SP# P W_j+1 == SP# P W_j

This magic SP# P W j+1 is the loop invariant, and

SP# P W == SP# P W_j



Approximating Loops

Many Questions Remain Around Our Strategy

How to compute SP# so that we can ensure

1. Convergence to a fixpoint ?

2. Result is an over-approximation of SP ?

Answer: Abstract Interpretation

“Systematic basis for approximating the semantics of programs”



Abstract Interpretation

Plan

1. Simple language of arithmetic expressions

2. IMP

3. Predicate Abstraction (AI using SMT)



A Language of Arithmetic

Our language, just has numbers and multiplication



A Language of Arithmetic: Syntax

data AExp = N Int | AExp ‘Mul‘ AExp

Example Expressions

N 7

N 7 ‘Mul‘ N (-3)

N 0 ‘Mul‘ N 7 ‘Mul‘ N (-3)



Concrete Semantics

To define the (concrete) or exact semantics, we need

type Value = Int

and an eval function that maps AExp to Value

eval :: AExp -> Value

eval (N n) = n

eval (Mul e1 e2) = mul (eval e1) (eval e2)

mul n m = n * m



Signs Abstraction

Suppose that we only care about the sign of the number.

Can define an abstract semantics

1. Abstract Values

2. Abstract Operators

3. Abstract Evaluators



Signs Abstraction: Abstract Values

Abstract values just preserve the sign of the number

data Value# = Neg | Zero | Pos

Figure: Abstract and Concrete Values



Signs Abstraction: Abstract Evaluator

Abstract evaluator just uses sign information

eval# :: AExp -> Value#

eval# | n > 0 = Pos

| n < 0 = Neg

| otherwise = Zero

eval# (Mul e1 e2) = mul# (eval# e1) (eval# e2)



Signs Abstraction: Abstract Evaluator

mul# is the abstract multiplication operators

mul# :: Value# -> Value# -> Value#

mul# Zero _ = Zero

mul# _ Zero = Zero

mul# Pos Pos = Pos

mul# Neg Neg = Pos

mul# Pos Neg = Neg

mul# Neg Pos = Neg



Connecting the Concrete and Abstract Semantics

Theorem For all e :: AExp we have

1. (eval e) > 0 iff (eval# e) = Pos

2. (eval e) < 0 iff (eval# e) = Neg

3. (eval e) = 0 iff (eval# e) = Zero

Proof By induction on the structure of e

I Base Case: e == N n

I Ind. Step: Assume above for e1 and e2 prove for Mul e1 e2



Relating the Concrete and Abstract Semantics

Next, let us generalize what we did into a framework

I Allows us to use different Value#

I Allows us to get connection theorem by construction



Key Idea: Provide Abstraction Function α

We only have to provide connection between Value and Value#

alpha :: Value -> Value#



Key Idea: Provide Abstraction Function α

We only have to provide connection between Value and Value#

alpha :: Value -> Value#

For signs abstraction

alpha n | n > 0 = Pos

| n < 0 = Neg

| otherwise = Zero



Key Idea: α induces Concretization γ

Given alpha :: Value -> Value#

we get for free a concretization function

gamma :: Value# -> [Value]

gamma v# = [ v | (alpha v) == v# ]

For signs abstraction

gamma Pos == [1,2..]

gamma Neg == [-1,-2..]

gamma Zero == [0]



Key Idea: α induces Abstract Operator

Given alpha :: Value -> Value#

we get for free a abstract operator

op# x# y# = alpha (op (gamma x#) (gamma y#))

(actually, there is some cheating above. . . can you spot it?)



Key Idea: α induces Abstract Operator

Given alpha :: Value -> Value#

we get for free a abstract operator

Figure: Abstract Operator



Key Idea: α induces Abstract Evaluator

Given alpha :: Value -> Value#

we get for free a abstract evaluator

eval# :: AExp -> Value#

eval# (N n) = (alpha n)

eval# (Op e1 e2) = op# (eval# e1) (eval# e2)



Key Idea: α induces Connection Theorem

Given alpha :: Value -> Value#

we get for free a connection theorem

Theorem For all e::AExp we have

1. (eval e) in gamma (eval# e)

2. alpha(eval e) = (eval# e)

Proof Exercise (same as before, but generalized)



Key Idea: α induces Connection Theorem

Given alpha :: Value -> Value#

we get for free a connection theorem

Figure: Connection Theorem



Our First Abstract Interpretation

Given: Language AExp and Concrete Semantics

data AExp

data Value

op :: Value -> Value -> Value

eval :: AExp -> Value

Given: Abstraction

data Value#

alpha :: Value -> Value#



Our First Abstract Interpretation

Obtain for free: Abstract Semantics

op# :: Value# -> Value# -> Value#

eval# :: AExp -> Value#

Obtain for free: Connection

Theorem: Abstract Semantics approximates Concrete Semantics



Our Second Abstract Interpretation

Let us extend AExp with new operators

I Negation

I Addition

I Division



AExp with Unary Negation

Extended Syntax

data AExp = ... | Neg AExp

Extended Concrete Semantics

eval (Neg e) = neg (eval e)



AExp with Unary Negation

Derive Abstract Operator

neg# :: Value# -> Value#

neg# = alpha . neg . gamma

Which is equivalent to (if you do the math)

neg# Pos = Neg

neg# Zero = Zero

neg# Neg = Pos

Theorem holds as before!



Our Third Abstract Interpretation

Let us extend AExp with new operators

I Negation

I Addition

I Division



AExp with Addition

Extended Syntax

data AExp = ... | Add AExp AExp

Extended Concrete Semantics

eval (Add e1 e2) = plus (eval e1) (eval e2)



AExp with Addition

Derive Abstract Operator

plus# :: Value# -> Value# -> Value#

plus# v1# v2# = alpha (plus (gamma v1#) (gamma v2#))

That is,

plus# Zero v# = v#

plus# Pos Pos = Pos

plus# Neg Neg = Neg

but . . .

plus# Pos Neg = ???

plus# Neg Pos = ???



Problem: Require Better Abstract Values

Need new value to represent union of positive and negative

I T (read: Top), denotes any integer

Now, we can define

plus# Zero v# = v#

plus# Top v# = Top

plus# Pos Pos = Pos

plus# Neg Neg = Neg

plus# Pos Neg = Top

plus# Neg Pos = Top



Semantics is now Over-Approximate

Notice that now,

eval (N 1 ‘Add‘ N 2 ‘Add‘ (Neg 3)) == 0

eval# (N 1 ‘Add‘ N 2 ‘Add‘ (Neg 3)) == T

That is, we have lost all information about the sign!

I This is good

I Exact semantics not computable for real PL!



Our Fourth Abstract Interpretation

Let us extend AExp with new operators

I Negation

I Addition

I Division



AExp with Division

Extended Syntax

data AExp = ... | Div AExp AExp

Extended Concrete Semantics

eval (Add e1 e2) = div (eval e1) (eval e2)



AExp with Division: Abstract Semantics

How to define

div# v# Zero = ?

Need new value to represent empty set of integers

I | (read: Bottom), denotes no integer

I Abstract operator on | returns |
I Wait, this is getting rather ad-hoc . . .

I Need more structure on Value#



Abstract Values Form Complete Partial Order

Figure: Value# Forms Complete Partial Order



Abstract Values Form Complete Partial Order

-- Partial Order

(<=) :: Value# -> Value# -> Bool

-- Greatest Lower Bound

glb :: Value# -> Value# -> Value#

-- Least Upper Bound

lub :: Value# -> Value# -> Value#

leq v1# v2# means v1# corresponds to fewer concrete values
than v2#

Examples

I leq | Zero

I leq Pos Top



Abstract Values: Least Upper Bound

forall v1# v2#. v1# <= lub v1# v2#

forall v1# v2#. v2# <= lub v1# v2#

forall v . if v1# <= v && v2# <= v then lub v1# v2# <= v

Examples

I (lub | Zero) == Zero

I (lub Neg Pos) == Top

˜˜˜˜˜



Abstract Values: Greatest Lower Bound

forall v1# v2#. glb v1# v2# <= v1#

forall v1# v2#. glb v1# v2# <= v2#

forall v . if v <= v1# && v <= v2# then v <= glb v1# v2#

Examples

I (glb Pos Zero) == |
I (lub Top Pos) == Pos



Key Idea: α and CPO induces Concretization γ

Given

I α :: Value -> Value#

I v :: Value# -> Value# -> Bool

We get for free a concretization function

I γ :: Value# -> [Value]

gamma :: Value# -> [Value]

gamma v# = [ v | (alpha v) <= v# ]

Theorem v1# v v2# iff (gamma v1#) ⊆ (gamma v2#)

That is,

I v1# v v2# means v1# represents fewer Value than v2#



Key Idea: α and CPO induces α over [Value]

We can now lift α to work on sets of values

alpha :: [Value] -> Value#

alpha vs = lub [alpha v | v <- vs]

For example

alpha [3, 4] == Pos

alpha [-3, 4] == Top

alpha [0] == Zero



Key Idea: α + CPO induces Abstract Operator

Given

I α :: Value -> Value#

I v :: Value# -> Value# -> Bool

We get for free a abstract operator

op# x# y# = alpha [op x y | x <- gamma x#, y <- gamma y#]

i.e., lub of results of point-wise concrete operator (no cheating!)

For example

plus# Pos Neg

== alpha [x + y | x <- gamma Pos, y <- gamma Neg]

== alpha [x + y | x <- [1,2..] , y <- [-1,-2..]]

== alpha [0,1,-1,2,-2..]

== Top



Key Idea: α + CPO induces Abstract Operator

Given alpha :: Value -> Value#

we get for free a abstract operator

Figure: Abstract Operator



Key Idea: α + CPO induces Evaluator

As before, we get for free a abstract evaluator

eval# :: AExp -> Value#

eval# (N n) = (alpha n)

eval# (Op e1 e2) = op# (eval# e1) (eval# e2)



Key Idea: α + CPO induces Evaluator

And, more importantly, the semantics connection

Theorem For all e::AExp we have

1. (eval e) ∈ gamma (eval# e)

2. alpha (eval e) v (eval# e)

Over-Approximation

In bare AExp we had exact abstract semantics

I alpha (eval e) = (eval# e)

Now, we have over-approximate abstract semantics

I alpha (eval e) v (eval# e)

That is, information is lost.



Next Time: Abstract Interpretation For IMP

So far, abstracted values for AExp

I Concrete Value = Int

I Abstract Value# = Signs

Next time: apply these ideas to IMP

I Concrete Value = State at program points
I Abstract Value# = ???

Abstract Semantics yields loop invariants


