Abstract Interpretation

Ranjit Jhala, UC San Diego

April 22, 2013

Fundamental Challenge of Program Analysis

How to infer (loop) invariants ?

Fundamental Challenge of Program Analysis

- Key issue for any analysis or verification
- Many algorithms/heuristics
- See Suzuki \& Ishihata, POPL 1977
- Most formalizable in framework of Abstract Interpretation

Abstract Interpretation

"A systematic basis for approximating the semantics of programs"

- Deep and broad area
- Rich theory
- Profound practical impact

We look at a tiny slice

- In context of algorithmic verification of IMP

IMP: A Small Imperative Language

Recall the syntax of IMP

data Com	$=\operatorname{Var}$ ' $:=$ ' Expr	-- assignment
	\mid Com ';' Com	-- sequencing
	\mid Assume Exp	-- assume
	Com '/' com	-- branch
	While Pred Exp Com	-- loop

Note
We have thrown out If and Skip using the abbreviations:

```
Skip == Assume True
If e c1 c2 == (Assume e; c1) | (Assume (!e); c2)
```


IMP: Operational Semantics

States
A State is a map from Var to the set of Values
type State = Map Var Value

IMP: Operational Semantics

Transition Relation

A subset of State \times Com \times State formalized by

- eval s c == [s' | command c transitions state s to s']

```
eval
    :: State -> Com -> [State]
eval s (Assume e) = if eval s e then [s] else []
eval s (x := e) = [ add x (eval s e) s ]
eval s (c1 ; c2) = [s2 | s1 <- eval s c1, s2 <- eval s'
eval s (c1 | c2) = eval s c1 ++ eval s c2
eval s w@(Whle e c) = eval s $ Assume !e | (Assume e; c; w)
```


IMP: Axiomatic Semantics

State Assertions

- An assertion P is a Predicate over the set of program variables.
- An assertion corresponds to a set of states

```
states P = [s | eval s P == True]
```


IMP: Axiomatic Semantics

Describe execution via Predicate Transformers
Strongest Postcondition
SP :: Pred -> Com -> Pred
SP P c: States reachable from P by executing c
states (SP P c) $==$ [s' | s <- states P, $s^{\prime}<-$ eval $\left.s c\right]$

IMP: Axiomatic Semantics

Describe execution via Predicate Transformers
Weakest Precondition
WP :: Com -> Pred -> Pred
WP c Q : States that can reach Q by executing c
states (WP c Q)' = [s | s' <- eval s c, eval s' Q]

Strongest Postcondition

SP P c: States reachable from P by executing c

```
SP
    :: Pred -> Com -> Pred
SP P (Assume e) = P '&&` e
SP P (x := e) = Exists x'. P[x'/x] '&&' x '==' e[x'/x]
SP P (c1 ; c2) = SP (SP P c1) c2
SP P (c1 | c2) = SP P c1 '|` SP p c2
SP P w@(W e c) = SP s (Assume !e | (Assume e; c; w))
```

- Uh Oh! last case is non-terminating ...

Weakest Precondition

WP c Q: States that can reach Q by executing c
WP : Com -> Pred -> Pred

WP (Assume e) $Q=e{ }^{\prime}=>^{\prime} Q$
$W P(x:=e) \quad Q=Q[e / x]$
WP (c1 ; c2) $Q=W P c 1(W P c 2 Q)$

WP (c1 | c2) $Q=W P c 1 Q$ '\&\&‘ WP c2 Q

WP w@(We c) $Q=W P$ (Assume $!$ e | (Assume e; c; w)) Q

- Uh Oh! last case is non-terminating ...

IMP: Verification (Suspend disbelief regarding loops)

Goal: Verify Hoare-Triples
Given

- c command
- P precondition
- Q postcondition

Prove

- Hoare-Triple $\{P\}$ c $\{Q\}$ which denotes
forall s s'. if s 'in' (states P) \&\& s' 'in' (eval s c)
then
s' 'in' (states Q)

Verification Strategy

(For a moment, suspend disbelief regarding loops)

1. Compute Verification Condition (VC)

- (SP P c) $=>$ Q
- $\mathrm{P}=>$ (WP c Q)

2. Use SMT Solver to Check VC is Valid

Verification Strategy

1. Compute Verification Condition (VC)

- (SP P c) => Q
- $\mathrm{P}=>$ (WP c Q)

2. Use SMT Solver to Check VC is Valid

Problem: Pesky Loops

- Cannot compute WP or SP for While b c...
- ... Require invariants

Next: Lets infer invariants by approximation

Approximate Verification Strategy

0. Compute Over-approximate Postcondition SP\# s.t.

- (SP P c) => (SP\# P c)

1. Compute Verification Condition (VC)

- (SP\# P c) => Q

2. Use SMT Solver to Check VC is Valid

- If so, $\{P\} \subset\{Q\}$ holds by Consequence Rule

Key Requirement

- Compute SP\# without computing SP ...
- But guaranteeing over-approximation

What Makes Loops Special?

Why different from other constructs? Let

- c be a loop-free (i.e. has no While inside it)
- W be the loop While b c

Loops as Limits

Inductively define the infinite sequence of loop-free Com

$$
\begin{aligned}
& \text { W_0 }=\text { Skip } \\
& \text { W_1 }=\text { W_0 } \mid \text { Assume b; c; W_0 } \\
& \text { W_2 }=W_{-} 1 \mid \text { Assume b; c; W_1 } \\
& \cdot \\
& \cdot \\
& \text { W_i+1 }=\text { W_i } \mid \text { Assume b; c; W_i }
\end{aligned}
$$

Loops as Limits

Intuitively

- W_i is the loop unrolled upto i times
- W == W_0 | W_1 | W_2 | ...

Formally, we can prove (exercise)

1. eval s W == eval s W_0 ++ eval s W_1 ++ ...
2. SP P W == SP P W_0 \| SP P W_1 \| ...
3. WP W Q == WP W_0 Q \&\& WP W_1 Q \&\& ...

So what? Still cannot compute SP or WP!

Loops as Limits

So what? Still cannot compute SP or WP ... but notice

$$
\begin{aligned}
\text { SP P W_i+1 } & =\text { SP P (W_i | assume b; c; W_i) } \\
& =\text { SP P W_i } \| \text { SP (SP P (assume b; c)) W_i } \\
& <=S P \text { P W_i }
\end{aligned}
$$

That is, SP P W_i form an increasing chain
SP P W_0 => SP P W_1 => ... => SP P W_i => ...
... Problem: Chain does not converge! ONION RINGS

Approximate Loops as Approximate Limits

To find SP\# such that SP P c => SP\# P c, we compute chain SP\# P W_0 => SP\# P W_1 => ... => SP\# P W_i => ...
where each SP\# is over-approximates the corresponding SP
for all i. SP P W_i => SP\# P W_i
and the chain of SP\# chain converges to a fixpoint
exists j. SP\# P W_j+1 == SP\# P W_j
This magic SP\# P W_j+1 is the loop invariant, and
SP\# P W == SP\# P W_j

Approximating Loops

Many Questions Remain Around Our Strategy
How to compute SP\# so that we can ensure

1. Convergence to a fixpoint ?
2. Result is an over-approximation of SP ?

Answer: Abstract Interpretation
"Systematic basis for approximating the semantics of programs"

Abstract Interpretation

Plan

1. Simple language of arithmetic expressions
2. IMP
3. Predicate Abstraction (AI using SMT)

A Language of Arithmetic

Our language, just has numbers and multiplication

A Language of Arithmetic: Syntax

data AExp $=\mathrm{N}$ Int \mid AExp 'Mul' AExp
Example Expressions
N 7

N 7 'Mul' N (-3)

N 0 'Mul' N 7 'Mul' N (-3)

Concrete Semantics

To define the (concrete) or exact semantics, we need
type Value = Int
and an eval function that maps AExp to Value

```
eval :: AExp -> Value
eval (N n) = n
eval (Mul e1 e2) = mul (eval e1) (eval e2)
mul n m = n * m
```


Signs Abstraction

Suppose that we only care about the sign of the number.
Can define an abstract semantics

1. Abstract Values
2. Abstract Operators
3. Abstract Evaluators

Signs Abstraction: Abstract Values

Abstract values just preserve the sign of the number data Value\# = Neg | Zero | Pos

Abstract

Concrete

Figure: Abstract and Concrete Values

Signs Abstraction: Abstract Evaluator

Abstract evaluator just uses sign information

eval\#	$::$ AExp -> Value\#
eval\# $\|$$\mathrm{n}>0$ $=$ Pos $\mid n<0$ $=$ \mid otherwise $=$ Zero	
eval\# (Mul e1 e2)	$=$ mul\# (eval\# e1) (eval\# e2)

Signs Abstraction: Abstract Evaluator

mul\# is the abstract multiplication operators

mul\#	$::$ Value\#	
mul\# Zero -		$=$ Zero
mul\# - Zero		$=$ Zero
mul\# Pos Pos		$=$ Pos
mul\# Neg Neg	$=$ Pos	
mul\# Pos Neg	$=$ Neg	
mul\# Neg Pos	$=$ Neg	

Connecting the Concrete and Abstract Semantics

Theorem For all e :: AExp we have

```
1. (eval e) > 0 iff (eval# e) = Pos
2. (eval e) < O iff (eval# e) = Neg
3. (eval e) = 0 iff (eval# e) = Zero
```

Proof By induction on the structure of e

- Base Case: e == N n
- Ind. Step: Assume above for e1 and e2 prove for Mul e1 e2

Relating the Concrete and Abstract Semantics

Next, let us generalize what we did into a framework

- Allows us to use different Value\#
- Allows us to get connection theorem by construction

Key Idea: Provide Abstraction Function α

We only have to provide connection between Value and Value\# alpha :: Value -> Value\#

Key Idea: Provide Abstraction Function α

We only have to provide connection between Value and Value\#
alpha :: Value -> Value\#
For signs abstraction

$$
\text { alpha } \mathrm{n} \left\lvert\, \begin{array}{ll}
\mathrm{n}>0 & =\text { Pos } \\
\mathrm{n}<0 & =\text { Neg } \\
\mid \text { otherwise } & =\text { Zero }
\end{array}\right.
$$

Key Idea: α induces Concretization γ

Given alpha :: Value -> Value\#
we get for free a concretization function
gamma :: Value\# -> [Value]
gamma $\mathrm{v} \#=[\mathrm{v} \mid($ alpha v$)==\mathrm{v} \#$]
For signs abstraction

```
gamma Pos == [1,2..]
gamma Neg == [-1,-2..]
gamma Zero == [0]
```


Key Idea: α induces Abstract Operator

Given alpha :: Value -> Value\#
we get for free a abstract operator
op\# x\# y\# = alpha (op (gamma x\#) (gamma y\#))
(actually, there is some cheating above. . . can you spot it?)

Key Idea: α induces Abstract Operator

Given alpha :: Value -> Value\#
we get for free a abstract operator

Figure: Abstract Operator

Key Idea: α induces Abstract Evaluator

Given alpha :: Value -> Value\#
we get for free a abstract evaluator

```
eval# :: AExp -> Value#
eval# (N n) = (alpha n)
eval# (Op e1 e2) = op# (eval# e1) (eval# e2)
```


Key Idea: α induces Connection Theorem

Given alpha :: Value -> Value\#
we get for free a connection theorem
Theorem For all e: :AExp we have

1. (eval e) in gamma (eval\# e)
2. alpha(eval e) = (eval\# e)

Proof Exercise (same as before, but generalized)

Key Idea: α induces Connection Theorem

Given alpha :: Value -> Value\#
we get for free a connection theorem

Figure: Connection Theorem

Our First Abstract Interpretation

Given: Language AExp and Concrete Semantics
data AExp
data Value
op : : Value $->$ Value $->$ Value
eval $:$: AExp $->$ Value

Given: Abstraction
data Value\#
alpha :: Value -> Value\#

Our First Abstract Interpretation

Obtain for free: Abstract Semantics
op\# :: Value\# -> Value\# -> Value\#
eval\# :: AExp -> Value\#

Obtain for free: Connection
Theorem: Abstract Semantics approximates Concrete Semantics

Our Second Abstract Interpretation

Let us extend AExp with new operators

- Negation
- Addition
- Division

AExp with Unary Negation

Extended Syntax

data $\operatorname{AExp}=\ldots \mid$ Neg AExp

Extended Concrete Semantics

```
eval (Neg e) = neg (eval e)
```


AExp with Unary Negation

Derive Abstract Operator

```
neg# :: Value# -> Value#
neg# = alpha . neg . gamma
```

Which is equivalent to (if you do the math)

```
neg# Pos = Neg
neg# Zero = Zero
neg# Neg = Pos
```

Theorem holds as before!

Our Third Abstract Interpretation

Let us extend AExp with new operators

- Negation
- Addition
- Division

AExp with Addition

Extended Syntax

data AExp $=\ldots$ | Add AExp AExp

Extended Concrete Semantics

```
eval (Add e1 e2) = plus (eval e1) (eval e2)
```


AExp with Addition

Derive Abstract Operator

```
plus# :: Value# -> Value# -> Value#
plus# v1# v2# = alpha (plus (gamma v1#) (gamma v2#))
```

That is,
plus\# Zero v\# = v\#
plus\# Pos Pos = Pos
plus\# Neg Neg $=$ Neg
but...
plus\# Pos Neg = ???
plus\# Neg Pos = ???

Problem: Require Better Abstract Values

Need new value to represent union of positive and negative

- T (read: Top), denotes any integer

Now, we can define
plus\# Zero v\# = v\#
plus\# Top v\# = Top
plus\# Pos Pos = Pos
plus\# Neg Neg = Neg
plus\# Pos Neg = Top
plus\# Neg Pos = Top

Semantics is now Over-Approximate

Notice that now,

That is, we have lost all information about the sign!

- This is good
- Exact semantics not computable for real PL!

Our Fourth Abstract Interpretation

Let us extend AExp with new operators

- Negation
- Addition
- Division

AExp with Division

Extended Syntax
data AExp $=\ldots$ | Div AExp AExp

Extended Concrete Semantics
eval (Add e1 e2) $=\operatorname{div}($ eval e1) (eval e2)

AExp with Division: Abstract Semantics

How to define
div\# v\# Zero = ?
Need new value to represent empty set of integers

- - - (read: Bottom), denotes no integer
- Abstract operator on _- returns _-
- Wait, this is getting rather ad-hoc...
- Need more structure on Value\#

Abstract Values Form Complete Partial Order

Figure: Value\# Forms Complete Partial Order

Abstract Values Form Complete Partial Order

-- Partial Order
(<=) :: Value\# -> Value\# -> Bool
-- Greatest Lower Bound
glb : : Value\# -> Value\# -> Value\#
-- Least Upper Bound
lub :: Value\# -> Value\# -> Value\#
leq v1\# v2\# means v1\# corresponds to fewer concrete values than v2\#

Examples

- leq -|- Zero
- leq Pos Top

Abstract Values: Least Upper Bound

forall v1\# v2\#. v1\# <= lub v1\# v2\#
forall v1\# v2\#. v2\# <= lub v1\# v2\#
forall v . if v1\# <= v \&\& v2\# <= v then lub v1\# v2\#
Examples

- (lub _ |- Zero) == Zero
- (lub Neg Pos) == Top

Abstract Values: Greatest Lower Bound

forall v1\# v2\#. glb v1\# v2\# <= v1\#
forall v1\# v2\#. glb v1\# v2\# <= v2\#
forall v . if v <= v1\# \&\& v <= v2\# then v <= glb v1\#
Examples

- (glb Pos Zero) == -|-
- (lub Top Pos) == Pos

Key Idea: α and CPO induces Concretization γ

Given

- α :: Value -> Value\#
- $\sqsubseteq:: ~ V a l u e \# ~->~ V a l u e \# ~->~ B o o l ~$

We get for free a concretization function

- $\gamma:$: Value\# -> [Value]

Theorem v1\# \sqsubseteq v2\# iff (gamma v1\#) \subseteq (gamma v2\#)
That is,

- v1\# \sqsubseteq v2\# means v1\# represents fewer Value than v2\#

Key Idea: α and CPO induces α over [Value]

We can now lift α to work on sets of values

```
alpha :: [Value] -> Value#
alpha vs = lub [alpha v | v <- vs]
```

For example
alpha [3, 4] == Pos
alpha $[-3,4]$ == Top
alpha [0] == Zero

Key Idea: $\alpha+$ CPO induces Abstract Operator

Given

- α :: Value -> Value\#
- $\sqsubseteq:: ~ V a l u e \# ~->~ V a l u e \# ~->~ B o o l ~$

We get for free a abstract operator op\# x\# y\# = alpha [op x y | x <- gamma x\#, y <- gamma y\#]
i.e., lub of results of point-wise concrete operator (no cheating!)

For example
plus\# Pos Neg

$$
\begin{aligned}
& ==\text { alpha }[\mathrm{x}+\mathrm{y} \mid \mathrm{x}<- \text { gamma Pos, } \mathrm{y}<- \text { gamma Neg] } \\
& ==\text { alpha }[\mathrm{x}+\mathrm{y} \mid \mathrm{x}<-[1,2 \ldots], \mathrm{y}<-[-1,-2 \ldots]] \\
& ==\text { alpha }[0,1,-1,2,-2 \ldots] \\
& ==\text { Top }
\end{aligned}
$$

Key Idea: $\alpha+$ CPO induces Abstract Operator

Given alpha :: Value -> Value\#
we get for free a abstract operator

Figure: Abstract Operator

Key Idea: $\alpha+$ CPO induces Evaluator

As before, we get for free a abstract evaluator

```
eval# :: AExp -> Value#
eval# (N n) = (alpha n)
eval# (Op e1 e2) = op# (eval# e1) (eval# e2)
```


Key Idea: $\alpha+$ CPO induces Evaluator

And, more importantly, the semantics connection
Theorem For all e: :AExp we have

1. (eval e) \in gamma (eval\# e)
2. alpha (eval e) $\sqsubseteq ~(e v a l \# ~ e) ~$

Over-Approximation
In bare AExp we had exact abstract semantics

- alpha (eval e) = (eval\# e)

Now, we have over-approximate abstract semantics

- alpha (eval e) $\sqsubseteq(e v a l \# ~ e)$

That is, information is lost.

Next Time: Abstract Interpretation For IMP

So far, abstracted values for AExp

- Concrete Value = Int
- Abstract Value\# = Signs

Next time: apply these ideas to IMP

- Concrete Value $=$ State at program points
- Abstract Value\# = ???

Abstract Semantics yields loop invariants

