# Software Verification: Introduction 

Ranjit Jhala, UC San Diego

April 4, 2013

## What is Algorithmic Verification?

Algorithms, Techniques and Tools to ensure that

- Programs
- Don't Have
- Bugs
(What does that mean ? Stay tuned....)


## Topics

Most people here know what it means so more concretely...

1. Survey of basics of software verification [me]
2. Building up to refinement type-based verification [me]
3. Culminating with recent topics in verification. [you]

## Goals

1. Train students in state of the art, preparation for research
2. Write a monograph synthesizing different lines of work

## Goals

1. Use tools for different languages to see ideas in practice 2. Develop ideas in a single, unified, simplified (aka "toy") PL

## Plan

- Part 1 Deductive Verification
- Part 2 Type Systems
- Part 3 Refinement Types
- Part 4 Abstract Interpretation
- Part 5 Heap and Dynamic Languages
- Part 6 Project Talks


## Plan: 1 Deductive Verification

- Logics \& Decision Procedures
- Floyd-Hoare Logic
- Verification Conditions
- Symbolic Execution


## Plan: 2 Type Systems

- Hindley-Milner
- Subtyping
- Bidirectional Type Checking


## Plan: 3 Refinement Types

- Combining Types \& Logic
- Reasoning about State
- Abstract Refinements


## Plan: 4 Abstract Interpretation

- Horn Clause Constraints
- Galois Connections
- Predicate Abstraction/Liquid Types
- Interpolation


## Plan: 5 Heap \& Dynamic Languages

- Linear Types
- Separation Logic
- Hoare Type Theory
- Dependent JavaScript


## Plan: 6 Project Talks

Link to README

## Requirements \& Evaluation

1. Scribe
2. Program
3. Present

## Requirements: 1. Scribe

- Lectures will be black-board (not slides)
- You sign up for one lecture (Online URL)
- For that lecture, take notes
- Write up notes in LaTeX using provided template


## Requirements: 2. Program

About three "programming" assignments

- Implement some of algorithms (in Haskell)
- Use some verification tools (miscellaneous)


## Requirements: 3. Present

You will present one 40 minute talk

1. Select 1-3 (related) papers from reading list
2. Select presentation date ( $\sim$ last 5 lectures)
3. Prepare slides, get vetted by me $\mathbf{1}$ week in advance
4. Present lecture

- Can add other paper if I'm ok with it.


## Questions

## Lets Begin...

- Logics \& Decision Procedures
- Easily enough to teach (many) courses
- We will scratch the surface just to give a feel


## Logics \& Decision Procedures

- Logic is the Calculus of Computation
- May seem abstract now ...
- ... why are we talking about these wierd symbols?!
- Much/all of program analysis can be boiled down to logic
- Language for reasoning about programs


## Logics \& Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Theory of Equality
3. Theory of Uninterpreted Functions
4. Theory of Difference-Bounded Arithmetic
(Why? Representative \& have "efficient" decision procedures)

## Logics \& Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Theory of Equality
3. Theory of Uninterpreted Functions
4. Theory of Difference-Bounded Arithmetic
(Why? Representative \& have "efficient" decision procedures)

## Propositional Logic

A logic is a language

- Syntax of formulas (predicates, propositions...) in the logic
- Semantics of when are formulas satisfied or valid


## Propositional Logic: Syntax

```
data Symbol -- a set of symbols
```

| data Pred | $=$ PV Symbol |
| ---: | :--- |
|  | $\mid$ Not Pred |
|  | $\mid$ Pred 'And' Pred |
|  | $\mid$ Pred 'Or' Pred |

Predicates are made of

- Propositional symbols ("boolean variables")
- Combined with And, Or and Not


## Propositional Logic: Syntax

```
data Symbol -- a set of symbols
```

data Pred = PV Symbol
Not Pred

Can build in other operators Implies, Iff, Xor etc.

$$
\begin{aligned}
& \text { p 'imp' } q=\left(N o t p r^{\prime} r^{\prime} q\right) \\
& \text { p 'iff' } q=(p \text { 'And' q) 'Or' (Not p 'And' Not q) } \\
& \text { p 'xor' } q=\left(p{ }^{\prime} A n d^{\prime} \text { Not } q \text { ) 'Or' (Not } p \text { 'And' } q\right. \text { ) }
\end{aligned}
$$

## Propositional Logic: Semantics

Predicate is a constraint. For example,
x1 'xor' x 2 'xor' x 3
States "only an odd number of the variables can be true"

- When is such a constraint satisfiable or valid ?


## Propositional Logic: Semantics

Let Values = True, False, . . . be a universe of possible "meanings"

An assignment is a map setting value of each Symbol as True or False
data Asgn = Symbol -> Value

Semantics/Evaluation Procedure
Defines when an assignment $s$ makes a formula $p$ true.

```
eval
    :: Asgn -> Pred -> Bool
eval s (PV x) = s x
eval s (Not p) = not (sat s p) -- p is NOT satis.
eval s (p 'And' q) = sat s p && sat s q -- both of p , q
eval s (p 'Or' q) = sat s p | sat s q -- one of p, q a
-- assignment s s
```


## Propositional Logic: Decision Problem

Decision Problem: Satisfaction
Does eval s p return True for some assignment s?
Decision Problem: Validity
Does eval s p return True for all assignments s?

## Satisfaction: A Naive Decision Procedure

Does eval s p return True for some assignment s?
Enumerate all assignments and run eval on each!
isSat :: Pred -> Bool
isSat p = exists (\s -> eval s p) ss
where
ss $=$ asgns $\$$ removeDuplicates $\$$ vars $p$
exists $f$ [] $=$ False
exists $f(x: x s)=f x \|$ exists $f$ xs

## Satisfaction: A Naive Decision Procedure

Does eval s p return True for some assignment s?
Enumerate all assignments and run eval on each!
Enumerating all Assignments

```
asgns :: [PVar] -> [Asgn]
asgns [] = [\x -> False]
asgns (x:xs) = [ext s x t | s <- asgns xs, t <- [True,
ext s x t = \y -> if y == x then t else s x
vars :: Pred -> [PVar]
vars (PV x) = [x]
vars (Not p) = vars p
vars (p 'And' q) = vars p ++ vars q
vars (p 'Or' q) = vars p ++ vars q
```

Obviously Inefficent. . . (guaranteed) exponential in

## Logics \& Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Propositional Logic + Theories

- Equality
- Uninterpreted Functions
- Difference-Bounded Arithmetic
(Why? Representative \& have "efficient" decision procedures)


## Propositional Logic + Theory

Layer theories on top of basic propositional logic

## Expressions

A new kind of term
data Expr
Theory
A Theory is Described by

1. Extend universe of Values
2. A set of Operator

- Syntax: data Expr = ... | Op [Expr]
- Semantics : eval :: Op -> [Value] -> Value

3. A set of Relation (i.e. [Expr] -> Pred)

- Syntax: data Pred $=\ldots \mid$ Symbol $\ll>$ (Rel [Expr])


## Propositional Logic + Theory

Layer theories on top of basic propositional logic

## Semantics

Extend eval semantics for Operator and Relation

```
eval s (op es) = eval op [eval s e | e <- es]
eval s (x <=> r es) = eval r [eval s e | e <- es]
```

->
Satisfaction / Validity

- Sat Does eval s p return True for some assignment s?
- Valid Does eval s p return True for all assignments s ?


## Lets make things concrete!

## Logics \& Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Propositional Logic + Theories

- Equality
- Uninterpreted Functions
- Difference-Bounded Arithmetic
(Why? Representative \& have "efficient" decision procedures)


## Propositional Logic + Theory of Equality

1. Values $=\ldots+$ Integer
2. Operator none
3. Relation

- Syntax: a Eq b or a Ne b
- Semantics

```
eval Eq [n, m] = (n == m)
eval Ne [n, m] = not (n == m)
```

Example


## Propositional Logic + Theory of Equality

## Example

```
            (x1 'And' x2 'And' x3)
'And' (x1 <=> a 'Eq' b)
'And' (x2 <=> b 'Eq' c)
'And' (x3 <=> a 'Ne' c)
```

Decision Procedures?

- Sat Does eval s p return True for some assignment s ?

Can we enumerate over all assignments? [No]

## Logics \& Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Propositional Logic + Theories

- Equality
- Uninterpreted Functions
- Difference-Bounded Arithmetic
(Why? Representative \& have "efficient" decision procedures)


## Propositional Logic + Theory of Equality + Uninterpreted

## Functions

1. Values:... + functions [Value] -> Value
2. Operator: App (apply App [f,a,b] or just $f(a, b))$
3. Relation: Eq and Ne (from before)
4. Extended eval
```
eval s (App (e : [e1...en])) = (eval s e) (eval s e1 ... e
```

Example

```
    (x1 'And' x2 'And' x3 )
'And' (x1 <=> a 'Eq' g(g(g(a))) )
'And' (x2 <=> a 'Eq` g(g(g(g(g(a))))))
'And' (x3 <=> a 'Ne' g(a) )
```

Decision Procedures ?

- Sat Does eval s p return True for some assignment s?


## Logics \& Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Propositional Logic + Theories

- Equality
- Uninterpreted Functions
- Difference-Bounded Arithmetic
(Why? Representative \& have "efficient" decision procedures)


## Propositional Logic + Difference Bounded Arithmetic

1. Values:... + Integer
2. Operator: None
3. Relation: $\operatorname{DBn}(x, y)(o r, x-y<=n)$
4. Extended eval
```
eval s (DB (e1, e2, n)) = (eval s e1) - (eval s e2) <= n
```

Example

```
            (x1 'And' x2 'And' x3)
'And' (x1 <=> a - b <= 5 )
'And' (x2 <=> b - c <= 10 )
'And' (x3 <=> c - a <= -20 )
```


## Decision Procedures ?

- Sat Does eval s p return True for some assignment s ?
- Can we enumerate over all assignments? [Hell, no!]

Next Time: Decision Procedures for SAT/SMT

