
Software Verification : Introduction

Ranjit Jhala, UC San Diego

April 4, 2013

What is Algorithmic Verification?

Algorithms, Techniques and Tools to ensure that

I Programs

I Don’t Have

I Bugs

(What does that mean ? Stay tuned. . .)

Topics

Most people here know what it means so more concretely. . .

1. Survey of basics of software verification [me]

2. Building up to refinement type-based verification [me]

3. Culminating with recent topics in verification. [you]

Goals

1. Train students in state of the art, preparation for research

2. Write a monograph synthesizing different lines of work

Goals

1. Use tools for different languages to see ideas in practice

2. Develop ideas in a single, unified, simplified (aka “toy”) PL

Plan

I Part 1 Deductive Verification

I Part 2 Type Systems

I Part 3 Refinement Types

I Part 4 Abstract Interpretation

I Part 5 Heap and Dynamic Languages

I Part 6 Project Talks

Plan: 1 Deductive Verification

I Logics & Decision Procedures
I Floyd-Hoare Logic
I Verification Conditions
I Symbolic Execution

Plan: 2 Type Systems

I Hindley-Milner
I Subtyping
I Bidirectional Type Checking

Plan: 3 Refinement Types

I Combining Types & Logic
I Reasoning about State
I Abstract Refinements

Plan: 4 Abstract Interpretation

I Horn Clause Constraints
I Galois Connections
I Predicate Abstraction/Liquid Types
I Interpolation

Plan: 5 Heap & Dynamic Languages

I Linear Types
I Separation Logic
I Hoare Type Theory
I Dependent JavaScript

Plan: 6 Project Talks

Link to README

Requirements & Evaluation

1. Scribe

2. Program

3. Present

Requirements: 1. Scribe

I Lectures will be black-board (not slides)

I You sign up for one lecture (Online URL)

I For that lecture, take notes

I Write up notes in LaTeX using provided template

Requirements: 2. Program

About three “programming” assignments

I Implement some of algorithms (in Haskell)

I Use some verification tools (miscellaneous)

Requirements: 3. Present

You will present one 40 minute talk

1. Select 1-3 (related) papers from reading list

2. Select presentation date (˜ last 5 lectures)

3. Prepare slides, get vetted by me 1 week in advance

4. Present lecture

I Can add other paper if I’m ok with it.

Questions

?

Lets Begin . . .

I Logics & Decision Procedures

I Easily enough to teach (many) courses

I We will scratch the surface just to give a feel

Logics & Decision Procedures

I Logic is the Calculus of Computation

I May seem abstract now . . .

I . . . why are we talking about these wierd symbols?!

I Much/all of program analysis can be boiled down to logic

I Language for reasoning about programs

Logics & Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

(Why? Representative & have “efficient” decision procedures)

Logics & Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

(Why? Representative & have “efficient” decision procedures)

Propositional Logic

A logic is a language

I Syntax of formulas (predicates, propositions. . .) in the logic

I Semantics of when are formulas satisfied or valid

Propositional Logic: Syntax

data Symbol -- a set of symbols

data Pred = PV Symbol

| Not Pred

| Pred ‘And‘ Pred

| Pred ‘Or‘ Pred

Predicates are made of

I Propositional symbols (“boolean variables”)

I Combined with And, Or and Not

Propositional Logic: Syntax

data Symbol -- a set of symbols

data Pred = PV Symbol

| Not Pred

| Pred ‘And‘ Pred

| Pred ‘Or‘ Pred

Can build in other operators Implies, Iff, Xor etc.

p ‘imp‘ q = (Not p ‘Or‘ q)

p ‘iff‘ q = (p ‘And‘ q) ‘Or‘ (Not p ‘And‘ Not q)

p ‘xor‘ q = (p ‘And‘ Not q) ‘Or‘ (Not p ‘And‘ q)

Propositional Logic: Semantics

Predicate is a constraint. For example,

x1 ‘xor‘ x2 ‘xor‘ x3

States “only an odd number of the variables can be true”

I When is such a constraint satisfiable or valid ?

Propositional Logic: Semantics
Let Values = True, False, ... be a universe of possible
“meanings”

An assignment is a map setting value of each Symbol as True or
False

data Asgn = Symbol -> Value

Semantics/Evaluation Procedure

Defines when an assignment s makes a formula p true.

eval :: Asgn -> Pred -> Bool

eval s (PV x) = s x -- assignment s sets x to ‘True‘

eval s (Not p) = not (sat s p) -- p is NOT satisfied

eval s (p ‘And‘ q) = sat s p && sat s q -- both of p , q are satisfied

eval s (p ‘Or‘ q) = sat s p || sat s q -- one of p , q are satisfied

Propositional Logic: Decision Problem

Decision Problem: Satisfaction

Does eval s p return True for some assignment s ?

Decision Problem: Validity

Does eval s p return True for all assignments s ?

Satisfaction: A Naive Decision Procedure

Does eval s p return True for some assignment s ?

Enumerate all assignments and run eval on each!

isSat :: Pred -> Bool

isSat p = exists (\s -> eval s p) ss

where

ss = asgns $ removeDuplicates $ vars p

exists f [] = False

exists f (x:xs) = f x || exists f xs

Satisfaction: A Naive Decision Procedure
Does eval s p return True for some assignment s ?

Enumerate all assignments and run eval on each!

Enumerating all Assignments

asgns :: [PVar] -> [Asgn]

asgns [] = [\x -> False]

asgns (x:xs) = [ext s x t | s <- asgns xs, t <- [True, False]]

ext s x t = \y -> if y == x then t else s x

vars :: Pred -> [PVar]

vars (PV x) = [x]

vars (Not p) = vars p

vars (p ‘And‘ q) = vars p ++ vars q

vars (p ‘Or‘ q) = vars p ++ vars q

Obviously Inefficent. . . (guaranteed) exponential in
number of vars!

Will see better heuristics

Logics & Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Propositional Logic + Theories

I Equality
I Uninterpreted Functions
I Difference-Bounded Arithmetic

(Why? Representative & have “efficient” decision procedures)

Propositional Logic + Theory
Layer theories on top of basic propositional logic

Expressions

A new kind of term

data Expr

Theory

A Theory is Described by

1. Extend universe of Values

2. A set of Operator

I Syntax : data Expr = ... | Op [Expr]
I Semantics : eval :: Op -> [Value] -> Value

3. A set of Relation (i.e. [Expr] -> Pred)

I Syntax : data Pred = ... | Symbol <=> (Rel [Expr])
I Semantics : eval :: Rel -> [Value] -> Bool

Propositional Logic + Theory

Note that Pred includes old propositional predicates and new
relations

Propositional Logic + Theory

Layer theories on top of basic propositional logic

Semantics

Extend eval semantics for Operator and Relation

eval s (op es) = eval op [eval s e | e <- es]

eval s (x <=> r es) = eval r [eval s e | e <- es]

–>

Satisfaction / Validity

I Sat Does eval s p return True for some assignment s ?

I Valid Does eval s p return True for all assignments s ?

Lets make things concrete!

Logics & Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Propositional Logic + Theories

I Equality
I Uninterpreted Functions
I Difference-Bounded Arithmetic

(Why? Representative & have “efficient” decision procedures)

Propositional Logic + Theory of Equality

1. Values = . . . + Integer

2. Operator none

3. Relation

I Syntax : a Eq b or a Ne b
I Semantics

eval Eq [n, m] = (n == m)

eval Ne [n, m] = not (n == m)

Example

(x1 ‘And‘ x2 ‘And‘ x3)

‘And‘ (x1 <=> a ‘Eq‘ b)

‘And‘ (x2 <=> b ‘Eq‘ c)

‘And‘ (x3 <=> a ‘Ne‘ c)

Propositional Logic + Theory of Equality

Example

(x1 ‘And‘ x2 ‘And‘ x3)

‘And‘ (x1 <=> a ‘Eq‘ b)

‘And‘ (x2 <=> b ‘Eq‘ c)

‘And‘ (x3 <=> a ‘Ne‘ c)

Decision Procedures?

I Sat Does eval s p return True for some assignment s ?

Can we enumerate over all assignments? [No]

Logics & Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Propositional Logic + Theories

I Equality
I Uninterpreted Functions
I Difference-Bounded Arithmetic

(Why? Representative & have “efficient” decision procedures)

Propositional Logic + Theory of Equality + Uninterpreted
Functions

1. Values : ... + functions [Value] -> Value

2. Operator : App (apply App [f,a,b] or just f(a,b))
3. Relation : Eq and Ne (from before)
4. Extended eval

eval s (App (e : [e1...en])) = (eval s e) (eval s e1 ... eval s en)

Example

(x1 ‘And‘ x2 ‘And‘ x3)

‘And‘ (x1 <=> a ‘Eq‘ g(g(g(a))))

‘And‘ (x2 <=> a ‘Eq‘ g(g(g(g(g(a))))))

‘And‘ (x3 <=> a ‘Ne‘ g(a))

Decision Procedures ?

I Sat Does eval s p return True for some assignment s ?

I Can we enumerate over all assignments? [Hell, no!]

I How can we possibly enumerate over all functions!

Logics & Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Propositional Logic + Theories

I Equality
I Uninterpreted Functions
I Difference-Bounded Arithmetic

(Why? Representative & have “efficient” decision procedures)

Propositional Logic + Difference Bounded Arithmetic
1. Values : ... + Integer

2. Operator : None
3. Relation : DBn(x,y) (or, x - y <= n)
4. Extended eval

eval s (DB (e1, e2, n)) = (eval s e1) - (eval s e2) <= n

Example

(x1 ‘And‘ x2 ‘And‘ x3)

‘And‘ (x1 <=> a - b <= 5)

‘And‘ (x2 <=> b - c <= 10)

‘And‘ (x3 <=> c - a <= -20)

Decision Procedures ?

I Sat Does eval s p return True for some assignment s ?

I Can we enumerate over all assignments? [Hell, no!]

I How can we possibly enumerate over all functions!

Next Time: Decision Procedures for SAT/SMT

