
SAT Solvers

Ranjit Jhala, UC San Diego

April 9, 2013

Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

Decision Problem: Satisfaction

I Does eval s p return True for some assignment s ?

I “Can we assign the variables to make the formula true” ?

Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

Why?

I Representative
I Have “efficient” algorithms

Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

Plan

I First in isolation
I Then in combination
I Very slick SW-Eng, based on logic

Decision Procedures: Propositional Logic

Popularly called SAT Solvers

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form
I Resolution

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form
I Resolution

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Propositional Logic 101

Propositional Variables

data PVar

Propositional Formulas

data Formula = Prop PVar

| Not Formula

| Formula ‘And‘ Formula

| Formula ‘Or‘ Formula

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form
I Resolution

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Conjunctive Normal Form

Restricted representation of Formula

Literals: Variables or Negated Variables

data Literal = Pos PVar | Neg PVar

Clauses: Disjunctions (Or) of Literals

data Clauses = [Literal]

CNF Formulas: Conjunctions (And) of Clauses

data CnfFormula = [Clauses]

Conjunctive Normal Form: Example

Consider a Formula

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ ¬x3

Represented as a Formula

(Prop 1 ‘Or‘ Prop 2)

‘And‘ (Not (Prop 1) ‘Or‘ Prop 3)

‘And‘ (Not (Prop 3))

Represented as a CnfFormula

[[Pos 1 , Pos 2]

, [Neg 1 , Pos 3]

, [Neg 3]]

Conjunctive Normal Form Conversion

Theorem There is a poly-time function

toCNF :: Formula -> CnfFormula

toCNF = error "Exercise For The Reader"

Such that any f is satisfiable iff (toCNF f) is satisfiable.

I toCNF adds new variables for sub-formulas

I otherwise, an exponential blowup in CnfFormula size

Conjunctive Normal Form Conversion

Theorem There is a poly-time function

toCNF :: Formula -> CnfFormula

toCNF = error "Exercise For The Reader"

Such that any f is satisfiable iff (toCNF f) is satisfiable.

Henceforth Only consider formulas in Conjunctive Normal Form
Formulas

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Properties of CNF

Pure Variable

I One which appears only +ve or −ve in a CnfFormula

Empty Clause

I If a CnfFormula has some Clause without Literals
I Then the CnfFormula is UNSAT

Trivial Formula

I If a CnfFormula has no Clause

I Or every variable is pure
I Then the CnfFormula is SAT

Goal

Determine satisfaction by reducing CnfFormula to one of

I Empty Clause (ie UNSAT), or

I Trivial Formula (ie SAT).

Reducing Formulas By Resolution

(“Reduce” is, perhaps, not the best word. . .)

Resolution: For any A,B and variable x , the formula

(A ∨ x) ∧ (B ∨ ¬x)

is equivalent to the formula

(A ∨ B)

I The variable x is called a pivot variable

General Resolution

Resolution: For any Ai ,Bj and variable x , the formula

∧
i

(Ai ∨ x) ∧
∧
j

(Bj ∨ ¬x)

is equivalent to the formula

∧
i ,j

(Ai ∨ Bj)

I Pivot variable x is eliminated by resolution

Davis-Putnam Algorithm: Example 1

Input Formula

I (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x5) ∧ (¬x2 ∨ x4))

Pivot on x2

I (x1 ∨ x3 ∨ x4) ∧ (¬x3 ∨ x5 ∨ x4)

Pivot on x3

I (x1 ∨ x4 ∨ x5)

All variables are pure . . . hence, SAT

Davis-Putnam Algorithm: Example 2

Input Formula

I (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Pivot on x2

I (x1) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Pivot on x3

I (x1) ∧ (¬x1)

Pivot on x1

I ()

Empty clause . . . hence, UNSAT

Davis-Putnam Algorithm

Algorithm

1. Select pivot and perform resolution

2. Repeat until SAT or UNSAT

Issues?

I Space blowup (formula size blows up on resolution)

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Decision Tree: Describes Space of All Assignments

Figure: SAT Decision Tree (Courtesy: Lintao Zhang)

Decision Tree: SAT via Depth First Search

Figure: DFS On Decision Tree (Courtesy: Lintao Zhang)

Backtracking Search

Don’t build whole tree, but lazily search solutions

I Choose a variable x , set to True

I Remove constraints where x appears
I Recurse on remaining constraints
I Backtrack if a contradiction is found

Backtracking Search (1/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (2/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (3/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (4/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (5/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (6/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (7/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (8/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (9/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (10/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (11/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (12/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (13/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (14/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (15/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (16/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (17/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (18/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (19/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (20/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (21/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search

Don’t build whole tree, but lazily search solutions

I Choose a variable x , set to True

I Remove constraints where x appears
I Recurse on remaining constraints
I Backtrack if a contradiction is found

(whew!)

I DFS avoids space blowup (only need to save stack) . . .
I . . . but not time (natch)

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Boolean Constraint Propagation

Often, we don’t really have a choice. . .

Boolean Constraint Propagation

Unit Clause Rule

I If an (unsatisfied) Clause has one unassigned Literal

I Then that Literal must be True in any SAT assignment

Example

I Formula (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3)

I Assignment x1 = T , x2 = T

I The last clause is a unit clause

I Any SAT assigment must set ¬x3 = T (i.e. x3 = F)

Boolean Constraint Propagation

Unit Clause Rule

I If an (unsatisfied) Clause has one unassigned Literal

I Then that Literal must be True in any SAT assignment

BCP or Unit Propagation

I Repeat applying unit clause rule
I Until no unit clause remains.

Boolean Constraint Propagation: Example

Revisit Example With BCP

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)

Boolean Constraint Propagation

DPLL = Backtracking Search + BCP

I Backtracking: Avoids space blowup

I BCP: Avoid doing obvious work

I Still repeatedly explore all choices (e.g. whole left subtree)

Wanted

I Means to learn to repeat dead ends

I Key to scaling to practical problems

Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping

Conflict Driven Learning

Key Insight

I On finding conflict, don’t (just) backtrack

I Learn new clause to prevent same conflict in future

Major breakthrough

I J. P. Marques-Silva and K. A. Sakallah, “GRASP – A New
Search Algorithm for Satisfiability,” Proc. ICCAD 1996.

I R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back
techniques to solve real world SAT instances.” Proc. AAAI,
1997

Conflict Driven Learning

I Resolve on conflict variable to learn new conflict clause

I Add clause to set of clauses

I Backjump using conflict clause

Conflict Driven Learning
Revisit Example With CDL

I Learn, Add, Backjump
I Vastly faster search

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)

Backtracking Only (01/26)

Figure: Backtracking Only

Backtracking Only (02/26)

Figure: Backtracking Only

Backtracking Only (03/26)

Figure: Backtracking Only

Backtracking Only (04/26)

Figure: Backtracking Only

Backtracking Only (05/26)

Figure: Backtracking Only

Backtracking Only (06/26)

Figure: Backtracking Only

Backtracking Only (07/26)

Figure: Backtracking Only

Backtracking Only (08/26)

Figure: Backtracking Only

Backtracking Only (09/26)

Figure: Backtracking Only

Backtracking Only (10/26)

Figure: Backtracking Only

Backtracking Only (11/26)

Figure: Backtracking Only

Backtracking Only (12/26)

Figure: Backtracking Only

Backtracking Only (13/26)

Figure: Backtracking Only

Backtracking Only (14/26)

Figure: Backtracking Only

Backtracking Only (15/26)

Figure: Backtracking Only

Backtracking Only (16/26)

Figure: Backtracking Only

Backtracking Only (17/26)

Figure: Backtracking Only

Backtracking Only (18/26)

Figure: Backtracking Only

Backtracking Only (19/26)

Figure: Backtracking Only

Backtracking Only (20/26)

Figure: Backtracking Only

Backtracking Only (21/26)

Figure: Backtracking Only

Backtracking Only (22/26)

Figure: Backtracking Only

Backtracking Only (23/26)

Figure: Backtracking Only

Backtracking Only (24/26)

Figure: Backtracking Only

Backtracking Only (25/26)

Figure: Backtracking Only

Backtracking Only (26/26)

Figure: Backtracking Only

Boolean Constraint Propagation (01/23)

Figure: BCP

Boolean Constraint Propagation (02/23)

Figure: BCP

Boolean Constraint Propagation (03/23)

Figure: BCP

Boolean Constraint Propagation (04/23)

Figure: BCP

Boolean Constraint Propagation (05/23)

Figure: BCP

Boolean Constraint Propagation (06/23)

Figure: BCP

Boolean Constraint Propagation (07/23)

Figure: BCP

Boolean Constraint Propagation (08/23)

Figure: BCP

Boolean Constraint Propagation (09/23)

Figure: BCP

Boolean Constraint Propagation (10/23)

Figure: BCP

Boolean Constraint Propagation (11/23)

Figure: BCP

Boolean Constraint Propagation (12/23)

Figure: BCP

Boolean Constraint Propagation (13/23)

Figure: BCP

Boolean Constraint Propagation (14/23)

Figure: BCP

Boolean Constraint Propagation (15/23)

Figure: BCP

Boolean Constraint Propagation (16/23)

Figure: BCP

Boolean Constraint Propagation (17/23)

Figure: BCP

Boolean Constraint Propagation (18/23)

Figure: BCP

Boolean Constraint Propagation (19/23)

Figure: BCP

Boolean Constraint Propagation (20/23)

Figure: BCP

Boolean Constraint Propagation (21/23)

Figure: BCP

Boolean Constraint Propagation (22/23)

Figure: BCP

Boolean Constraint Propagation (23/23)

Figure: BCP

Conflict Driven Learning (01/21)

Figure: CDL

Conflict Driven Learning (02/21)

Figure: CDL

Conflict Driven Learning (03/21)

Figure: CDL

Conflict Driven Learning (04/21)

Figure: CDL

Conflict Driven Learning (05/21)

Figure: CDL

Conflict Driven Learning (06/21)

Figure: CDL

Conflict Driven Learning (07/21)

Figure: CDL

Conflict Driven Learning (08/21)

Figure: CDL

Conflict Driven Learning (09/21)

Figure: CDL

Conflict Driven Learning (10/21)

Figure: CDL

Conflict Driven Learning (11/21)

Figure: CDL

Conflict Driven Learning (12/21)

Figure: CDL

Conflict Driven Learning (13/21)

Figure: CDL

Conflict Driven Learning (14/21)

Figure: CDL

Conflict Driven Learning (15/21)

Figure: CDL

Conflict Driven Learning (16/21)

Figure: CDL

Conflict Driven Learning (17/21)

Figure: CDL

Conflict Driven Learning (18/21)

Figure: CDL

Conflict Driven Learning (19/21)

Figure: CDL

Conflict Driven Learning (20/21)

Figure: CDL

Conflict Driven Learning (21/21)

Figure: CDL

More Details about SAT Solvers

Lectures By Lintao Zhang (ZChaff)

I 1
I 2

http://research.microsoft.com/en-us/people/lintaoz/sat_course1.pdf
http://research.microsoft.com/en-us/people/lintaoz/sat_course2.pdf

Next Time: SMT = SAT + Theories

1. Propositional Logic

2. Combining Theories

I Equality + Uninterpreted Functions
I Difference-Bounded Arithmetic

3. Combining SAT + Theories

