SAT Solvers

Ranjit Jhala, UC San Diego

April 9, 2013

Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Theory of Equality
3. Theory of Uninterpreted Functions
4. Theory of Difference-Bounded Arithmetic

Decision Problem: Satisfaction

- Does eval s p return True for some assignment s?
- "Can we assign the variables to make the formula true" ?

Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Theory of Equality
3. Theory of Uninterpreted Functions
4. Theory of Difference-Bounded Arithmetic

Why?

- Representative
- Have "efficient" algorithms

Decision Procedures

We will look very closely at the following

1. Propositional Logic
2. Theory of Equality
3. Theory of Uninterpreted Functions
4. Theory of Difference-Bounded Arithmetic

Plan

- First in isolation
- Then in combination
- Very slick SW-Eng, based on logic

Decision Procedures: Propositional Logic

Popularly called SAT Solvers

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form
- Resolution

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form
- Resolution

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Propositional Logic 101

Propositional Variables

data PVar

Propositional Formulas
data Formula $=$ Prop PVar
Not Formula
Formula 'And' Formula
Formula 'Or' Formula

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form
- Resolution

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Conjunctive Normal Form

Restricted representation of Formula
Literals: Variables or Negated Variables
data Literal = Pos PVar | Neg PVar

Clauses: Disjunctions (Or) of Literals
data Clauses = [Literal]

CNF Formulas: Conjunctions (And) of Clauses
data CnfFormula $=$ [Clauses]

Conjunctive Normal Form: Example

Consider a Formula
$\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge \neg x_{3}$
Represented as a Formula

	(Prop 1
'And' (Not (Prop 1)	'Or' Prop 2)
'And' (Not (Prop 3)	

Represented as a CnfFormula
[[Pos 1 , Pos 2]
, $[\operatorname{Neg} 1$, Pos 3]
, $[\operatorname{Neg} 3]]$

Conjunctive Normal Form Conversion

Theorem There is a poly-time function
toCNF :: Formula -> CnfFormula
toCNF = error "Exercise For The Reader"
Such that any f is satisfiable iff (toCNF f) is satisfiable.

- toCNF adds new variables for sub-formulas
- otherwise, an exponential blowup in CnfFormula size

Conjunctive Normal Form Conversion

Theorem There is a poly-time function
toCNF :: Formula -> CnfFormula
toCNF = error "Exercise For The Reader"
Such that any f is satisfiable iff (toCNF f) is satisfiable.
Henceforth Only consider formulas in Conjunctive Normal Form
Formulas

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Properties of CNF

Pure Variable

- One which appears only $+v e$ or $-v e$ in a CnfFormula

Empty Clause

- If a CnfFormula has some Clause without Literals
- Then the CnfFormula is UNSAT

Trivial Formula

- If a CnfFormula has no Clause
- Or every variable is pure
- Then the CnfFormula is SAT

Goal

Determine satisfaction by reducing CnfFormula to one of

- Empty Clause (ie UNSAT), or
- Trivial Formula (ie SAT).

Reducing Formulas By Resolution

("Reduce" is, perhaps, not the best word...)
Resolution: For any A, B and variable x, the formula

$$
(A \vee x) \wedge(B \vee \neg x)
$$

is equivalent to the formula

$$
(A \vee B)
$$

- The variable x is called a pivot variable

General Resolution

Resolution: For any A_{i}, B_{j} and variable x, the formula

$$
\bigwedge_{i}\left(A_{i} \vee x\right) \wedge \bigwedge_{j}\left(B_{j} \vee \neg x\right)
$$

is equivalent to the formula

$$
\bigwedge_{i, j}\left(A_{i} \vee B_{j}\right)
$$

- Pivot variable x is eliminated by resolution

Davis-Putnam Algorithm: Example 1

Input Formula

- $\left.\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{5}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)\right)$

Pivot on x_{2}

- $\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{3} \vee x_{5} \vee x_{4}\right)$

Pivot on x_{3}

- $\left(x_{1} \vee x_{4} \vee x_{5}\right)$

All variables are pure ... hence, SAT

Davis-Putnam Algorithm: Example 2

Input Formula

- $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)$

Pivot on x_{2}

- $\left(x_{1}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)$

Pivot on x_{3}

- $\left(x_{1}\right) \wedge\left(\neg x_{1}\right)$

Pivot on x_{1}

- ()

Empty clause . . . hence, UNSAT

Davis-Putnam Algorithm

Algorithm

1. Select pivot and perform resolution
2. Repeat until SAT or UNSAT

Issues?

- Space blowup (formula size blows up on resolution)

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Decision Tree: Describes Space of All Assignments

Figure: SAT Decision Tree (Courtesy: Lintao Zhang)

Decision Tree: SAT via Depth First Search

Figure: DFS On Decision Tree (Courtesy: Lintao Zhang)

Backtracking Search

Don't build whole tree, but lazily search solutions

- Choose a variable x, set to True
- Remove constraints where x appears
- Recurse on remaining constraints
- Backtrack if a contradiction is found

Backtracking Search (1/21)

($a^{\prime}+b+c$)
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
(b' $+c^{\prime}+d$)
($\mathbf{a}^{\prime}+\mathrm{b}+\mathrm{c}^{\prime}$)
($a^{\prime}+b^{\prime}+c$)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (2/21)

```
(a'+b+c)
(a+c+d)
(a+c+d')
(a+c'+d)
(a+c' + d')
(b' + c' + d)
(a' + b + c')
(a'+b'+c)
```

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (3/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (4/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (5/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (6/21)

$\left(a^{\prime}+b+c\right)$
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
$\left(b^{\prime}+c^{\prime}+d\right)$
$\left(a^{\prime}+b+c^{\prime}\right)$
$\left(a^{\prime}+b^{\prime}+c\right)$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (7/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (8/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+b^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (9/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (10/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (11/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (12/21)

```
(a'+b+c)
(a+c+d)
(a+c+d')
(a+c'+d)
(a+c'+ d')
(b'+c'+d)
(a'+b+c')
(a'+b' + c)
```


Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (13/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+b^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (14/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+b^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (15/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (16/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (17/21)

$\left(a^{\prime}+b+c\right)$
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
$\left(b^{\prime}+c^{\prime}+d\right)$
$\left(a^{\prime}+b+c^{\prime}\right)$
$\left(a^{\prime}+b^{\prime}+c\right)$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (18/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (19/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+b^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (20/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (21/21)

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+b^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search

Don't build whole tree, but lazily search solutions

- Choose a variable x, set to True
- Remove constraints where x appears
- Recurse on remaining constraints
- Backtrack if a contradiction is found
(whew!)
- DFS avoids space blowup (only need to save stack) ...
- ... but not time (natch)

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Boolean Constraint Propagation

Often, we don't really have a choice...

Boolean Constraint Propagation

Unit Clause Rule

- If an (unsatisfied) Clause has one unassigned Literal
- Then that Literal must be True in any SAT assignment

Example

- Formula $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)$
- Assignment $x_{1}=T, x_{2}=T$
- The last clause is a unit clause
- Any SAT assigment must set $\neg x_{3}=T$ (i.e. $x_{3}=F$)

Boolean Constraint Propagation

Unit Clause Rule

- If an (unsatisfied) Clause has one unassigned Literal
- Then that Literal must be True in any SAT assignment

BCP or Unit Propagation

- Repeat applying unit clause rule
- Until no unit clause remains.

Boolean Constraint Propagation: Example

Revisit Example With BCP

```
(a'+b + c)
(a+c+d)
(a+c+d')
(a+c' +d)
(a+c'+ +')
(b' + c' + d)
(a'+b+c')
(a'+b'+c)
```


Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)

Boolean Constraint Propagation

DPLL $=$ Backtracking Search + BCP

- Backtracking: Avoids space blowup
- BCP: Avoid doing obvious work
- Still repeatedly explore all choices (e.g. whole left subtree)

Wanted

- Means to learn to repeat dead ends
- Key to scaling to practical problems

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning \& Backjumping

Conflict Driven Learning

Key Insight

- On finding conflict, don't (just) backtrack
- Learn new clause to prevent same conflict in future

Major breakthrough

- J. P. Marques-Silva and K. A. Sakallah, "GRASP - A New Search Algorithm for Satisfiability," Proc. ICCAD 1996.
- R. J. Bayardo Jr. and R. C. Schrag "Using CSP look-back techniques to solve real world SAT instances." Proc. AAAI, 1997

Conflict Driven Learning

- Resolve on conflict variable to learn new conflict clause
- Add clause to set of clauses
- Backjump using conflict clause

Conflict Driven Learning

Revisit Example With CDL

- Learn, Add, Backjump
- Vastly faster search

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+b^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)

Backtracking Only (01/26)

$$
\begin{array}{ccccc}
\neg x_{1} & \vee & x_{2} & \vee & x_{3} \tag{1}\\
x_{1} & \vee & x_{3} & \vee & x_{4} \\
x_{1} & \vee & x_{3} & \vee & \neg x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & \neg x_{4} \\
\neg x_{2} & \vee & \neg x_{3} & \vee & x_{4} \\
\neg x_{1} & \vee & x_{2} & \vee & \neg x_{3} \\
\neg x_{1} & \vee & \neg x_{2} & \vee & x_{3}
\end{array}
$$

Backtracking Only $(02 / 26)$

\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
	x_{1}	\vee	x_{3}	\vee	x_{4}
x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$	
x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}	
	x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
	$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
\checkmark	$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

Backtracking Only (03/26)

$$
\begin{array}{cccccc}
\checkmark & \neg x_{1} & \vee & x_{2} & \vee & x_{3} \\
x_{1} & \vee & x_{3} & \vee & x_{4} \\
x_{1} & \vee & x_{3} & \vee & \neg x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & \neg x_{4} \\
\checkmark & \neg x_{2} & \vee & \neg x_{3} & \vee & x_{4} \\
\checkmark & \neg x_{1} & \vee & x_{2} & \vee & \neg x_{3} \\
\checkmark & \neg x_{1} & \vee & \neg x_{2} & \vee & x_{3}
\end{array}
$$

Backtracking Only (04/26)

Backtracking Only (05/26)

©

Backtracking Only (06/26)

©

Backtracking Only (07/26)

©

Backtracking Only (08/26)

Backtracking Only (09/26)

\checkmark| \checkmark | $\neg x_{1}$ | \vee | x_{2} | \vee | x_{3} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | \vee | x_{3} | \vee | x_{4} |
| | x_{1} | \vee | x_{3} | \vee | $\neg x_{4}$ |
| | x_{1} | \vee | $\neg x_{3}$ | \vee | x_{4} |
| | x_{1} | \vee | $\neg x_{3}$ | \vee | $\neg x_{4}$ |
| | $\neg x_{2}$ | \vee | $\neg x_{3}$ | \vee | x_{4} |
| \checkmark | $\neg x_{1}$ | \vee | x_{2} | \vee | $\neg x_{3}$ |
| \checkmark | $\neg x_{1}$ | \vee | $\neg x_{2}$ | \vee | x_{3} |

; ;

Backtracking Only (10/26)

$$
\checkmark \begin{array}{ccccc}
\neg x_{1} & \vee & x_{2} & \vee & x_{3} \\
x_{1} & \vee & x_{3} & \vee & x_{4} \\
x_{1} & \vee & x_{3} & \vee & \neg x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & \neg x_{4} \\
& \neg x_{2} & \vee & \neg x_{3} & \vee \\
\checkmark & x_{4} \\
\checkmark & \neg x_{1} & \vee & x_{2} & \vee \\
\checkmark & \neg x_{3} \\
\checkmark & \neg x_{1} & \vee & \neg x_{2} & \vee \\
& x_{3}
\end{array}
$$

∞

Backtracking Only (11/26)

$$
\begin{array}{cccccc}
\checkmark & \neg x_{1} & \vee & x_{2} & \vee & x_{3} \\
& x_{1} & \vee & x_{3} & \vee & x_{4} \\
& x_{1} & \vee & x_{3} & \vee & \neg x_{4} \\
\checkmark & x_{1} & \vee & \neg x_{3} & \vee & x_{4} \\
\checkmark & x_{1} & \vee & \neg x_{3} & \vee & \neg x_{4} \\
\checkmark & \neg x_{2} & \vee & \neg x_{3} & \vee & x_{4} \\
\checkmark & \neg x_{1} & \vee & x_{2} & \vee & \neg x_{3} \\
\checkmark & \neg x_{1} & \vee & \neg x_{2} & \vee & x_{3}
\end{array}
$$

∞

Backtracking Only (12/26)

∞ -

Backtracking Only (13/26)

\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
	x_{1}	\vee	x_{3}	\vee	x_{4}
	x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$
	x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}
	x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
	$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
\checkmark	$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

∞ -

Backtracking Only (14/26)

\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
\checkmark	x_{1}	\vee	x_{3}	\vee	x_{4}
\checkmark	x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$
	x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}
	x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
	$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
\checkmark	$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

∞ -

Backtracking Only (15/26)

Backtracking Only (16/26)

$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
x_{1}	\vee	x_{3}	\vee	x_{4}
x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$
x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}
x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

\cdots -

Backtracking Only (17/26)

Backtracking Only (18/26)

	$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
\checkmark	x_{1}	\vee	x_{3}	\vee	x_{4}
\checkmark	x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$
\checkmark	x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}
\checkmark	x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
\checkmark	$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
	$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
\checkmark	$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

\cdots -

Backtracking Only (19/26)

Backtracking Only (20/26)

Backtracking Only (21/26)

Backtracking Only (22/26)

Backtracking Only (23/26)

Backtracking Only (24/26)

Backtracking Only (25/26)

Backtracking Only (26/26)

Boolean Constraint Propagation $(01 / 23)$

$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
x_{1}	\vee	x_{3}	\vee	x_{4}
x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$
x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}
x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

Boolean Constraint Propagation $(02 / 23)$

\checkmark	$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
		x_{3}	\vee	x_{4}	
		x_{3}	\vee	$\neg x_{4}$	
			$\neg x_{3}$	\vee	x_{4}
		$\neg x_{3}$	\vee	$\neg x_{4}$	
		$\neg x_{2}$	\vee	$\neg x_{3}$	\vee

Boolean Constraint Propagation $(03 / 23)$

Boolean Constraint Propagation $(04 / 23)$

Boolean Constraint Propagation $(05 / 23)$

©

Boolean Constraint Propagation $(06 / 23)$

©

Boolean Constraint Propagation $(07 / 23)$

©

Boolean Constraint Propagation $(08 / 23)$

; ;

Boolean Constraint Propagation $(09 / 23)$

; ;

Boolean Constraint Propagation (10/23)

; $;$

Boolean Constraint Propagation $(11 / 23)$

; $;$

Boolean Constraint Propagation $(12 / 23)$

Boolean Constraint Propagation $(13 / 23)$

$$
\begin{array}{llllll}
\checkmark & \neg x_{1} & \vee & x_{2} & \vee & x_{3} \\
& & x_{3} & \vee & x_{4} \\
& & x_{3} & \vee & \neg x_{4} \\
& & \neg x_{3} & \vee & x_{4} \\
& & \neg x_{3} & \vee & \neg x_{4} \\
& & \neg x_{3} & \vee & x_{4} \\
& & & & & \\
& & x_{1} & \vee & & x_{2} \\
\checkmark & \neg x_{3} \\
\checkmark & \neg x_{1} & \vee & \neg x_{2} & \vee & x_{3}
\end{array}
$$

; ; ;

Boolean Constraint Propagation $(14 / 23)$

Boolean Constraint Propagation $(15 / 23)$

Boolean Constraint Propagation $(16 / 23)$

$$
\begin{array}{ccccc}
\neg x_{1} & \vee & x_{2} & \vee & x_{3} \\
x_{1} & \vee & x_{3} & \vee & x_{4} \\
x_{1} & \vee & x_{3} & \vee & \neg x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & \neg x_{4} \\
\neg x_{2} & \vee & \neg x_{3} & \vee & x_{4} \\
\neg x_{1} & \vee & x_{2} & \vee & \neg x_{3} \\
\neg x_{1} & \vee & \neg x_{2} & \vee & x_{3}
\end{array}
$$

\cdots -

Boolean Constraint Propagation $(17 / 23)$

Boolean Constraint Propagation $(18 / 23)$

Boolean Constraint Propagation $(19 / 23)$

Boolean Constraint Propagation $(20 / 23)$

Boolean Constraint Propagation $(21 / 23)$

Boolean Constraint Propagation $(22 / 23)$

Boolean Constraint Propagation $(23 / 23)$

Conflict Driven Learning (01/21)

$\neg x_{1}$	\vee	x_{2}	\vee	x_{3}
x_{1}	\vee	x_{3}	\vee	x_{4}
x_{1}	\vee	x_{3}	\vee	$\neg x_{4}$
x_{1}	\vee	$\neg x_{3}$	\vee	x_{4}
x_{1}	\vee	$\neg x_{3}$	\vee	$\neg x_{4}$
$\neg x_{2}$	\vee	$\neg x_{3}$	\vee	x_{4}
$\neg x_{1}$	\vee	x_{2}	\vee	$\neg x_{3}$
$\neg x_{1}$	\vee	$\neg x_{2}$	\vee	x_{3}

Conflict Driven Learning (02/21)

$$
\begin{array}{ccccc}
\checkmark x_{1} & \vee & x_{2} & \vee & x_{3} \\
x_{1} & \vee & x_{3} & \vee & x_{4} \\
x_{1} & \vee & x_{3} & \vee & \neg x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & x_{4} \\
x_{1} & \vee & \neg x_{3} & \vee & \neg x_{4} \\
\neg x_{2} & \vee & \neg x_{3} & \vee & x_{4} \\
\checkmark & \neg x_{1} & \vee & x_{2} & \vee \\
\checkmark & \neg x_{3} \\
\checkmark & \neg x_{1} & \vee & \neg x_{2} & \vee \\
& x_{3}
\end{array}
$$

Conflict Driven Learning (03/21)

Conflict Driven Learning (04/21)

Conflict Driven Learning (05/21)

Conflict Driven Learning (06/21)

Conflict Driven Learning (07/21)

Conflict Driven Learning (08/21)

Conflict Driven Learning (09/21)

Conflict Driven Learning (10/21)

Conflict Driven Learning (11/21)

Conflict Driven Learning (12/21)

Conflict Driven Learning (13/21)

Conflict Driven Learning (14/21)

Conflict Driven Learning (15/21)

Conflict Driven Learning (16/21)

Conflict Driven Learning (17/21)

Conflict Driven Learning (18/21)

Conflict Driven Learning (19/21)

Conflict Driven Learning (20/21)

Conflict Driven Learning (21/21)

More Details about SAT Solvers

Lectures By Lintao Zhang (ZChaff)

- 1
- 2

Next Time: SMT = SAT + Theories

1. Propositional Logic
2. Combining Theories

- Equality + Uninterpreted Functions
- Difference-Bounded Arithmetic

3. Combining SAT + Theories
