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Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

Decision Problem: Satisfaction

I Does eval s p return True for some assignment s ?

I “Can we assign the variables to make the formula true” ?



Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

Why?

I Representative
I Have “efficient” algorithms



Decision Procedures

We will look very closely at the following

1. Propositional Logic

2. Theory of Equality

3. Theory of Uninterpreted Functions

4. Theory of Difference-Bounded Arithmetic

Plan

I First in isolation
I Then in combination
I Very slick SW-Eng, based on logic



Decision Procedures: Propositional Logic

Popularly called SAT Solvers



Decision Procedures: Propositional Logic

Basics

I Propositional Logic 101
I Conjunctive Normal Form
I Resolution

Algorithms

I Resolution
I Backtracking Search
I Boolean Constraint Propagation
I Conflict Driven Learning & Backjumping
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Propositional Logic 101

Propositional Variables

data PVar

Propositional Formulas

data Formula = Prop PVar

| Not Formula

| Formula ‘And‘ Formula

| Formula ‘Or‘ Formula
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Conjunctive Normal Form

Restricted representation of Formula

Literals: Variables or Negated Variables

data Literal = Pos PVar | Neg PVar

Clauses: Disjunctions (Or) of Literals

data Clauses = [Literal]

CNF Formulas: Conjunctions (And) of Clauses

data CnfFormula = [Clauses]



Conjunctive Normal Form: Example

Consider a Formula

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ ¬x3

Represented as a Formula

(Prop 1 ‘Or‘ Prop 2)

‘And‘ (Not (Prop 1) ‘Or‘ Prop 3)

‘And‘ (Not (Prop 3) )

Represented as a CnfFormula

[ [Pos 1 , Pos 2]

, [Neg 1 , Pos 3]

, [Neg 3 ] ]



Conjunctive Normal Form Conversion

Theorem There is a poly-time function

toCNF :: Formula -> CnfFormula

toCNF = error "Exercise For The Reader"

Such that any f is satisfiable iff (toCNF f) is satisfiable.

I toCNF adds new variables for sub-formulas

I otherwise, an exponential blowup in CnfFormula size



Conjunctive Normal Form Conversion

Theorem There is a poly-time function

toCNF :: Formula -> CnfFormula

toCNF = error "Exercise For The Reader"

Such that any f is satisfiable iff (toCNF f) is satisfiable.

Henceforth Only consider formulas in Conjunctive Normal Form
Formulas
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Properties of CNF

Pure Variable

I One which appears only +ve or −ve in a CnfFormula

Empty Clause

I If a CnfFormula has some Clause without Literals
I Then the CnfFormula is UNSAT

Trivial Formula

I If a CnfFormula has no Clause

I Or every variable is pure
I Then the CnfFormula is SAT



Goal

Determine satisfaction by reducing CnfFormula to one of

I Empty Clause (ie UNSAT), or

I Trivial Formula (ie SAT).



Reducing Formulas By Resolution

(“Reduce” is, perhaps, not the best word. . . )

Resolution: For any A,B and variable x , the formula

(A ∨ x) ∧ (B ∨ ¬x)

is equivalent to the formula

(A ∨ B)

I The variable x is called a pivot variable



General Resolution

Resolution: For any Ai ,Bj and variable x , the formula

∧
i

(Ai ∨ x) ∧
∧
j

(Bj ∨ ¬x)

is equivalent to the formula

∧
i ,j

(Ai ∨ Bj)

I Pivot variable x is eliminated by resolution



Davis-Putnam Algorithm: Example 1

Input Formula

I (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x5) ∧ (¬x2 ∨ x4))

Pivot on x2

I (x1 ∨ x3 ∨ x4) ∧ (¬x3 ∨ x5 ∨ x4)

Pivot on x3

I (x1 ∨ x4 ∨ x5)

All variables are pure . . . hence, SAT



Davis-Putnam Algorithm: Example 2

Input Formula

I (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Pivot on x2

I (x1) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Pivot on x3

I (x1) ∧ (¬x1)

Pivot on x1

I ()

Empty clause . . . hence, UNSAT



Davis-Putnam Algorithm

Algorithm

1. Select pivot and perform resolution

2. Repeat until SAT or UNSAT

Issues?

I Space blowup (formula size blows up on resolution)
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Decision Tree: Describes Space of All Assignments

Figure: SAT Decision Tree (Courtesy: Lintao Zhang)



Decision Tree: SAT via Depth First Search

Figure: DFS On Decision Tree (Courtesy: Lintao Zhang)



Backtracking Search

Don’t build whole tree, but lazily search solutions

I Choose a variable x , set to True

I Remove constraints where x appears
I Recurse on remaining constraints
I Backtrack if a contradiction is found



Backtracking Search (1/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (2/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (3/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (4/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (5/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (6/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (7/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (8/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (9/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (10/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (11/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (12/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (13/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (14/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (15/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (16/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (17/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (18/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (19/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (20/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search (21/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)



Backtracking Search

Don’t build whole tree, but lazily search solutions

I Choose a variable x , set to True

I Remove constraints where x appears
I Recurse on remaining constraints
I Backtrack if a contradiction is found

(whew!)

I DFS avoids space blowup (only need to save stack) . . .
I . . . but not time (natch)
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Boolean Constraint Propagation

Often, we don’t really have a choice. . .



Boolean Constraint Propagation

Unit Clause Rule

I If an (unsatisfied) Clause has one unassigned Literal

I Then that Literal must be True in any SAT assignment

Example

I Formula (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3)

I Assignment x1 = T , x2 = T

I The last clause is a unit clause

I Any SAT assigment must set ¬x3 = T (i.e. x3 = F )



Boolean Constraint Propagation

Unit Clause Rule

I If an (unsatisfied) Clause has one unassigned Literal

I Then that Literal must be True in any SAT assignment

BCP or Unit Propagation

I Repeat applying unit clause rule
I Until no unit clause remains.



Boolean Constraint Propagation: Example

Revisit Example With BCP

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)



Boolean Constraint Propagation

DPLL = Backtracking Search + BCP

I Backtracking: Avoids space blowup

I BCP: Avoid doing obvious work

I Still repeatedly explore all choices (e.g. whole left subtree)

Wanted

I Means to learn to repeat dead ends

I Key to scaling to practical problems
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Conflict Driven Learning

Key Insight

I On finding conflict, don’t (just) backtrack

I Learn new clause to prevent same conflict in future

Major breakthrough

I J. P. Marques-Silva and K. A. Sakallah, “GRASP – A New
Search Algorithm for Satisfiability,” Proc. ICCAD 1996.

I R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back
techniques to solve real world SAT instances.” Proc. AAAI,
1997



Conflict Driven Learning

I Resolve on conflict variable to learn new conflict clause

I Add clause to set of clauses

I Backjump using conflict clause



Conflict Driven Learning
Revisit Example With CDL

I Learn, Add, Backjump
I Vastly faster search

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)



Backtracking Only (01/26)

Figure: Backtracking Only



Backtracking Only (02/26)

Figure: Backtracking Only



Backtracking Only (03/26)

Figure: Backtracking Only



Backtracking Only (04/26)

Figure: Backtracking Only



Backtracking Only (05/26)
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Backtracking Only (06/26)
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Backtracking Only (07/26)
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Backtracking Only (08/26)
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Backtracking Only (09/26)

Figure: Backtracking Only



Backtracking Only (10/26)

Figure: Backtracking Only



Backtracking Only (11/26)

Figure: Backtracking Only



Backtracking Only (12/26)

Figure: Backtracking Only



Backtracking Only (13/26)

Figure: Backtracking Only



Backtracking Only (14/26)

Figure: Backtracking Only



Backtracking Only (15/26)

Figure: Backtracking Only



Backtracking Only (16/26)

Figure: Backtracking Only



Backtracking Only (17/26)

Figure: Backtracking Only



Backtracking Only (18/26)

Figure: Backtracking Only



Backtracking Only (19/26)

Figure: Backtracking Only



Backtracking Only (20/26)

Figure: Backtracking Only



Backtracking Only (21/26)

Figure: Backtracking Only



Backtracking Only (22/26)

Figure: Backtracking Only



Backtracking Only (23/26)

Figure: Backtracking Only



Backtracking Only (24/26)

Figure: Backtracking Only



Backtracking Only (25/26)

Figure: Backtracking Only



Backtracking Only (26/26)

Figure: Backtracking Only



Boolean Constraint Propagation (01/23)

Figure: BCP



Boolean Constraint Propagation (02/23)

Figure: BCP



Boolean Constraint Propagation (03/23)

Figure: BCP



Boolean Constraint Propagation (04/23)

Figure: BCP



Boolean Constraint Propagation (05/23)

Figure: BCP



Boolean Constraint Propagation (06/23)

Figure: BCP



Boolean Constraint Propagation (07/23)

Figure: BCP



Boolean Constraint Propagation (08/23)

Figure: BCP



Boolean Constraint Propagation (09/23)

Figure: BCP



Boolean Constraint Propagation (10/23)

Figure: BCP



Boolean Constraint Propagation (11/23)

Figure: BCP



Boolean Constraint Propagation (12/23)

Figure: BCP



Boolean Constraint Propagation (13/23)

Figure: BCP



Boolean Constraint Propagation (14/23)

Figure: BCP



Boolean Constraint Propagation (15/23)

Figure: BCP



Boolean Constraint Propagation (16/23)

Figure: BCP



Boolean Constraint Propagation (17/23)

Figure: BCP



Boolean Constraint Propagation (18/23)

Figure: BCP



Boolean Constraint Propagation (19/23)

Figure: BCP



Boolean Constraint Propagation (20/23)

Figure: BCP



Boolean Constraint Propagation (21/23)

Figure: BCP



Boolean Constraint Propagation (22/23)

Figure: BCP



Boolean Constraint Propagation (23/23)

Figure: BCP



Conflict Driven Learning (01/21)

Figure: CDL



Conflict Driven Learning (02/21)

Figure: CDL



Conflict Driven Learning (03/21)

Figure: CDL



Conflict Driven Learning (04/21)

Figure: CDL



Conflict Driven Learning (05/21)

Figure: CDL



Conflict Driven Learning (06/21)

Figure: CDL



Conflict Driven Learning (07/21)

Figure: CDL



Conflict Driven Learning (08/21)

Figure: CDL



Conflict Driven Learning (09/21)

Figure: CDL



Conflict Driven Learning (10/21)

Figure: CDL



Conflict Driven Learning (11/21)

Figure: CDL



Conflict Driven Learning (12/21)

Figure: CDL



Conflict Driven Learning (13/21)

Figure: CDL



Conflict Driven Learning (14/21)

Figure: CDL



Conflict Driven Learning (15/21)

Figure: CDL



Conflict Driven Learning (16/21)

Figure: CDL



Conflict Driven Learning (17/21)

Figure: CDL



Conflict Driven Learning (18/21)

Figure: CDL



Conflict Driven Learning (19/21)

Figure: CDL



Conflict Driven Learning (20/21)

Figure: CDL



Conflict Driven Learning (21/21)

Figure: CDL



More Details about SAT Solvers

Lectures By Lintao Zhang (ZChaff)

I 1
I 2

http://research.microsoft.com/en-us/people/lintaoz/sat_course1.pdf
http://research.microsoft.com/en-us/people/lintaoz/sat_course2.pdf


Next Time: SMT = SAT + Theories

1. Propositional Logic

2. Combining Theories

I Equality + Uninterpreted Functions
I Difference-Bounded Arithmetic

3. Combining SAT + Theories


