SAT Solvers

Ranjit Jhala, UC San Diego

April 9, 2013

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Decision Procedures

We will look very closely at the following

- 1. Propositional Logic
- 2. Theory of Equality
- 3. Theory of Uninterpreted Functions
- 4. Theory of Difference-Bounded Arithmetic

Decision Problem: Satisfaction

- Does eval s p return True for some assignment s ?
- "Can we assign the variables to make the formula true" ?

Decision Procedures

We will look very closely at the following

- 1. Propositional Logic
- 2. Theory of Equality
- 3. Theory of Uninterpreted Functions
- 4. Theory of Difference-Bounded Arithmetic

Why?

- Representative
- Have "efficient" algorithms

Decision Procedures

We will look very closely at the following

- 1. Propositional Logic
- 2. Theory of Equality
- 3. Theory of Uninterpreted Functions
- 4. Theory of Difference-Bounded Arithmetic

Plan

- First in isolation
- Then in combination
- Very slick SW-Eng, based on logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Popularly called SAT Solvers

Basics

- Propositional Logic 101
- Conjunctive Normal Form
- Resolution

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Basics

Propositional Logic 101

- Conjunctive Normal Form
- Resolution

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Propositional Logic 101

Propositional Variables

data PVar

Propositional Formulas

```
data Formula = Prop PVar
| Not Formula
| Formula 'And' Formula
| Formula 'Or' Formula
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basics

- Propositional Logic 101
- Conjunctive Normal Form
- Resolution

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Conjunctive Normal Form

Restricted representation of Formula

Literals: Variables or Negated Variables

data Literal = Pos PVar | Neg PVar

Clauses: Disjunctions (Or) of Literals

data Clauses = [Literal]

CNF Formulas: Conjunctions (And) of Clauses

data CnfFormula = [Clauses]

Conjunctive Normal Form: Example

Consider a Formula $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land \neg x_3$

Represented as a Formula

(Prop 1 'Or' Prop 2) 'And' (Not (Prop 1) 'Or' Prop 3) 'And' (Not (Prop 3))

Represented as a CnfFormula

```
[ [Pos 1 , Pos 2]
, [Neg 1 , Pos 3]
, [Neg 3 ]]
```

Conjunctive Normal Form Conversion

Theorem There is a *poly-time* function

```
toCNF :: Formula -> CnfFormula
toCNF = error "Exercise For The Reader"
```

Such that any f is satisfiable *iff* (toCNF f) is satisfiable.

- toCNF adds new variables for sub-formulas
- otherwise, an exponential blowup in CnfFormula size

Conjunctive Normal Form Conversion

Theorem There is a *poly-time* function

toCNF :: Formula -> CnfFormula
toCNF = error "Exercise For The Reader"

Such that any f is satisfiable *iff* (toCNF f) is satisfiable.

Henceforth Only consider formulas in Conjunctive Normal Form Formulas

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Properties of CNF

Pure Variable

▶ One which appears only +ve or -ve in a CnfFormula

Empty Clause

▶ If a CnfFormula has some Clause without Literals

Then the CnfFormula is UNSAT

Trivial Formula

- If a CnfFormula has no Clause
- Or every variable is pure
- Then the CnfFormula is SAT

Determine satisfaction by reducing CnfFormula to one of

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Empty Clause (ie UNSAT), or
- Trivial Formula (ie SAT).

Reducing Formulas By Resolution

("Reduce" is, perhaps, not the best word...)

Resolution: For any A, B and variable x, the formula

 $(A \lor x) \land (B \lor \neg x)$

is equivalent to the formula

 $(A \lor B)$

The variable x is called a **pivot** variable

General Resolution

Resolution: For any A_i, B_j and variable x, the formula

$$\bigwedge_i (A_i \lor x) \land \bigwedge_j (B_j \lor \neg x)$$

is equivalent to the formula

$$\bigwedge_{i,j} (A_i \vee B_j)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pivot variable x is eliminated by resolution

Davis-Putnam Algorithm: Example 1

Input Formula

$$\blacktriangleright (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \neg x_3 \lor x_5) \land (\neg x_2 \lor x_4))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Pivot on x_2

$$\blacktriangleright (x_1 \lor x_3 \lor x_4) \land (\neg x_3 \lor x_5 \lor x_4)$$

Pivot on x₃

$$\blacktriangleright (x_1 \lor x_4 \lor x_5)$$

All variables are *pure* ... hence, **SAT**

Davis-Putnam Algorithm: Example 2

Input Formula

$$\blacktriangleright (x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pivot on x_2

$$\blacktriangleright (x_1) \land (\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Pivot on x_3

$$\blacktriangleright (x_1) \land (\neg x_1)$$

Pivot on x_1

Empty clause ... hence, **UNSAT**

Davis-Putnam Algorithm

Algorithm

- 1. Select **pivot** and perform **resolution**
- 2. Repeat until SAT or UNSAT

Issues?

Space blowup (formula size blows up on resolution)

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Decision Tree: Describes Space of All Assignments

Figure: SAT Decision Tree (Courtesy: Lintao Zhang)

Decision Tree: SAT via Depth First Search

Figure: DFS On Decision Tree (Courtesy: Lintao Zhang)

Don't build whole tree, but lazily search solutions

- Choose a variable x, set to True
- Remove constraints where x appears
- Recurse on remaining constraints
- Backtrack if a contradiction is found

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Backtracking Search (1/21)

 $\begin{array}{l} (a'+b+c)\\ (a+c+d)\\ (a+c+d')\\ (a+c'+d)\\ (a+c'+d')\\ (b'+c'+d)\\ (a'+b+c')\\ (a'+b+c')\\ (a'+b'+c) \end{array}$

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (2/21)

(a' + b + c) (a + c + d) (a + c + d') (a + c' + d) (a + c' + d') (b' + c' + d) (a' + b + c') (a' + b' + c)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (3/21)

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (4/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (5/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

1

Backtracking Search (6/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (7/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (8/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Backtracking Search (9/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

н

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Backtracking Search (10/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

1

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Backtracking Search (11/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (12/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

.

Backtracking Search (13/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (14/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (15/21)

.

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (16/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (17/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (18/21)

1

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (19/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (20/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

Backtracking Search (21/21)

Figure: Basic DLL (Courtesy: Lintao Zhang)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Backtracking Search

Don't build whole tree, but lazily search solutions

- Choose a variable x, set to True
- Remove constraints where x appears
- Recurse on remaining constraints
- Backtrack if a contradiction is found

(whew!)

DFS avoids space blowup (only need to save stack)

... but not time (natch)

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Often, we don't really have a choice...

(ロ)、(型)、(E)、(E)、 E) の(の)

Unit Clause Rule

- ▶ If an (unsatisfied) Clause has one unassigned Literal
- Then that Literal must be True in any SAT assignment

Example

- Formula $(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3)$
- Assignment $x_1 = T, x_2 = T$
- The last clause is a unit clause
- Any SAT assigment **must** set $\neg x_3 = T$ (i.e. $x_3 = F$)

Unit Clause Rule

- ▶ If an (unsatisfied) Clause has **one** unassigned Literal
- ▶ Then that Literal must be True in any SAT assignment

BCP or Unit Propagation

- Repeat applying unit clause rule
- Until no unit clause remains.

Boolean Constraint Propagation: Example

Revisit Example With BCP

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)

DPLL = Backtracking Search + BCP

- Backtracking: Avoids space blowup
- BCP: Avoid doing obvious work
- Still repeatedly explore all choices (e.g. whole left subtree)

Wanted

- Means to *learn* to repeat *dead ends*
- Key to scaling to practical problems

Decision Procedures: Propositional Logic

Basics

- Propositional Logic 101
- Conjunctive Normal Form

Algorithms

- Resolution
- Backtracking Search
- Boolean Constraint Propagation
- Conflict Driven Learning & Backjumping

Conflict Driven Learning

Key Insight

- On finding conflict, don't (just) backtrack
- Learn new clause to prevent same conflict in future

Major breakthrough

- ► J. P. Marques-Silva and K. A. Sakallah, "GRASP A New Search Algorithm for Satisfiability," Proc. ICCAD 1996.
- R. J. Bayardo Jr. and R. C. Schrag "Using CSP look-back techniques to solve real world SAT instances." Proc. AAAI, 1997

Conflict Driven Learning

Resolve on conflict variable to learn new conflict clause

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Add clause to set of clauses
- Backjump using conflict clause

Conflict Driven Learning Revisit Example With CDL

- Learn, Add, Backjump
- Vastly faster search

Figure: Boolean Constraint Propagation (Courtesy: Lintao Zhang)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Backtracking Only (01/26)

NURNERNER E 990

Backtracking Only (02/26)

 x_1 F

NURNERNER E 990

Backtracking Only (03/26)

NURNERNER E 990

Backtracking Only (04/26)

NURNERNER E 990

Backtracking Only (05/26)

√	$\neg x_1$	V	x_2	V	x_3	
	x_1	V	x_3	V	x_4	F
	x_1	V	x_3	V	$\neg x_4$	
\checkmark	x_1	V	$\neg x_3$	V	x_4	
\checkmark	x_1	V	$\neg x_3$	V	$\neg x_4$	F
\checkmark	$\neg x_2$	V	$\neg x_3$	V	x_4	
\checkmark	$\neg x_1$	V	x_2	V	$\neg x_3$	
\checkmark	$\neg x_1$	V	$\neg x_2$	V	x_3	
						F (x_4)
						\odot

Backtracking Only (06/26)

NURSURA SEASER E

Backtracking Only (07/26)

NURSURA SEASER E

Backtracking Only (08/26)

\checkmark	$\neg x_1$	V	x_2	V	x_3											
\checkmark	x_1	V	x_3	V	x_4											
\checkmark	x_1	V	x_3	V	$\neg x_4$	_	_	_	_	. ((x_2)	(x_2)	(x_2)	(x_2)	(x_2)
	x_1	V	$\neg x_3$	V	x_4											
	x_1	V	$\neg x_3$	V	$\neg x_4$				F	F	F	F	F	F	F	F
\checkmark	$\neg x_2$	V	$\neg x_3$	V	x_4											
\checkmark	$\neg x_1$	V	x_2	V	$\neg x_3$		G	(x_3)	(x_2)							
\checkmark	$\neg x_1$	V	$\neg x_2$	V	x_3			ý,	\bigvee			$\bigcup_{n=3}^{\infty}$			$\bigcup_{n=3}^{\infty}$	
							F	$_{\rm F}/$	$_{r}/\lambda_{T}$	$_{\rm F}/\lambda_{\rm T}$	$_{r}/\lambda_{T}$	$_{r}/ \setminus_{T}$	$_{\rm F}/\lambda_{\rm T}$	$_{r}/\lambda_{T}$	$_{r}/ \setminus_{T}$	$_{\rm F}/\lambda_{\rm T}$
							· /	· · / ·	I	1/1	r/χ				r / χ	
						\sim	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}
						(x.	$\begin{pmatrix} x_4 \end{pmatrix}$	$\begin{pmatrix} x_4 \end{pmatrix}$ ($\begin{pmatrix} x_4 \end{pmatrix} \begin{pmatrix} x_4 \end{pmatrix}$							
						\sim	\bigcirc	\bigcirc	\bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc	\bigcirc \bigcirc
						\sim	\sim		\sim							
						(::	(::)	(;;)	(`;;) (`;;	$(\ddot{})$ $(\ddot{})$						
						\sim	\sim	\bigcirc	\cup	\circ \circ						

 x_1

F

Backtracking Only (09/26)

NURSURA SEASER E

Backtracking Only (10/26)

NURNERNERNER EI

Backtracking Only (11/26)

NURSURA SEASER E

Backtracking Only (12/26)

\checkmark	$\neg x_1$	V	x_2	V	x_3			- /
	x_1	V	x_3	V	x_4]		F
	x_1	\vee	x_3	V	$\neg x_4$		(a	
\checkmark	x_1	V	$\neg x_3$	V	x_4			2
\checkmark	x_1	V	$\neg x_3$	\vee	$\neg x_4$		F	\mathbf{n}
\checkmark	$\neg x_2$	V	$\neg x_3$	V	x_4			\backslash
\checkmark	$\neg x_1$	V	x_2	V	$\neg x_3$	G	r3	(x_3)
\checkmark	$\neg x_1$	V	$\neg x_2$	V	x_3	ζ	2	\bigcirc
						F	Λ_T	$_{F}$
						./	ľ	1
						\mathcal{A}	X	\mathcal{A}
						$\begin{pmatrix} x_4 \end{pmatrix}$	$\begin{pmatrix} x_4 \end{pmatrix}$	$\begin{pmatrix} x_4 \end{pmatrix}$
						Ŭ	Ŭ	0
						\bigcirc	\bigcirc	\bigcirc
						G	C	S
						\odot	\odot	\odot

 x_1

NURNERNERNER E 990

Backtracking Only (13/26)

NURNERNERNER EI

Backtracking Only (14/26)

NURSURA SEASER E

Backtracking Only (15/26)

 $\neg x_1$ x_1 x_1 x_1 x_1 $\overline{\neg x_2}$

 $\neg x_1$

$\lor x_2 \lor x_3$				
$\lor x_3 \lor x_4$			F	
$ \begin{array}{c c} \lor & x_3 & \lor & \neg x_4 \\ \hline \lor & \neg x_3 & \lor & x_4 \end{array} $				
$\bigvee \neg x_3 \lor \neg x_4$ $\lor \neg x_3 \lor x_4$		F		
$\lor x_2 \lor \neg x_3$	(x	3	\sum_{x}	3
$\lor \neg x_2 \lor x_3$	7	イ	\mathbf{Y}	イ
	F	\backslash^T	F	T
	$\begin{pmatrix} x_4 \end{pmatrix}$	x_4		
	\sim	\sim	\sim	\sim
	(::)	(::)	(::)	(::)

 x_1

Backtracking Only (16/26)

NURSURA SEASER E

Backtracking Only (17/26)

Backtracking Only (18/26)

Backtracking Only (19/26)

Backtracking Only (20/26)

Backtracking Only (21/26)

Backtracking Only (22/26)

Backtracking Only (23/26)

 x_1 $\neg x_1 \lor x_2 \lor x_3$ $\lor x_3 \lor x_4$ x_1 $x_1 \lor x_3 \lor \neg x_4$ x_2 x_2 $x_1 \lor \neg x_3 \lor x_4$ $x_1 \lor \neg x_3 \lor \neg x_4$ $\neg x_2 \lor \neg x_3 \lor x_4$ $\neg x_1 \lor x_2 \lor \neg x_3$ x_3 x_3 x_3 x_3 $\neg x_1 \lor \neg x_2 \lor x_3$ \mathbb{C} x_4 x_4 x_4 x_4 x_4 \odot (\dot{z}) (:)(:)....

NURNERNER E 990

Backtracking Only (24/26)

Backtracking Only (25/26)

÷

Backtracking Only (26/26)

÷

Boolean Constraint Propagation (01/23)

NURNERNERNER E 990

Boolean Constraint Propagation (02/23)

NURNERNER E 990

Boolean Constraint Propagation (03/23)

Boolean Constraint Propagation (04/23)

Boolean Constraint Propagation (05/23)

Boolean Constraint Propagation (06/23)

nurnurrierier e 1990

Boolean Constraint Propagation (07/23)

= 990

Boolean Constraint Propagation (08/23)

Boolean Constraint Propagation (09/23)

NURNERNERNER E 990

Boolean Constraint Propagation (10/23)

NURNURRERNER E 1990

Boolean Constraint Propagation (11/23)

 $\neg x_1 \lor x_2 \lor x_3$ x_4 $\neg x_A$ $\neg x_3 \lor x_4$ $\neg x_3 \lor \neg x_4$ $\neg x_3 \lor x_4$ $\lor x_2 \lor \neg x_3$ x_3 x_3 $\neg x_1 \lor \neg x_2 \lor x_3$ x_4 x_4 x_4 (\dot{z}) (\dot{z})

= 990

Boolean Constraint Propagation (12/23)

Boolean Constraint Propagation (13/23)

NURNURRERNER E 1990

Boolean Constraint Propagation (14/23)

Boolean Constraint Propagation (15/23)

Boolean Constraint Propagation (16/23)

Aurauraeraer e 1990

Boolean Constraint Propagation (17/23)

NERNER E DQC

Boolean Constraint Propagation (18/23)

√

ursurrerser e 990

Boolean Constraint Propagation (19/23)

Boolean Constraint Propagation (20/23)

rourrerser e 990

Boolean Constraint Propagation (21/23)

ursurserser e 990

Boolean Constraint Propagation (22/23)

÷

Boolean Constraint Propagation (23/23)

÷

Conflict Driven Learning (01/21)

NURNERNER E 990

Conflict Driven Learning (02/21)

root

NURNERNER E 990

 $\checkmark \neg x_1 \lor \neg x_2 \lor x_3$

Conflict Driven Learning (03/21)

Conflict Driven Learning (04/21)

Conflict Driven Learning (05/21)

Conflict Driven Learning (06/21)

Conflict Driven Learning (07/21)

Conflict Driven Learning (08/21)

root

Conflict Driven Learning (09/21)

Conflict Driven Learning (10/21)

Conflict Driven Learning (11/21)

Conflict Driven Learning (12/21)

Conflict Driven Learning (13/21)

Conflict Driven Learning (14/21)

Conflict Driven Learning (15/21)

NURNERNERNER E 1990

Conflict Driven Learning (16/21)

NURNERNERNER EI

Conflict Driven Learning (17/21)

NURNERNERNER EI

Conflict Driven Learning (18/21)

Conflict Driven Learning (19/21)

Conflict Driven Learning (20/21)

Conflict Driven Learning (21/21)

 \odot

NURNERNER E 990

More Details about SAT Solvers

Lectures By Lintao Zhang (ZChaff)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ 1
- ▶ 2

Next Time: SMT = SAT + Theories

- 1. Propositional Logic
- 2. Combining Theories
 - Equality + Uninterpreted Functions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Difference-Bounded Arithmetic
- 3. Combining SAT + Theories