SMT: Satisfiability Modulo Theories

Ranjit Jhala, UC San Diego

April 9, 2013

Decision Procedures

Last Time

» Propositional Logic

Today

1. Combining SAT and Theory Solvers
2. Theory Solvers

» Theory of Equality
» Theory of Uninterpreted Functions
» Theory of Difference-Bounded Arithmetic

Combining SAT and Theory Solvers

Formula—>

A

SMT Solver

—> UNSAT

—> SAT

/

Figure: SMT Solver Architecture

Combining SAT and Theory Solvers

Goal Determine if a formula £ is Satisfiable.

data Formula

Prop PVar -
And [Formulal -=
Or [Formula] -
Not Formula -
Atom Atom -

Where theory elements are described by

data Expr

data Atom

Var TVar | Con Int

Rel Relation [Expr]

~ Prop Logic

-~ nn
~ nn

~ nn

Theory Relation

Op Operator [Expr]

Split Formula into CNF + Theory Components

CNF Formulas

Pos PVar | Neg PVar
[Literall
[Clause]

data Literal
type Clause
type CnfFormula

Split Formula into CNF + Theory Components

Theory Cube

A TheoryCube is an indexed list of Atom

data TheoryCube a = [(a, Atom)]

Theory Formula

A TheoryFormula is a TheoryCube indexed by Literal

type TheoryFormula = TheoryCube Literal

» Conjunction of assignments of each literal to theory Atom

Split Formula into CNF + Theory Components

Split SMT Formulas

An SmtFormula is a pair of CnfFormula and TheoryFormula
type SmtFormula = (CnfFormula, TheoryFormula)
Theorem There is a poly-time function

toSmt :: Formula -> SmtFormula
toSmt = error "Exercise For The Reader"

Split SmtFormula : Example

Consider the formula

» (a=bVa=c)A(b=dVvb=¢e)A(c=d)A(a# d)A(a#e)
We can split it into CNF

> (x1Vx2) A (x3Vxa)A(xs) A (x6) A (x7)
And a Theory Cube

> (XlHa:b),(XgHa:C),(X3<—>b:d),(X4Hb:e)
(xs <> c=d),(x6 <> a#d),(x; < a+#e)

Split SmtFormula : Example

Consider the formula
» (a=bVa=c)A(b=dVvb=¢e)A(c=d)A(a# d)A(a+#e)
We can split it into a CnfFormula
¢ ott, 21, 8, 41, [5], [e], [7]]
and a TheoryFormula

[(1, Rel Eq ["a", "b"1), (2, Rel Eq ["a", "c"]1)

, (3, Rel Eq ["b", "d"1), (4, Rel Eq ["b", "e"])

» (5, Rel Eq ["c", "d"])

, (6, Rel Ne ["a", "d"]), (7, Rel Ne ["a", "e"])]

Combining SAT and Theory Solvers: Architecture

CNF—>| SAT Solver -H—> UNSAT
T A

S lit SAT UNSAT
P 1 assignment block clause

Formula

Y

TCube—>| Thy Solver -—> SAT

~ J

Figure: SMT Solver Architecture

Combining SAT and Theory Solvers: Architecture

Lets see this in code

smtSolver :: Formula -> Result
smtSolver = smtLoop . toSmt

Combining SAT and Theory Solvers: Architecture

Lets see this in code

smtLoop :: SmtFormula -> Result
smtLoop (cnf, thy) =
case satSolver cnf of
UNSAT -> UNSAT
SAT s -> case theorySolver $ cube thy s of
SAT -> SAT
UNSAT ¢ -> smtLoop (c:cnf) thy

Where, the function
cube :: TheoryFormula -> [Literal] -> TheoryFormula

Returns a conjunction of atoms for the theorySolver

Combining SAT and Theory Solvers: Architecture

Lets see this in code

smtLoop :: SmtFormula -> Result
smtLoop (cnf, thy) =
case satSolver cnf of
UNSAT -> UNSAT
SAT s -> case theorySolver $ cube thy s of
SAT -> SAT
UNSAT ¢ -> smtLoop (c:cnf) thy

In UNSAT case theorySolver returns blocking clause

» Tells satSolver not to find similar assignments ever again!

smtSolver : Example
Recall formula split into CNF
> (x1 Vx2) A(x3Vxa)A(x5)A(x6) A (x7)

and Theory Cube -
(xp <>a=b),(xx+a=c),(x3+ b=d),(xa <> b=¢e)
(x5 <> c=d),(x6 <> a#d),(xsa#e)

[teration 1: SAT

> In (x1 Vx2) A (x3V xa) A(x5) A (x6) A (x7)
» Out SAT x1 A x3 A x5 A Xg A\ X7

[teration 1: SMT

> In (Xlu a= b)a (X37 b= d)7 (X57 c= d)7 (X67 a # d)7 (X77 a # e)
» QOut UNSAT (—|X1 V —x3 V —|X6)

smtSolver : Example

[teration 2: SAT

> In (x1 V x2), (33 V xa), (x5), (X6), (x7), (—x1 V —x3)
» Out SAT x3 A xg A X5 A Xg N\ X7

[teration 2: SMT

» In (x1,a=b),(xa,b=¢€),(x5,c =d),(x6,a # d),(x7,a # e€)
» Out UNSAT (—|X1 V —xg V —|X7)

smtSolver : Example

Iteration 3 : SAT
> In (x1 V x2), (x5 V xa), (x5), (x6), (x7),

(_\Xl vV —|X3), (_\Xl V —xg V _\X7)
> Out SAT x> A X3 A\ x5 A\ Xg N\ X7

[teration 3 : SMT

> In (x2,a=¢),(xa,b=¢),(x5,c =d),(x6,a # d),(x7,a # e€)
» Out UNSAT (—x2 V —x5 V —xg)

smtSolver : Example

[teration 4 : SAT

> In (x1 V x2), (33 V xa), (x5), (x6), (x7),
(=x1 V 2x3), (0x1 V oxa V 2x7), (xe Vo oixs Vi)

» Out UNSAT
» Thus smtSolver returns UNSAT

Today

1. Combining SAT and Theory Solvers
2. Theory Solvers

» Theory of Equality
» Theory of Uninterpreted Functions
» Theory of Difference-Bounded Arithmetic

Issue: How to solve formulas over different theories?

Need to Solve Formulas Over Different Theories

Input formulas F have Relation, Operator from different theories

» F=f(f(a)—f(b)) # f(c),b>a,c>b+c,c>0

» Recall here comma means conjunction

Formula contains symbols from

How to solve formulas over different theories?

Naive Splitting Approach

Consider F over Tg (e.g. EUF) and T4 (e.g. Arith)

By Theory, Split F Into Fg A Fu

» Fg which only contains symbols from Tg
» F which only contains symbols from T4

Our example,
» F=1f(f(a)—f(b)) # f(c),b>a,c>b+c,c>0
Can be split into

> Fe = f(f(a) — (b)) # f(c)

» fa=b>a,c>b+c,c>0

Naive Splitting Approach

Our example,
> F=f(f(a) - f(b)) # f(c),b=>a,c=b+c,c=>0
Can be split into

» Fe=f(f(a) — f(b)) # f(c)

» FA=b>a,c>b+c,c>0

Problem! Pesky “minus” operator (—) has crept into F¢ ...

Less Naive Splitting Approach

Problem! Pesky “minus” operator (—) has crept into Fg ...

Purify Sub-Expressions With Fresh Variables

» Replace r(f(e) with t = f(e) A r(t)
» So that each atom belongs to a single theory

Example formula F becomes

> t1=f(3),t2=f(b),t3:t1—t2
» f(t3) #f(c),b>a,c>b+c,c>0

Which splits nicely into

» Fg=t1 =f(a), ta = f(b), (t3) # f(c)
>» Fa=stz=t1 —tp,b>a,c>b+c,c>0

Less Naive Splitting Approach

Consider F over Tg (e.g. EUF) and T4 (e.g. Arith)
» Split F=Fe AFpy
Now what? Run theory solvers independently

theorySolver f =
let (fE, fA) = splitByTheory f in
case theorySolverE fE, theorySolverA fA of
(UNSAT, _) -> UNSAT
(_, UNSAT) -> UNSAT
(SAT, SAT) -> SAT

Will it work?

Less Naive Splitting Approach

Run Theory Solvers Independently

theorySolver f
let (fE, fA) = splitByTheory f in
case theorySolverE fE, theorySolverA fA of
(UNSAT, _) -> UNSAT
(_, UNSAT) -> UNSAT
(SAT, SAT) -> SAT

Will it work? Alas, no.

Satisfiability of Mixed Theories

Consider F over Tg (e.g. EUF) and T (e.g. Arith)
» Split F=Fe A Fp
The following are obvious

1. UNSAT Fg implies UNSAT Fg A Fp implies UNSAT F
2. UNSAT F, implies UNSAT Fg A Fp implies UNSAT F

But this is not true

3. SAT Fg and *SAT F, implies SAT Fg A Fp

Satisfiability of Mixed Theories

SAT Fg and SAT Fj does not imply SAT Fe A Fp

Example

» Fe =ty =f(a), tp = f(b), F(t3) # f(c)
>» Fa=t3=t1 —th,b>a,c>b+c,c>0

Individual Satisfying Assignment

> leto==a—0,b—0,c—1,f—= Ax.x
» Easy to check that o satisfies Fg and Fp
» (But not both!)

One bad assignment doesn't mean F is UNSAT. ..

Proof of Unsatisfiability of Mixed Formula Fg A Fj

Equality
f(ts) # flc) UNSAT

t = f(a) _/‘
ty = f(b)\ f(ts) = fle)
t1 = to /

Arithmetic / \
b>a

————=a=b——f(a) = f(b) ¥, =c
aEb-I—C/"azb \‘U:c
CEO}/’*
ty =t — to

Figure: Proof Of Unsatisfiability

Satisfiability of Mixed Theories

Is quite non-trivial!

» EUF: Ackermann, 1954
» Arith: Fourier, 1827
» EUF+Arith: Nelson-Oppen, POPL 1978

Real software verification queries span multiple theories

» EUF + Arith + Arrays + Bit-Vectors + ...

Good news! The Nelson - Oppen combination procedure . ..

http://books.google.com/books/about/Solvable_cases_of_the_decision_problem.html?id=YTk4AAAAMAAJ
http://en.wikipedia.org/wiki/Fourier%E2%80%93Motzkin_elimination
http://scottmcpeak.com/nelson-verification.pdf

Nelson-Oppen Framework For Combining Theory Solvers
Step 1

» Purify each atom with fresh variables
» Result each Atom belongs to one theory

Step 2

» Check Satisfiability of each theory using its solver
» Result If any solver says UNSAT then formula is UNSAT

Step 3 (Key Insight)

» Broadcast New Equalities discovered by each solver
» Repeat step 2 until no new equalities discovered

Nelson-Oppen Framework: Example

Input
» F=f(f(a)—f(b)) #f(c),b>a,c>b+c,c>0
After Step 1 (Purify)

> t1=f(3),t2=f(b),t3:t1—t2
- F(83)# F(c)b> ac > btcc>0

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on Fg, Arith on Fp)

» FE=1t =f(a),ta = f(b), f(t3) # f(c) is SAT
> fa=t3=t —th,b>a,c>b+c,c>0is SAT

After Step 3

» Arith discovers a=b
Broadcast
» FL < Fg,a=b

Repeat Step 2

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F/, Arith on Fp)

» FL =t =f(a), tn = f(b), f(t3) # f(c),a = b is SAT
> Ffa=tz =t —tp,b>a,c>b+c,c>0is SAT

After Step 3

» EUF discovers t; = t»
Broadcast and Update
> FA(—FA,tlztg

Repeat Step 2

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on Ff, Arith on F))

» FL =t =f(a), tn = f(b), f(t3) # f(c),a = b is SAT
» Fp=t3=ti—th,b>a,c>b+c,c>0,t =tpis SAT

After Step 3

» Arith discovers t3 = ¢
Broadcast and Update
> FIE/ — FlE’ t3 =c¢

Repeat Step 2

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on Ff, Arith on F))

» FL =t =f(a), to =f(b),f(t3) # f(c),a=b,t3=c
» Arith returns UNSAT
» Output UNSAT

Nelson-Oppen in Code

TODO

Nelson-Oppen Framework For Combining Theory Solvers

A Theory T is Stably Infinite

If every T-satisfiable formula has an infinite model
» Roughly, is SAT over a universe with infinitely many Values
A Theory T is Convex

If whenever F implies a; = by V ap = b

either F implies a; = by or F implies a» = by

Nelson-Oppen Framework For Combining Theory Solvers

Theorem: Nelson-Oppen Combination

Let Ty, T, be stably infinite, convex theories w/ solvers S1 and S2

1. nelsonOppen S1 S2 is a solver the combined theory T1 U To
2. nelsonOppen S1 S2 F == SAT iff F is satisfiable in T3 U T».

Convexity

The convexity requirement is the important one in practice.
Example of Non-Convex Theory
(Z,+, <) and Equality

» F=1<a<2b=1,c=2,t; =f(a),tp = f(b),t3 = f(c)
> Fimpliesstj =t Vit =t3
» F does not imply either t; =ty or t; = t3

Nelson-Oppen fails on F t; # to, t1 # t3

» Extensions: add case-splits on dis/equality ## Nelson-Oppen
Architecture

TODO Nifty Bus PIC
What is the API for each Theory Solver?

Requirements of Theory Solvers

Recall the smtLoop architecture

smtLoop :: SmtFormula -> Result
smtLoop (cnf, thy) =
case satSolver cnf of
UNSAT -> UNSAT
SAT s -> case theorySolver $ cube thy s of
SAT -> SAT
UNSAT ¢ -> smtLoop (c:cnf) thy

Requirement of theorySolver

» SAT : Each solver broadcast equalities
» UNSAT : Each solver broadcast cause of equalities
» theorySolver constructs blocking clause from causes

Building Blocking Clauses from Causes

v

Tag each input Atom

v

Tag each discovered and broadcasted equality

v

Link each discovered fact with tags of its causes

v

On UNSAT returned cause is backwards slice of tags

v

Will see this informally, but will show up in assignment. ..

Today

1. Combining SAT and Theory Solvers
2. Combining Solvers for Multiple Theories

» Theory of Equality
» Theory of Uninterpreted Functions
» Theory of Difference-Bounded Arithmetic

Solver for Theory of Equality

Recall Only need to solve list of Atom

» i.e. formulas like /\,-J- e =e A /\k’, ex £ €

Axioms for Theory of Equality

Rules defining when one expressions is equal to another.

Reflexivity: Every term e is equal to itself

Ve.e=¢

Symmetry: If e; is equal to e;, then e, is equal to e
Vei,e.lf e = e Then e = ¢
Transitivity: If e; equals e; and e, equals e3 then e; equals e;

Vei, e, e3.f e = e and e = e3 Then e; = e3

Solver for Theory of Equality

Let R be a relation on expressions.
Equivalence Closure of R

Is the smallest relation containing R that is closed under

> Reflexivity
> Symmetry
» Transitivity

By definition, closure is an equivalence relation

Solver: Compute Equivalence Closure of Input Equalities

» Compute equivalence closure of input equality atoms
» Return UNSAT if any disequal terms are in the closure
> Return SAT otherwise

Solver for Theory of Equality

Input \; e = AN\, e # e
Step 1 Build Undirected Graph

> Vertices e1, e, . ..
» Edges e — — — ¢ for each equality atom e; = ¢;

Step 2 Compute Equivalence Closure
» Add edges between e and €’ per transitivity axioms

Note: Reflex. and Symm. handled by graph representation

Output For each k,/ in disequality atoms,

> If exists edge ex — — — ¢/ in graph then return UNSAT
» Else return SAT

Solver for Theory of Equality: Example
Input formula: a=b,b=d,c=e,a#d,a £

®)
@ @

0 ©

Figure: Inital Graph: Vertices

Solver for Theory of Equality: Example
Input formula: a=b,b=d,c=e,a# d,a £

Figure: Inital Graph: Edges From Atoms

Solver for Theory of Equality: Example
Input formula: a=b,b=d,c=e,a#d,a £

Figure: Inital Graph: Equivalence Closure

Solver for Theory of Equality: Example
Input formula: a=b,b=d,c=e,a#d,a £

Figure: Inital Graph: Check Disequalities

Solver for Theory of Equality

That was a slow algorithm

» Worst case number of edges is quadratic in number of
expressions

Better approach using Union-Find

Solver for Theory of Equality: Union-Find Algorithm
Key Idea

» Build directed tree of nodes for each equivalent set
» Tree root is canonical representative of equivalent set
> i.e. nodes are equal iff they have the same root

find e

» Walks up the tree and returns the root of e

union el e2

» Updates graph with equality el == e2
» Merges equivalence sets of el and e2

union el e2 = do rl1 <- find el
r2 <- find e2
link r1 r2

Union Find : Example

Graph represents fact thata=b=c=dande=f =g.

(&
(b) (1)
@D © @© @@ O

Figure: Inital Union-Find Graph

Union-Find : Example

Graph represents fact thata=b=c=dande=f =g.

Updates graph with equality a = e using union a e

S & D ®

Figure: Find Roots of a and e

Union-Find : Example

After linking, graph represents fact that
a=b=c=d=e=f=g.

©
(b) ()
@D © @© @ ®

Figure: Union The Sets of a and e

Solver for Theory of Equality: Union-Find Algorithm

Algorithm

theorySolverEq atoms

= do

u <-

<_

return
where
egs
neqgs

forM_ egs

$

union - 1.
if u then UNSAT else SAT

[(e, e’) | (e ‘Eq° e’) <- atoms]
[(e, €’) | (e ‘Ne‘ e’) <- atoms]

checkEqual (e, e’)

=dor
r)

return $

<- find e
<_

find

Build U-F Tree
anyM mneqs checkEqual -- 2. Check Conflict

Solver for Theory of Equality: Missing Pieces

1. How to discover equalities ?
2. How to track causes 7

Figure it out in homework

Today

1. Combining SAT and Theory Solvers
2. Combining Solvers for multiple theories

» Theory of Equality
» Theory of Uninterpreted Functions
» Theory of Difference-Bounded Arithmetic

Solver for Theory of Equality + Uninterpreted Functions

Recall Only need to solve list of Atom

» i.e. formulas like /\,-J- e =e A /\k’, ex £ €

New: UIF Applications in Expressions

» An expression e can be of the form f(ey,...,ex)

» Where f is an uninterpreted function of arity k

Question: What does uninterpreted mean anyway ?

Axioms for Theory of Equality + Uninterpreted Functions

Rules defining when one expressions is equal to another.

Equivalence Axioms
> Reflexivity

> Symmetry
» Transitivity

Congruence

If function arguments are equal, then outputs are equal

Ve, ef. If Ajei=el Then f(er,...,ex) = f(eq,-..,e€k)

Solver for Theory of Equality + Uninterpreted Functions
Let R be a relation on expressions.

Congruence Closure of R

Is the smallest relation containing R that is closed under

> Reflexivity
> Symmetry
> Transitivity
» Congruence

Solver: Compute Congruence Closure of Input Equalities

» Compute congruence closure of input equality atoms
» Return UNSAT if any disequal terms are in the closure
» Return SAT otherwise

Solver for EUF: Extended Union-Find Algorithm
Step 1: Represent Expressions With DAG

» Each DAG node implicit fresh variable for sub-expression
» Shared across theory solvers

f(f(a,b),b) f
f
/\
a b

Figure: DAG Representation of Expressions

Solver for EUF: Extended Union-Find Algorithm

Step 2: Keep Parent Links to Function Symbols
f(f(a, b), b) ff
f
ﬂ
a b

Figure: Parent Links

Solver for EUF: Extended Union-Find Algorithm

Step 3: Extend union el e2 To Parents

union el e2
= do el’ <- find el
e2’ <- find e2
link el’ e2’
linkParents el’ e2’

linkParents el’ e2’
= do transferParents el’ e2’
recursiveParentUnion el’ e2’

Solver for EUF: Example
Input a = f(f(f(a))),a = f(F(f(f(f(a),x # f(a)

A

UNSAT

Q) — = — = — = —— = ——h
A e = = = =h ———=h
B e——he——he——hec——h <«——h
Q) — = — = — = —— = ——h

~

Step | Step 2 Step 3 Step 4

Figure: Congruence Closure Example

Solver for Theory of EUF: Missing Pieces

1. How to discover equalities ?
2. How to track causes 7

Figure it out in homework

Today

1. Combining SAT and Theory Solvers
2. Combining Solvers for multiple theories

» Theory of Equality
» Theory of Uninterpreted Functions
» Theory of Difference-Bounded Arithmetic

Theory of Linear Arithmetic

Operators +, —, =, <, 0,1, -1, 2, =2, ...
Semantics: as expected

The most useful in program verification after equality
Example: b>2a+1,a+b>1 b<0

vV v VY

Decision Procedure:

» Linear Programming / e.g. Simplex (Over Rationals)
> Integer Linear Programming (Over Integers)

Theory of Difference Constraints
Special case of linear arithmetic, with atoms
a—b<n

where a, b are variables, n is constant integer.

Can express many common linear constraints

Special variable z representing 0

»a=b=a—-b<0,b—a<0
»a<n=a—z<n
»a>n=z—a<-—n

> a<b=a-—-b< -1

> etc.

Solver For Difference Constraints

How to check satisfiability?

Directed Graph Based Procedure

Vertices for each variable

Edges for each constraint

Example: Atoms

» a—b<0
>» b—c< -4
» c—a<?2
» c—d< -1
Algorithm

TODO

Solver For Difference Constraints

Theorem: A set of difference constraints is satisfiable iff there is
no negative weight cycle in the graph.

» Can be solved in O(V.E) Bellman-Ford Algorithm
» V = number of vertices

» E = number of edges

Issues

1. Why does it work?
2. How to detect equalities?

3. How to track causes?

http://en.wikipedia.org/wiki/Bellman-Ford_algorithm

Today

1. Combining SAT and Theory Solvers
2. Combining Solvers for multiple theories
» Theory of Equality

» Theory of Uninterpreted Functions
» Theory of Difference-Bounded Arithmetic

3. Other Theories

Lists
Arrays
Sets
Bitvectors

vV vy vV vV

