SMT: Satisfiability Modulo Theories

Ranjit Jhala, UC San Diego

April 9, 2013
Decision Procedures

Last Time

- Propositional Logic

Today

1. **Combining** SAT and Theory Solvers
2. **Theory Solvers**
 - Theory of *Equality*
 - Theory of *Uninterpreted Functions*
 - Theory of *Difference-Bounded Arithmetic*
Combining SAT and Theory Solvers

Figure: SMT Solver Architecture
Combining SAT and Theory Solvers

Goal Determine if a formula f is *Satisfiable*.

```haskell
data Formula = Prop PVar -- ^ Prop Logic
  | And [Formula]  -- ^ ""
  | Or [Formula]   -- ^ ""
  | Not Formula    -- ^ ""
  | Atom Atom      -- ^ Theory Relation
```

Where theory elements are described by

```haskell
data Expr   = Var TVar | Con Int | Op Operator [Expr]
```

```haskell
data Atom   = Rel Relation [Expr]
```
Split Formula into CNF + Theory Components

CNF Formulas

data Literal = Pos PVar | Neg PVar

type Clause = [Literal]

type CnfFormula = [Clause]
Split Formula into CNF + Theory Components

Theory Cube

A TheoryCube is an indexed list of Atom

data TheoryCube a = [(a, Atom)]

Theory Formula

A TheoryFormula is a TheoryCube indexed by Literal

type TheoryFormula = TheoryCube Literal

- Conjunction of assignments of each literal to theory Atom
Split SMT Formulas

An SmtFormula is a pair of CnfFormula and TheoryFormula

type SmtFormula = (CnfFormula, TheoryFormula)

Theorem There is a *poly-time* function

toSmt :: Formula -> SmtFormula
toSmt = error "Exercise For The Reader"
Split SmtFormula: Example

Consider the formula

\[(a = b \lor a = c) \land (b = d \lor b = e) \land (c = d) \land (a \neq d) \land (a \neq e)\]

We can split it into **CNF**

\[(x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5) \land (x_6) \land (x_7)\]

And a **Theory Cube**

\[(x_1 \leftrightarrow a = b), (x_2 \leftrightarrow a = c), (x_3 \leftrightarrow b = d), (x_4 \leftrightarrow b = e)
(x_5 \leftrightarrow c = d), (x_6 \leftrightarrow a \neq d), (x_7 \leftrightarrow a \neq e)\]
Split SmtFormula: Example

Consider the formula

\[(a = b \lor a = c) \land (b = d \lor b = e) \land (c = d) \land (a \neq d) \land (a \neq e)\]

We can split it into a CnfFormula

([[1, 2], [3, 4], [5], [6], [7]])

and a TheoryFormula

[(1, Rel Eq ["a", "b"])), (2, Rel Eq ["a", "c"]))
, (3, Rel Eq ["b", "d"])), (4, Rel Eq ["b", "e"]))
, (5, Rel Eq ["c", "d"]))
, (6, Rel Ne ["a", "d"])), (7, Rel Ne ["a", "e"]))]
Combining SAT and Theory Solvers: Architecture

Figure: SMT Solver Architecture
Combining SAT and Theory Solvers: Architecture

Let's see this in code

```
smtSolver :: Formula -> Result
smtSolver = smtLoop . toSmt
```
Combining SAT and Theory Solvers: Architecture

Let's see this in code

```haskell
smtLoop :: SmtFormula -> Result
smtLoop (cnf, thy) =
    case satSolver cnf of
        UNSAT -> UNSAT
        SAT s -> case theorySolver $ cube thy s of
            SAT -> SAT
            UNSAT c -> smtLoop (c:cnf) thy
```

Where, the function

```haskell
cube :: TheoryFormula -> [Literal] -> TheoryFormula
```

Returns a **conjunction of atoms** for the theorySolver
Combining SAT and Theory Solvers: Architecture

Let's see this in code

```haskell
smtLoop :: SmtFormula -> Result
smtLoop (cnf, thy) =
    case satSolver cnf of
      UNSAT -> UNSAT
      SAT s -> case theorySolver $ cube thy s of
                SAT     -> SAT
                UNSAT c -> smtLoop (c:cnf) thy

In UNSAT case theorySolver returns **blocking clause**

- Tells satSolver not to find similar assignments ever again!
```
smtSolver: Example

Recall formula split into CNF

- \((x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5) \land (x_6) \land (x_7)\)

and Theory Cube -

- \((x_1 \leftrightarrow a = b), (x_2 \leftrightarrow a = c), (x_3 \leftrightarrow b = d), (x_4 \leftrightarrow b = e)\)
- \((x_5 \leftrightarrow c = d), (x_6 \leftrightarrow a \neq d), (x_7 \leftrightarrow a \neq e)\)

Iteration 1: SAT

- In \((x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5) \land (x_6) \land (x_7)\)
- Out SAT \(x_1 \land x_3 \land x_5 \land x_6 \land x_7\)

Iteration 1: SMT

- In \((x_1, a = b), (x_3, b = d), (x_5, c = d), (x_6, a \neq d), (x_7, a \neq e)\)
- Out UNSAT \((\neg x_1 \lor \neg x_3 \lor \neg x_6)\)
smtSolver : Example

Iteration 2: SAT

- **In** $(x_1 \lor x_2), (x_3 \lor x_4), (x_5), (x_6), (x_7), (\neg x_1 \lor \neg x_3)$
- **Out** SAT $x_1 \land x_4 \land x_5 \land x_6 \land x_7$

Iteration 2: SMT

- **In** $(x_1, a = b), (x_4, b = e), (x_5, c = d), (x_6, a \neq d), (x_7, a \neq e)$
- **Out** UNSAT $(\neg x_1 \lor \neg x_4 \lor \neg x_7)$
smtSolver: Example

Iteration 3: SAT

▷ In \((x_1 \lor x_2), (x_3 \lor x_4), (x_5), (x_6), (x_7),\\\quad (\neg x_1 \lor \neg x_3), (\neg x_1 \lor \neg x_4 \lor \neg x_7)\)
▷ Out SAT \(x_2 \land x_4 \land x_5 \land x_6 \land x_7\)

Iteration 3: SMT

▷ In \((x_2, a = c), (x_4, b = e), (x_5, c = d), (x_6, a \neq d), (x_7, a \neq e)\)
▷ Out UNSAT \((\neg x_2 \lor \neg x_5 \lor \neg x_6)\)
smtSolver: Example

Iteration 4: SAT

- **In** $(x_1 \lor x_2), (x_3 \lor x_4), (x_5), (x_6), (x_7), (\neg x_1 \lor \neg x_3), (\neg x_1 \lor \neg x_4 \lor \neg x_7), (\neg x_2 \lor \neg x_5 \lor \neg x_6)$

- **Out** UNSAT

- Thus smtSolver returns UNSAT
Today

1. Combining SAT and Theory Solvers
2. Theory Solvers
 - Theory of Equality
 - Theory of Uninterpreted Functions
 - Theory of Difference-Bounded Arithmetic

Issue: How to solve formulas over *different* theories?
Need to Solve Formulas Over Different Theories

Input formulas \(F \) have Relation, Operator from \textit{different} theories

- \(F \equiv f(f(a) - f(b)) \neq f(c), b \geq a, c \geq b + c, c \geq 0 \)
- Recall here \textit{comma} means \textit{conjunction}

Formula contains symbols from

- \textit{EUF} : \(f(a), f(b), =, \neq, \ldots \)
- \textit{Arith} : \(\geq, +, 0, \ldots \)

How to solve formulas over \textit{different} theories?
Naive Splitting Approach

Consider F over T_E (e.g. EUF) and T_A (e.g. Arith)

By Theory, Split F Into $F_E \land F_A$

- F_E which **only contains** symbols from T_E
- F_A which **only contains** symbols from T_A

Our example,

- $F \equiv f(f(a) - f(b)) \neq f(c), b \geq a, c \geq b + c, c \geq 0$

Can be split into

- $F_E \equiv f(f(a) - f(b)) \neq f(c)$
- $F_A \equiv b \geq a, c \geq b + c, c \geq 0$
Naive Splitting Approach

Our example,

\[F \equiv f(f(a) - f(b)) \neq f(c), b \geq a, c \geq b + c, c \geq 0 \]

Can be split into

\[F_E \equiv f(f(a) - f(b)) \neq f(c) \]
\[F_A \equiv b \geq a, c \geq b + c, c \geq 0 \]

Problem! Pesky “minus” operator (−) has crept into \(F_E \) …
Less Naive Splitting Approach

Problem! Pesky "minus" operator ($-$) has crept into F_E . . .

Purify Sub-Expressions With Fresh Variables

- Replace $r(f(e))$ with $t = f(e) \land r(t)$
- So that each atom belongs to a single theory

Example formula F becomes

- $t_1 = f(a), t_2 = f(b), t_3 = t_1 - t_2$
- $f(t3) \neq f(c), b \geq a, c \geq b + c, c \geq 0$

Which splits nicely into

- $F_E \equiv t_1 = f(a), t_2 = f(b), f(t3) \neq f(c)$
- $F_A \equiv t_3 = t_1 - t_2, b \geq a, c \geq b + c, c \geq 0$
Less Naive Splitting Approach

Consider F over T_E (e.g. EUF) and T_A (e.g. Arith)

- **Split** $F \equiv F_E \land F_A$

Now what? Run theory solvers independently

```haskell
theorySolver f =
  let (fE, fA) = splitByTheory f in
  case theorySolverE fE, theorySolverA fA of
    (UNSAT, _) -> UNSAT
    (_, UNSAT) -> UNSAT
    (SAT, SAT) -> SAT
```

Will it work?
Less Naive Splitting Approach

Run Theory Solvers Independently

theorySolver f =
 let (fE, fA) = splitByTheory f in
 case theorySolverE fE, theorySolverA fA of
 (UNSAT, _) -> UNSAT
 (_, UNSAT) -> UNSAT
 (SAT, SAT) -> SAT

Will it work? Alas, no.
Satisfiability of Mixed Theories

Consider F over T_E (e.g. EUF) and T_A (e.g. Arith)

- **Split** $F \equiv F_E \land F_A$

The following are obvious

1. $\text{UNSAT } F_E$ implies $\text{UNSAT } F_E \land F_A$ implies $\text{UNSAT } F$
2. $\text{UNSAT } F_A$ implies $\text{UNSAT } F_E \land F_A$ implies $\text{UNSAT } F$

But this is not true

3. $\text{SAT } F_E$ and *SAT F_A implies $\text{SAT } F_E \land F_A$
Satisfiability of Mixed Theories

SAT F_E and SAT F_A does not imply SAT $F_E \land F_A$

Example

- $F_E \equiv t_1 = f(a), t_2 = f(b), f(t3) \neq f(c)$
- $F_A \equiv t_3 = t_1 - t_2, b \geq a, c \geq b + c, c \geq 0$

Individual Satisfying Assignment

- Let $\sigma \equiv a \mapsto 0, b \mapsto 0, c \mapsto 1, f \mapsto \lambda x. x$
- Easy to check that σ satisfies F_E and F_A
- (But not both!)

One bad assignment doesn’t mean F is UNSAT...
Proof of Unsatisfiability of Mixed Formula $F_E \land F_A$

Equality

$f(t_3) \neq f(c)$
$t_1 = f(a)$
$t_2 = f(b)$

Arithmetic

$b \geq a$
$a \geq b + c$
$c \geq 0$
$t_3 = t_1 - t_2$

$0 = c$
$a = b$
$f(a) = f(b)$
$t_1 = t_2$

$UNSAT$

Figure: Proof Of Unsatisfiability
Satisfiability of Mixed Theories

Is quite non-trivial!

- EUF: Ackermann, 1954
- Arith: Fourier, 1827
- EUF+Arith: Nelson-Oppen, POPL 1978

Real software verification queries span multiple theories

- EUF + Arith + Arrays + Bit-Vectors + . . .

Good news! The Nelson - Oppen *combination* procedure . . .
Nelson-Oppen Framework For Combining Theory Solvers

Step 1

- **Purify** each atom with fresh variables
- **Result** each Atom belongs to one theory

Step 2

- **Check Satisfiability** of each theory using its solver
- **Result** If any solver says UNSAT then formula is UNSAT

Step 3 (Key Insight)

- **Broadcast New Equalities** discovered by each solver
- **Repeat** step 2 **until** no new equalities discovered
Nelson-Oppen Framework: Example

Input

- \(F \equiv f(f(a) - f(b)) \neq f(c), b \geq a, c \geq b + c, c \geq 0 \)

After Step 1 (Purify)

- \(t_1 = f(a), t_2 = f(b), t_3 = t_1 - t_2 \)
- \(f(t3) \neq f(c), b \geq a, c \geq b + c, c \geq 0 \)
Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F_E, Arith on F_A)

- $F_E \equiv t_1 = f(a), t_2 = f(b), f(t3) \neq f(c)$ is SAT
- $F_A \equiv t_3 = t_1 - t_2, b \geq a, c \geq b + c, c \geq 0$ is SAT

After Step 3

- Arith *discovers* $a = b$

Broadcast

- $F'_E \leftarrow F_E, a = b$

Repeat Step 2
After Step 2 (Run EUF on F'_E, Arith on F_A)

- $F'_E \equiv t_1 = f(a), t_2 = f(b), f(t3) \neq f(c), a = b$ is SAT
- $F_A \equiv t_3 = t_1 - t_2, b \geq a, c \geq b + c, c \geq 0$ is SAT

After Step 3

- EUF *discovers* $t_1 = t_2$

Broadcast and Update

- $F'_A \leftarrow F_A, t_1 = t_2$

Repeat Step 2
Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F'_E, Arith on F'_A)

- $F'_E \equiv t_1 = f(a), t_2 = f(b), f(t3) \neq f(c), a = b$ is SAT
- $F'_A \equiv t_3 = t_1 - t_2, b \geq a, c \geq b + c, c \geq 0, t_1 = t_2$ is SAT

After Step 3

- Arith discovers $t_3 = c$

Broadcast and Update

- $F''_E \leftarrow F'_E, t_3 = c$

Repeat Step 2
Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F_E'', Arith on F_A')

- $F_E' \equiv t_1 = f(a), t_2 = f(b), f(t_3) \neq f(c), a = b, t_3 = c$
- Arith returns UNSAT
- Output UNSAT
Nelson-Oppen Framework For Combining Theory Solvers

A Theory T is Stably Infinite

If every T-satisfiable formula has an infinite model

- Roughly, is SAT over a universe with infinitely many Values

A Theory T is Convex

If whenever F implies $a_1 = b_1 \lor a_2 = b_2$

either F implies $a_1 = b_1$ or F implies $a_2 = b_2$
Theorem: Nelson-Oppen Combination

Let T_1, T_2 be stably infinite, convex theories w/ solvers S_1 and S_2

1. nelsonOppen S_1 S_2 is a solver the combined theory $T_1 \cup T_2$
2. nelsonOppen S_1 S_2 F == SAT iff F is satisfiable in $T_1 \cup T_2$.
Convexity

The **convexity** requirement is the important one in practice.

Example of Non-Convex Theory

$(\mathbb{Z}, +, \leq)$ and Equality

- $F \equiv 1 \leq a \leq 2, b = 1, c = 2, t_1 = f(a), t_2 = f(b), t_3 = f(c)$
- F implies $t_1 = t_2 \lor t_1 = t_3$
- F does not imply either $t_1 = t_2$ or $t_1 = t_3$

Nelson-Oppen **fails** on $F, t_1 \neq t_2, t_1 \neq t_3$

- Extensions: add case-splits on dis/equality

TODO Nifty Bus PIC

What is the **API** for each Theory Solver?
Requirements of Theory Solvers

Recall the smtLoop architecture

\[
\text{smtLoop} :: \text{SmtFormula} \rightarrow \text{Result} \\
\text{smtLoop} \ (\text{cnf}, \ \text{thy}) = \\
\quad \text{case satSolver} \ \text{cnf} \ \text{of} \\
\quad \quad \text{UNSAT} \rightarrow \text{UNSAT} \\
\quad \quad \text{SAT} \ s \rightarrow \text{case theorySolver} \ $ \ \text{cube} \ \text{thy} \ s \ \text{of} \\
\quad \quad \quad \text{SAT} \rightarrow \text{SAT} \\
\quad \quad \quad \text{UNSAT} \ c \rightarrow \text{smtLoop} \ (\text{c}:\text{cnf}) \ \text{thy}
\]

Requirement of theorySolver

- SAT : Each solver broadcast equalities
- UNSAT : Each solver broadcast \textit{cause} of equalities
- theorySolver constructs \textit{blocking clause} from \textit{causes}
Building Blocking Clauses from Causes

- Tag each input Atom
- Tag each discovered and broadcasted equality
- Link each discovered fact with tags of its causes
- On UNSAT returned cause is backwards slice of tags
- Will see this informally, but will show up in assignment...
Today

1. Combining SAT and Theory Solvers
2. Combining Solvers for Multiple Theories
 - Theory of Equality
 - Theory of Uninterpreted Functions
 - Theory of Difference-Bounded Arithmetic
Recall Only need to solve list of Atom

- i.e. formulas like $\bigwedge_{i,j} e_i = e_j \land \bigwedge_{k,l} e_k \neq e_l$
Axioms for Theory of Equality

Rules defining when one expressions is equal to another.

Reflexivity: Every term e is equal to itself

$$\forall e. e = e$$

Symmetry: If e_1 is equal to e_2, then e_2 is equal to e_1

$$\forall e_1, e_2. \text{If } e_1 = e_2 \text{ Then } e_2 = e_1$$

Transitivity: If e_1 equals e_2 and e_2 equals e_3 then e_1 equals e_3

$$\forall e_1, e_2, e_3. \text{If } e_1 = e_2 \text{ and } e_2 = e_3 \text{ Then } e_1 = e_3$$
Solver for Theory of Equality

Let R be a relation on expressions.

Equivalence Closure of R

Is the *smallest* relation containing R that is *closed* under

- Reflexivity
- Symmetry
- Transitivity

By definition, closure is an *equivalence* relation

Solver: Compute Equivalence Closure of Input Equalities

- Compute equivalence closure of input equality atoms
- Return UNSAT if any disequal terms are in the closure
- Return SAT otherwise
Solver for Theory of Equality

Input \(\bigwedge_{i,j} e_i = e_j \land \bigwedge_{k,l} e_k \neq e_l \)

Step 1 Build Undirected Graph

- **Vertices** \(e_1, e_2, \ldots \)
- **Edges** \(e_i \rightarrow e_j \) for each equality atom \(e_i = e_j \)

Step 2 Compute Equivalence Closure

- Add edges between \(e \) and \(e' \) per *transitivity* axioms

Note: Reflex. and Symm. handled by graph representation

Output For each \(k, l \) in disequality atoms,

- If exists edge \(e_k \rightarrow e_l \) in graph then return UNSAT
- Else return SAT
Solver for Theory of Equality: Example

Input formula: $a = b, b = d, c = e, a \neq d, a \neq e$

Figure: Initial Graph: Vertices
Solver for Theory of Equality: Example

Input formula: $a = b, b = d, c = e, a \neq d, a \neq e$

Figure: Initial Graph: Edges From Atoms
Solver for Theory of Equality: Example

Input formula: $a = b, b = d, c = e, a \neq d, a \neq e$

Figure: Initial Graph: Equivalence Closure
Solver for Theory of Equality: Example

Input formula: \(a = b, b = d, c = e, a \neq d, a \neq e \)
Solver for Theory of Equality

That was a *slow* algorithm

- Worst case number of edges is quadratic in number of expressions

Better approach using **Union-Find**
Solver for Theory of Equality: Union-Find Algorithm

Key Idea

- Build **directed tree** of nodes for each equivalent set
- Tree root is **canonical representative** of equivalent set
- i.e. nodes are equal *iff* they have the **same root**

find e

- Walks up the tree and returns the **root** of e

union e1 e2

- Updates graph with equality e1 == e2
- Merges equivalence sets of e1 and e2

```plaintext
union e1 e2 = do r1 <- find e1
              r2 <- find e2
              link r1 r2
```
Graph represents fact that $a = b = c = d$ and $e = f = g$.

Figure: Initial Union-Find Graph
Union-Find: Example

Graph represents fact that \(a = b = c = d \) and \(e = f = g \).

Updates graph with equality \(a = e \) using `union a e`
Union-Find: Example

After linking, graph represents fact that
\[a = b = c = d = e = f = g. \]

Figure: Union The Sets of a and e
Solver for Theory of Equality: Union-Find Algorithm

Algorithm

theorySolverEq atoms
 = do _ <- forM_ eqs union -- 1. Build U-F Tree
 u <- anyM neqs checkEqual -- 2. Check Conflict
 return $ if u then UNSAT else SAT
 where
 eqs = [(e, e') | (e 'Eq' e') <- atoms]
 neqs = [(e, e') | (e 'Ne' e') <- atoms]

checkEqual (e, e')
 = do r <- find e
 r' <- find e'
 return $ r == r'
Solver for Theory of Equality: Missing Pieces

1. How to **discover equalities**?
2. How to **track causes**?

Figure it out in *homework*
Today

1. Combining SAT and Theory Solvers
2. Combining Solvers for multiple theories
 ▶ Theory of Equality
 ▶ Theory of Uninterpreted Functions
 ▶ Theory of Difference-Bounded Arithmetic
Recall Only need to solve list of Atom

- i.e. formulas like $\land_{i,j} e_i = e_j \land \land_{k,l} e_k \neq e_l$

New: UIF Applications in Expressions

- An expression e can be of the form $f(e_1, \ldots, e_k)$
- Where f is an uninterpreted function of arity k

Question: What does uninterpreted mean anyway?
Axioms for Theory of Equality + Uninterpreted Functions

Rules defining when one expressions is equal to another.

Equivalence Axioms

- Reflexivity
- Symmetry
- Transitivity

Congruence

If function arguments are equal, then outputs are equal

\[\forall e_i, e'_i. \text{ If } \bigwedge_i e_i = e'_i \text{ Then } f(e_1, \ldots, e_k) = f(e'_1, \ldots, e'_k) \]
Solver for Theory of Equality + Uninterpreted Functions

Let R be a relation on expressions.

Congruence Closure of R

Is the *smallest* relation containing R that is *closed* under

- Reflexivity
- Symmetry
- Transitivity
- Congruence

Solver: Compute Congruence Closure of Input Equalities

- Compute *congruence closure* of input equality atoms
- Return UNSAT if any *disequal* terms are in the closure
- Return SAT otherwise
Solver for EUF: Extended Union-Find Algorithm

Step 1: Represent Expressions With DAG

- Each DAG node implicit fresh variable for sub-expression
- Shared across theory solvers

Figure: DAG Representation of Expressions
Solver for EUF: Extended Union-Find Algorithm

Step 2: Keep Parent Links to Function Symbols

Figure: Parent Links
Solver for EUF: Extended Union-Find Algorithm

Step 3: Extend union e1 e2 To Parents

union e1 e2
 = do e1’ <- find e1
 e2’ <- find e2
 link e1’ e2’
 linkParents e1’ e2’

linkParents e1’ e2’
 = do transferParents e1’ e2’
 recursiveParentUnion e1’ e2’
Solver for EUF: Example

Input $a = f(f(f(a))), a = f(f(f(f(f(a), x \neq f(a)$

Step 1 Step 2 Step 3 Step 4

Figure: Congruence Closure Example
1. How to discover equalities?
2. How to track causes?

Figure it out in homework
1. Combining SAT and Theory Solvers
2. Combining Solvers for multiple theories
 ▶ Theory of Equality
 ▶ Theory of Uninterpreted Functions
 ▶ Theory of Difference-Bounded Arithmetic
Theory of Linear Arithmetic

- Operators +, −, =, <, 0, 1, −1, 2, −2, ...
- Semantics: as expected
- The most useful in program verification after equality
- Example: \(b > 2a + 1, \ a + b > 1, \ b < 0 \)

Decision Procedure:

- Linear Programming / e.g. Simplex (Over Rationals)
- Integer Linear Programming (Over Integers)
Theory of Difference Constraints

Special case of linear arithmetic, with atoms

\[a - b \leq n \]

where \(a, b \) are variables, \(n \) is constant integer.

Can express many common linear constraints

Special variable \(z \) representing 0

- \(a = b \equiv a - b \leq 0, b - a \leq 0 \)
- \(a \leq n \equiv a - z \leq n \)
- \(a \geq n \equiv z - a \leq -n \)
- \(a < b \equiv a - b \leq -1 \)
- etc.
Solvent For Difference Constraints

How to check satisfiability?
Directed Graph Based Procedure

Vertices for each *variable*

Edges for each *constraint*

Example: Atoms

- $a - b \leq 0$
- $b - c \leq -4$
- $c - a \leq 2$
- $c - d \leq -1$

Algorithm

TODO
Theorem: A set of difference constraints is satisfiable iff there is no **negative weight** cycle in the graph.

- Can be solved in $O(V \cdot E)$ Bellman-Ford Algorithm
- $V =$ number of vertices
- $E =$ number of edges

Issues

1. Why does it work?
2. How to detect equalities?
3. How to track causes?
Today

1. Combining SAT and Theory Solvers

2. Combining Solvers for multiple theories
 - Theory of Equality
 - Theory of Uninterpreted Functions
 - Theory of Difference-Bounded Arithmetic

3. Other Theories
 - Lists
 - Arrays
 - Sets
 - Bitvectors
 - ...