
SMT: Satisfiability Modulo Theories

Ranjit Jhala, UC San Diego

April 9, 2013

Decision Procedures

Last Time

I Propositional Logic

Today

1. Combining SAT and Theory Solvers

2. Theory Solvers

I Theory of Equality
I Theory of Uninterpreted Functions
I Theory of Difference-Bounded Arithmetic

Combining SAT and Theory Solvers

Figure: SMT Solver Architecture

Combining SAT and Theory Solvers

Goal Determine if a formula f is Satisfiable.

data Formula = Prop PVar -- ^ Prop Logic

| And [Formula] -- ^ ""

| Or [Formula] -- ^ ""

| Not Formula -- ^ ""

| Atom Atom -- ^ Theory Relation

Where theory elements are described by

data Expr = Var TVar | Con Int | Op Operator [Expr]

data Atom = Rel Relation [Expr]

Split Formula into CNF + Theory Components

CNF Formulas

data Literal = Pos PVar | Neg PVar

type Clause = [Literal]

type CnfFormula = [Clause]

Split Formula into CNF + Theory Components

Theory Cube

A TheoryCube is an indexed list of Atom

data TheoryCube a = [(a, Atom)]

Theory Formula

A TheoryFormula is a TheoryCube indexed by Literal

type TheoryFormula = TheoryCube Literal

I Conjunction of assignments of each literal to theory Atom

Split Formula into CNF + Theory Components

Split SMT Formulas

An SmtFormula is a pair of CnfFormula and TheoryFormula

type SmtFormula = (CnfFormula, TheoryFormula)

Theorem There is a poly-time function

toSmt :: Formula -> SmtFormula

toSmt = error "Exercise For The Reader"

Split SmtFormula : Example

Consider the formula

I (a = b∨a = c)∧(b = d ∨b = e)∧(c = d)∧(a 6= d)∧(a 6= e)

We can split it into CNF

I (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5) ∧ (x6) ∧ (x7)

And a Theory Cube

I (x1 ↔ a = b), (x2 ↔ a = c), (x3 ↔ b = d), (x4 ↔ b = e)
(x5 ↔ c = d), (x6 ↔ a 6= d), (x7 ↔ a 6= e)

Split SmtFormula : Example

Consider the formula

I (a = b∨a = c)∧(b = d ∨b = e)∧(c = d)∧(a 6= d)∧(a 6= e)

We can split it into a CnfFormula

([[1, 2], [3, 4], [5], [6], [7]]

and a TheoryFormula

[(1, Rel Eq ["a", "b"]), (2, Rel Eq ["a", "c"])

, (3, Rel Eq ["b", "d"]), (4, Rel Eq ["b", "e"])

, (5, Rel Eq ["c", "d"])

, (6, Rel Ne ["a", "d"]), (7, Rel Ne ["a", "e"])]

Combining SAT and Theory Solvers: Architecture

Figure: SMT Solver Architecture

Combining SAT and Theory Solvers: Architecture

Lets see this in code

smtSolver :: Formula -> Result

smtSolver = smtLoop . toSmt

Combining SAT and Theory Solvers: Architecture

Lets see this in code

smtLoop :: SmtFormula -> Result

smtLoop (cnf, thy) =

case satSolver cnf of

UNSAT -> UNSAT

SAT s -> case theorySolver $ cube thy s of

SAT -> SAT

UNSAT c -> smtLoop (c:cnf) thy

Where, the function

cube :: TheoryFormula -> [Literal] -> TheoryFormula

Returns a conjunction of atoms for the theorySolver

Combining SAT and Theory Solvers: Architecture

Lets see this in code

smtLoop :: SmtFormula -> Result

smtLoop (cnf, thy) =

case satSolver cnf of

UNSAT -> UNSAT

SAT s -> case theorySolver $ cube thy s of

SAT -> SAT

UNSAT c -> smtLoop (c:cnf) thy

In UNSAT case theorySolver returns blocking clause

I Tells satSolver not to find similar assignments ever again!

smtSolver : Example
Recall formula split into CNF

I (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5) ∧ (x6) ∧ (x7)

and Theory Cube -
(x1 ↔ a = b), (x2 ↔ a = c), (x3 ↔ b = d), (x4 ↔ b = e)
(x5 ↔ c = d), (x6 ↔ a 6= d), (x7 ↔ a 6= e)

Iteration 1: SAT

I In (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5) ∧ (x6) ∧ (x7)
I Out SAT x1 ∧ x3 ∧ x5 ∧ x6 ∧ x7

Iteration 1: SMT

I In (x1, a = b), (x3, b = d), (x5, c = d), (x6, a 6= d), (x7, a 6= e)

I Out UNSAT (¬x1 ∨ ¬x3 ∨ ¬x6)

smtSolver : Example

Iteration 2: SAT

I In (x1 ∨ x2), (x3 ∨ x4), (x5), (x6), (x7), (¬x1 ∨ ¬x3)

I Out SAT x1 ∧ x4 ∧ x5 ∧ x6 ∧ x7

Iteration 2: SMT

I In (x1, a = b), (x4, b = e), (x5, c = d), (x6, a 6= d), (x7, a 6= e)

I Out UNSAT (¬x1 ∨ ¬x4 ∨ ¬x7)

smtSolver : Example

Iteration 3 : SAT

I In (x1 ∨ x2), (x3 ∨ x4), (x5), (x6), (x7),
(¬x1 ∨ ¬x3), (¬x1 ∨ ¬x4 ∨ ¬x7)

I Out SAT x2 ∧ x4 ∧ x5 ∧ x6 ∧ x7

Iteration 3 : SMT

I In (x2, a = c), (x4, b = e), (x5, c = d), (x6, a 6= d), (x7, a 6= e)

I Out UNSAT (¬x2 ∨ ¬x5 ∨ ¬x6)

smtSolver : Example

Iteration 4 : SAT

I In (x1 ∨ x2), (x3 ∨ x4), (x5), (x6), (x7),
(¬x1 ∨ ¬x3), (¬x1 ∨ ¬x4 ∨ ¬x7), (¬x2 ∨ ¬x5 ∨ ¬x6)

I Out UNSAT

I Thus smtSolver returns UNSAT

Today

1. Combining SAT and Theory Solvers

2. Theory Solvers

I Theory of Equality
I Theory of Uninterpreted Functions
I Theory of Difference-Bounded Arithmetic

Issue: How to solve formulas over different theories?

Need to Solve Formulas Over Different Theories

Input formulas F have Relation, Operator from different theories

I F ≡ f (f (a)− f (b)) 6= f (c), b ≥ a, c ≥ b + c , c ≥ 0

I Recall here comma means conjunction

Formula contains symbols from

I EUF : f (a), f (b), =, 6=,. . .

I Arith : ≥, +, 0,. . .

How to solve formulas over different theories?

Naive Splitting Approach

Consider F over TE (e.g. EUF) and TA (e.g. Arith)

By Theory, Split F Into FE ∧ FA

I FE which only contains symbols from TE

I FA which only contains symbols from TA

Our example,

I F ≡ f (f (a)− f (b)) 6= f (c), b ≥ a, c ≥ b + c , c ≥ 0

Can be split into

I FE ≡ f (f (a)− f (b)) 6= f (c)
I FA ≡ b ≥ a, c ≥ b + c , c ≥ 0

Naive Splitting Approach

Our example,

I F ≡ f (f (a)− f (b)) 6= f (c), b ≥ a, c ≥ b + c , c ≥ 0

Can be split into

I FE ≡ f (f (a)− f (b)) 6= f (c)
I FA ≡ b ≥ a, c ≥ b + c , c ≥ 0

Problem! Pesky “minus” operator (−) has crept into FE . . .

Less Naive Splitting Approach

Problem! Pesky “minus” operator (−) has crept into FE . . .

Purify Sub-Expressions With Fresh Variables

I Replace r(f (e) with t = f (e) ∧ r(t)

I So that each atom belongs to a single theory

Example formula F becomes

I t1 = f (a), t2 = f (b), t3 = t1 − t2
I f (t3) 6= f (c), b ≥ a, c ≥ b + c , c ≥ 0

Which splits nicely into

I FE ≡ t1 = f (a), t2 = f (b), f (t3) 6= f (c)

I FA ≡ t3 = t1 − t2, b ≥ a, c ≥ b + c, c ≥ 0

Less Naive Splitting Approach

Consider F over TE (e.g. EUF) and TA (e.g. Arith)

I Split F ≡ FE ∧ FA

Now what? Run theory solvers independently

theorySolver f =

let (fE, fA) = splitByTheory f in

case theorySolverE fE, theorySolverA fA of

(UNSAT, _) -> UNSAT

(_, UNSAT) -> UNSAT

(SAT, SAT) -> SAT

Will it work?

Less Naive Splitting Approach

Run Theory Solvers Independently

theorySolver f =

let (fE, fA) = splitByTheory f in

case theorySolverE fE, theorySolverA fA of

(UNSAT, _) -> UNSAT

(_, UNSAT) -> UNSAT

(SAT, SAT) -> SAT

Will it work? Alas, no.

Satisfiability of Mixed Theories

Consider F over TE (e.g. EUF) and TA (e.g. Arith)

I Split F ≡ FE ∧ FA

The following are obvious

1. UNSAT FE implies UNSAT FE ∧ FA implies UNSAT F

2. UNSAT FA implies UNSAT FE ∧ FA implies UNSAT F

But this is not true

3. SAT FE and *SAT FA implies SAT FE ∧ FA

Satisfiability of Mixed Theories

SAT FE and SAT FA does not imply SAT FE ∧ FA

Example

I FE ≡ t1 = f (a), t2 = f (b), f (t3) 6= f (c)

I FA ≡ t3 = t1 − t2, b ≥ a, c ≥ b + c, c ≥ 0

Individual Satisfying Assignment

I Let σ ≡= a 7→ 0, b 7→ 0, c 7→ 1, f 7→ λx .x

I Easy to check that σ satisfies FE and FA

I (But not both!)

One bad assignment doesn’t mean F is UNSAT. . .

Proof of Unsatisfiability of Mixed Formula FE ∧ FA

Figure: Proof Of Unsatisfiability

Satisfiability of Mixed Theories

Is quite non-trivial!

I EUF: Ackermann, 1954

I Arith: Fourier, 1827

I EUF+Arith: Nelson-Oppen, POPL 1978

Real software verification queries span multiple theories

I EUF + Arith + Arrays + Bit-Vectors + . . .

Good news! The Nelson - Oppen combination procedure . . .

http://books.google.com/books/about/Solvable_cases_of_the_decision_problem.html?id=YTk4AAAAMAAJ
http://en.wikipedia.org/wiki/Fourier%E2%80%93Motzkin_elimination
http://scottmcpeak.com/nelson-verification.pdf

Nelson-Oppen Framework For Combining Theory Solvers

Step 1

I Purify each atom with fresh variables
I Result each Atom belongs to one theory

Step 2

I Check Satisfiability of each theory using its solver
I Result If any solver says UNSAT then formula is UNSAT

Step 3 (Key Insight)

I Broadcast New Equalities discovered by each solver
I Repeat step 2 until no new equalities discovered

Nelson-Oppen Framework: Example

Input

I F ≡ f (f (a)− f (b)) 6= f (c), b ≥ a, c ≥ b + c , c ≥ 0

After Step 1 (Purify)

I t1 = f (a), t2 = f (b), t3 = t1 − t2
I f (t3) 6= f (c), b ≥ a, c ≥ b + c , c ≥ 0

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on FE , Arith on FA)

I FE ≡ t1 = f (a), t2 = f (b), f (t3) 6= f (c) is SAT

I FA ≡ t3 = t1 − t2, b ≥ a, c ≥ b + c, c ≥ 0 is SAT

After Step 3

I Arith discovers a = b

Broadcast

I F ′
E ← FE , a = b

Repeat Step 2

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F ′
E , Arith on FA)

I F ′
E ≡ t1 = f (a), t2 = f (b), f (t3) 6= f (c), a = b is SAT

I FA ≡ t3 = t1 − t2, b ≥ a, c ≥ b + c, c ≥ 0 is SAT

After Step 3

I EUF discovers t1 = t2

Broadcast and Update

I F ′
A ← FA, t1 = t2

Repeat Step 2

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F ′
E , Arith on F ′

A)

I F ′
E ≡ t1 = f (a), t2 = f (b), f (t3) 6= f (c), a = b is SAT

I F ′
A ≡ t3 = t1 − t2, b ≥ a, c ≥ b + c, c ≥ 0, t1 = t2 is SAT

After Step 3

I Arith discovers t3 = c

Broadcast and Update

I F ′′
E ← F ′

E , t3 = c

Repeat Step 2

Nelson-Oppen Framework: Example

After Step 2 (Run EUF on F ′′
E , Arith on F ′

A)

I F ′
E ≡ t1 = f (a), t2 = f (b), f (t3) 6= f (c), a = b, t3 = c

I Arith returns UNSAT

I Output UNSAT

Nelson-Oppen in Code

TODO

Nelson-Oppen Framework For Combining Theory Solvers

A Theory T is Stably Infinite

If every T -satisfiable formula has an infinite model

I Roughly, is SAT over a universe with infinitely many Values

A Theory T is Convex

If whenever F implies a1 = b1 ∨ a2 = b2

either F implies a1 = b1 or F implies a2 = b2

Nelson-Oppen Framework For Combining Theory Solvers

Theorem: Nelson-Oppen Combination

Let T1, T2 be stably infinite, convex theories w/ solvers S1 and S2

1. nelsonOppen S1 S2 is a solver the combined theory T1 ∪ T2

2. nelsonOppen S1 S2 F == SAT iff F is satisfiable in T1 ∪ T2.

Convexity

The convexity requirement is the important one in practice.

Example of Non-Convex Theory

(Z,+,≤) and Equality

I F ≡ 1 ≤ a ≤ 2, b = 1, c = 2, t1 = f (a), t2 = f (b), t3 = f (c)

I F implies t1 = t2 ∨ t1 = t3
I F does not imply either t1 = t2 or t1 = t3

Nelson-Oppen fails on F , t1 6= t2, t1 6= t3

I Extensions: add case-splits on dis/equality ## Nelson-Oppen
Architecture

TODO Nifty Bus PIC

What is the API for each Theory Solver?

Requirements of Theory Solvers

Recall the smtLoop architecture

smtLoop :: SmtFormula -> Result

smtLoop (cnf, thy) =

case satSolver cnf of

UNSAT -> UNSAT

SAT s -> case theorySolver $ cube thy s of

SAT -> SAT

UNSAT c -> smtLoop (c:cnf) thy

Requirement of theorySolver

I SAT : Each solver broadcast equalities
I UNSAT : Each solver broadcast cause of equalities
I theorySolver constructs blocking clause from causes

Building Blocking Clauses from Causes

I Tag each input Atom

I Tag each discovered and broadcasted equality

I Link each discovered fact with tags of its causes

I On UNSAT returned cause is backwards slice of tags

I Will see this informally, but will show up in assignment. . .

Today

1. Combining SAT and Theory Solvers

2. Combining Solvers for Multiple Theories

I Theory of Equality
I Theory of Uninterpreted Functions
I Theory of Difference-Bounded Arithmetic

Solver for Theory of Equality

Recall Only need to solve list of Atom

I i.e. formulas like
∧

i ,j ei = ej ∧
∧

k,l ek 6= el

Axioms for Theory of Equality

Rules defining when one expressions is equal to another.

Reflexivity: Every term e is equal to itself

∀e.e = e

Symmetry: If e1 is equal to e2, then e2 is equal to e1

∀e1, e2.If e1 = e2 Then e2 = e1

Transitivity: If e1 equals e2 and e2 equals e3 then e1 equals e3

∀e1, e2, e3.If e1 = e2 and e2 = e3 Then e1 = e3

Solver for Theory of Equality

Let R be a relation on expressions.

Equivalence Closure of R

Is the smallest relation containing R that is closed under

I Reflexivity
I Symmetry
I Transitivity

By definition, closure is an equivalence relation

Solver: Compute Equivalence Closure of Input Equalities

I Compute equivalence closure of input equality atoms
I Return UNSAT if any disequal terms are in the closure
I Return SAT otherwise

Solver for Theory of Equality

Input
∧

i ,j ei = ej ∧
∧

k,l ek 6= el

Step 1 Build Undirected Graph

I Vertices e1, e2, . . .
I Edges ei −−− ej for each equality atom ei = ej

Step 2 Compute Equivalence Closure

I Add edges between e and e ′ per transitivity axioms

Note: Reflex. and Symm. handled by graph representation

Output For each k , l in disequality atoms,

I If exists edge ek −−− el in graph then return UNSAT

I Else return SAT

Solver for Theory of Equality: Example
Input formula: a = b, b = d , c = e, a 6= d , a 6 e

Figure: Inital Graph: Vertices

Solver for Theory of Equality: Example
Input formula: a = b, b = d , c = e, a 6= d , a 6 e

Figure: Inital Graph: Edges From Atoms

Solver for Theory of Equality: Example
Input formula: a = b, b = d , c = e, a 6= d , a 6 e

Figure: Inital Graph: Equivalence Closure

Solver for Theory of Equality: Example
Input formula: a = b, b = d , c = e, a 6= d , a 6 e

Figure: Inital Graph: Check Disequalities

Solver for Theory of Equality

That was a slow algorithm

I Worst case number of edges is quadratic in number of
expressions

Better approach using Union-Find

Solver for Theory of Equality: Union-Find Algorithm
Key Idea

I Build directed tree of nodes for each equivalent set
I Tree root is canonical representative of equivalent set
I i.e. nodes are equal iff they have the same root

find e

I Walks up the tree and returns the root of e

union e1 e2

I Updates graph with equality e1 == e2

I Merges equivalence sets of e1 and e2

union e1 e2 = do r1 <- find e1

r2 <- find e2

link r1 r2

Check Disequalities

I For some atom ek /= el, if find(ek) == find(el) return
UNSAT

I Otherwise return SAT

Union Find : Example

Graph represents fact that a = b = c = d and e = f = g .

Figure: Inital Union-Find Graph

Union-Find : Example

Graph represents fact that a = b = c = d and e = f = g .

Updates graph with equality a = e using union a e

Figure: Find Roots of a and e

Union-Find : Example

After linking, graph represents fact that
a = b = c = d = e = f = g .

Figure: Union The Sets of a and e

Solver for Theory of Equality: Union-Find Algorithm

Algorithm

theorySolverEq atoms

= do _ <- forM_ eqs union -- 1. Build U-F Tree

u <- anyM neqs checkEqual -- 2. Check Conflict

return $ if u then UNSAT else SAT

where

eqs = [(e, e’) | (e ‘Eq‘ e’) <- atoms]

neqs = [(e, e’) | (e ‘Ne‘ e’) <- atoms]

checkEqual (e, e’)

= do r <- find e

r’ <- find e’

return $ r == r’

Solver for Theory of Equality: Missing Pieces

1. How to discover equalities ?

2. How to track causes ?

Figure it out in homework

Today

1. Combining SAT and Theory Solvers

2. Combining Solvers for multiple theories

I Theory of Equality
I Theory of Uninterpreted Functions
I Theory of Difference-Bounded Arithmetic

Solver for Theory of Equality + Uninterpreted Functions

Recall Only need to solve list of Atom

I i.e. formulas like
∧

i ,j ei = ej ∧
∧

k,l ek 6= el

New: UIF Applications in Expressions

I An expression e can be of the form f (e1, . . . , ek)

I Where f is an uninterpreted function of arity k

Question: What does uninterpreted mean anyway ?

Axioms for Theory of Equality + Uninterpreted Functions

Rules defining when one expressions is equal to another.

Equivalence Axioms

I Reflexivity
I Symmetry
I Transitivity

Congruence

If function arguments are equal, then outputs are equal

∀ei , e
′
i . If ∧i ei = e ′i Then f (e1, . . . , ek) = f (e ′1, . . . , e

′
k)

Solver for Theory of Equality + Uninterpreted Functions

Let R be a relation on expressions.

Congruence Closure of R

Is the smallest relation containing R that is closed under

I Reflexivity
I Symmetry
I Transitivity
I Congruence

Solver: Compute Congruence Closure of Input Equalities

I Compute congruence closure of input equality atoms
I Return UNSAT if any disequal terms are in the closure
I Return SAT otherwise

Solver for EUF: Extended Union-Find Algorithm
Step 1: Represent Expressions With DAG

I Each DAG node implicit fresh variable for sub-expression
I Shared across theory solvers

Figure: DAG Representation of Expressions

Solver for EUF: Extended Union-Find Algorithm

Step 2: Keep Parent Links to Function Symbols

Figure: Parent Links

Solver for EUF: Extended Union-Find Algorithm

Step 3: Extend union e1 e2 To Parents

union e1 e2

= do e1’ <- find e1

e2’ <- find e2

link e1’ e2’

linkParents e1’ e2’

linkParents e1’ e2’

= do transferParents e1’ e2’

recursiveParentUnion e1’ e2’

Solver for EUF: Example
Input a = f (f (f (a))), a = f (f (f (f (f (a), x 6= f (a)

Figure: Congruence Closure Example

Solver for Theory of EUF: Missing Pieces

1. How to discover equalities ?

2. How to track causes ?

Figure it out in homework

Today

1. Combining SAT and Theory Solvers

2. Combining Solvers for multiple theories

I Theory of Equality
I Theory of Uninterpreted Functions
I Theory of Difference-Bounded Arithmetic

Theory of Linear Arithmetic

I Operators +, −, =, <, 0, 1, −1, 2, −2, . . .
I Semantics: as expected
I The most useful in program verification after equality
I Example: b > 2a + 1, a + b > 1, b < 0

Decision Procedure:

I Linear Programming / e.g. Simplex (Over Rationals)
I Integer Linear Programming (Over Integers)

Theory of Difference Constraints

Special case of linear arithmetic, with atoms

a− b ≤ n

where a, b are variables, n is constant integer.

Can express many common linear constraints

Special variable z representing 0

I a = b ≡ a− b ≤ 0, b − a ≤ 0
I a ≤ n ≡ a− z ≤ n
I a ≥ n ≡ z − a ≤ −n
I a < b ≡ a− b ≤ −1
I etc.

Solver For Difference Constraints

How to check satisfiability?

Directed Graph Based Procedure

Vertices for each variable

Edges for each constraint

Example: Atoms

I a− b ≤ 0
I b − c ≤ −4
I c − a ≤ 2
I c − d ≤ −1

Algorithm

TODO

Solver For Difference Constraints

Theorem: A set of difference constraints is satisfiable iff there is
no negative weight cycle in the graph.

I Can be solved in O(V .E) Bellman-Ford Algorithm

I V = number of vertices

I E = number of edges

Issues

1. Why does it work?

2. How to detect equalities?

3. How to track causes?

http://en.wikipedia.org/wiki/Bellman-Ford_algorithm

Today

1. Combining SAT and Theory Solvers

2. Combining Solvers for multiple theories

I Theory of Equality
I Theory of Uninterpreted Functions
I Theory of Difference-Bounded Arithmetic

3. Other Theories

I Lists
I Arrays
I Sets
I Bitvectors
I . . .

