Floyd-Hoare Logic \& Verification Conditions

Ranjit Jhala, UC San Diego

April 16, 2013

A Small Imperative Language

data Var
data Exp
data Pred

A Small Imperative Language

data Com = Asgn Var Expr
Seq Com Com
If Exp Com Com
While Pred Exp Com
Skip

Verification Condition Generation

Use the State monad to log individual loop invariant requirements

```
type VC = State [Pred] -- validity queries for SMT solver
```


Top Level Verification Function

The top level verifier, takes:

- Input : precondition p, command c andpostcondition q
- Output: True iff $\{p\} c\{q\}$ is a valid Hoare-Triple

```
verify :: Pred -> Com -> Pred -> Bool
verify p c q = all smtValid queries
    where
        (q', conds) = runState (vcgen q c) []
        queries = p 'implies' q' : conds
```


Verification Condition Generator

```
vcgen : : Pred -> Com -> VC Pred
vcgen (Skip) q
    = return q
vcgen (Asgn x e) q
    = return $ q 'subst' (x, e)
vcgen (Seq s1 s2) q
    = vcgen s1 =<< vcgen s2 q
vcgen (If b c1 c2) q
    = do q1 <- vcgen c1 q
        q2 <- vcgen c2 q
        return $ (b 'implies' q1) 'And' (Not b 'implies' q2)
vcgen (While i b c) q
    = do q' <- vcgen c i
    sideCondition $ (i 'And' b) 'implies' q'
    sideCondition $ (i 'And' Not b) 'implies' q
    return $ i
```


vcgen Helper Logs All Side Conditions

```
sideCond :: Pred -> VC ()
sideCond p = modify $ \conds -> p : conds
```


Next: Some Examples

Now, lets use the above verifier to check some programs

Example 1

Consider the program c defined:

$$
\begin{aligned}
& \text { while }(x>0)\{ \\
& x=x-1 ; \\
& y=y-2
\end{aligned}
$$

Lets prove that

$$
\{x==8 \& \& y==16\} \quad c \quad\{y==0\}
$$

Example 1

Add the pre- and post-condition with assume and assert

```
assume(x == 8 && y == 16);
while (x > 0) {
    x = x - 1;
    y = y - 2;
}
assert(y == 0);
```

What do we need next?

Example 1: Adding A Loop Invariant

Lets use a placeholder I for the invariant

```
assume(x == 8 && y == 16);
while (x > 0) {
    invariant(I);
    x = x - 1;
    y = y - 2;
}
assert(y == 0);
```

Question: What should I be?

1. Weak enough to hold initially
2. Inductive to prove preservation
3. Strong enough to prove goal

Example 1: Adding A Loop Invariant

Lets try the candidate invariant $\mathrm{y}==2 * \mathrm{x}$

```
assume(x == 8 && y == 16);
while (x > 0) {
    invariant(y == 2 * x);
    x = x - 1;
    y = y - 2;
}
assert(y == 0);
```

1. Holds initially?

- SMT-Valid ($\mathrm{x}==8$ \&\& $\mathrm{y}==16$) $=>(\mathrm{y}==2 * \mathrm{x})$?
- [Yes]

Example 1: Adding A Loop Invariant

Lets try the candidate invariant $\mathrm{y}=\mathrm{m}^{*} \mathrm{x}$

```
assume(x == 8 && y == 16);
while (x > 0) {
    invariant(y == 2 * x);
    x = x - 1;
    y = y - 2;
}
assert(y == 0);
```

2. Preserved ?

- SMT-Valid $(\mathrm{y}=2 * \mathrm{x} \& \& \mathrm{x}>0)=>(\mathrm{y}-2=2 *(\mathrm{x}$ - 1)) ?
- [Yes]

Example 1: Adding A Loop Invariant

Lets try the candidate invariant $\mathrm{y}=\mathrm{F}_{2} * \mathrm{x}$

```
assume(x == 8 && y == 16);
while (x > 0) {
    invariant(y == 2 * x);
    x = x - 1;
    y = y - 2;
}
assert(y == 0);
```

3. Strong Enough To Prove Goal?

- SMT-Valid $(\mathrm{y}=2 * \mathrm{x}$ \&\& $!\mathrm{x}>0)=>(\mathrm{y}==0)$?
- [No]

Uh oh. Close, but no cigar...

Example 1: Adding A Loop Invariant (Take 2)

Lets try $(y==2 * x) \& \&(x>=0)$

```
assume(x == 8 && y == 16);
while (x > 0) {
    invariant(y == 2 * x && x >= 0);
    x = x - 1;
    y = y - 2;
```

\}
assert (y == 0) ;

SMT Valid Check

1. Initial ($x==8 \& \& y==16)=>(y==2 * x)$

- Yes

2. Preserve $(y=2 * x \& \& x>0)=>(y-2==2 *(x-$ 1))

- Yes

3. Goal $(y=2 * x$ \&\& $x>=0$ \&\& ! $x>0)=>(y==0)$

- Yes

Example 2

```
assume(n > 0);
var k = 0;
var r = 0;
var s = 1;
while (k != n) {
    invariant(I);
    r = r + s;
    s = s + 2;
    k = k + 1;
}
assert(r == n * n);
```

Whoa! What's a reasonable invariant I?

Example 2

Lets try the obvious thing ... r == k * k

```
assume(n > 0);
var k = 0;
var r = 0;
var s = 1;
while (k != n) {
    invariant(r == k * k);
    r = r + s;
    s = s + 2;
    k = k + 1;
}
assert(r == n * n);
```

- Initial ($k==0$ \&\& $r==0$) $=>(r==k * k)$ YES
- Goal ($\mathrm{r}==\mathrm{k} * \mathrm{k} \& \& \mathrm{k}==\mathrm{n}$) $=>(\mathrm{r}==\mathrm{n} * \mathrm{n})$ YES
- Preserve ($\mathrm{r}==\mathrm{k} * \mathrm{k}$ \&\& k != n) => ($\mathrm{r}+\mathrm{s}==$ ($\mathrm{k}+1) *(\mathrm{k}+1)) \mathbf{N O}$!

Example 2

Finding an invariant that is preserved can be tricky...
... typically need to strengthen to get preservation
... that is, to add extra conjuncts

Example 2: Take 2

Strengthen I with facts about s

```
assume(n > 0);
var k = 0;
var r = 0;
var s = 1;
while (k != n) {
    invariant(r == k*k && s == 2*k + 1);
    r = r + s;
    s = s + 2;
    k = k + 1;
}
assert(r == n * n);
```

1. Initial

- ($k==0$ \&\& $r=0$ \& $s==1)=>(r==k * k \& \& s=$ $2 * \mathrm{k}+1$)
- YES

Example 2: Take 2

Strengthen I with facts about s

```
assume(n > 0);
var k = 0;
var r = 0;
var s = 1;
while (k != n) {
    invariant(r == k*k && s == 2*k + 1);
    r = r + s;
    s = s + 2;
    k = k + 1;
}
assert(r == n * n);
```


2. Goal

- ($\mathrm{r}=\mathrm{k} * \mathrm{k}$ \&\& $\mathrm{s}==2 * \mathrm{k}+1 \& \& \mathrm{k}==\mathrm{n}$) $=>(\mathrm{r}==$ $\mathrm{n} * \mathrm{n}$)
- YES

Example 2: Take 2

Strengthen I with facts about s

```
assume(n > 0);
var k = 0;
var r = 0;
var s = 1;
while (k != n) {
    invariant(r == k*k && s == 2*k + 1);
    r = r + s;
    s = s + 2;
    k = k + 1;
}
assert(r == n * n);
```


3. Preserve

$$
\begin{aligned}
& (\mathrm{r}==\mathrm{k} * \mathrm{k} \& \& \mathrm{~s}=2 * \mathrm{k}+1 \& \& \mathrm{k}!=\mathrm{n}) \\
& \quad=> \\
& (\mathrm{r}+\mathrm{s}=(\mathrm{k}+1) *(\mathrm{k}+1) \& \& \mathrm{~s}+2=2 *(\mathrm{k}+1)+1)
\end{aligned}
$$

Adding Features To IMP

- Functions
- Pointers

IMP + Functions

data Fun = F String [Var] Com
data Com = ...
Call Var Fun [Expr]
Return Expr
data Pgm = [Fun]

IMP + Functions

A function is a big sequence of Com which does not modify formals

```
function f(x1,...,xn){
        requires(pre);
        ensures(post);
        body;
        return e;
}
```

Precondition

- Predicate over the formal parameters $\mathrm{x} 1, \ldots, \mathrm{xn}$
- That records assumption about inputs

Postcondition

- Predicate over the formals and return value \$result
- That records assertion about outputs

Modular Verification With Contracts

- Together, pre- and post- conditions called contracts
- We can generate VC (hence, verify) one-function-at-a-time
- Using just contracts for all called functions

Questions

1. How to verify each function with callee contracts?
2. How to verify Call commands?

Verifying A Single Function

To verify a single function

```
function f(x1,...,xn){
    requires(pre);
    ensures(post);
    body;
    return e;
}
```

we need to just verify the Hoare-triple
\{pre\} body ; \$result := r \{post\}
Exercise How will you handle return sprinkled within body ?

Verifying A Single Call Command

To establish a Hoare-triple for a single call command
$\{P\}$

$$
y:=f(e)
$$

\{Q\}

1. We must guarantee that pre (of f) holds before the call
2. We can assume that post (off') holds after the call

Hence, the above triple reduces to verifying that
$\{P\}$

```
    assert (pre[e1/x1,...,en/xn]) ;
    assume (post[e1/x1,\ldots.,en/xn, tmp/$result];
```

 y := tmp;
 $\{Q\}$
where tmp is a fresh temporary variable.

Caller-Callee Contract Duality

Note that at the callsite for a function, we

- assert the pre-condition
- assume the post-condition
while when checking the callee we
- assume the pre-condition
- assert the post-condition

This is key for modular verification

- Breaks verification up into pieces matching function abstraction

Example

Consider a function
function binarySearch(a, v) \{
requires(sorted(a));
ensures(\$result == -1
|| $0<=$ \$result < a.length \&\& $a[\$ r e s u l t]==v$
\}
where we want to verify

```
assume(sorted(arr));
y = binarySearch(arr, 12);
if (y != -1){
    assert (arr[y] == 12)
```

\}

Example: Precondition VC

Consider a function
function binarySearch(a, v)\{
requires(sorted(a));
ensures(\$result == -1
|| $0<=$ \$result < a.length \&\& $a[\$ r e s u l t]==v$);
\}
Replace call with assert and assume
//pre[arr/a, 12/v]
assert(sorted(arr));
//post[arr/a, 12/v, y/£result]
assume ($\mathrm{y}==-1$

$$
\| 0<=y<a \text {.length \&\& } a[y]==12 \text {); }
$$

Example: A Locking Protocol

"An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock."

Figure: Calls to lock and unlock Must Alternate

Example: A Locking Protocol

The lock and unlock functions

```
function lock(l){
    assert(l == 0); //UNLOCKED
    return 1;
    //LOCKED
}
function unlock(l){
    assert(l == 1); //UNLOCKED
    return 0; //LOCKED
}
```

State of lock encoded in value
What are the contracts ? Pretty easy...

Example: A Locking Protocol

The lock and unlock functions with contracts

```
function lock(1){
    requires(l == 0);
    ensures($result == 1);
    assert(l == 0); //UNLOCKED
    return 1; //LOCKED
}
```

function unlock(1)\{
requires(l == 1);
ensures(\$result == 0);
assert(l == 1); //UNLOCKED
return 0; //LOCKED
\}

Example: Lock Verification

To verify this program

```
assume(l == 0);
if (n % 2 == 0) {
    l = lock(1);
}
if (n % 2 == 0) {
    l = unlock(l);
}
```

we just verify

```
assume(l == 0);
if (n % 2 == 0) {
    assert(l == 0);
    assume(tmpa == 1);
    l = tmpa;
}
```


Adding Features To IMP

- Functions
- Pointers

IMP + Pointers

Let us add references to IMP

data Com	$=$ Deref	Var Var	$--x:=* y$
	\mid DerefAsgn Var Expr	$--* x:=e$	

We find that our assignment rule does not work with aliasing

Assignments and Aliasing

As *x and *y are aliased, the following is valid

$$
\{\mathrm{x}==\mathrm{y}\} \quad * \mathrm{x}=5 \quad\{* \mathrm{x}+* \mathrm{y}==10\}
$$

Assignments and Aliasing

In general, for what P is the following valid?
$\{\mathrm{P}\} \quad * \mathrm{x}=5 \quad\{* \mathrm{x}+* \mathrm{y}==10\}$
Intuitively, P is something like
*y $=5 \| x=y$

- In the first case, the two sum upto 10.
- In the second case, the aliasing kicks in.

Assignments and Aliasing

In general, for what P is the following valid?
$\{\mathrm{P}\} \quad * \mathrm{x}=5 \quad\{* \mathrm{x}+* \mathrm{y}==10\}$
But the Hoare-rule gives us
$(* x+* y==10)[5 / * x]$
$==(5+* y==10)$
== (*y == 5)

Assignments and Aliasing

Uh oh! We lost one case! What happened?!
The substitution $[\mathrm{e} / \mathrm{x}$] only works when

- x is the only representation for the value in the predicate

Here, there were two possible representations

- *x
- *y
and we say possible because it depends on the aliasing.
- This is why aliasing is tricky

Verification With References

Key idea
Beef up our logic to handle memory as a monolithic entity

1. Extend logic theory (and SMT solver)
2. Extend Hoare-Rule

Note: Classical solution due to McCarthy

- It has its issues but thats another story...

A Logic For Modelling References

1. Memory Variables M :: Mem
2. Select Operator for reading memory sel
3. Update Operator for writing memory upd
4. Axioms for reasoning about sel and upd
forall M, A1, A2, V.

$$
\mathrm{A} 1==\mathrm{A} 2 \Rightarrow \operatorname{sel}(\operatorname{upd}(\mathrm{M}, \mathrm{~A} 1, \mathrm{~V}), \mathrm{A} 2)==\mathrm{V}
$$

forall M, A1, A2, V.

$$
\text { A1 /= A2 }=>\operatorname{sel}(\operatorname{upd}(M, A 1, V), A 2)==\operatorname{sel}(M, A 2)
$$

Updated Hoare-Rule for References

New rule for deref-read
$\{B[\operatorname{sel}(M, y) / x]\}$ x $:=* y\{B\}$
New rule for deref-write
$\{B[\operatorname{upd}(M, x, e) / M]\} * x:=e\{B\}$

Assignments and Aliasing Revisited

In general, for what P is the following valid?
$\{\mathrm{P}\} \quad * \mathrm{x}=5 \quad\{* \mathrm{x}+* \mathrm{y}==10\}$
Or rather,
$\{P\} \quad * x=5 \quad\{\operatorname{sel}(M, x)+\operatorname{sel}(M, y)==10\}$
Now, with the new deref-write rule P becomes
TODO FIX THIS $\sim \sim \sim \sim\{$.javascript $\} A=[\operatorname{upd}(M, x, 5) / M]$
$(x+y=10)=[\operatorname{upd}(M, x, 5) / M](\operatorname{sel}(M, x)+\operatorname{sel}(M, y)=10)=$ $\operatorname{sel}(\operatorname{upd}(M, x, 5), x)+\operatorname{sel}(\operatorname{upd}(M, x, 5), y)=10=5+$ $\operatorname{sel}(\operatorname{upd}(M, x, 5), y)=10=\operatorname{sel}(\operatorname{upd}(M, x, 5), y)=5=(x=y \&$ $5=5)\|(x!=y \& \operatorname{sel}(M, y)=5)=x=y\|{ }^{*} y=5^{\sim \sim \sim \sim}$
Which is exactly what we wanted!

Deductive Verifiers

We have just scratched the surface
Many industrial strength verifiers for real languages

- Why3
- ESC-Java

And these, which you can play with online

- VCC
- Spec\# 1 Spec\# 2
- Verifast

All very impressive: Try them out and see!
Main hassle: writing invariants, pre and post...

