
Floyd-Hoare Logic & Verification Conditions

Ranjit Jhala, UC San Diego

April 16, 2013

A Small Imperative Language

data Var

data Exp

data Pred

A Small Imperative Language

data Com = Asgn Var Expr

| Seq Com Com

| If Exp Com Com

| While Pred Exp Com

| Skip

Verification Condition Generation

Use the State monad to log individual loop invariant requirements

type VC = State [Pred] -- validity queries for SMT solver

Top Level Verification Function

The top level verifier, takes:

I Input : precondition p, command c andpostcondition q

I Output : True iff {p} c {q} is a valid Hoare-Triple

verify :: Pred -> Com -> Pred -> Bool

verify p c q = all smtValid queries

where

(q’, conds) = runState (vcgen q c) []

queries = p ‘implies‘ q’ : conds

Verification Condition Generator

vcgen :: Pred -> Com -> VC Pred

vcgen (Skip) q

= return q

vcgen (Asgn x e) q

= return $ q ‘subst‘ (x, e)

vcgen (Seq s1 s2) q

= vcgen s1 =<< vcgen s2 q

vcgen (If b c1 c2) q

= do q1 <- vcgen c1 q

q2 <- vcgen c2 q

return $ (b ‘implies‘ q1) ‘And‘ (Not b ‘implies‘ q2)

vcgen (While i b c) q

= do q’ <- vcgen c i

sideCondition $ (i ‘And‘ b) ‘implies‘ q’

sideCondition $ (i ‘And‘ Not b) ‘implies‘ q

return $ i

vcgen Helper Logs All Side Conditions

sideCond :: Pred -> VC ()

sideCond p = modify $ \conds -> p : conds

Next: Some Examples

Now, lets use the above verifier to check some programs

Example 1

Consider the program c defined:

while (x > 0) {
x = x - 1;

y = y - 2;

}

Lets prove that

{x==8 && y==16} c {y == 0}

Example 1

Add the pre- and post-condition with assume and assert

assume(x == 8 && y == 16);

while (x > 0) {
x = x - 1;

y = y - 2;

}
assert(y == 0);

What do we need next?

Example 1: Adding A Loop Invariant

Lets use a placeholder I for the invariant

assume(x == 8 && y == 16);

while (x > 0) {
invariant(I);

x = x - 1;

y = y - 2;

}
assert(y == 0);

Question: What should I be?

1. Weak enough to hold initially

2. Inductive to prove preservation

3. Strong enough to prove goal

Example 1: Adding A Loop Invariant

Lets try the candidate invariant y == 2 * x

assume(x == 8 && y == 16);

while (x > 0) {
invariant(y == 2 * x);

x = x - 1;

y = y - 2;

}
assert(y == 0);

1. Holds initially?

I SMT-Valid (x == 8 && y == 16) => (y == 2 * x) ?
I [Yes]

Example 1: Adding A Loop Invariant

Lets try the candidate invariant y == 2 * x

assume(x == 8 && y == 16);

while (x > 0) {
invariant(y == 2 * x);

x = x - 1;

y = y - 2;

}
assert(y == 0);

2. Preserved ?

I SMT-Valid (y = 2 * x && x > 0) => (y-2 == 2 * (x

- 1)) ?
I [Yes]

Example 1: Adding A Loop Invariant

Lets try the candidate invariant y == 2 * x

assume(x == 8 && y == 16);

while (x > 0) {
invariant(y == 2 * x);

x = x - 1;

y = y - 2;

}
assert(y == 0);

3. Strong Enough To Prove Goal?

I SMT-Valid (y = 2 * x && !x > 0) => (y == 0) ?
I [No]

Uh oh. Close, but no cigar. . .

Example 1: Adding A Loop Invariant (Take 2)
Lets try (y == 2 * x) && (x >=0)

assume(x == 8 && y == 16);

while (x > 0) {
invariant(y == 2 * x && x >= 0);

x = x - 1;

y = y - 2;

}
assert(y == 0);

SMT Valid Check

1. Initial (x == 8 && y == 16) => (y == 2 * x)
I Yes

2. Preserve (y = 2 * x && x > 0) => (y-2 == 2 * (x -

1))
I Yes

3. Goal (y = 2 * x && x >=0 && !x > 0) => (y == 0)
I Yes

Example 2

assume(n > 0);

var k = 0;

var r = 0;

var s = 1;

while (k != n) {
invariant(I);

r = r + s;

s = s + 2;

k = k + 1;

}
assert(r == n * n);

Whoa! What’s a reasonable invariant I?

Example 2
Lets try the obvious thing . . . r == k * k

assume(n > 0);

var k = 0;

var r = 0;

var s = 1;

while (k != n) {
invariant(r == k * k);

r = r + s;

s = s + 2;

k = k + 1;

}
assert(r == n * n);

I Initial (k == 0 && r == 0) => (r == k * k) YES
I Goal (r == k * k && k == n) => (r == n * n) YES
I Preserve (r== k*k && k != n) => (r + s ==

(k+1)*(k+1)) NO!

Finding an invariant that is preserved can be tricky. . .

Example 2

Finding an invariant that is preserved can be tricky. . .

. . . typically need to strengthen to get preservation

. . . that is, to add extra conjuncts

Example 2: Take 2
Strengthen I with facts about s

assume(n > 0);

var k = 0;

var r = 0;

var s = 1;

while (k != n) {
invariant(r == k*k && s == 2*k + 1);

r = r + s;

s = s + 2;

k = k + 1;

}
assert(r == n * n);

1. Initial

I (k == 0 && r == 0 && s==1) => (r == k*k && s ==

2*k + 1)
I YES

Example 2: Take 2
Strengthen I with facts about s

assume(n > 0);

var k = 0;

var r = 0;

var s = 1;

while (k != n) {
invariant(r == k*k && s == 2*k + 1);

r = r + s;

s = s + 2;

k = k + 1;

}
assert(r == n * n);

2. Goal

I (r == k*k && s == 2*k + 1 && k == n) => (r ==

n*n)
I YES

Example 2: Take 2
Strengthen I with facts about s

assume(n > 0);

var k = 0;

var r = 0;

var s = 1;

while (k != n) {
invariant(r == k*k && s == 2*k + 1);

r = r + s;

s = s + 2;

k = k + 1;

}
assert(r == n * n);

3. Preserve

(r == k * k && s == 2 * k + 1 && k != n)

=>

(r + s == (k+1) * (k+1) && s+2 == 2 * (k+1) + 1)

Yes

Adding Features To IMP

I Functions

I Pointers

IMP + Functions

data Fun = F String [Var] Com

data Com = ...

| Call Var Fun [Expr]

| Return Expr

data Pgm = [Fun]

IMP + Functions
A function is a big sequence of Com which does not modify
formals

function f(x1,...,xn){
requires(pre);

ensures(post);

body;

return e;

}

Precondition

I Predicate over the formal parameters x1,...,xn

I That records assumption about inputs

Postcondition

I Predicate over the formals and return value $result

I That records assertion about outputs

Modular Verification With Contracts

I Together, pre- and post- conditions called contracts
I We can generate VC (hence, verify) one-function-at-a-time
I Using just contracts for all called functions

Questions

1. How to verify each function with callee contracts?

2. How to verify Call commands?

Verifying A Single Function

To verify a single function

function f(x1,...,xn){
requires(pre);

ensures(post);

body;

return e;

}

we need to just verify the Hoare-triple

{pre} body ; $result := r {post}

Exercise How will you handle return sprinkled within body ?

Verifying A Single Call Command
To establish a Hoare-triple for a single call command

{P}
y := f(e)

{Q}

1. We must guarantee that pre (of f) holds before the call

2. We can assume that post (off‘) holds after the call

Hence, the above triple reduces to verifying that

{P}
assert (pre[e1/x1,...,en/xn]) ;

assume (post[e1/x1,...,en/xn, tmp/$result];

y := tmp;

{Q}

where tmp is a fresh temporary variable.

Caller-Callee Contract Duality

Note that at the callsite for a function, we

I assert the pre-condition
I assume the post-condition

while when checking the callee we

I assume the pre-condition
I assert the post-condition

This is key for modular verification

I Breaks verification up into pieces matching function
abstraction

Example
Consider a function

function binarySearch(a, v){
requires(sorted(a));

ensures($result == -1

|| 0 <= $result < a.length && a[$result] == v

);

...

}

where we want to verify

assume(sorted(arr));

y = binarySearch(arr, 12);

if (y != -1){
assert (arr[y] == 12)

...

}

Example: Precondition VC
Consider a function

function binarySearch(a, v){
requires(sorted(a));

ensures($result == -1

|| 0 <= $result < a.length && a[$result] == v

);

...

}

Replace call with assert and assume

//pre[arr/a, 12/v]

assert(sorted(arr));

//post[arr/a, 12/v, y/£result]

assume(y==-1

|| 0<=y<a.length && a[y] == 12);

if (y != -1){
assert (arr[y] == 12)

...

}

Verify as before. . .

Example: A Locking Protocol

Figure: Calls to lock and unlock Must Alternate

Example: A Locking Protocol

The lock and unlock functions

function lock(l){
assert(l == 0); //UNLOCKED

return 1; //LOCKED

}

function unlock(l){
assert(l == 1); //UNLOCKED

return 0; //LOCKED

}

State of lock encoded in value

What are the contracts ? Pretty easy. . .

Example: A Locking Protocol

The lock and unlock functions with contracts

function lock(l){
requires(l == 0);

ensures($result == 1);

assert(l == 0); //UNLOCKED

return 1; //LOCKED

}

function unlock(l){
requires(l == 1);

ensures($result == 0);

assert(l == 1); //UNLOCKED

return 0; //LOCKED

}

Example: Lock Verification
To verify this program

assume(l == 0);

if (n % 2 == 0) {
l = lock(l);

}
...

if (n % 2 == 0) {
l = unlock(l);

}

we just verify

assume(l == 0);

if (n % 2 == 0) {
assert(l == 0);

assume(tmpa == 1);

l = tmpa;

}
...

if (n % 2 == 0) {
assert(l==1);

assume(tmpb==0);

l = tmpb;

}

Adding Features To IMP

I Functions

I Pointers

IMP + Pointers

Let us add references to IMP

data Com = Deref Var Var -- x := *y

| DerefAsgn Var Expr -- *x := e

We find that our assignment rule does not work with aliasing

Assignments and Aliasing

As *x and *y are aliased, the following is valid

{x == y} *x = 5 {*x + *y == 10}

Assignments and Aliasing

In general, for what P is the following valid?

{P} *x = 5 {*x + *y == 10}

Intuitively, P is something like

*y == 5 || x = y

I In the first case, the two sum upto 10.
I In the second case, the aliasing kicks in.

Assignments and Aliasing

In general, for what P is the following valid?

{P} *x = 5 {*x + *y == 10}

But the Hoare-rule gives us

(*x + *y == 10)[5 / *x]

== (5 + *y == 10)

== (*y == 5)

Assignments and Aliasing

Uh oh! We lost one case! What happened?!

The substitution [e/x] only works when

I x is the only representation for the value in the predicate

Here, there were two possible representations

I *x

I *y

and we say possible because it depends on the aliasing.

I This is why aliasing is tricky

Verification With References

Key idea

Beef up our logic to handle memory as a monolithic entity

1. Extend logic theory (and SMT solver)

2. Extend Hoare-Rule

Note: Classical solution due to McCarthy

I It has its issues but thats another story. . .

http://fill.this.in

A Logic For Modelling References

1. Memory Variables M :: Mem

2. Select Operator for reading memory sel

3. Update Operator for writing memory upd

4. Axioms for reasoning about sel and upd

forall M, A1, A2, V.

A1 == A2 => sel(upd(M, A1, V), A2) == V

forall M, A1, A2, V.

A1 /= A2 => sel(upd(M, A1, V), A2) == sel(M, A2)

Updated Hoare-Rule for References

New rule for deref-read

{B [sel(M,y)/x]} x := *y {B}

New rule for deref-write

{B [upd(M,x,e)/M]} *x := e {B}

Assignments and Aliasing Revisited

In general, for what P is the following valid?

{P} *x = 5 {*x + *y == 10}

Or rather,

{P} *x = 5 {sel(M,x) + sel(M,y) == 10}

Now, with the new deref-write rule P becomes

TODO FIX THIS ˜˜˜˜˜{.javascript} A = [upd(M, x, 5)/M]
(x+y=10) = [upd(M, x, 5)/M] (sel(M,x) + sel(M,y) = 10) =
sel(upd(M, x, 5), x) + sel(upd(M, x, 5), y) = 10 = 5 +
sel(upd(M, x, 5), y) = 10 = sel(upd(M, x, 5), y) = 5 = (x = y &
5 = 5) || (x != y & sel(M, y) = 5) = x=y || *y = 5 ˜˜˜˜˜

Which is exactly what we wanted!

Deductive Verifiers

We have just scratched the surface

Many industrial strength verifiers for real languages

I Why3
I ESC-Java

And these, which you can play with online

I VCC
I Spec# 1 Spec# 2
I Verifast

All very impressive: Try them out and see!

Main hassle: writing invariants, pre and post. . .

http://krakatoa.lri.fr/jessie.html
http://kindsoftware.com/products/opensource/ESCJava2/
http://rise4fun.com
http://rise4fun.com/Vcc/lsearch
http://rise4fun.com/SpecSharp/Add
http://rise4fun.com/SpecSharp/BinarySearch
http://rise4fun.com/VeriFast/list%20reverse

