
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Dataflow Analysis for Concurrent Programs
using Data-race Detection

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

by

Jan Wen Voung

Committee in charge:

Professor Ranjit Jhala, Co-Chair
Professor Sorin Lerner, Co-Chair
Professor William G. Griswold
Professor Andrew B. Kahng
Professor Todd Millstein

2010

Copyright

Jan Wen Voung, 2010

All rights reserved.

The dissertation of Jan Wen Voung is approved, and it

is acceptable in quality and form for publication on mi-

crofilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2010

iii

DEDICATION

For baba, mama, and gor gor (big brother).

iv

EPIGRAPH

Greg Ostertag is one of the finest centers

in the history of Western Civilization.

— Bill Walton

Making something variable is easy.

Controlling duration of constancy is the trick.

— Alan J. Perlis

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

Acknowledgements . xi

Vita and Publications . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Approach of this Dissertation 3
1.2 Factoring out the Concurrency Analysis 3
1.3 Scalable Data Race Detection 5
1.4 Evaluation of Call-graph Construction 6
1.5 Contributions and Outline 7

Chapter 2 Radar: Dataflow Analysis for Concurrent Programs 9
2.1 Overview of Radar . 9

2.1.1 Sequential Non-Null Analysis 11
2.1.2 The Problem: Adjusting for Multiple Threads . . 12
2.1.3 Our Solution: Pseudo-Race Detection 13
2.1.4 Multithreaded Non-Null Analysis 14

2.2 The Radar Framework 17
2.2.1 Intra-procedural Framework 17
2.2.2 Impact of Unsoundness from the Race Detector . 20
2.2.3 Optimization: Race Equivalence Regions 22
2.2.4 Inter-procedural Framework 25
2.2.5 Limitations . 28
2.2.6 May Analyses and Backwards Analyses 31
2.2.7 Preservation of Monotonicity and Distributivity . 33

2.3 Summary . 35

vi

Chapter 3 The Relay Data-Race Detector 37
3.1 Motivation and Contributions 37
3.2 Overview of Relay . 39

3.2.1 Ingredients that Enable Modular Analysis 41
3.2.2 Putting the Ingredients Together 43

3.3 The Relay Algorithm 46
3.3.1 Symbolic Execution 46
3.3.2 Lockset Analysis 48
3.3.3 Guarded Access Analysis 50
3.3.4 Warning Generation 51

3.4 Optimizations . 52
3.4.1 SCC-wide Summaries for Accesses to Globals . . . 53
3.4.2 Optimized Warning Generation 54

3.5 Evaluation . 56
3.5.1 Implementation 57
3.5.2 Clustering Warnings and Counting Warnings . . . 58
3.5.3 Warning Categorization 59
3.5.4 Filters . 62
3.5.5 Other Filters Considered 64
3.5.6 Results . 66
3.5.7 Comparison to Other Race Detectors 68

3.6 Summary . 71

Chapter 4 Evaluation of Call-graph Construction Algorithms 73
4.1 Motivation . 73
4.2 Overview of Pointer Analyses 76

4.2.1 Dimensions of Difference 77
4.2.2 List of Algorithms 78

4.3 Results for Call-graph Precision 80
4.3.1 Experimental setup 80
4.3.2 Call-graph Metrics and Results 81
4.3.3 Recap . 89

4.4 Effect on Client Analyses 91
4.4.1 Inter-procedural Null Pointer Analysis 91
4.4.2 Results for Null-pointer Analysis 95
4.4.3 Results for Relay Race Detector 97
4.4.4 Recap . 98

4.5 Other Call-graph Algorithms and Studies 98

Chapter 5 Instantiating and Evaluating Radar 101
5.1 Putting Relay into Radar 101
5.2 Analyses Converted by Radar(Relay) 105
5.3 Evaluation . 106

vii

5.3.1 Alternative Instantiations and Bounds 107
5.3.2 Instantiations with Varying Call-graphs 108
5.3.3 Radar Benchmarks 108
5.3.4 Running Times and Memory Usage 109
5.3.5 Comparison of Precision 110

5.4 Summary . 115

Chapter 6 Related Work . 116
6.1 Datarace Detection . 116
6.2 Dataflow Analysis for Concurrent Programs 119

Chapter 7 Conclusions and Future Work 121
7.1 Experience and Idioms 122
7.2 Precision and Performance 122

Appendix A Properties of Relative Dataflow Analyses 124

Appendix B Function Pointer Slicing for WL 127
B.1 Evaluating Benefits of Slicing 127
B.2 Difficulties in Slicing . 127
B.3 Approach to Slicing . 129

Bibliography . 134

viii

LIST OF FIGURES

Figure 1.1: Radar inputs / outputs . 5

Figure 2.1: Producer-Consumer example. 10
Figure 2.2: Buggy version of Producer-Consumer. 12
Figure 2.3: Flag-based version . 16
Figure 2.4: Radar can dampen or amplify unsoundness in the race detector 22
Figure 2.5: Producer-Consumer with function calls 26
Figure 2.6: Simple cases where one thread may generate facts for another. . 30
Figure 2.7: Dataflow information can refine data-race detector. 31
Figure 2.8: Example May analysis: May be zero. 31

Figure 3.1: Callee expects an acquired lock and releases the lock (from Linux). 40
Figure 3.2: Caller acquires locks before calling function (continued example). 41
Figure 3.3: Symbolic analysis domain . 48
Figure 3.4: Relative lockset update . 49
Figure 3.5: Lockset flow function . 49
Figure 3.6: Rebinding formals to actuals. 50
Figure 3.7: Guarded access update. 51
Figure 3.8: Producing data-race warnings 52
Figure 3.9: Hierarchy of joined thread entry summaries. 55
Figure 3.10: Unprotected initialization before sharing. 60
Figure 3.11: Protected unsharing, followed by unprotected access 61
Figure 3.12: Non-lock-based synchronization 62
Figure 3.13: Conditional locking . 63
Figure 3.14: Relative proportions of categories in the manually labeled warn-

ings after each filter is applied. 64
Figure 3.15: Absolute number of manually labeled vs. unlabeled warnings

after each filter is applied. 65
Figure 3.16: Alternative relative lockset update (for re-entrant locks) 65
Figure 3.17: A real race found after applying filters. 68
Figure 3.18: Comparison of running times for Locksmith, LP-Race, and Relay 69
Figure 3.19: Limited context-sensitivity of Relay’s guarded access summaries. 70

Figure 4.1: Summary of analyses. SSA indicates that it is flow-insensitive
over an SSA representation, buying some level of flow-sensitivity. 79

Figure 4.2: Benchmark characteristics including number of indirect calls vs.
all calls and average number of contexts for WL 81

Figure 4.3: Max SCC size (normalized to Steensgaard) 82
Figure 4.4: Avg. SCC size (normalized to Steensgaard) 82
Figure 4.5: Max Fan-out (normalized to Steensgaard) 82
Figure 4.6: Avg. Fan-out (normalized to Steensgaard) 83

ix

Figure 4.7: Indirect call coverage of the dynamic test suite 84
Figure 4.8: How context-sensitivity reduces max SCC (for Icecast) 85
Figure 4.9: (a) Imprecise (b) Precise call-graph for Icecast 85
Figure 4.10: Example value flow witness (for a prefix of example 4.11) 86
Figure 4.11: Importance of either field-, or context-sensitivity (from Git) . . 88
Figure 4.12: Smallest of 3 large function pointer arrays in Vim 90
Figure 4.13: Illustrating example for a bottom-up null-safety analysis 91
Figure 4.14: Non-null dataflow analysis . 94
Figure 4.15: Time in seconds for client (normalized to max) 95
Figure 4.16: Memory used by client in MB (normalized to max) 96
Figure 4.17: Precision of client as % of dereferences shown safe (normalized

to max) . 96

Figure 5.1: Unsound constant analysis leads to non-termination 106
Figure 5.2: Unsound VBE analysis can cause non-termination 107
Figure 5.3: Radar Benchmark characteristics 109
Figure 5.4: Percentage of all dereferences proven safe by each instantiation

(top), and percentage of gap bridged (bottom). 110
Figure 5.5: Percentage of non-blobby dereferences proven safe (top), and

percentage of gap bridged (bottom). 111
Figure 5.6: Amount of dataflow information for constant analysis (top), and

percentage of gap bridged (bottom). Normalized to sequential
analysis. 113

Figure 5.7: Amount of dataflow information for VBE analysis (top), and
percentage of gap bridged (bottom). Normalized to sequential
analysis. 114

Figure B.1: Time and memory usage of WL with and without slicing . . . 128
Figure B.2: Example: Embedded structs complicate slicing 130

x

ACKNOWLEDGEMENTS

I must thank my two advisers, Ranjit and Sorin, for their many years of

many things. First, I want to thank you for giving me guidance and support

throughout projects that faced many difficulties along the way. I still remember

some of the weeks where I would bring my laptop into your offices (almost) daily to

show you the latest numbers and discuss where to go from there. Thank you also

for the gastronomical support (cakes, cookies, pies, and potato products), even

when deadlines were months away. The mix of energy, humor, and critical thought

that you two show daily has been inspiring.

I also want to thank Ranjit and Sorin for the amazing job they have done

in assembling the previously-non-existent programming systems / PL group in the

few years that they have been at UCSD. These are some of the brightest and most

energetic group of peers that I have had the pleasure of sharing (two!) offices with.

Thank you all for the great discussions in and out of class. Thanks for sitting

through those embarrassingly terrible first few practice talks, and inviting me to

your own practice talks. Preparing talks was one of the areas I really needed to

work on as a graduate student.

Individually, there are so many students I would like to thank with so many

words, so please excuse me if the mention appears brief. Thank you Ravi for all

the nights of burgers and burritos, and of course all the nights working on getting

Radar up and running for the first time. Ming, thanks for staying alive (that

pancreas or whatever thing ;)). Nathan, I hope you can keep your rasterbation

habits under control. Pat, I will miss your razor sharp wit. Thank you Ross having

the power to bring us Halloween in November, after the PLDI deadline. Thanks to

Zach and Anne for the nickname “Crusher” that has given me confidence in these

last years. Alden, Anshuman, Ganesh, Jack, Jeff, Joel, KV, Matus, Mike, Roy,

and Steve, it has been a pleasure sharing the occasional dinner table with you all,

among many other things. Thanks go out to the Ultimate players for keeping my

heart healthy. Finally, thank you Daniel for being a great roommate and for all of

your support, especially during year two. I hope to see you all again someday.

xi

Thanks go out to my committee members Andrew, Bill, and Todd for the

pointers and the great questions that have made this work more complete.

Outside of UCSD, I have to thank Franjo Ivancic, Vineet Kahlon, Sriram

Sankaranarayanan, and Aarti Gupta at NEC Labs and Shuvendu Lahiri, and Shaz

Qadeer at Microsoft for sharing insights related to my work as well as exposing

me to broader issues and research in the fields of concurrency, software verification

and reliability. It was a pleasure and joy working with you and learning from you.

Finally, I must thank my family for all of their love and support!

Papers included in this dissertation

Chapter 2 and Chapter 5 in part, have been published as “Dataflow Anal-

ysis for Concurrent Programs using Datarace Detection” by Ravi Chugh, Jan

Voung, Ranjit Jhala, and Sorin Lerner in PLDI 08: Proceedings of the 2008

ACM SIGPLAN conference on Programming Language Design and Implementa-

tion [CVJL08]. The dissertation author was the primary investigator and author

of this paper.

Chapter 3 in part, has been published as “Relay: Static Race Detection

on Millions of Lines of Code” by Jan Voung, Ranjit Jhala, and Sorin Lerner in

ESEC/FSE 07: Proceedings of the 6th joint meeting of the European software en-

gineering conference and the ACM SIGSOFT symposium on The Foundations of

Software Engineering [VJL07]. The dissertation author was the primary investi-

gator and author of this paper.

xii

VITA

2010 Ph. D. in Computer Science and Engineering,
University of California, San Diego
Dis: Dataflow Analysis for Concurrent Programs
using Data-race Detection
Advisers: Prof. Ranjit Jhala and Prof. Sorin Lerner

2007 M. S. in Computer Science and Engineering,
University of California, San Diego

2004 B. S. in Electrical Engineering and Computer Science,
University of California, Berkeley

PUBLICATIONS

S. Lahiri, S. Qadeer, J.P. Galeotti, J.W. Voung, T. Wies, “Intra-module Infer-
ence”, Computer Aided Verification, 493-508, 2009.

R. Chugh, J.W. Voung, R. Jhala, S. Lerner, “Dataflow Analysis for Concurrent
Programs Using Datarace Detection”, Programming Language Design and Imple-
mentation, 316-326, 2008.

J.W. Voung, R. Jhala, S. Lerner, “Static Race Detection on Millions of Lines of
Code”, Foundations of Software Engineering, 205-214, 2007.

D.C. Glaser, O. Feng, J.W. Voung, L. Xiao, “Towards an Algebra for Lighting
Simulation”, Building and Environment, 895-903, 2004.

D.C. Glaser, J.W. Voung, L. Xiao, B. Tai, S. Ubbelohde, J. Canny, E.Y. Do,
“Lightsketch: A Sketch-modelling Program for Lighting Analysis”, CAAD Futures.
371-382, 2003.

xiii

ABSTRACT OF THE DISSERTATION

Dataflow Analysis for Concurrent Programs
using Data-race Detection

by

Jan Wen Voung

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2010

Professor Ranjit Jhala, Co-Chair
Professor Sorin Lerner, Co-Chair

Dataflow analyses are a critical part of many optimizing compilers as well as

bug-finding and program-understanding tools. However, many dataflow analyses

are not designed for concurrent programs.

Dataflow analyses for concurrent programs differ from their single-threaded

counterparts in that they must account for shared memory locations being over-

written by concurrent threads. Existing dataflow analysis techniques for concur-

rent programs typically fall at either end of a spectrum: at one end, the analysis

conservatively kills facts about all data that might possibly be shared by multiple

threads; at the other end, a precise thread-interleaving analysis determines which

data may be shared, and thus which dataflow facts must be invalidated. The

former approach can suffer from imprecision, whereas the latter does not scale.

This dissertation presents a framework called Radar, which automatically

converts a dataflow analysis for sequential programs into one that is correct for

xiv

concurrent programs. With Radar, the vast body of work in designing dataflow

analyses for sequential programs can be reused in the concurrent setting.

Radar uses a race detection engine to kill the dataflow facts – generated

and propagated by the sequential analysis – that become invalid due to concur-

rent writes. This approach of factoring all reasoning about concurrency into a

race detection engine yields two benefits. First, to obtain analyses for code using

new concurrency constructs, there is no need to update each individual analysis;

instead, one need only design a suitable race detection engine for the constructs.

Second, it gives analysis designers an easy way to tune the scalability and precision

of the overall analysis by only modifying the race detection engine or swapping in

a different one.

This dissertation describes the Radar framework and its implementation

using a race detection engine called Relay. Relay is designed to be a push-

button solution, and is designed to analyze independent portions of programs in

parallel. Combined with Relay, Radar is capable of analyzing large C pro-

grams, including the Apache web server and a subset of the Linux kernel, in a

reasonable time budget. We compare the results of Radar to reasonable upper

and lower bounds, and show that it is effective in generating concurrent versions of

a null-pointer dereference analysis as well as several traditional compiler-oriented

dataflow analyses.

xv

Chapter 1

Introduction

Concurrency is a prevalent feature of almost all critical computing in-

frastructure, including operating systems, databases, internet-routing tables, and

banking systems. Furthermore, several recent trends in technology, such as the

widespread adoption of multi-core processors, web-service-oriented architectures,

and peer-to-peer systems, are making concurrency more important than ever in

mainstream programming.

Unfortunately, concurrent programming is hard. There are many ways for

multiple threads of execution to interleave, and it is difficult for a programmer to

mentally account for all these interleavings while coding. Furthermore, the execu-

tion paths that concurrent programs take are often affected by non-deterministic

factors like the choices made by the scheduler. As a result, it is hard to system-

atically generate and reproduce dynamic executions. This not only makes testing

especially ineffective in the face of concurrency, but it also makes concurrency

problems hard to debug. Finally, concurrent programming models, such as those

involving locks, require that all programmers follow a discipline throughout the

entire program. Such disciplines are too easily violated as features are added or

bugs are “fixed”.

Meanwhile, advances in static algorithms for program optimization and

error detection have shown that compiler technology can dramatically improve

the performance and reliability of computer systems. Optimizations like array

bounds checking elimination have allowed high-level languages to compete with

1

2

low-level languages while providing the increased security and benefits of mem-

ory safety ([Gup93, WWM07]). At the same time, error detection techniques

complement testing and code reviews to find vulnerabilities involving null-pointer

dereferences [DDA07], protocol violations [DLS02, BR02], SQL injection and cross

site scripting [XA06], integer overflow [BCC+03], and array bounds violations

[CH78, BCC+03, DRS03, WFBA00]. The success of this research can be seen in

the many commercialized offerings and its application to improving safety-critical

and foundational software.

Unfortunately, most of these algorithmic advances are limited to sequential

programs and often ignore the challenges introduced by concurrency, where the

need for static checking and potential for optimization are the greatest. Previous

attempts at adapting these techniques to concurrent programs have been limited.

The simplest method of handling concurrent programs, which avoids ex-

pensive analysis, is to either make conservative or optimistic assumptions about

concurrent threads. Optimizing compilers, which must preserve the semantics of

the input program, take the conservative approach. As an example, compilers for

memory safe languages like Java and C# do not attempt to eliminate array bounds

checks for global arrays [Det], assuming that their lengths can be updated by con-

current threads. On the other hand, static code analyses, whose goal is to report

bugs to programmers at compile time, may take the optimistic approach. Although

this approach may miss concurrency-related bugs, it does not introduce the false

alarms that come with conservative assumptions and overwhelm the programmer.

Alternatives to performing zero concurrency analysis include the following.

First, the programmer can perform the “analysis” and provide annotations (such

as volatile) that alert the compiler to the pieces of data that can be modified

by concurrent threads. The compiler can then safely ignore these pieces of data –

i.e., not perform any optimizations that depend on them. Unfortunately, this solu-

tion is error-prone as the programmer can mistakenly forget annotations. Secondly,

one can perform escape analysis to determine if a piece of data is modified by mul-

tiple threads [SR01]. However, the precision of these analyses is inherently limited

– even if the escape information is perfect, there are some critical pieces of shared

3

data about which the analysis can infer nothing with respect to synchronization,

making it impossible, for example, to statically prove the safety of dereferences of

shared pointers or the access of shared arrays. Third, to overcome this imprecision,

one can use custom concurrent analyses – tailored to specific models of concurrency

and synchronization – to infer specific kinds of information [GS93, KSV96, RR99].

These analyses can be precise, but one must painstakingly retool a new analysis

for each concurrent setting. Finally, one could use model checking to infer facts

by exhaustively exploring all thread interleavings [CCO02, FQ03, HJM04]. While

this is an extremely precise and generic approach, such analyses are unlikely to

scale due to the combinatorial explosion in the number of interleavings.

1.1 Approach of this Dissertation

This dissertation presents a framework for converting program analyses that

are designed for sequential programs to be sound in the concurrent setting. The

conversion process is simple, requiring little change to the original sequentially-

minded analysis. The framework contains a component for reasoning about con-

currency, and this component is a tunable parameter. Thus, users can decide on

the right balance between the opposing forces of precision and scalability. Through

experiments we show that this framework can scale to large code bases.

The analyses considered for conversion to the concurrent setting are those

that can be formulated as a dataflow analysis. Many analyses used in compiler

optimizations [ASU86] and static code analysis can be formulated as a dataflow

analysis.

1.2 Factoring out the Concurrency Analysis

The framework is based on two insights. First, the most common way for a

programmer to ensure a fact about a piece of shared data at any given point in a

thread is to ensure that no other thread can modify the data while the first thread

is still at that point. Our second insight consists of a way of using race detection to

4

determine when dataflow facts may be invalidated or killed by the actions of other

threads. A data-race occurs when multiple threads are about to access the same

piece of memory and at least one of those accesses is a write. Since data-races

are a common source of tricky bugs, several static analyses have been developed

to find races, or show their absence. Our insight is that to determine whether the

actions of other threads can kill a fact inferred about some data at some point, it

suffices to determine whether an imaginary read of the data at the point can race

with a write to that data by another thread.

We combine these insights in a framework called Radar that takes as input

a sequential dataflow analysis and a race detection engine, and returns as output

a version of the sequential analysis that is sound for multiple threads (Figure 1.1).

Radar combines our insights as follows. It first runs the sequential analysis. At

each program point, after the transfer function for the sequential dataflow analysis

has propagated facts to the point, Radar queries the race detector to determine

which facts must be killed due to concurrency. More precisely, for each propagated

fact, Radar asks the detector if an imaginary read, at that program point, of the

memory locations that the fact depends on can race with writes performed by

other threads. If the answer is yes (that is, if another thread may be concurrently

writing to one of the locations), then the dataflow fact is killed. If the answer is

no (that is, if no other threads can possibly be writing to these locations), then

the dataflow fact remains valid in the concurrent setting.

Radar’s approach of factoring all reasoning about concurrency into a race

detection engine is less precise than a custom analysis where the concurrency anal-

ysis may gain information from the dataflow analysis and vice versa. However, the

looser coupling of Radar yields two concrete benefits. First, to obtain analyses

for code using new concurrency constructs, one need only design a suitable race

detection engine for the constructs. Second, it gives analysis designers an easy way

to tune the scalability and precision of the overall analysis by only modifying the

race detection engine.

5

Race
Detector

Concurrent
Dataflow
Analysis

Sequential
Dataflow
Analysis

RADAR

Figure 1.1: Radar inputs / outputs

1.3 Scalable Data Race Detection

An important ingredient of Radar is a race detection engine. However,

we are not interested in just any race detector. We require that it be (1) static, in

that it runs before the program is executed, (2) sound, in that it should guarantee

that it finds all races, and (3) scalable, in that it should be effective on programs

comprising millions of lines of code.

The above three goals have previously never been achieved all at once. In

particular, while sound and static race detection techniques have proven to be ef-

fective, the largest programs they have ever been applied to are on the order of

tens of thousands of lines of C code [PFH06, Ter08] and little over a hundred thou-

sand lines of Java code [NAW06]. Furthermore, while some static race detection

algorithms run on millions of lines of code [EA03], they are extremely unsound,

and therefore would cause Radar to produce an unsound client analysis.

We take a step towards achieving all three goals by developing Relay, a

static and scalable algorithm that can perform race detection on programs as large

and complicated as the Linux kernel (which comprises 4.5 million lines of C code).

In Relay unsoundness is modularized to the following sources: (1) Relay ignores

reads and writes that occur inside blocks of assembly code; (2) Relay does not

6

handle corner cases of pointer arithmetic correctly; and in some cases (3) Relay

uses a per-file alias analysis to optimistically resolve function pointers. Sources (1)

and (2) are shared by many other research-level race detectors ([PFH06, Ter08]).

Unsoundness from function pointers can be made eliminated – Relay has hooks

to sound function pointer analyses (call-graph construction algorithms).

Besides serving as a component within the Radar framework, the evalu-

ation of Relay has also lead to a better understanding of the kinds of program

patterns that can make a race detector imprecise. More importantly, we have

designed several filters to estimate the prevalence of each pattern. Each filter is

targeted to a specific pattern, and so the number of warnings removed by each fil-

ter is an estimate. This evaluation of Relay allows designers of future data-race

detectors to focus their efforts on aspects with the greatest impact.

1.4 Evaluation of Call-graph Construction

Relay and many other inter-procedural analyses are structured such that

mutually recursive functions – strongly connected components (SCCs) in a pro-

gram’s call-graph– are analyzed together. A problem is that imprecise function

pointer analysis can create artificially large SCCs in a program’s call-graph. This

can force Relay and Radar to analyze tens of thousands of functions at once, in

large million-line programs like the Linux kernel.

This scalability wall due to function pointers led to further investigation

of call-graph construction algorithms, in an attempt to answer the following three

questions. First, what is the best precision that can be achieved from known call-

graph construction algorithms? Although call-graphs constructed using Steens-

gaard are imprecise, we do not know how much more precise of a call-graph can

be obtained while still being capable of processing large code bases. Second, if one

call-graph construction algorithm is in fact more precise than another, what aspect

of the analysis gives the greatest improvement? Finally, the third question is how

does the precision of a call-graph affect the precision of clients such 1Relay?

This dissertation contains an experimental evaluation of a wide spectrum

7

of call-graph construction algorithms on a number of large C benchmarks with the

goal of answering the above questions. In particular, we are interested in measuring

how different analysis choices, such as unification vs. inclusion, flow-insensitive vs.

sensitive, field-insensitive vs. sensitive, context-insensitive vs. sensitive, affect the

quality of the computed call-graph, the quality of the results produced by a client

analysis, and the scalability of the client analysis. In the process, we also devised a

method of restricting a context-sensitive, flow-sensitive, and field-sensitive pointer

analysis [WL95] to function values, in the context of C programs, so that it is

applicable to larger code bases.

1.5 Contributions and Outline

To sum up, the main contributions of this dissertation are as follows.

• We have designed a framework called Radar that automatically converts

a sequential dataflow analysis into a concurrent one using a race detection

engine (Chapter 2).

• We have developed a race detection engine called Relay that scales to mil-

lions of lines of C code by exploiting modularity and parallelism (Chapter 3).

• Using Relay we were able to find code patterns on which race detectors

may find difficult to analyze precisely. We then developed filters to remove

false warnings related to each pattern as well as estimate the prevalence of

each pattern (Chapter 3).

• We have compared a large range of call-graph construction algorithms (based

on different pointer analyses). This is done to better understand which of

the trade-offs made by the different pointer analyses are most important to

the precision of the generated call-graph (Chapter 4). This study is done on

larger code-bases (where function pointers may be used more heavily) and

with more advanced pointer analyses than previous studies.

8

• We have measured how the precision of a generated call-graph affects the pre-

cision and scalability of inter-procedural dataflow analyses including Relay

and clients of Radar (Chapter 4).

• We have instantiated the Radar framework with Relay, the result we

call Radar(Relay). We then use Radar(Relay) to transform several se-

quential dataflow analyses into concurrent dataflow analyses. The analyses

converted by Radar(Relay) achieve good precision relative to some appro-

priate upper and lower bounds. Furthermore, we find that Radar(Relay)

easily scales to hundreds of thousands of lines of code (Chapter 5).

Finally, Chapter 6 covers related work for Radar and Relay while Chap-

ter 7 concludes the paper and discusses possible future work.

Appendices. Details on the monotonicity and distributivity of dataflow analyses

used in this dissertation are presented in Appendix A. An approach to restricting

the Wilson and Lam pointer analysis [WL95] to function pointer values (for the

purposes of call-graph construction) is discussed in Appendix B.

Chapter 2

Radar: Dataflow Analysis for

Concurrent Programs

This chapter describes Radar, a framework for converting dataflow anal-

yses from the sequential setting to the concurrent setting. We begin with an

overview built around an example to give some intuition behind Radar and how

it works. We also use this example to compare Radar to other approaches, at a

high level. Section 2.2 describes the framework more formally and in more detail.

The framework is parameterized by several components, but how the framework

can be instantiated is left to a later chapter (5).

2.1 Overview of Radar

We begin with an overview of our technique using some simple examples.

First, consider the multithreaded program shown in Figure 2.1, which executes a

single copy of the Producer thread and a single copy of the Consumer thread. There

is a shared, acyclic list of structures named bufs, and a shared performance counter

perf ctr. To enable mutually exclusive list access, there is a lock buf lock which

is initially “unlocked”, i.e., not held by any thread. The Producer (respectively

Consumer) thread has a local reference px (respectively cx) used to iterate over

the list bufs.

The Producer thread iterates over the cells in the list bufs. In each iter-

9

10

buffer_list *bufs;
lock buf_lock;
int perf_ctr;

Adjusted
Analysis

φ
φ

px
px

thread producer1(){
P0: px = bufs;
P1: while (px != NULL){
P2: lock(buf_lock);
P3: px->data = new();

y

px

px->data,px
px->data,px

P3: px >data new();

P5: perf_ctr++;
P6: t=produce();

px->data,px
px->data,px
px->data,px

P8: *px->data = t;
P9: unlock(buf_lock);
PA: px = px->next;

}

φ
φ
φ

cx

thread consumer1(){
perf_ctr = 0;

C0: cx = bufs;
C1: while(cx != NULL){
C2: lock(buf lock);

}

cx
cx

cx->data,cx
cx->data,cx

cx

C2: lock(buf_lock);
C3: if(cx->data != NULL){
C4: consume(*cx->data);
C5: cx->data = NULL;
C6: cx = cx->next;

}
φ

}
C7: unlock(buf_lock);

}

Figure 2.1: Producer-Consumer example.

ation, it acquires the lock buf lock protecting the cell, and resets the px->data

to a new buffer initialized with the value 0 that will hold the data that will be

produced. Next, it obtains the value, via a call to produce and once it is ready,

the producer writes the value into ∗px->data and moves onto the next cell.

The Consumer thread iterates over the cells in the list bufs. In each it-

eration, it acquires the lock buf lock and if the pointer cx->data is non-null, it

consumes the data, resets the pointer to free the buffer, and moves to the next cell

in the list. Finally, the consumer releases the lock.

We assume that the shared list contains no cycles and that it starts off with

all the data fields set to null. Thus, the net effect of having the Producer and

Consumer running in parallel is that the producer walks through the list setting the

data field of each individual cell, and the consumer trails behind the producer, using

the data field in each cell and resetting it to null. Finally, notice the Consumer

thread initializes perf ctr without holding any locks, and so the initialization

races with the increment operation at P5 in the Producer thread. However, we

shall assume that the programmer has deemed that the race is benign as it is on

an irrelevant performance counter.

11

2.1.1 Sequential Non-Null Analysis

Suppose we wish to statically determine whether any null-pointer derefer-

ence occurs during the execution of the program in Figure 2.1. To this end, we

could perform a standard sequential dataflow analysis, using flow facts of the form

NonNull(l) stating that the lvalue l is non-null, and flow functions that appropri-

ately generate, propagate, and kill such facts using guards and assignments.

Let us assume that new() returns a non-null pointer to a cell initialized with

0. The set of facts in the fixpoint solution computed by this analysis is shown on

the left in Figure 2.1 (for the moment, ignore the line crossing out a fact on the

last line). At points P0 and P1, every lvalue may be null. At P2 and P3 px is non-

null, and everywhere else, the sequential analysis determines that the lvalues px

and px->data are non-null. Thus, the analysis determines that at each program

point where a pointer is dereferenced, the pointer is non-null, and so all of the

dereferences are safe.

Sequential analysis is unsound, even without data-races. In this case,

the above conclusion is sound: there are indeed no null-pointer dereferences in the

program. In general, however, a sequential non-null dataflow analysis may actually

miss some null-pointer dereferences. As an example, consider a scenario where the

programmer who wrote Figure 2.2 mistakenly uses the intuition that the system

is safe as long as there are no data-races on any of the shared cells. Thus, to

improve the performance of the program from Figure 2.1, the programmer writes

the modified version of the Producer thread shown in Figure 2.2, where buf lock

is temporarily released while the data is being produced to allow the Consumer

thread to concurrently make progress. The resulting system has no races, and so

the programmer may think that the system is safe.

However, this intuition turns out to be incorrect, and in fact the program-

mer has actually introduced a null-pointer bug, even though there are no races.

This is because after the producer thread has initialized px->data and released the

lock, the consumer can acquire the lock and reset the pointer. When the producer

thread re-acquires the lock after storing the data temporarily in t, the dereference

at P8 can cause a crash because the pointer is null.

12

Adjusted
Analysis

buffer_list *bufs;
lock buf_lock;
int perf_ctr;

φ
φ

px
px

y
thread producer1(){
P0: px = bufs;
P1: while (px != NULL){
P2: lock(buf_lock);
P3: px->data = new();px

px->data,px

px->data,px
px->data,px

P3: px >data new();
P4: unlock(buf_lock);

P5: perf_ctr++;
P6: t=produce();

px->data,px
px->data,px
px->data,px
px->data,px

P7: lock(buf_lock);
P8: *px->data = t;
P9: unlock(buf_lock);
PA: px = px->next;

}

φ
φ
φ

cx

thread consumer1(){
perf_ctr = 0;

C0: cx = bufs;
C1: while(cx != NULL){
C2: lock(buf lock);

}

cx
cx

cx->data,cx
cx->data,cx

cx

C2: lock(buf_lock);
C3: if(cx->data != NULL){
C4: consume(*cx->data);
C5: cx->data = NULL;
C6: cx = cx->next;

}
φ

}
C7: unlock(buf_lock);

}

Figure 2.2: Buggy version of Producer-Consumer.

Unfortunately, even though the new program has a null-pointer bug, the

sequential analysis returns exactly the same solution as for the original program

(shown on the left in Figure 2.2). That is, at each point the same lvalues are

deemed to be non-null, and thus the sequential analysis would not discover the

null-pointer bug.

2.1.2 The Problem: Adjusting for Multiple Threads

To address the above problem, we want to automatically convert a sequen-

tial dataflow analysis into one that is sound in the presence of multiple threads.

Doing this in a way that is also precise is not trivial.

Consider for example the simple solution of running an escape analysis, and

keeping only NonNull facts for those lvalues that do not escape the current thread.

The px->data field escapes the current thread, so the analysis would never infer

NonNull(px->data). Although this solution makes the analysis sound in the face

of concurrency (and in particular, it would find the bug in Figure 2.2), it also

13

makes the analysis imprecise: the resulting concurrent analysis would not even be

able to show that the original program from Figure 2.1 is free of null-pointer bugs.

Alternatively, one may be tempted to run independent sequential analyses

over blocks that are atomic in the sense of [Lip75, FQ03] and conservatively kill

facts over shared variables at atomic block exit points [CR06]. Intuitively, a block

is atomic if for each execution of the operations of the block where the operations

are interleaved with those of other threads, there exists a semantically equivalent

execution where the operations of the block are run without interleaving. Unfor-

tunately, the body of the Producer loop from Figure 2.1 is not atomic because of

the benign race on the performance counter perf ctr. This race splits the body

of Producer into multiple atomic blocks – the statements before, at, and after the

racy increment. Thus, such an analysis would kill the NonNull(px->data) fact at

P5, and would be too imprecise to prove that the program from Figure 2.1 is free

of null-pointer bugs.

2.1.3 Our Solution: Pseudo-Race Detection

We now describe our solution to this problem, which allows us to leverage

existing race detection engines to build a sound concurrent analysis that is strictly

more precise than the previously mentioned simple approaches. As discussed in

Section 6, race detection is a well-studied problem. For programs using lock-based

synchronization, there are scalable race detectors that infer the sets of locks that

protect each shared memory location and produce a race warning if two threads

access a shared cell without holding a common lock.

Adjust. Our first insight is that the facts that can soundly be inferred to hold in

the presence of multiple threads are the subset of facts established via sequential

analysis which are not killed by operations of other threads. Thus, the multi-

threaded dataflow analysis can be reduced to determining which facts inferred at

a particular point by the sequential analysis are killed by other threads. To deter-

mine if a fact can be killed by a concurrently executing operation of another thread,

it suffices to check if another thread can concurrently write any lvalue appearing

in the flow fact.

14

Pseudo-Races. Our second insight is that to perform this check we can insert

pseudo-reads corresponding to the lvalues in the flow fact at the program point,

and query a race detection engine to determine if any of the pseudo-reads can race

with a write to the same memory location. If such a pseudo-race occurs, then the

fact is killed; otherwise, the analysis deduces that the fact continues to hold at the

point even in the presence of other threads.

We have designed a framework called Radar that combines these two in-

sights to convert an arbitrary dataflow analysis for sequential programs into one

that is sound for multithreaded programs. During analysis, Radar uses the se-

quential flow function, but at each program point, it kills the facts over lvalues that

have pseudo-races at that point. This mechanism captures the following informal

idiomatic manner in which the programmer reasons about multiple threads. Each

thread performs some operation that establishes a certain fact in the programmer’s

head, e.g. a null check or initialization or an array bounds check. The programmer

can only expect that the fact continues to hold as long as other threads cannot

modify the memory locations. As a result, the programmer uses synchronization

mechanisms to “protect” the memory locations from writes by other threads as

long as the information is needed. Our technique of adjusting preserves only those

facts that the race detection engine deems to be protected from modification.

2.1.4 Multithreaded Non-Null Analysis

Let us consider the result of running the non-null analysis adjusted using

Radar to account for multiple threads. The lines in Figures 2.1 and 2.2 show

the facts generated by the sequential analysis that get killed during the adjusting

because of pseudo-races.

For both the correct and the buggy programs, in the Consumer thread

the adjusting has no effect because cx is thread-local, and due to the held lock

buf lock, there are no races on the pseudo-reads of cx->data at program points

C4 and C5.

Safety without Atomicity. In the correct Producer thread of Figure 2.1, the

adjusting process has no effect on facts over (only) the thread-local, and hence,

15

race-free lvalue px. The initialization at P3 causes the fact NonNull(px->data) to

get generated at program point P5. The adjusting does not kill this fact because the

lock buf lock held at P5 ensures there is no pseudo-race on px->data. Similarly,

the fact NonNull(px->data) generated at P3 is not killed by the adjusting at

P6 − P9, as the held lock buf lock ensures there are no races with the pseudo-

read on px->data at any of these points. As the lock is released at P9, the fact

NonNull(px->data) is killed by the adjusting at PA, as the pseudo-read can race

with the write in the Consumer thread. The adjusted analysis shows that the

dereferences in the program are safe, as px->data is soundly inferred to be non-

null at P8, where the dereference takes place. Notice the adjusted analysis can

soundly show that the program does not cause any null-pointer dereferences, even

though the producer thread, even the loop-body, is not atomic, due to perf ctr

which may be accessed without any synchronization. By preserving the facts that

are over protected lvalues, our adjusting technique can ignore atomicity “breaks”

caused by benign races on irrelevant entities like perf ctr. Thus, our Radar

adjusting technique is strictly more precise than running independent sequential

analyses over semantically atomic blocks.

Concurrency Errors without Races. In the buggy Producer thread of Fig-

ure 2.2, the facts over the thread-local lvalues are not killed by adjusting. However,

notice that although the sequential analysis propagates fact NonNull(px->data)

to P5, the adjusted version kills the fact since once the protecting lock is released at

P4, the pseudo-read of px->data at P5 can race with the write at C5 in a Consumer

thread. As this fact is killed at P5, it does not propagate in the adjusted anal-

ysis to P6 − P9, as happens in the sequential analysis. Thus, as a result of the

adjusting, the dereference at P8 is no longer inferred to be safe as px->data may

be null at this point! Thus, our technique finds an error caused by multithreading

that is absent from the sequential version of the program, even though there are

no data-races in the program except on the irrelevant perf ctr.

Beyond lock-based synchronization. Although we have used lock-based syn-

chronization to show how Radar works, our adjusting technique is applicable to

any synchronization regime for which race detection techniques exist, not just those

16

buffer_list *bufs;
int flag;
int perf_ctr;

Adjusted
Analysis

thread producer2(){
P0: px = bufs;
P1: while (px != NULL){
P2: while(px->flag !=0){};
P3: px->data = new();

φ
φ

px
px

y

p ();

P5: perf_ctr++;
P6: t=produce();

px

px->data,px
px->data,px

P8: *px->data = t;
P9: px->flag = 1;
PA: px = px->next;

}

px->data,px
px->data,px
px->data,px

thread consumer2(){
perf_ctr = 0;

C0: cx = bufs;
C1: while(cx != NULL){
C2: while(cx->flag==0){};

}

φ
φ
φ

cx C2: while(cx >flag 0){};
C3: if(cx->data != NULL){
C4: consume(*cx->data);
C5: cx->data = NULL;
C6: cx = cx->next;

}

cx
cx

cx->data,cx
cx->data,cx

cx
}

C7: cx->flag = 0;
}

φ

Figure 2.3: Flag-based version

based on locks. Consider a version of the Producer-Consumer example, shown in

Figure 2.3, which has finer-grained synchronization done with a flag field in each of

the structures in the cyclic list. Now, instead of acquiring the lock, the Producer

thread spins in a loop while px->flag is non-zero, which indicates that the data

in the structure has not yet been consumed. Once the flag is zero, the producer,

initializes the px->data field, writes the new data into it, and sets the px->flag

field to 1 indicating the data is ready. Dually, the Consumer thread spins while

the cx->flag field is zero, at which point it consumes the data and resets the

cx->data field. The result of the adjusted analysis for this program is identical

to the result for the fixed program of Figure 2.2, as a more general race detection

engine (e.g. one based on model checking [HJM04]) would deduce that there were

no pseudo-races on px->data in the locations P5− P9. Once the flag is set at P9,

the pseudo-read of px->data at PA can race with the write at C5 in a Consumer

thread, and so the adjust kills the fact NonNull(px->data) at PA.

In the rest of the chapter, we formalize the Radar framework and show

how it converts sequential analyses into concurrent ones.

17

2.2 The Radar Framework

This section presents the Radar framework for concurrent dataflow anal-

ysis in several steps. We start by presenting (in Section 2.2.1) a basic version

of Radar. Although this basic version lacks certain important features and op-

timizations (such as support for function calls), it illustrates the foundation of

our approach. We then gradually refine the basic framework (in Sections 2.2.3

and 2.2.4) by adding various optimizations and features. Section 2.2.5 discusses

known limitations of the approach. Section 2.2.6 describes in further detail how

Radar handles may analyses and backwards analyses. Finally, section 2.2.7 con-

tains proofs that Radar enjoys a few properties (e.g. it preserves monotonicity of

flow functions). Experimental evaluation of Radar is delayed to chapter 5, after

components of the framework are described in further detail.

Assumptions. We make two standard assumptions about the program being

analyzed and the system it is to be run on. First, we assume that for each proce-

dure, either we have its code or we have a summary that soundly approximates its

behaviors. As a result, our framework can analyze incomplete programs (e.g. pro-

grams that use libraries), since we can model the missing procedures using sum-

maries. Second, we assume that the shared memory system is sequentially consis-

tent [Lam77] in that memory operations are executed in the order in which they

appear in the program.

2.2.1 Intra-procedural Framework

We start by presenting a basic framework for generating an intra-procedural

concurrent dataflow analysis from an intra-procedural sequential dataflow analysis.

Sequential Dataflow Analysis. We assume a Control Flow Graph (CFG) repre-

sentation of programs, where each node represents a statement, and edges between

nodes are program points where dataflow information is computed. We use Node

to represent the set of all CFG nodes and PPoint the set of all program points.

In the program shown in Figure 2.1, the program point P3 is the point just before

executing the statement at P3.

18

We assume that the sequential dataflow analysis computes a set of dataflow

facts at each program point, and DataflowFact represents the set of all possible

dataflow facts. We assume that dataflow facts in DataflowFact are must facts,

which means that may information, if needed, has to be encoded by the absence

of must information. Thus, the domain of the sequential dataflow analysis is

D = 2DataflowFact , ordered as a lattice (D ,v,>,⊥,u,t), where v is ⊇, > is ∅, ⊥ is

DataflowFact , u is ∪, and t is ∩.

We also assume that the flow function is given as:

F : Node × D × PPoint → D

Given a node n, some incoming dataflow information d , and an outgoing program

point p for node n, F (n, d , p) returns the outgoing dataflow information. We

assume that if a node n has more than one incoming program point, the dataflow

information is merged using t before being passed to the flow function.

Examples of dataflow facts include: ConstValue(x, 5), which states that

x has the value of 5, MustPointTo(x, y), which states that x points to y, and

NonNull(p), which states that p is safe to dereference.

Requirement on Dataflow Information. As our framework does not depend

on the exact details of the DataflowFact set, analysis writers have the freedom to

choose the way in which they encode dataflow information. However, we do place a

requirement on the DataflowFact set: we assume the existence of a function Lvals

that returns the set of lvalues that a fact depends on. Intuitively, given a dataflow

fact f ∈ DataflowFact , Lvals(f) returns the set of lvalues that, if written to with

arbitrary values, would invalidate the fact f . We denote the set of all lvalues by

Lvals , and so the function Lvals has type DataflowFact → 2Lvals . As an example,

for the dataflow facts mentioned above, we would have:

Lvals(ConstValue(x, 5)) = {x}
Lvals(MustPointTo(x, y)) = {x}
Lvals(NonNull(p)) = {p}

Although we assume that the Lvals function is given, it can easily be computed

from the sequential flow function F if F handles “havoc” CFG nodes of the form

19

“l := ⊥”. In particular:

Lvals(f) = {l | l ∈ Lvals ∧ f /∈ F (“l := ⊥”, {f },)}

Concurrent Dataflow Analysis. We capture the way in which concurrency

affects the sequential dataflow analysis through a function ThreadKill : PPoint ×
Lvals → Bool . Given a program point p and an lvalue l , ThreadKill(p, l) returns

whether or not l may be written to by concurrent threads when the current thread

is at program point p. The ThreadKill function, which we will define later in terms

of a race detection engine, is at the core of our technique: it allows Radar to kill

dataflow facts that are made invalid by concurrent writes.

Given the sequential flow function F and the ThreadKill function, we define

FAdj , the flow function for the concurrent analysis:

FAdj (n, d , p) = {f | f ∈ F (n, d , p) ∧
∀l ∈ Lvals(f) . ¬ThreadKill(p, l)}

This adjusted flow function essentially propagates dataflow facts that are

produced by the original flow function F and that are not killed by any concurrent

writes.

Adjusting via Race Detection. The key contribution of our work lies in the

way in which we use a race detection engine to compute ThreadKill . As a result,

we need a way to abstract the race detection engine. We achieve this through

a function RacyRead : PPoint × Lvals → Bool , which behaves as follows: given

a program point p and an lvalue l , RacyRead(p, l) returns true if a read of l at

program point p would cause a race.

Soundness. For our framework to be sound, the race detection engine must

be sound, in the sense that if there really is a race, then RacyRead must re-

turn true (but RacyRead can also return true in cases where there is no race).

To formalize this soundness property, we assume a perfect race detection oracle

RealRace : PPoint × Lvals → Bool , such that RealRace(p, l) returns true exactly

when there is an execution in which a read of l at p would cause a race. The follow-

ing requirement states that the race detection engine RacyRead must approximate

20

the oracle RealRace:

∀p ∈ PPoint , l ∈ Lvals .

RealRace(p, l)⇒ RacyRead(p, l)
(2.1)

Having a sound race detection engine, the ThreadKill function can then be

defined as:

ThreadKill(p, l) = RacyRead(p, l)

This basic definition of ThreadKill expresses the key insight behind the Radar

framework, which is that pseudo-races can be used as a way of determining when

concurrent writes could happen.

Instantiation Requirements: To instantiate the basic Radar framework, one

needs to provide a race detection engine RacyRead : PPoint × Lvals → Bool that

satisfies the soundness property (2.1).

2.2.2 Impact of Unsoundness from the Race Detector

In practice there may be unsoundness in the data-race detector due to errors

in implementation, designs based on assumptions over the target language that

hold for most programs but not all, or trade-offs made between soundness and run-

time performance. We would like to understand how Radar transfers unsoundness

in the data-race detector to the generated concurrent dataflow analysis, if at all. A

useful measure of unsoundness in the dataflow would be based on the client of the

dataflow analysis. For example, instead of counting the existence of NonNull(l)

fact that is untrue, we only count that existence as an unsoundness if it results in

a mis-classification of a pointer dereference as safe versus unsafe.

How Radar transforms unsoundness in the data-race detector to the con-

verted concurrent dataflow analysis depends on the sequential dataflow analysis

and the program being analyzed. One cannot say that Radar will uniformly

“amplify” or “dampen” unsoundness.

A data-race detector may be unsound in many ways. Instead of enumer-

ating all possible ways that it can be unsound, we can measure unsoundness by

21

comparing the result of RacyRead against the oracle RealRace. To see how trans-

lation of unsoundness depends the sequential dataflow analysis we must consider

whether or not a pseudo-read is inserted at all. A race detector is unsound on a

particular program location p and lvalue l if whenever a pseudo-read is queried

RealRace(p, l) and result is true, RacyRead(p, l) responds with false. Given this

unsoundness we can perform the following case analysis:

• Case No Pseudo-Read: This is the case where the dataflow analysis does

not insert a pseudo-read for an lvalue l at location p. An example of this is

in Figure 2.2 where perf ctr is an integer variable and therefore irrelevant

to a Non-Null client dataflow analysis. In this case, RADAR will dampen

the unsoundness.

• Case Pseudo-Read: This is the case where the dataflow analysis will insert

a pseudo-read for lvalue l at location p. The result depends on the program.

Consider the following sub-cases.

• Sub-Case Irrelevant: In this sub-case, the program is structured such

that the client of the dataflow analysis does not rely on the soundness of the

dataflow-fact. A missed race is irrelevant and again Radar will dampen the

unsoundness. An example of this is shown on the left of Figure 2.4. In the

example, it is possible that there is a race at location L, but this is irrelevant

since the program will check again if the pointer is or not, at location L2.

• Sub-Case Relevant: In this sub-case, the program is structured such that

the client of the dataflow analysis does rely on the dataflow-fact. A missed

race is relevant and, depending on the data-dependencies present in the pro-

gram, RADAR may amplify the unsoundness. The example on the right of

Figure 2.4 shows that a single missed data race will result in n mis-categorized

dereferences (in the example, each foo i dereference t).

22

if (p != null) {

L: lock(l);

L2: if (p != null) {

use (*p);

}

unlock(l);

}

if (p != null) {

L: t = p;

foo_1(t);

foo_2(t);

foo_3(t);

...

foo_n(t);

}

Figure 2.4: Radar can dampen or amplify unsoundness in the race detector

2.2.3 Optimization: Race Equivalence Regions

The basic Radar framework from Section 2.2.1 performs a race check at

each program point for each lvalue that the dataflow facts depend on. This can

lead to a large number of race checks, in the worst case n × m, where n is the

number of program points and m is the number of lvalues. To reduce this large

number of race checks, we partition program points into race equivalence regions.

Intuitively, a race equivalence region is a set of program points that have

the same raciness behavior: for each lvalue, either the lvalue is racy throughout

the entire region, or it is not racy throughout the entire region. It is not possible

for an lvalue to be racy in one part of the region and not racy in another part.

Race equivalence regions reduce the number of race checks because by checking

the raciness of an lvalue at (any) one program point in a region, Radar can know

the raciness of the lvalue throughout the entire region.

Race Equivalence Regions. Formally, we define a partitioning of program

points into race equivalence regions as a pair (R,Reg), where R is a set of regions,

and Reg : PPoint → R is a function mapping each program point to a region. Two

program points p and p ′ are race equivalent if Reg(p) = Reg(p ′). We say a program

point p belongs to a region r if Reg(p) = r . Since all program points belonging

to a region are equivalent in terms of race detection, we change the interface to

the race detection engine to take a race equivalence region rather than a program

point:

RacyRead : R× Lvals → Bool

23

One possible implementation for this new RacyRead is to choose a unique repre-

sentative program point for each region, and when queried with a particular region

r and lvalue l , to return the result of the old RacyRead on r ’s representative point

and l .

Soundness. Instead of imposing a particular way of implementing RacyRead , we

define a soundness requirement for the new RacyRead engine and the Reg function:

∀p ∈ PPoint , l ∈ Lvals .

RealRace(p, l)⇒ RacyRead(Reg(p), l)
(2.2)

With this new abstraction for the race detection engine, the ThreadKill

function becomes:

ThreadKill(p, l) = RacyRead(Reg(p), l)

This new definition of ThreadKill reduces the number of race checks for

each lvalue from at most once per program point to at most once per region.

Instantiation Requirements: To instantiate the region-based Radar frame-

work, one needs to provide:

1. A race detection engine RacyRead : R × Lvals → Bool

2. A region map Reg : PPoint → R

such that RacyRead and Reg satisfy property (2.2). We now give two examples to

illustrate the idea of race equivalence regions.

Example: Global Locksets. One possible instantiation of regions uses locksets.

If we assume that there is a global set of locks Locks , we can define R = 2Locks ,

which means that a race equivalence region is simply a set of locks, and the program

points in the region are those program points at which the region’s locks are held.

Consider the buggy example from Figure 2.2. The Reg map is:

Reg(p) =


{buf lock} if p ∈ {P3, P4, P8, P9}

{buf lock} if p ∈ {C3, C4, C5, C6, C7}

∅ otherwise

24

which captures the set of program points where buf lock is held. The RacyRead

function is defined as:

RacyRead(r , l) = (l = px->data ∧ buf lock 6∈ r) ∨
(l = cx->data ∧ buf lock 6∈ r)

which captures the fact that an access of px->data in Producer or cx->data

in Consumer is racy at any point where the lock buf lock is not held, and that

all other accesses are non-racy. It is easy to check that the Reg and RacyRead

functions soundly approximate the possible races and pseudo-races. The adjusting

at program point P5 kills the fact NonNull(px->data) since

RacyRead(Reg(P5), px->data) = true

In the correct version from Figure 2.1, the absence of the unsafe lock oper-

ations changes the Reg map to:

Reg(p) =


{buf lock} if p ∈ {P3, P5, P6, P8, P9}

{buf lock} if p ∈ {C3, C4, C5, C6, C7}

∅ otherwise

reflecting the fact that in this program, buf lock is held throughout from P3 to

P9. The RacyRead function remains the same as before, as the synchronization

discipline is unchanged: as in Figure 2.1, buf lock is held at all points where the

buffer cells are written, namely P3, P8, and C5. In the fixed program, the adjusting

at p ∈ {P5, P6, P8} does not kill the fact NonNull(px->data), as for each of these

p

RacyRead(Reg(p), px->data) = false

Example: Predicates. Another possible instantiation of regions consists of hav-

ing R be a set of predicates Pred . A race equivalence region is then a predicate

from Pred , and the set of program points in the region are those program points

at which the predicate holds. The predicate instantiation is more general than the

lockset instantiation because we can encode a set of locks as a predicate stating

that all the locks in the set are held.

25

Recall the version of the Producer-Consumer program shown in Figure 2.3,

where the synchronization is performed via a flag field and not explicitly declared

locks. As shown in [HJM04], one can generalize race regions to an access predicate

describing the thread’s state. For the example in Figure 2.3, the Reg map is:

Reg(p) =


px->flag = 0 if p ∈ {P3, P5, P6, P8, P9}

cx->flag 6= 0 if p ∈ {C3, C4, C5, C6, C7}

true otherwise

The RacyRead function is defined as:

RacyRead(ϕ, l) = (l = px->data ∧ ϕ 6⇒ px->flag = 0) ∨
(l = cx->data ∧ ϕ 6⇒ cx->flag 6= 0)

Together, Reg and RacyRead capture the intuition that a read of px->data in

Producer (respectively cx->data in Consumer) is racy at any point where the

px->flag is zero (respectively cx->flag is zero).

2.2.4 Inter-procedural Framework

The Radar framework presented so far does not take function calls into

account. To understand how function calls affect our basic framework, consider the

example from Figure 2.5, which is a version of the Producer-Consumer example

where there is a call to a function foo right before the increment of perf ctr.

Let us assume that foo itself does not modify px->data, and that the

sequential dataflow analysis uses a simple “modifies” analysis to determine this. As

a result, the sequential dataflow analysis is able to propagate NonNull(px->data)

from P4 to P5 (that is to say, through the call to foo). However, in the face of

concurrency, even if foo itself does not modify px->data, a call to foo while other

threads are running can in fact lead to px->data being modified. In particular,

calling foo has the effect of unlocking buf lock and then re-locking it, which gives

concurrent threads an opportunity to modify px->data. As a result, the adjusted

flow function needs to kill NonNull(px->data) at P5, as well as any dataflow

information about px->data.

26

buffer_list *bufs;
lock buf_lock;
int perf_ctr;

Adjusted
Analysis

φ
φ

px
px

thread producer1(){
P0: px = bufs;
P1: while (px != NULL){
P2: lock(buf_lock);
P3: px->data = new();

y

px

px->data,px
px->data,px
px->data,px

P3: px >data new();

P4: foo();
P5: perf_ctr++;
P6: t=produce();

px->data,px
px->data,px
px->data,px

P8: *px->data = t;
P9: unlock(buf_lock);
PA: px = px->next;

}

th d 1(){

}

φ
φ
φ

foo(){
G0: unlock(buf_lock);

//do work
G1: lock(buf_lock);

φ
φ
φ

cx

thread consumer1(){
perf_ctr = 0;

C0: cx = bufs;
C1: while(cx != NULL){
C2: lock(buf_lock);
C3 if(>d t ! NULL){cx

cx->data,cx
cx->data,cx

cx

φ

C3: if(cx->data != NULL){
C4: consume(*cx->data);
C5: cx->data = NULL;
C6: cx = cx->next;

}
7 l k(b f l k)φ C7: unlock(buf_lock);

}

Figure 2.5: Producer-Consumer with function calls

Unfortunately, with the definition of ThreadKill given so far, the adjusted

flow function would not do this. In particular, the adjusted flow function would

ask ThreadKill if px->data could be written concurrently at the program point

right after foo returns (which is P5). ThreadKill in turn would ask the race

detection engine if a read of px->data would cause a race at P5. The race detection

engine would answer back saying “no race” since by the time foo returns, the

lock protecting px->data would already have been re-acquired. As a result, the

information about px->data being non-null would incorrectly survive the adjusting

process.

The problem in the example above is that the execution of foo passes

through a region that does not hold buf lock, which allows concurrent threads to

modify px->data, and callers of foo must take this into account. More broadly,

the problem is that the execution of a function can pass through a variety of

race equivalence regions, and callers need a way to summarize the effect of having

passed through all of the callee’s regions.

27

Summary Regions. To address this problem, we add to Radar a new function

called SumReg : CS → R, which returns for each call-site an inter-procedural

summary region. This call-site-specific summary region is meant to approximate

the possible regions that the callee can go through when invoked at the given

call-site. We denote by CS the set of all call-sites, and we define the call-site of

a call node to be the CFG edge that immediately follows the call node (so that

CS ⊆ PPoint).

Soundness. Intuitively, for soundness we require that for every lvalue l , if a

read of l is racy at some program point transitively reachable during the call

made at cs , then the summary region for the call-site cs must be a region that is

racy for l . Thus, to formalize soundness in a context-sensitive manner, we extend

the perfect race detection oracle to RealRace : CS × PPoint × Lvals → Bool , such

that RealRace(cs , p, l) returns true exactly when there is an execution in which a

read of l at p while cs is on the callstack would cause a race. Let cs∗ be the set of

program points in the function being called at call-site cs and any of its transitive

callees. The soundness requirement for SumReg can be formally stated as:

∀cs ∈ CS , l ∈ Lvals .

[∃p ∈ cs∗ . RealRace(cs , p, l)]⇒
RacyRead(SumReg(cs), l)

(2.3)

Having defined SumReg and its soundness property, we can now define the

ThreadKill function as follows:

ThreadKill(p, l) = RacyRead(Reg(p), l) ∨
(RacyRead(SumReg(p), l) ∧ p ∈ CS)

Instantiation Requirements: To instantiate the inter-procedural version of the

Radar framework, one needs to provide:

1. A race detection engine RacyRead : R × Lvals → Bool

2. A region map Reg : PPoint → R

3. A summary map SumReg : CS → R

28

such that RacyRead and Reg satisfy property (2.2), and SumReg satisfies prop-

erty (2.3). We now go through the same two instantiation from Section 2.2.3, and

show how SumReg can be defined.

Example: Global Locksets. If we instantiate regions as locksets over a global

set of locks Locks , the summary of a function is the intersection of all the locksets

that the function goes through. As a result, in the example from Figure 2.5, the

SumReg function is defined as:

SumReg(P5) = ∅

since the unlock in foo causes the lockset to be empty at G1, and thus the inter-

section of all locksets in foo is empty. The Reg and RacyRead functions are the

same as in Section 2.2.3.

With these definitions, the adjusting process now correctly kills the fact

NonNull(px->data) at P5 , since, even though

RacyRead(Reg(P5), px->data) =false

we have

RacyRead(SumReg(P5), px->data) =true

which, combined with P5 ∈ CS , means

ThreadKill(P5, px->data) =true

Example: Predicates. If we use a set Pred of predicates for the race equivalence

regions, the summary of a function is the disjunction of all the predicates in the

function.

2.2.5 Limitations

The extension for inter-procedural analysis and the optimization of race

equivalence regions are certainly important for Radar to be realistic. One area

29

that has not yet been discussed is the precision of the framework itself (as opposed

to its components).

Non-semantic ThreadKill . It is possible that in some cases, ThreadKill is con-

servative even when RacyRead is perfectly precise (it is equivalent to RealRace).

Consider a slight change in the buggy Producer-Consumer example (Figure 2.2),

where the racy write to cx->data does not involve the assignment of null, but is

instead assigned the non-null address of a dummy sentinel. There is no longer a

null pointer violation because only non-null values are written to the data field.

However, the example is still buggy, as values can now be inadvertently written

through ∗px->data into the dummy sentinel.

For the case of the non-null dataflow problem it is possible to use the non-

nullness dataflow information that is present at the site of the write to improve

precision. However it is unclear if such increase in precision is useful, as shown in

the above example it can mask other bugs. Furthermore, the approach of using

the client’s dataflow information to better interpret racy writes does not apply

to all clients. For example, not all dataflow problems compute information that

can be interpreted when taken from the site of the racing write. For example, the

dataflow facts computed by the available expressions analysis would not clarify

how a possible racing write in one procedure may affect available expressions in

another procedure (for one, the analysis is intra-procedural).

Cross-thread Propagation of Facts. In addition ignoring semantic information

when deciding how to handle racing writes, Radar does not allow one thread to

generate dataflow facts for another thread. Figure 2.6 contains a few examples.

The first example shows that if a parent thread joins a child thread which sets a

global variable p to a non-null value before exiting, it is more precise to say that

p is non-null in the parent thread after the join. In general, this communication

can happen at any point in the lifetime of each thread (e.g. through the use of

condition variables). Such cases are not handled by Radar but are handled by

other frameworks that are limited to more structured concurrent programs (see

related work in chapter 6). However, it is not hard to imagine how to extend

Radar to at least handle the cases in figure 2.6.

30

int *p = null;

void foo(){

tid = spawn(&bar);

join (tid);

use(*p);

}

void bar(){

p = new int(1);

}

int *p = null;

void foo(){

p = new int(2);

spawn(&bar);

//...

}

void bar(){

use(*p);

}

Figure 2.6: Simple cases where one thread may generate facts for another.

Dataflow Facts for Pruning Races. The two previous limitations involve in-

formation that is available from a client dataflow analysis not being fully used or

propagated by part of the framework. This third limitation is similar and involves

the concurrency analysis, the race detection engine, not using all of the informa-

tion that may be available from the client dataflow analysis. Figure 2.7 contains

such an example, where we are concerned about the dereference on line p4. The

programmer intends that the allocation on line p2 should guarantee that p is non-

null. The sequential dataflow analysis will assert that fact and Radar will insert

a pseudo-read of p at lines p3 and p4. However, if Radar uses a lockset-based

data-race detector it will find that the pseudo-reads race with the write at line q3.

However, in no execution of the program does the write at line q3 actually occur.

If a dataflow analysis is able to derive a sound invariant that at the branch on q2,

the global variable is always non-null, and the data-race detector is able to use

that information, then it will be able to prune out that write and therefore prune

the race. However, deriving sound dataflow facts is the very problem that we are

trying to solve in Radar.

This lack of communication between the dataflow analysis and the con-

currency analysis in Radar is only a limitation if the data-race detector itself is

unable to prune such impossible execution paths or program interleavings. For ex-

ample, the non-lockset-based data-race engine based on model checking [HJM04]

31

Thread 1 Thread 2
p1: void foo(){

p2: p = new int(3);

p3: spawn(&bar);

p4: use(*p);

p5: }

q1: void bar(){

q2: if (p == null) {

q3: p = new int(3);

q4: }

q5: }

Figure 2.7: Dataflow information can refine data-race detector.

Thread 1 Thread 2
p1: void foo(){

p2: x = 1;

p3: spawn(&bar);

p4: print(10/x);

p5: }

q1: void bar(){

q2: x = 0;

q3: }

Figure 2.8: Example May analysis: May be zero.

would not need to rely on the dataflow analysis.

2.2.6 May Analyses and Backwards Analyses

May Analyses. In the introduction of the basic framework, it was suggested that

may analyses be computed by encoding the analysis as a must-not analysis and

checking for the absence of facts. There are two reasons for this besides clarity

of exposition. First, formulating a may analysis as the negation of a must-not

analysis makes it clear how to insert pseudo-reads based the dataflow facts at a

program point without implicitly encoding those lvalues into the lvals function

of the sequential dataflow analysis. Second, depending on how the analysis’s flow

function F handles “havoc” cfg nodes (l := ⊥), it may be the case that the

definition of FAdj would need to change such that racy writes generate facts instead

of killing facts.

Consider a “May be Zero” analysis in Figure 2.8, which is used to check if

there is a possible divide by zero at line p4. If one is to design such a may analysis,

there are at least two options.

32

The first option is based on a may analysis with a domain of MayBeZero(l)

facts. Suppose in this case that the analysis starts with a MayBeZero(x) (for the

uninitialized x). The flow function for the assignment x = 1 in thread one will kill

the MayBeZero(x) fact, and the analysis will be left with an empty set of facts. In

this case Lvals must be capable of conjuring up x absent any facts concerning x.

It is only if lvals can instruct Radar to insert a pseudo-read that a race can be

found with the write in thread two. Finally, based on the racing write, FAdj must

be capable of introducing the MayBeZero(x) fact prior to program point p4.

The second option is to use must not facts. In this case the assignment

x = 1 introduces a MustNotBeZero(x) fact after line p2. Then, Lvals will see

the MustNotBeZero(x) fact and return x to insert a pseudo-read for x. The

earlier definition of FAdj based on ThreadKill will be work as intended, and the

MustNotBeZero(x) fact will be killed.

Backwards Analysis. Two potential issues arise from the fact that Radar

can only detect potential concurrent writes. First, the writes are only potential,

as it is possible that the write will not occur in any execution of the program,

due to imprecision in the race detection engine. Second, Radar does not detect

concurrent reads. These two issues may be of extra concern when designing a

backwards directional analysis.

Let us take Liveness Analysis as an example of a may backwards analysis.

Liveness introduces facts whenever a variable is read and kills facts whenever they

are (surely) written to.

First, because the writes are only potential, a variable that may be live

can be inadvertently killed by Radar. To remedy this, Radar must model the

program as branching at each program point towards either the possible racy write

or into a path that skips that write. Given this more accurate model, the potential

racy write will kill a live variable along one branch, but along the other branch the

variable will still be live. Finally, because the confluence operator is ∪, the analysis

can retain the live variable. Thus, FAdj must be defined to use the confluence

operator supplied by the particular sequential analysis. Essentially, in the case of

may analyses FAdj = F , and in the case of must analyses FAdj is as defined earlier.

33

The second concern is that a variable may be live because of a read from

another thread. Luckily, Liveness and other dataflow analyses are only concerned

with reads executed by the current thread.

2.2.7 Preservation of Monotonicity and Distributivity

We conclude this chapter discussing some properties that the Radar frame-

work does enjoy.

Monotonicity is essential to the correctness and proof of termination for

any iterative dataflow algorithm. Monotonicity alone, however, does not guarantee

that the fixpoint solution is the precise meet-over-all-paths (MOP) solution. The

MOP solution is precise in the sense that the final information at a program point

is exactly the combination along all individual paths that can be taken to that

program point. Distributivity is the property that ensures that the fixpoint solution

from an iterative dataflow algorithm is in fact the MOP solution [KU77].

This section shows that Radar preserves any monotonicity and distributiv-

ity present in the client’s sequential flow function. In other words, if the sequential

flow function is monotonic (or distributive) then the adjusted flow function is still

monotonic (or distributive).

Alternate Notation. First, recall from section 2.2.1 that we assume that dataflow

facts in DataflowFact are must facts, giving us the domain D = 2DataflowFact and

the lattice (D ,v,>,⊥,u,t), where v is ⊇, > is ∅, ⊥ is DataflowFact , u is ∪, and

t is ∩.

Recall that given the sequential flow function F , the basic adjusted flow

function is defined as:

FAdj (n, d , p) = {f | f ∈ F (n, d , p) ∧
∀l ∈ Lvals(f) . ¬ThreadKill(p, l)}

For convenience, we will work with a curried version of the flow functions

where p and n are fixed (F (p,n) is the curried sequential flow function and FAdj
(p,n)

is the adjusted flow function). We can also alternatively define FAdj
(p,n) as a

34

composition of the functions F (p,n) and FilterRacyp : 2DataflowFact → 2DataflowFacts.

FAdj
(p,n)(d) = FilterRacyp(F (p,n)(d))

FilterRacyp(d) = {f | f ∈ d ∧ ∀l ∈ Lvals(f) . ¬ThreadKill(p, l)}

Preservation of Monotonicity. Now to show preservation of monotonicity,

we want to prove that given sets of dataflow facts A and B, if A v B ⇒
F (A) v F (B), then FAdj (A) v FAdj (B). If we show that FilterRacyp is a

monotone function as well, then we are done. Spelled out, we know F (p,n)(A) v
F (p,n)(B) from the sequential TF’s monotonicity, and if FilterRacyp is also mono-

tone, then FilterRacyp(F (p,n)(A)) v FilterRacyp(F (p,n)(B)), thus showing that

FAdj
(p,n)(A) v FAdj

(p,n)(B).

Monotonicity of FilterRacyp can be proved by contradiction. Assume A v
B and FilterRacyp(A) 6v FilterRacyp(B). Recall that v is defined as ⊇. Then

there exists a dataflow fact f in FilterRacyp(B) but not in FilterRacyp(A). If f

is in FilterRacyp(B), we know two things:

(a) f ∈ B and

(b) 6 ∃l ∈ Lvals(f) such that ThreadKill(p, l) is true.

For f to not be in FilterRacyp(A) means at least one of the two propositions

is true: (1) f 6∈ A, or (2) some lval l ∈ Lvals(f) satisfies ThreadKill(p, l). We

know that (2) cannot be true from f surviving FilterRacyp(B) (fact (b)). Thus

(1) must be true – f 6∈ A. However, this contradicts the assumptions (fact (a) and

the assumption that A v B implies that f ∈ A).

Preservation of Distributivity. To prove preservation of distributivity, we must

prove that for any sets of dataflow facts A and B, if F (p,n)(A t B) = F (p,n)(A) t
F (p,n)(B), then FAdj

(p,n)(AtB) = FAdj
(p,n)(A)tFAdj

(p,n)(B). The proof is simple

35

if we prove that FilterRacyp is distributive.

FilterRacyp(A tB)

= FilterRacyp(A ∩B)

= {f | f ∈ (A ∩B) ∧ ∀l ∈ Lvals(f) . ¬ThreadKill(p, l}
= {f | f ∈ A ∧ ∀l ∈ Lvals(f) . ¬ThreadKill(p, l}
∩ {f | f ∈ B ∧ ∀l ∈ Lvals(f) . ¬ThreadKill(p, l}

= FilterRacyp(A) ∩ FilterRacyp(B)

= FilterRacyp(A) t FilterRacyp(B).

Given that FilterRacyp is distributive we can then show that Radar preserves

distributivity.

FAdj
(p,n)(A tB)

= FilterRacyp(F (p,n)(A tB))

= FilterRacyp(F (p,n)(A) t F (p,n)(B))

= FilterRacyp(F (p,n)(A)) t FilterRacyp(F (p,n)(B))

= FAdj
(p,n)(A) t FAdj

(p,n)(B).

2.3 Summary

This chapter presented an overview of the Radar framework for converting

a sequential dataflow analysis into one that is sound in a concurrent setting. The

basic algorithm, an inter-procedural algorithm, and an optimization involving race

equivalence regions were all presented.

The main benefit of this approach is that all reasoning about concurrency is

cleanly separated out into a race detection engine. The race detection engine and

the sequential dataflow analysis modules can then be independently fine-tuned;

each module can be improved in the areas of precision or scalability, without

changing the other. We show how Radar can work with a scalable but imprecise

lockset-based race detector as well as a precise but non-scalable race detector

based on predicates. Furthermore, the sequential dataflow analysis does not need

to be modified if new concurrency constructs are introduced to the programming

language or environment – one need only modify the race detection engine.

36

A trade-off of this clean separation is that beneficial information from one

module (say, the sequential dataflow analysis) may not be fully communicated to

and utilized by the other module (say, the race detection engine).

Experimental evaluation is deferred to Chapter 5, after the other compo-

nents required for Radar are introduced.

Acknowledgments: Chapter 2 in part, has been published as “Dataflow Anal-

ysis for Concurrent Programs using Datarace Detection” by Ravi Chugh, Jan

Voung, Ranjit Jhala, and Sorin Lerner in PLDI 08: Proceedings of the 2008

ACM SIGPLAN conference on Programming Language Design and Implementa-

tion [CVJL08]. The dissertation author was the primary investigator and author

of this paper.

Chapter 3

The Relay Data-Race Detector

This chapter begins with an overview of the different components of Relay

and how they work, as illustrated through an example (Section 3.2). Section 3.3

presents the basic algorithm in more detail. Details on how to optimize the basic

algorithm are presented in Section 3.4. Finally, Section 3.5 evaluates Relay as

a standalone race detector. Part of the evaluation involves determining coding

idioms for which Relay is imprecise and estimating the prevalence of each idiom.

Such estimates can help prioritize the different areas in which to improve Relay.

In a later chapter (5), we evaluate the combination of Relay and the Radar

framework.

3.1 Motivation and Contributions

One of the requirements of Radar is a sound, static, and scalable data-

race detector. These three goals have previously never been achieved all at once.

In particular, while sound and static race detection techniques have proven to be

effective, the largest programs they have ever been applied to are on the order of

tens of thousands of lines of C code [PFH06, Ter08] and little over a hundred thou-

sand lines of Java code [NAW06]. Furthermore, while some static race detection

algorithms run on millions of lines of code [EA03], they are extremely unsound,

and therefore miss many errors.

We take a step towards achieving all three goals by developing Relay, a

37

38

static and scalable algorithm that can perform race detection on programs as large

and complicated as the Linux kernel (which comprises 4.5 million lines of C code).

In Relay, unsoundness is modularized to the following sources: (1) it does not

interpret assembly code (2) it does not handle corner cases of pointer arithmetic,

and (3) its inter-procedural analysis is dependent on a call-graph that may be

unsound (does not resolve all function pointer targets). Factors (1) and (2) are

shared by other data-race detectors for C code [PFH06, Ter08]. The third factor is

important but can be made sound – Relay does have hooks to sound call-graph

construction algorithms. We revisit the issue of call-graphs in Chapter 4.

The standard mechanism for preventing data races is to ensure that for each

shared lvalue, there exists a unique lock that is held whenever a thread accesses the

lvalue. Since only one thread can hold a lock at any given time, we can ensure the

absence of races. One family of algorithms for inferring whether such a lock exists

is that based on computing locksets. These algorithms determine either statically

[DS91, EA03, Ste93] or dynamically [SBN+97, CLL+02, YRC05] the set of locks

held by the program at every program point. If the intersection of the locksets

at each point the lvalue is accessed is non-empty then there are no races on the

lvalue. If the intersection is empty, the analysis conservatively reports that there

may be a race on the lvalue.

While static lockset based techniques have proven to be effective for race

analysis, there are significant hurdles that must be crossed to scale them to millions

of lines of systems code. First, it is difficult to tell which piece of memory a given

operation will actually affect. The lvalue being accessed need not be in global

scope — it may have been passed into the function as a parameter, and thus,

the actual memory accessed can only be determined by a careful, calling-context-

sensitive analysis. Second, for similar reasons, it is difficult to tell which locks

are held at each point, as it is hard to tell exactly what locks are acquired and

released by various operations as the locks may be derived from structures passed

in as parameters. As a result, it becomes hard to tell if the set of locks held at

two different accesses are the same, as the locks may have very different syntactic

names. Third, in low-level systems code, the acquisition and release of locks is

39

not syntactically nested (as is the case in Java). A lock may be acquired in one

function, the access may happen in a second function, and the lock may be released

in a third function. As a result, many modular type-based [FF00, BLR02] and

flow-insensitive [NAW06, NA07] approaches cannot be applied in this setting, and

instead a precise flow-sensitive approach is required.

The technical contribution of Relay is a technique for addressing the above

limitations. In particular, we introduce the concept of a relative lockset, which de-

scribes the changes in the locks being held relative to the function entry point.

These relative locksets allow us to summarize the behavior of a function indepen-

dent of the calling context. For example, the summary of a function whose formal

is x may say that the field x->f is accessed inside the function while holding all

locks that were held on entry, plus x->lock1, and minus x->lock2. The informa-

tion about this guarded access is not absolute — it is relative to the locks held at

the entry point, which allows Relay to plug the summary in while analyzing any

callers.

This switch to relative locksets, rather than absolute locksets, is the key to

scalability: relative locksets allow us to aggressively exploit modularity. In partic-

ular, Relay analyzes functions in isolation to compute summaries that capture

the behavior of a function for any calling context, and then it composes these

summaries to determine whether races exist. This leads to a bottom-up context-

sensitive analysis over the call-graph that scales to programs as large as the Linux

kernel. The modularity also enables easy parallelization. Because functions can

be analyzed independently, we can run our analysis of the Linux kernel using a

cluster of machines in about 5 hours, as opposed to the 72 hours it takes without

parallelization.

3.2 Overview of Relay

This section presents an overview of the Relay race detection algorithm

using the example code from Figures 3.1 and 3.2. The code in the figures are

simplified versions of two functions from the Linux kernel. Figure 3.1 shows the

40

airo_read_stats(ai) {

1: if (ai‐>pwr.ev) {

2: unlock(&ai‐>lock);

3: return;

 }

4: unlock(&ai‐>lock);

5: ai‐>stats.rx_p = vals[43];

}

L+ = {} L- = {}

L+ = {} L- = { ai->lock }

L+ = {} L- = { ai‐>lock }

w R

R

A

A

ai->pwr.ev {}, {} read
ai->stats.rx p {}, {ai->lock} write
vals[0] {},{ai->lock} read
Lvalue Relative Lockset Kind

Figure 3.1: Callee expects an acquired lock and releases the lock (from Linux).

function airo read stats, which takes as input a single parameter ai that is a

reference to a complex structure. Figure 3.2 shows the function airo thread,

which takes a pointer to a device structure d. The latter function is a thread entry

point, i.e., it is a function where some thread begins execution. In the sequel,

suppose that multiple threads can begin executing concurrently from this entry

point. The structure that d refers to is a shared structure — it may be accessed

outside the thread running airo thread, and thus, it can possibly be accessed by

multiple concurrently running threads. Similarly, because the vals array used on

line 5 is declared to be global, it can be accessed by different threads, and so it is

shared.

Locks are acquired and released by calling appropriate functions on the

lock arguments. Thus, in the code from Figures 3.1 and 3.2, we can deduce

(assuming that airo read stats is called only from within airo thread), that

the lock d->priv->lock is held (acquired in airo thread) whenever the lvalue

d->priv->pwr.ev is accessed (in airo read stats). Since line 1 is the only place

the lvalue is accessed, we can therefore conclude there are no races on the lvalue.

On the other hand, when d->priv->stats.rx p is written to on line 5, there is

41

airo_thread(d) {

6: dev = d;

7: ai = dev‐>priv;

8: lock(&ai‐>lock);

9: airo_read_stats(ai);

}

L+ = {} L- = { d‐>priv‐>lock }

L+ = { d‐>priv‐>lock } L- = {}

L+ = {} L- = { d‐>priv‐>lock }

R

A

A

L+ = {} L- = {}

d->priv {}, {} read
d->priv->pwr.ev {d->priv->lock}, {} read
d->priv->stats.rx p {}, {d->priv->lock} write
vals[0] {}, {d->priv->lock} read
Lvalue Relative Lockset Kind

Figure 3.2: Caller acquires locks before calling function (continued example).

no lock that is held, and so the write may cause a race, since two or more threads

could simultaneously perform the write.

3.2.1 Ingredients that Enable Modular Analysis

We devised a precise analysis that scales to millions of lines of code by

aggressively exploiting modularity i.e., by analyzing functions in isolation to com-

pute summaries that capture the behavior of the function independent of the calling

context, and then composing the summaries to determine whether races exist. In

particular, our algorithm for race analysis is built using the following ingredients.

1. Relative Locksets: A relative lockset at a location is a disjoint pair of

locksets (L+, L−) (resp. called the positive and negative locksets), which encodes

the difference between the locks held at the given location and the locks held at

the function entry location. Intuitively, the set L+ is the set of additional locks

that are definitely acquired on all executions from the entry to the location. The

set L− is the set of all locks that may have been released on some execution from

the entry to the location. It is important to remember that L+ is a must set and

that L− is a may set.

42

2. Guarded Accesses: A guarded access is a triple of an lvalue, the relative

lockset at the program location where the access takes place and the kind of access,

either a read or a write. The set of guarded accesses of a function is the set

of triples corresponding to accesses that may occur during the execution of the

function. Relay works by computing an over-approximation of the set of guarded

accesses of each thread entry point. Once this set is computed, Relay compares

pairs of guarded accesses whose lvalues may be aliased. For each such pair, Relay

determines if the intersection of the positive locksets is empty, and if so, reports a

race warning.

3. Function Summaries: To compute the guarded accesses for each thread

entry point, Relay builds the call-graph and traverses it in a bottom up manner,

computing the guarded accesses for each function along the way. To this end

Relay computes two summaries for each function. The first is a relative lockset

summary, which is the relative lockset of the exit location of the function. This

summary soundly approximates the effect the function has on the set of locks

held by the thread just before calling the function. The second is a guarded access

summary, which is a set of guarded accesses that includes the guarded accesses that

may occur during the execution of the function. Relay computes the summaries

in a bottom-up manner, plugging in the summaries of the callees at call-sites to

compute the guarded access summaries and relative lockset of the callers.

4. Symbolic Execution: In order for a summary to capture the behavior of a

function regardless of the calling context, the summary must be expressed in terms

of the formals of the function, or in terms of globals. In this way, the summary

can be instantiated at a call site by replacing formals in the summary with the

actuals passed in at the call site, thus producing information in the caller’s context.

As an example, for the airo thread function, we want to compute a summary

stating that d->priv->lock is held when d->priv->pwr.ev is accessed, not that

ai->lock is held when ai->pwr.ev is accessed. To build such summaries, one must

re-express accesses inside a function in terms of the globals and the formals. To

this end, Relay performs an intra-procedural symbolic execution that maps each

local lvalue to a value expressed in terms of the incoming values of formals, and

43

the incoming values of globals. With appropriate join operators to handle merge

nodes, we can handle loops while preserving termination.

3.2.2 Putting the Ingredients Together

The above are combined in the Relay modular race analysis tool as follows.

Relay processes functions bottom-up in the call-graph, starting with leaves, and

working its way up the call-graph. Relay repeatedly picks a function to analyze

amongst all the functions whose callees have been analyzed.

For each function being analyzed, Relay performs three analyses: first a

symbolic execution, second a relative lockset analysis, and third a guarded access

analysis. The symbolic execution is used to express the values contained in memory

locations in terms of the incoming values of the formals and the globals. This

symbolic information is required by the two subsequent analyses. The relative

lockset analysis is an iterative dataflow analysis that maintains a relative lockset

at each program point. For call sites, the analysis uses the summaries of callees to

compute the lockset after the call. Once a fixed point is reached, the relative lockset

computed for the function’s exit point becomes the relative lockset summary of

the function. After performing the relative lockset analysis on a function, Relay

runs a guarded access analysis on that same function. The guarded access analysis

maintains a monotonically increasing set A of guarded accesses. The analysis

iterates through all the statements in the function (in a flow-insensitive way),

accumulating in A the locations being accessed, along with the locks being held

during those accesses. The information about which locks are held at the access

points is provided by the results of the relative lockset analysis.

Consider the program comprising the two functions shown in Figures 3.1

and 3.2. Relay begins with the leaf function airo read stats. Initially, the

relative lockset at the entry point is the pair ({}, {}). The calls to unlock result

in the addition of ai->lock to the negative lockset of program points 3 and 5.

Because negative locksets are may sets, the negative lockset of the exit point is

the union of those of its predecessor program points 3 and 5, namely ai->lock.

Because positive locksets are must sets, the positive lockset is the intersection

44

of those of the predecessors, which is the empty set. Thus, the relative lockset

summary of the function is the pair: ({}, {ai->lock}). This summary states that

the airo read stats function does not acquire any locks, and it may release (in

fact in this case, it definitely does release) the ai->lock lock.

After computing the relative lockset information for airo read stats, Re-

lay iterates through the statements of airo read stats to find the guarded ac-

cess set of the function. There are three accesses in this function: the read of

ai->pwr.ev on line 1, with a relative lockset of ({}, {}); the read of the vals

array on line 5, with a relative lockset of ({}, {ai->lock}); and the write to

ai->stats.rx p with the same lockset. This information is collected in the guarded

access summary of the function, which is shown in the table of Figure 3.1 (the index

0 in vals[0] represents all array indices).

Next, Relay picks the function airo thread. The relative lockset for the

entry location is the same as for airo read stats, namely ({}, {}). The sym-

bolic execution tracks that at 7 the lvalue dev refers to the formal d, and that

at 8 the lvalue ai->lock refers to d->priv->lock. As a result, the relative lock-

set at 8 (just before the call to airo read stats) is ({d->priv->lock}, {}), in-

dicating that d->priv->lock was added since the entry point of the function.

Now the call to airo read stats is analyzed. The relative lockset summary

for airo read stats is ({}, {ai->lock}), and since the symbolic execution tells

us that ai is in fact d->priv, the instantiated summary in the caller’s con-

text is ({}, {d->priv->lock}). Updating the information from before the call

({d->priv->lock}, {}), with the effect of the call ({}, {d->priv->lock}) gives us

the information ({}, {d->priv->lock}) after the call. In particular, after the call,

we have lost the information we had previously about d->priv->lock being held,

because airo read stats releases that lock. Furthermore, we gain the informa-

tion that since the beginning of execution of airo thread, the lock d->priv->lock

may end up being released because of the call to airo read stats. Since the call

is the last statement in airo thread, the information after the call becomes the

relative lockset summary for airo thread.

Next Relay processes all the statements in airo thread to compute its

45

guarded access set. There is only one access in airo thread itself, namely the

read of dev->priv at line 7 (the write to ai is not recorded because ai is a local

stack variable). Using the symbolic information, this read access is recorded in the

guarded access summary (shown in the table of Figure 3.2) as an access to d->priv

with relative lockset ({}, {}). The other accesses in the guarded access summary

of airo thread are added when the call to airo read stats is processed. Since

the relative lockset of the ai->pwr.ev entry in the summary is ({}, {}) (i.e., no

locks were added or removed), the relative lockset for this access in the caller is

just the relative lockset at the call-site, ({d->priv->lock}, {}). For the other

two accesses in the summary of airo read stats, the negative lockset contains

ai->lock, which, after plugging in the actuals corresponds to d->priv->lock as

shown in the last two rows of the guarded access set shown in the figure.

Race Warnings. Once Relay has computed the guarded access summaries

for all functions that are thread entry points, it reports warnings for all pairs of

accesses, where the lvalues may be aliases, and whose positive locksets have an

empty intersection, and where at least one of the accesses is a write. Suppose that

a sound alias analysis shows that the lvalues corresponding to the accesses shown

on the table of Figure 3.2 have no other aliases. In this case, Relay reports that:

1. There are no races due to concurrent accesses to vals or d->priv as both

accesses would be reads.

2. There are no races due to concurrent accesses to d->priv->pwr.ev as the inter-

section of the positive locksets is non-empty.

3. There may be a race involving concurrent accesses to d->priv->stats.rx p

in different threads, as the intersection of the positive locksets is empty. The

accesses involved in this race are the access on line 5, but from two different

threads.

46

3.3 The Relay Algorithm

This section describes the race detection algorithm in detail. As outlined in

Section 3.2, our algorithm performs a bottom-up analysis that has three interact-

ing components: a symbolic execution (Section 3.3.1), an analysis that computes

lockset changes (Section 3.3.2), and an analysis that computes guarded accesses

(Section 3.3.3). After the bottom-up analysis has finished running, the results are

used to generate warnings (Section 3.3.4).

3.3.1 Symbolic Execution

Our symbolic execution analysis is a dataflow analysis that keeps track of

the values contained in memory locations in terms of the incoming values of the

formals and the globals. This analysis is fairly standard, and the details of the

symbolic execution are orthogonal to the contribution of our work, so we only

present an overview of our analysis here. The domains of the symbolic execution

are shown Figure 3.3. We use metavariable x ∈ Vars to denote formals and

globals, and metavariable p ∈ Reps to denote representative nodes which will

be explained later. The set Lvals of symbolic lvalues denotes the locations that

our symbolic execution analysis keeps track of; this includes formals, globals and

field/pointer accesses through these. We use ls ∈ 2Lvals to represent a set of lvalues.

The set SymVals of symbolic values denotes the values that our symbolic analysis

computes, and these include: ⊥, which means “not assigned yet”; >, which means

“any possible value”; i, which represents a constant integer; init(l), which denotes

the incoming value of lvalue l ; must(l), which represents a value that must point

to lvalue l ; and may(ls), which represents a value that may point to any of the

lvalues in ls . Finally, a symbolic execution map σ ∈ Σ is a function from symbolic

lvalues to symbolic values.

The symbolic execution keeps track of a symbolic map at each program

point, and this symbolic map is updated using flow functions. The flow function

for a simple assignment x := e evaluates e in the current map to a symbolic value,

and then updates x in the map. For assignments through pointers, namely ∗x := e,

47

the flow function evaluates x to a symbolic value v1 and e to a symbolic value v2.

Which lvalues are updated in the store depends on the value v1. For example, if

v1 is must(o), then only o is updated to the value v2. As another example, if v1

is may(ls), then all the lvalues in ls are updated to the value v2. The remaining

cases, not shown here, are very similar in nature.

Concurrent Modifications. When performing symbolic execution on a given

function, we must account for the effect that other threads may have on the state

of shared memory (the very problem we are trying to solve with Radar!). Instead

of using Radar at this point, we use a flow-insensitive pointer analysis (PTA) to

compute the set of locations that may escape the current thread, which means they

could potentially be accessed by another thread. Because PTA is flow-insensitive,

it already accounts for concurrent writes and doesn’t suffer from the same problem.

These shared lvalues are havocked (set to >) after each invocation of the symbolic

flow function. Essentially, we have manually performed the work of Radar to

obtain FAdj by using an escape analysis to answer RacyRead queries. This ap-

proach to handling inter-thread interference can be very conservative. However, it

retains full precision on non-escaping local variables which are the most important

locations to keep track of when re-expressing accesses in a function in terms of its

formal parameters. For example, on line 8 of Figure 3.2, our symbolic execution

is able to conclude that the lock being acquired is d->priv->lock because the

variables involved, namely dev on line 6 and ai on line 7, are non-escaping local

variables.

Handling Function Calls and >. Rather than generate function summaries for

the symbolic execution, we handle function calls in the same way as concurrent

modifications – by mapping modified lvalues to > (based on a mods analysis).

One issue is that, eventually, lvalues that are mapped to > will be deref-

erenced. If a pointer l with symbolic value > is ever dereferenced, we ask the

flow-insensitive pointer analysis (PTA) for a “representative node” for ∗l , which

can be used in later alias queries (during the symbolic execution pass as well as

during the data-race warning pass of Relay). Our implementation supports both

a field-insensitive Steensgaard’s analysis [Ste96a] and field-insensitive Andersen’s

48

formals, globals x ∈ Vars

PTA reps p ∈ Reps

symbolic lvalues l ∈ Lvals ::= x | x.f | p.f | (∗l).f
symbolic values v ∈ SymVals ::= > |⊥| i | init(l) |

must(l) | may(ls)

symbolic map σ ∈ Σ = Lvals → SymVals

Figure 3.3: Symbolic analysis domain

analysis [And94] as the PTA.

3.3.2 Lockset Analysis

After the symbolic execution has finished, Relay runs an analysis to com-

pute relative locksets held by a thread at each program point. A relative lockset

L in a function f is a pair (L+, L−), where the set L+ ⊆ Lvals represents the locks

that have definitely been acquired since the beginning of f , and the set L− ⊆ Lvals

represents the locks that may have been released since the beginning of the function

f . We denote by Locks = 2Lvals×Lvals the set of all relative locksets.

The lockset analysis is a dataflow analysis whose domain is the lattice

(Locks ,⊥,>,v,t,u), where the ordering is defined as:

• ⊥ = (Lvals , ∅), > = (∅,Lvals)

• (L+, L−) v (L′+, L
′
−) iff L′+ ⊆ L+ ∧ L− ⊆ L′−

• (L+, L−) t (L′+, L
′
−) = (L+ ∩ L′+, L− ∪ L′−).

• (L+, L−) u (L′+, L
′
−) = (L+ ∪ L′+, L− ∩ L′−)

The analysis runs bottom-up on the call-graph. After a function f has been

analyzed, its effect on locksets is stored as a summary LockSummary(f) ∈ Locks

that represents the relative lockset at the end of the function. For simplicity of

exposition, we assume that functions take only one parameter.

49

lockUpdate : Locks × Locks → Locks

lockUpdate
(
(L+, L−), (L′+, L

′
−)
)

=
(
(L+ ∪ L′+)− L′−, (L− ∪ L′−)− L′+

)
Figure 3.4: Relative lockset update

Flocks : s × Locks × PPoint → Locks

Flocks(call(e, a), L, p) =⊔
f∈targets(e)

lockUpdate(L,Rebind(LockSummary(f), f, a, p))

Flocks(s, L) = L

Figure 3.5: Lockset flow function

The flow function for the lockset analysis is shown in Figure 3.5. Because we

model lock and unlock operations as function calls, the only statements that modify

locksets are function calls e(a). In particular, the lock(l) function is modeled

as having a relative lockset summary of ({l}, {}) and the unlock(l) function is

modeled as having a relative lockset summary ({}, {l}). Given a function call

e(a), for each possible function f that e may represent (which may be greater

than one due to function pointers), the flow function first retrieves the summary

LockSummary(f), and then, using the Rebind function shown in Figure 3.6, it

replaces all occurrences of f ’s formal in the summary with the actual being passed

in. The resulting rebound summary represents the changes in the lockset that

occur from the moment f starts executing until it reaches a return. To find the

relative lockset after the call to f (relative to the caller’s entry point), we apply

the changes indicated by the summary to the incoming relative lockset. This is

done using the lockUpdate function shown in Figure 3.4. In particular, the positive

differences are added together and so are the negative differences, with the following

post-processing: the locks that may have been released in f are removed from the

final must-have-acquired lockset, and the locks that must have been acquired in f

are removed from the final may-have-been-released lockset.

50

Rebind : T × Funs × Exprs × PPoint → T

Rebind(q, f, e, p) = q[formal(f) 7→ eval(e, symStoreAt(p))]

Figure 3.6: Rebinding formals to actuals.

3.3.3 Guarded Access Analysis

Once the lockset analysis from Section 3.3.2 has finished computing the

relative locksets for all program points of a given function, the guarded access

analysis uses this information to compute the guarded accesses performed by the

function.

A guarded access is a triple A = (l , L, k), where l ∈ Lvals is the lvalue

being accessed, L ∈ Locks is the relative lockset at the point where the access is

made, and k ∈ AccKind = {Read,Write} is the kind of access being made (either

a read or a write). The set of all guarded accesses is denoted by GuardedAccs =

Lvals × Locks × AccKind .

For each function, our guarded access analysis maintains a guarded access

set A ⊆ GuardedAccs for the entire function. After the lockset analysis has reached

a fixed point for a given function, the guarded access analysis starts out by ini-

tializing the function’s guarded set to the empty set. Then, for each statement s

in the function, the access set is updated by calling UpdateAccessSet(s, L), where

L is the relative lockset computed by the lockset analysis at the program point

right before s. As statements are being processed, the guarded access set increases

monotonically; when all statements in the function have been processed, the final

guarded access set becomes the access summary of the function. For a function f ,

we denote the access summary of f by AccessSummary(f).

The most important cases of the UpdateAccessSet function are shown in

Figure 3.7. For a function call e(a), UpdateAccessSet copies all guarded accesses

from the callee, re-expressing them in the caller’s context. In particular, for each

possible function f that e may represent, we look up the access summary of f , and

for each guarded access (l , Lf , k) in the summary, we use Rebind to re-express l

and L in terms of the caller’s actuals. We also use lockUpdate to plug the rebound

51

UpdateAccessSet : Stmts × Locks × PPoint → void

UpdateAccessSet(x := e, L, p) =
let σ = symStoreAt(p) in
A := A ∪ {(eval(e, σ), L,Read)} ∪ {(x, L,Write)}

UpdateAccessSet(call(e, a), L, p) =
let σ = symStoreAt(p) in
A := A ∪ {(eval(e, σ), L,Read), (eval(a, σ), L,Read)}
foreach f in targets(e) do

foreach (l , Lf , k) in AccessSummary(f) do
let L′ = lockUpdate(L,Rebind(Lf , f, a, p)) in
let l ′ = Rebind(l , f, a, p) in
if isAccessible(l ′) :

A := A ∪ {(l ′, L′, k)}

Figure 3.7: Guarded access update.

L into the caller’s context.

The resulting lvalue l ′ and lockset L′ are added to the guarded access set

A only if l ′ is accessible from globals or from the formals of the function being

analyzed. The isAccessible(l ′) call performs this pruning by running a reachability

query in the flow-insensitive points-to graph from the globals and formals to the

node representing l ′.

3.3.4 Warning Generation

Once the bottom-up guarded access analysis from Section 3.3.3 has finished

running on all functions, the GenerateWarnings function from Figure 3.8 uses the

resulting guarded access summaries to generate warnings. The GenerateWarnings

function takes as a parameter the set ThreadEnts of thread entry points, which are

tuples of thread creation sites and functions used to start the thread (ThreadEnts ⊂
2PPoint×Funs×Funs). This includes the “main” thread that starts the program which

has a special external creator.

For each pair of thread entry points, GenerateWarnings retrieves the guarded

access sets for the two entry points, and then it searches for two guarded accesses

52

GenerateWarnings : 2PPoint×Funs×Funs → void

GenerateWarnings(ThreadEnts)
foreach ((p, c, f), (p ′, c′, f ′)) in ThreadEnts2 do

foreach A in AccessSummary(f) do
foreach A′ in AccessSummary(f ′) do

let (l , (L+, L−), k) = A in
let (l ′, (L′+, L

′
−), k′) = A′ in

if mayEqual(l , l ′) ∧ (L+ ∩ L′+ = ∅) ∧ (k = Write ∨ k ′ = Write) :
WarnRace(A,A′)

Figure 3.8: Producing data-race warnings

such that the lvalues may be equal, the must-hold locksets do not overlap, and one

of the accesses is a write. If two such accesses are found, a warning is generated.

The mayEqual function determines if two lvalues could be the same (that

is to say, could alias). Nominally, mayEqual looks up the representative node of

the two lvalues in the flow-insensitive points-to graph, and returns true if the two

representative nodes are the same.

At the moment, Relay does not filter out accesses that cannot happen

in parallel due to reasons other than locking (e.g. happens-before relationships

induced by fork-join and condition-variables). In practice, Relay could be aug-

mented with a may-happen-in-parallel analysis (e.g. [NAC99]), but perhaps limited

to fork-join happens-before relations to avoid the problems of aliasing. Given such

an analysis, GenerateWarnings could filter out some pairs of guarded accesses (the

inner loops of GenerateWarnings), or even some pairs of thread entry points (the

outer loop).

3.4 Optimizations

This section presents a few optimizations that, in addition to the modularity

afforded by relative locksets and guarded accesses, enable Relay to find races in

large programs.

53

3.4.1 SCC-wide Summaries for Accesses to Globals

As presented, each function f has individual guarded access summaries,

AccessSummary(f). We can do better in the case of programs with mutually re-

cursive functions forming non-trivial strongly connected components (SCC) in its

call-graph. It is possible for every function in an SCC to share a single guarded

access summary, for reads and writes to globals.

This sharing has several benefits. The most obvious is that it reduces overall

memory usage as well as bytes transferred in the parallel grid computing setting.

Secondly, it reduces the amount of work done by UpdateAccessSet (Figure 3.7),

when handling function pointer calls where some of the target functions are in

the same SCC. The outer loop in UpdateAccessSet must be rewritten to take ad-

vantage of the SCC-wide global guarded accesses. Finally, it reduces the number

of iterations required to reach a fixpoint, since the modifies summaries used by

the symbolic execution are actually gleaned from the guarded access writes, and a

shared global access summary will present the writes to functions earlier.

Sharing accesses among functions of an SCC does not introduce additional

imprecision in the analysis, as long as the input program follows certain patterns.

First, this approach does not introduce accesses that would not already ex-

ist in the fixpoint solution. If every function call in the SCC is determined to be

reachable, then the set of reads and writes would be exactly the same across the

SCC anyway. Because UpdateAccessSet pulls all global accesses from the callee into

a caller, without renaming, function calls (say f calls f ′) induce an inclusion con-

straint ProjGlobals(AccessSummary(f)) ⊇ ProjGlobals(AccessSummary(f ′)). Addi-

tionally, for every pair of functions f and f ′ in the same SCC, there are call-paths

from f to f ′ and f ′ to f . Therefore, by transitivity of the inclusion constraints,

along those call-paths, there are inclusion constraints in both directions between

f and f ′. This shows that the sets of accesses themselves are exactly the same.

Another issue is that a guarded access is a triple with a relative lockset,

captured from the time of the access, as a component. From this issue two problems

arise. First, if the relative lockset involves a lock named by a formal, then the

guarded access requires specialization at call-sites. In this case, we simply do not

54

factor the guarded access out into the shared SCC-wide summary. Fortunately,

most global variables are protected by global locks.

The second and bigger problem is that when applying the guarded access

summary at function calls, the relative lockset of the guarded access must be com-

posed with the lockset just before the call, using lockUpdate. If guarded accesses

are shared within an SCC, then it is possible that a guarded access will be applied

at additional call-sites.

This is sound. For calls from functions within the SCC, it may be the

case that lockUpdate is applied at a call-site with additional locks held. However,

a guarded access with a weaker relative lockset will already exist in the shared

summary (the one without those additional locks). For calls from functions outside

the SCC, this sharing of guarded accesses changes nothing; the summary is only

used after reaching a fixpoint that has these weaker relative locksets.

From the precision angle, precision is retained in two cases. The first case is

where the function containing the actual access acquires locks locally. The second

case is where a caller outside of the SCC acquires locks prior to the call. i.e., the

access cannot rely on locking from within the SCC, since those locks would then

be irrelevant according to the same logic used in the discussion about soundness.

3.4.2 Optimized Warning Generation

Most programs have only a few thread entries, so the quadratic outer loop

in GenerateWarnings is not a bottleneck. However, programs like the Linux kernel

may have a non-trivial number of threads. If interrupt-handlers are modeled as

separate threads then |ThreadEnts|2 can exceed 100,000. This can be a serious

bottleneck.

For some special cases, we could do better with two strategies: cluster

guarded accesses, and form a hierarchy of combined thread-entry summaries.

Clustering Guarded Accesses. Functions may access the same variables with

the same level of synchronization. If one were to join the guarded access summaries

of two functions with such an access, the access is represented only once in the

combined summary (more details in section 3.5.2).

55

f1 f2 f3 f4 f5 f6 f7 f8

f[1,2] f[3,4] f[5,6] f[7,8]

f[5,8]f[1,4]

f[1,8]

Figure 3.9: Hierarchy of joined thread entry summaries.

Hierarchy of Combined Thread Entries. If a function h is known to run

in parallel with f and g, then the same warnings would be generated if (a) the

summary of h is compared with the summaries of f and g individually, or (b) the

summary of h is compared with a joint summary for f and g. Option (b) may be

more efficient because of guarded access clustering.

Special Case 1: Reflexive All Parallel. Taking the idea further, if every

function in ThreadEnts may happen in parallel with each other including itself,

then one can construct a single joint summary F covering every function with

O(n) joins. Then GenerateWarnings need only compare pairs of guarded accesses

in F . Thus, it reduces the summary-to-summary comparisons to one, at the cost of

joins (involving larger summaries). This is the case with Relay, where all threads

are assumed to happen in parallel and threads may be spawned more than once,

except main.

Special Case 2: Non-Reflexive All Parallel. For the special case where we

assume that all thread root functions may run in parallel with each other, but not

with itself, we can create a binary tree of joint summaries, like the one in Figure 3.9.

This takes O(n) joins. Now, for each function fi in ThreadEnts , GenerateWarnings

we need only compare fi with a joint summary from each level of the tree (except

for the root). Thus, this reduces the number of summary-to-summary comparisons

to O(n log(n)), at the cost of O(n) joins.

56

3.5 Evaluation

Before applying Relay to the Radar, it is useful to have some under-

standing of Relay’s perfomance as a standalone data-race detector. In actuality,

Relay was developed before Radar, and the experiments presented here are

based on an earlier version of Relay.

Our experiments involve running Relay on a large software base, the Linux

kernel version 2.6.15. The kernel was configured with the makeallyes option and

with loadable module support turned off so as to maximize the code included in the

build. This choice serves to demonstrate the scalability of our techniques as well

as to obtain a close understanding of the variety of idioms used in systems code

for synchronizing and avoiding data-races. Under this configuration, the analysis

must process 4.5 million lines of code, spanning 46872 functions, scattered across

18042 files.

We begin in Section 3.5.1 with some details about the implementation of

Relay. We then describe the results of running Relay on the Linux kernel. In

particular, Relay’s context- and flow- sensitive analysis resulted in the genera-

tion of 5022 warnings (over a 4.5 million line code base). We performed a close

analysis of a randomly chosen subset of the warnings and found that most of these

warnings were in fact false positives. We categorized the false positives based on

the coding idioms used to prevent races, and present a summary of common id-

ioms in Section 3.5.3. Our categorization reveals that to soundly remove the false

positives would require sophisticated analyses that are path- and shape-sensitive,

and handle non-lock-based synchronization while also scaling to millions of lines,

a challenging task that we leave to future work.

Instead, we used our categorization of the sample warnings to devise post-

processing warning filters capable of automatically placing every warning into one

of the categories (Section 3.5.4). After applying the filters we were left with 161

warnings, 31 of which we again carefully categorized. 25 of this subset (80%)

were real data-races. Although the filters may remove genuine races, and using it

with Radar would give unsound results, these filters approximate analyses that

would be implemented in a more precise race detector, and the fraction of warnings

57

removed by each filter estimate the relative impact of these more precise analyses.

Finally, we compare Relay to other data-race detectors built for C pro-

grams, in Section 3.5.7.

3.5.1 Implementation

Relay is implemented in Ocaml and uses CIL [NMRW02] as a front-end.

To build the call-graph, Relay processes the kernel one file at a time. It traverses

each function’s body, adding call edges to each function called within the body.

For indirect calls, Relay consults a pointer analysis. For reasons discussed in

the introduction of this chapter, we use a per-file pointer analysis. The bottom-

up analysis can process a function as soon as summaries of the callees have been

computed. Thus, it is possible to analyze multiple functions concurrently, as long

as the summaries for their callees have been computed. Relay exploits this by

distributing the summary computations across a grid of 32 nodes each equipped

with 2.8Ghz Xeons and 4Gb of RAM. Relay took 72 hours to perform the whole

analysis on a single machine. By distributing the computation, we were able reduce

the analysis time to 5 hours.

Structuring Parallel Computation. The computation is structured as a single

server process that keeps track of the locations of summaries, and worker processes

that compute the summaries, request summaries from the server, and report com-

pleted summaries to the server. Each SCC of the call-graph is analyzed by a

separate worker process. Worker processes begin by requesting an SCC to ana-

lyze. Next the worker downloads summaries of the callees to the local file system

if they are not found locally. Once summaries of callees are available, the worker

computes the new summaries for the SCC functions and then informs a server

of the whereabouts of the new summaries. Warning generation is also done in

parallel, in a similar manner. A single server process stores warnings generated

by the workers and clusters the warnings. Each worker takes a different pair of

thread functions, requests their guarded access summaries (if necessary), performs

the data-race check, and reports new warnings to the server.

58

3.5.2 Clustering Warnings and Counting Warnings

Before discussing warnings and counting warnings, let us first discuss how

they are counted. As Relay was originally designed as a tool for finding bugs (and

not simply as an analysis within Radar), summarizing or clustering warnings to

avoid overwhelming users was a necessary feature. However, clustering can make

warning counts deceptively low, or it can complicate comparison if the underlying

PTA is changed to one that has a finer set of abstract Lvals (a more precise PTA

may have more clusters of warnings). In this section, we do not compare different

versions of Relay using different PTAs, but we do count the number of clusters

of warnings manually inspected and filtered out.

Relay clusters two warnings in two phases. First, it may cluster the

guarded accesses in summaries for each function g if the same memory location

is read or written more than once along any path through g , with the same rel-

ative locksets. To cluster, we union the PPoints that are involved to create a

single guarded access. Second, we may cluster two warnings w1 = (A1,A
′
1) and

w2 = (A2,A
′
2) based on the program points of the accesses. If the set PPoints

of the accesses are the same between w1 and w2 we cluster the two warnings and

count them as one warning, even though they may have different thread roots.

Many other strategies exist for clustering warnings. Choi et al. [CLL+02]

use a weaker than relation to decide when a race involving one access p and r implies

that another access q will also race with r. This relation can be approximated by

checking if (1) the memory locations are the same, and (2) the lockset for p is a

subset of the lockset for q. In that case, they only track access q to reduce time

and space overhead in their dynamic data-race detector. Kahlon et al [KYSG07]

use this in the static setting. Chord [NAW06] offers two modes of clustering –

clustering by field accessed or abstract lvalue. The field-based view allows users

to quickly ignore fields that are intentionally left racy (e.g. may only be tracking

statistics) and the abstract lvalue-based view is useful for identifying false warnings

due to imprecision in the alias analysis.

59

3.5.3 Warning Categorization

Relay uses the guarded access sets to generate 5022 warnings using the

method described in Section 3.3.4. Rather than undertake the herculean task of

sifting through all these warnings, we chose to randomly sample and classify 90

of the warnings. This sample contained some races, but the vast majority of the

warnings were false positives. However, it turns out that most of the false positives

in the sample fell into one of a handful of categories described below. Each of these

patterns appears to require a somewhat specialized analysis as they require careful

reasoning about path-sensitivity, non-lock-based synchronization, and the shape

of the heap, neither of which is easy to scale.

1. Initialization: A common idiom is to allocate a structure within a thread, and

perform some initialization without any synchronization while the structure is still

local to the thread, and then to make the structure accessible to other threads, by

adding it to a global data structure. Even though subsequent accesses happen while

holding a lock, Relay will report a warning due to the first unprotected access.

Figure 3.10 shows a simple code fragment from the kernel that illustrates this

pattern. The lower function calls a helper to allocate a structure. The structure

conn is allocated on line 1 and passed back to the caller. At this point, the structure

is not shared and so on line 4 some fields of the structure get initialized, and then

on line 5 the structure gets added to a global queue after which it can be accessed

by multiple threads. Relay would warn about subsequent accesses being a race

with the access on line 4.

2. Unlikely Aliasing: Many of the warnings reported are false positives because

of the flow-, field- and arithmetic- insensitivity of the alias analysis. For example,

our alias analysis reports that there is a single “blob” representative node that rep-

resents over 10000 variables and heap allocated objects. Race conditions reported

on objects within this blob are most likely false positives.

3. Unsharing: Relay reported many warnings on objects that are indeed shared,

but which are not shared during the time they were accessed. A common situation

where this happens is that the object belongs in a shared list, and therefore can be

60

__rxrpc_create_connection(..., **_conn){

1: conn = kmalloc(sizeof(...), ...);

2: timer_init(&conn->timeout, ...);

3: *_conn = conn;

}

rxrpc_create_connection(*trans, ...){

__rxrpc_create_connection(&conn);

/* fill in the specific bits */

4: conn->addr.sin_family = AF_INET;

write_lock(&peer->conn_idlock);

5: list_add(&conn->id_link, _p);

//...

}

Figure 3.10: Unprotected initialization before sharing.

accessed by multiple threads. However, just before a thread performs the access,

it removes the object from the shared list, and then safely accesses the object

without any lock. Figure 3.11 illustrates this pattern. pam is a reference to the

first element of the page addr pool, and this element is removed from the list in

line 1 (after acquiring the appropriate locks for the list). Then, the list lock is

released and on line 2 the previously shared object referred to by pam is written to

without any synchronization.

4. Re-entrant Locks: A significant fraction of the false warnings we analyzed

were because some data structures were protected with the kernel semaphore,

which is a re-entrant lock. For such locks, acquires and releases can be nested, and

after k nested acquires, the lock is actually released only after k successive releases.

Relay conservatively models these locks, by treating them as released after the

very first release call, and thus, finds several unsynchronized shared accesses, even

though they are protected by previous acquires.

5. Non-parallel Threads: Many false warnings arose due to unsynchronized

accesses that take place at instances when the kernel has ensured, using one of

61

set_page_address(..., *virtual){

spin_lock_irq(&pool_lock);

pam = list_entry(page_addr_pool);

1: list_del(&pam->list);

spin_unlock_irq(&pool_lock);

2: pam->virtual = virtual;

spin_lock_irq(&pas->lock);

3: list_add(&pam->list, &pas->lh);

spin_unlock_irq(&pas->lock);

}

Figure 3.11: Protected unsharing, followed by unprotected access

several mechanisms, that there is only a single active thread that can access the

shared object. The most common case is when an object is accessed from multiple

threads, but the threads use program logic, including signals and other mecha-

nisms, to order operations in such a way that the threads in essence never run

in parallel. One such example is shown in Figure 3.12. On line 1 the function

start sync thread checks the shared variable state to see if the thread already

exists. If not, on line 2 it attempts to create the thread by looping until the thread

gets created. After the creation succeeds, the parent thread waits for the child to

set the state variable on line 4 and then signal completion 6, at which point, on

line 3 the parent returns. This code essentially ensures that only one copy of the

sync thread ever runs, and so the access on line 4 is safe, even though Relay

will warn that two copies of sync thread may write to state at the same time.

There are other mechanisms that, like the above, require a very precise thread

interleaving analysis of blocking primitives like wait for completion (illustrated

in the example).

6. Conditional Locking: Several false warnings generated by Relay were

because the program checks some condition to determine whether to acquire locks,

and later, checks a correlated condition to determine whether the access should

occur. Unfortunately, the acquisition of the lock and the actual access occur in

different blocks or functions thereby introducing a path-sensitivity problem. The

62

static sync_thread(*startup){

4: state = IP_VS_STATE_MASTER;

5: set_sync_mesg_maxlen(state);

6: complete(startup);

//...

}

start_sync_thread(state, ...){

1: if (state == IP_VS_STATE_MASTER)

return -EEXIST;

repeat:

2: if (kernel_thread(sync_thread,&startup) < 0)

goto repeat;

3: wait_for_completion(&startup);

return 0;

}

Figure 3.12: Non-lock-based synchronization

example in Figure 3.13 exhibits this pattern. The upper function either returns

NULL without holding the lock if the condition on line 1 holds, or acquires the lock

on line 2 and returns a non-null value. This return value is checked on line 4 before

performing the access on line 5.

3.5.4 Filters

We have devised simple syntactic filters based on the above categorization

to automatically categorize the warnings thereby yielding a subset of the warnings

that are very likely genuine races. The design of these filters was guided by finding

common patterns among the warnings in a given category.

These filters are very aggressive, and they are unsound, in the sense that

they can remove real races too. However, since this source of unsoundness is

confined to a post-processing pass, it can easily be removed or replaced with sound

analyses.

We now describe the filters. In each case, in parentheses we list the cate-

gories that the filter targets.

63

static * swap_info_get(entry){

1: if (!entry.val)

goto 3;

p = &swap_info[type];

2: spin_lock(&swap_lock);

return p;

3: return NULL;

}

swap_free(entry){

p = swap_info_get(entry);

4: if (p) {

5: swap_entry_free(p, ...);

spin_unlock(&swap_lock);

}

}

Figure 3.13: Conditional locking

1. Thread-local Allocation (Initialization): To handle the initialization false-

positives, we filter out warnings on objects that are allocated inside the thread

within which the conflicting access occurs.

2. Large Points-To Reps. (Unlikely Aliasing, Unsharing): For unlikely

aliasing we can filter warnings where the flow-insensitive alias analysis is asked to

compare lvalues whose representative nodes represent more than k lvalues for a

parameter k (k = 1 for our results). Typically, these are nodes where different data-

structures are mixed at a common function (e.g. , two different lists merging at a

node removal function). As this filter captures warnings involving data-structures,

it also applies to the “unsharing” pattern.

3. Bootup Thread (Re-entrant Locks): The most heavily used re-entrant lock

is kernel sem. This lock is mainly used by the boot-up thread which holds it for

most of its execution. Thus, to filter warnings about re-entrant locks, it sufficed

to filter warnings where one of the accesses was in the boot-up thread.

4. Same Root (Non-parallel Threads): We noticed that many false positives

involving threads that cannot execute concurrently were warnings where the two

64

Number of filters applied

0 1 2 3 resample 4

F
ra

ct
io

n
of

 la
be

le
d

w
ar

ni
ng

s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

races
initialization
non-aliasing
unsharing
reentrant
not in parallel
conditional lock

Figure 3.14: Relative proportions of categories in the manually labeled warnings
after each filter is applied.

accesses originated from the same thread. We therefore designed a filter that

removes such warnings.

3.5.5 Other Filters Considered

The above filters were sufficient for reducing the set of warnings generated

for Linux to a manageable size. Although measurements are not shown, we did

consider the following additional filters:

No Locks (Non-parallel Threads or Thread-local Data): This filter removes

warnings on pairs of accesses where no locks are held at either access. In other

words, this filter expresses the heuristic that if the programmer believes an object

is not shared with other active threads they will not protect accesses to the object.

This filter is also likely to be effective for removing benign races.

Changing lockUpdate or Shadowing Locksets (Re-entrant Locks): To han-

dle re-entrant locks we can change the analysis slightly, and change the lockUpdate

65

Number of filters applied

0 1 2 3 resample 4

N
um

be
r

of
 w

ar
ni

ng
s

0

200

400

600

2800

5000

labeled
unlabeled

Figure 3.15: Absolute number of manually labeled vs. unlabeled warnings after
each filter is applied.

lockUpdate′ : Locks × Locks → Locks

lockUpdate′
(
(L+, L−), (L′+, L

′
−)
)

=
((L+ ∪ L′+)− L′−,

(
L− ∪ (L′− − L+)

)
− L′+)

Figure 3.16: Alternative relative lockset update (for re-entrant locks)

function to leave no effects (Figure 3.16) in the case that a re-entrant lock is re-

leased within the same function in which it is acquired, and the release is after the

acquire. Rather than leave the lock in the L− set after the release (which occurs

after the acquire), we can omit the lock from both sets. The release balances the

acquire, and, to the caller, this has no effect. An alternative to actually changing

lockUpdate to lockUpdate′ is to track an additional shadow relative lockset which is

updated using lockUpdate′. Warnings can be generated with the original locksets,

or warnings can be filtered by checking for common locks in this shadow lockset.

66

3.5.6 Results

We evaluate the result of applying the filters using two criteria. First, they

should remove false positives, i.e., after applying the filters, the fraction of real

races left in the warning should increase (Figure 3.14). Second, they should not

remove too many races, i.e., after applying the filters we should still be left with

a pool of warnings large enough to contain many real races (Figure 3.15).

We applied the filters to the warnings as follows. First, we drew a random

sample of 90 warnings from the 5022 warnings generated by Relay. We manually

placed each of the warnings into one of the six categories described in Section 3.5.3.

When a warning fell in multiple categories, as was often the case, we placed the

warning into the first (according to the order shown) category.

Next, we applied the filters in the order described in Section 3.5.4. Fig-

ure 3.15 shows how after each filter is applied, the total number of warnings as

well as the number of warnings in the manually categorized sample set decreases.

Figure 3.14 shows how the distribution of the categories changes in the remaining

set of samples, as we apply more filters. The important thing to note here is that

the dark solid bar, which represents the percentage of real races in the sample set

increases monotonically as we apply filters, and reaches 80 % after having applied

4 filters.

We now describe the four steps in applying each one of the four filters:

1. After applying the first filter (which is meant to remove initialization false posi-

tives), the total number of warnings drops to 2812 and the manually categorized

sample set drops to 55 (bar 1). Moreover, the fraction of remaining sampled

warnings that are initialization false positives drops from about 43% to 20%,

indicating that the filter did in fact remove a larger proportion of initialization

false positives than other warnings.

2. After applying the representative node filter (which was meant to remove false

positives due to unlikely aliasing or unsharing), the total number of warnings

drops to 639 and the sample set drops to 10 (bar 2). Of the remaining samples,

there are no more unlikely aliasing or unsharing false positives, indicating that

67

the filter was a good heuristic for removing these false positives. This filter

also had the unintended effect of removing all the non-parallel-threads false

positives. Unfortunately, it also removed all the races that we had identified in

our first sample set.

3. After applying the third filter, the manually categorized sample set went down

to zero (bar 3), and so we re-sampled the set of 355 remaining warnings to

obtain a new sample set of 59 warnings which we again manually categorized.

After resampling, we applied the third filter (bar labeled “resample”), namely

the bootup-thread filter, which was meant to remove the re-entrant locks false

positives. At this point, the percentage of false positives categorized as re-

entrant locks decreases significantly, indicating that the filter is effective at

removing these false positives.

4. After applying the same-entry filter (which is meant to remove non-parallel

threads false positives), all the non-parallel threads false positives have been

removed (bar 4). At this point, the number of remaining warnings is 161, and

the size of the manually categorized sample set is 31, of which 25 (80 %) are real

races. Note that we have not been able to devise a filter targeted at conditional

locks, and therefore the majority of remaining false positives fall in this category.

We conclude from the above that the filters effectively refine the set of warn-

ings and increase the fraction of races from 11% to 80 %, without eliminating an

unacceptably large number of races. Counted another way, we manually analyzed

149 warnings in all, and found 53 races.

Races. After the application of the filters, the vast majority of warnings are

real races. Some races found are possibly benign. For example, some races found

involve a flag variable (e.g. thread finished) that is written once in a thread,

and read in a loop by the other thread, without locks. Figure 3.17 shows a more

serious race that survives all filters. By the time we obtained our results, this race

had already been reported and fixed.

The race involves the read on line 2 of p->size and the write, on line 5 of

t->size, since t and p can point to the same object and there are no common

68

iounmap(volatile *addr){

read_lock(&vmlist_lock);

for (p = vmlist; p; p = p->next) {

if (p->addr == addr) break;

}

1: read_unlock(&vmlist_lock);

change_page_attr(virt_to_p(p->phys_addr),

2: p->size >> PAGE_SHIFT);

}

/* called with write_lock(vmlist_lock) */

__remove_vm_area(*addr){

3: for (t = vmlist; t != NULL; t = t->next) {

if (t->addr == addr) break;

}

4: unmap_vm_area(t);

5: t->size -= PAGE_SIZE;

return t;

}

Figure 3.17: A real race found after applying filters.

locks held. This race is serious because the function change page attr uses the

p->size parameter that is passed in as the bound for a loop iterating over an

array. Due to the race the read of p->size can return a stale bound causing the

loop inside change page attr to access the array out of bounds.

3.5.7 Comparison to Other Race Detectors

In this Section, we evaluate Relay with a comparison against two other

data-race detectors built for C programs, Locksmith and LP-Race.

Resource Requirements

Relay scales to handle much larger programs than Locksmith and LP-

Race, and analyzes the same programs with much fewer resources. Figure 3.18

charts out a rough comparison between the three data-race detectors. Since an

implementation of LP-Race is not currently available, times are taken from the

69

Benchmark KLOC Locksmith LP-Race Relay

aget 2.2 0.85 4 0.2
ctrace 2.2 0.59 5 0.2
smtprc 8.6 5.37 145 0.8
plip 19.1 19.14 ? 0.6
hp100 20.4 143.23 ? 0.8
synclink 24.7 1521.07 ? 1.5
retawq 40.1 OOM 6855 18.4

Figure 3.18: Comparison of running times for Locksmith, LP-Race, and Relay

paper [Ter08]. Running times for Locksmith are taken from Polyvios’s dissertation

[Pra08]. Relay’s numbers are based on running the analysis on a single 3.2 Ghz

Pentium 4 with 2GB of RAM. One issue to consider when examining these running

times is that there are slight variations in hardware setup. Finally, variations in

running times can be attributed to implementation details or engineering effort.

Nevertheless, the data is presented here for reference.

The benchmarks in the table are a sample of drivers and applications from

the Locksmith test-suite, plus the Retawq application tested by LP-Race. Bench-

marks that were not tested in the LP-Race paper are marked “?”. On one bench-

mark, Locksmith runs out of memory (denoted “OOM”).

Precision

We also compare the precision of each tool qualitatively. There are many

aspects that can contribute to differences in precision between each tool. For

example, each tool can be parameterized by different alias analyses for checking

may-aliasing between memory locations that are accessed in each thread.

Differences in Formulation and Additional Analyses. One important high-

level difference is that LP-Race is not based on the lockset algorithm. LP-Race’s

capability-based formulation naturally handles non-lock-based synchronization:

signaling, semaphores, read-write locks, and fork-join. Locksmith introduces an

additional analysis – on top of correlating accesses and locks – based on contextual

effects to prune accesses that occur before any threads are spawned. Essentially,

70

int x = 0, y = 0;

void write(p) { *p = 1; }

void read(p) { printf("%d\n", *p); }

void call_fp(fp, x) { *fp(x); }

void thread_1() {

L1: call_fp(&read, &x);

}

int main() {

spawn (&thread_1);

L2: call_fp(&read, &x);

L3: call_fp(&write, &y);

}

Figure 3.19: Limited context-sensitivity of Relay’s guarded access summaries.

this is a way to handle fork but not join synchronization. Finally, Locksmith in-

troduces another additional intra-procedural uniqueness analysis to handle some

forms of the thread-local initialization idiom outlined in Section 3.5.3. It is possi-

ble to incorporate a similar analysis into Relay. However, because the analysis is

intra-procedural, it would not actually handle the example in Figure 3.10, which

we found in the Linux kernel. The ability to handle these forms of synchronization

and program idioms give LP-Race and Locksmith an edge over Relay in the area

of precision.

Imprecision of Relative Locksets. Since one contribution of Relay is the

concept of relative locksets, it is important to understand when this abstraction is

imprecise. This limited form of context-sensitivity only generates a single summary

for each function, which Relay can specialize at function invocations. Special-

ization allows two things: (1) locks that are not affected by the function call can

be specialized, and (2) value flow that can be handled by renaming. Given this

form of summary, Relay handles the value-flow of the ever-popular id function

context-sensitively, as well as lock/unlock-wrappers.

An important limitation of this form of context-sensitivity is that Relay

does not handle control-flow context-sensitively. One special case is function-

71

pointers. Consider the example in figure 3.19. The call fp function is called

with either read and &x at lines L1 and L2, or it is called with write and &y at

L3. Since the only common variable between the main thread and thread 1 is x,

and x is only read, there should be no race. However, only one summary is gen-

erated for the function call fp, regardless of the function pointer that it is given.

Thus, the summary will be generated assuming that fp is both read and write.

This will mean that Relay will see both a read and write to x in the main thread

and in thread 1, generating a false data-race warning. One workaround for this

limitation is to generate an context-sensitive call-graph and have run Relay on

this split call-graph. Then, there will be one version of call fp that exclusively

reads and another that exclusively writes, avoiding the false race. One way to

generate a context-sensitive call-graph is to use the Wilson-Lam algorithm [WL95]

described in Section 4.2. In comparison, Locksmith’s context-sensitivity handles

function-pointers more directly.

3.6 Summary

In this chapter we presented a static race detection analysis that scales to

millions of lines of C code. At the heart of our technique is the notion of a relative

lockset which allows functions to be summarized independent of the calling context.

This, in turn, allows us to perform a modular, bottom-up analysis that is easy to

parallelize. We have analyzed 4.5 million lines of C code in 5 hours, and after

applying some simple filters, found a total of 53 races.

One of our long-term goals is to soundly eliminate false positives to the point

where a large fraction of the remaining warnings, say more than 70%, correspond

to real races. To this end, we would like to replace the simple but unsound filters

with sound analyses targeted at the coding patterns that we have found to be

the leading causes of false positives. Examples of such analyses include a thread-

escape analysis for the initialization pattern and a light-weight shape analysis for

the unsharing pattern.

Another long-term goal is to address the problem of determining “serious”

72

races. Some of the races are clearly benign, as deduced from syntactic cues such

as variable names like oops in progress, while others appear to be dangerous.

The dangerous races are often those that cause higher-level semantic bugs, such as

atomicity violations or unsafe memory accesses like the one shown in Figure 3.17.

Combining Relay and Radar with sequential dataflow analyses like those for

finding null-pointer violations is a start. Its effectiveness, however, will be depen-

dent on the precision of every component, including Relay.

Acknowledgments: Chapter 3 in part, has been published as “Relay: Static

Race Detection on Millions of Lines of Code” by Jan Voung, Ranjit Jhala, and

Sorin Lerner in ESEC/FSE 07: Proceedings of the 6th joint meeting of the Euro-

pean software engineering conference and the ACM SIGSOFT symposium on The

Foundations of Software Engineering [VJL07]. The dissertation author was the

primary investigator and author of this paper.

Chapter 4

Evaluation of Call-graph

Construction Algorithms

This chapter considers the role of call-graph construction in the precision

and scalability of inter-procedural analyses, including Relay and input dataflow

analyses to the Radar framework. This is done by comparing several scalable call-

graph construction algorithms in conjunction with two inter-procedural analyses

that serve as clients of the constructed call-graphs. The collection of call-graph

construction algorithms tested here span the most common analysis design choices,

allowing us to evaluate the importance of each design choice.

4.1 Motivation

Recent years have seen great progress on scalable, flow-sensitive techniques

for analyzing memory, security and concurrency properties of low-level C systems

code [DLS02, HDWY06a, XA05, VJL07, CDOY09]. This progress is founded on

the insight that scalability requires modular analyses. Each of the above works by

computing summaries that succinctly capture the effect of each procedure on its

callers. Callers then plug in the results at each callsite to compute summaries for

its own callers and so on. Relay (Chapter 3), and the clients we have developed

to test Radar (Chapter 5) are all modular analyses.

A modular analysis critically depends on a method for precisely determining

73

74

which functions can be called at a given callsite. If this determination is imprecise,

i.e., if the method greatly exaggerates the number of possible (transitive) callees,

then the results computed by modular analysis will be polluted by the spurious

callees and hence, will be imprecise. Furthermore, the effects of the spurious callees

will propagate to the callsite, thereby causing a blow-up in the information tracked

at the caller, which limits the scalability of the modular analysis.

The problem of call-graph construction for C, that is, determining the

callees at each callsite within a C program, is challenging, as C is decidedly not

a first-order programming language. Systems programmers aggressively employ

high-level design patterns such as iterators, accumulators, visitors, objects, and

callbacks in order to structure large low-level code bases and facilitate code-reuse.

In a low-level language like C, which lacks high-level type structure (e.g. classes)

all these patterns are encoded using function pointers. Thus to precisely analyze

large systems code bases, where function pointers are used most aggressively, we

need a precise function pointer analysis.

In this chapter, we experimentally evaluate a wide spectrum of call-graph

construction algorithms on a number of large C benchmarks with the goal of de-

termining how the precision of the resulting call-graph affects the final results com-

puted by the (modular) client analyses. In particular, we are interested in measur-

ing how different analysis choices, such as unification vs. inclusion, flow-insensitive

vs. sensitive, field-insensitive vs. sensitive, context-insensitive vs. sensitive, affect

the quality of the computed call-graph, the quality of the results produced by a

client analysis, and the scalability of the client analysis.

While such studies have been carried out in the past [MRR04, DLFR01,

CDC+04, PKH04a], they have been limited in several ways. First, they study

much smaller benchmarks, which typically use function pointers less aggressively.

Second, they only study the simpler (and older) value-flow analyses that existed

at the time of the study. Third, and most importantly, they do not measure the

impact of the call-graph quality on client analyses.

We present an evaluation of call-graphs constructed using the following

algorithms:

75

• Steens-FI [Ste96a] a unification-based, flow-insensitive, field-insensitive,

and context-insensitive analysis.

• DSA [LLA07] a unification-based, SSA-flow-insensitive, field-sensitive, and

context-sensitive analysis.

• Anders-FI [And94] an inclusion-based, flow-insensitive, context-insensitive,

and field-insensitive analysis.

• Anders-FS [HL07a] an inclusion-based, SSA-flow-insensitive, field-sensi-

tive, and context-insensitive analysis.

• WL [WL95] a flow-sensitive, field-sensitive, context-sensitive analysis that is

a version of the Wilson-Lam algorithm restricted to function values.

We measure the precision of the analysis using two metrics: the fan-out

(number of possible callees at each indirect call-site), and the sizes of SCCs in the

call-graph. The first metric is an indication of the imprecision in the client caused

by “smearing” induced by spurious callees. Modular inter-procedural analyses

compute fixpoints over one SCC at a time, and hence, the second metric is a sign

of the scalability of the client analysis.

However, rather than rely solely on the proxy metrics, we directly study

the impact of call-graph precision on two clients that use the generated call-graphs

to perform an inter-procedural analysis. One client performs a non-null analysis,

and the other client is the Relay data-race detector. We measure the time and

memory required by these two analyses (a more precise call-graph will make the

client analysis more efficient), and the precision of the resulting analysis (a more

precise call-graph will be able to prove more dereferences null-safe or race free).

We have carried out our evaluation for a large set of C benchmarks ranging

from 12 KLOC to 284 KLOC (Section 4.3). These benchmarks make aggressive

use of function pointers. We show both qualitatively (via examples gleaned from

the benchmarks) and quantitatively (via metrics of the computed call-graphs and

the client analyses) how the different dimensions of sensitivity affect the quality of

the resulting call-graph, or the quality of the client analysis.

76

Our experimental results allow us to make the following conclusions:

• Field-sensitivity and inclusion constraints (vs. unification constraints) mat-

ter most for constructing precise call-graphs for C programs. Context-

sensitivity, on the other hand, does not provide a substantial amount of

additional precision.

• For the client analyses we considered, more precise call-graphs significantly

improve the running time and memory usage of the analysis, but they do not

significantly improve the precision of the end results. This points to the fact

that the primary purpose for getting a more precise call-graph may very well

be for scalability of the client rather than precision of the end results.

• SCCs get very large even when ignoring function pointers, meaning that

client analyses that work on one SCC at a time may need to decompose the

problem further to improve scalability.

4.2 Overview of Pointer Analyses

The main goal of our study is to evaluate the effectiveness of various pointer

analyses for the purpose of call-graph construction in C. To begin our study, we

must therefore pick several well-known inter-procedural pointer analyses to com-

pare. Our criteria for selecting these analyses are two-fold. First, we want our anal-

yses to scale to relatively large benchmarks (on the order of hundreds of thousands

of lines of C). Second, we want our analyses to span the spectrum of time/precision

tradeoff – from analyses that are quick and imprecise, to analyses that are expen-

sive (yet still runnable) and precise.

To this end, we have selected the following pointer analyses to compare:

Steensgaard [Ste96a], field-insensitive Andersen [And94], field-sensitive Andersen,

Data-structure analysis (DSA) [LLA07], and an algorithm similar to Wilson and

Lam (WL) [WL95]. In addition to these algorithms, we have also selected several

optimistic lower bounds to compare against, for example an analysis that builds a

call-graph ignoring function pointers altogether.

77

4.2.1 Dimensions of Difference

Before we describe each of the algorithms in more detail, we review the

common properties that differentiate these algorithms.

• Flow-sensitive vs. Flow-insensitive: A flow-sensitive analysis computes

points-to information at each program point, whereas a flow-insensitive anal-

ysis computes a single points-to solution for the entire program. Flow sensi-

tivity provides additional precision, because the order of statements is taken

into account, but it also uses more memory, and can take longer to fix-point.

SSA is used in some of our flow-insensitive algorithms to regain some flow-

sensitivity.

• Unification vs. Inclusion: These define how assignment and parame-

ter passing are treated in flow-insensitive algorithms. Unification treats an

assignment x := y as equating Pts(x) and Pts(y) (with each member of

Pts(x) and Pts(y) also equated). Solving such equality constraints does not

require iteration, and can be done in near linear time using a union-find data

structure. Inclusion, on the other hand, treats assignment as a constraint

Pts(x) ⊇ Pts(y). Such constraints are more precise because they keep track

of the direction of the assignment (and thus the flow of pointer values), but

they are also more expensive to solve.

• Field-sensitive vs. Field-insensitive: A field-sensitive analysis distin-

guishes between different fields of the same memory object, whereas a field-

insensitive analysis merges all fields of an object together (so that for example

&x.f becomes the same abstract memory location as &x.g). Field-sensitivity

adds more precision, at the expense of larger dataflow facts.

• Context-sensitive vs. Context-insensitive: A context-sensitive anal-

ysis distinguishes between different calling contexts (at differing levels of

abstraction, depending on what the definition of a context is), whereas a

context-insensitive analysis merges all calling contexts together.

78

• Heap-cloning vs. Non-Heap-cloning: heap cloning affects how calls

to malloc are analyzed in a context-sensitive analysis. In general, pointer

analyses represent the memory returned by a call to malloc using an abstract

memory location. Heap cloning refers to the technique of generating different

malloc abstract memory locations for different calling contexts. On the other

hand, without heap cloning, each malloc is represented with one abstract

memory location (as opposed to one per calling context).

4.2.2 List of Algorithms

We now describe each one of the algorithms we compared in more detail.

Steens-FI: This is the standard Steensgaard unification-based algorithm [Ste96a].

It requires no iteration leading to an almost-linear time complexity. For our ex-

periments we used a field-insensitive version.

DSA: This is the Data-structure Analysis (DSA) algorithm by Lattner, Lenharth

and Adve [LLA07]. Like Steensgaard, it is a unification-based algorithm. Unlike

Steensgaard it is field-sensitive, context-sensitive and performs heap cloning.

Anders-FI: This is the standard Andersen inclusion-based algorithm [And94].

It requires iteration and has worst-case O(n3) time complexity. Recent work on

optimizing the execution of Andersen has made Andersen practical for large pro-

grams. These optimizations fall into two categories. First, representation opti-

mizations are aimed at reducing the memory cost of storing the points-to-graph

using various encoding techniques such as BDDs [HL07a, WL04, ZC04, BLQ+03].

Second, unification optimizations aim to reduce the size of the problem by uni-

fying memory locations, but only in cases where the unification does not affect

precision. For example, cyclical constraints Pts(p1) ⊆ Pts(p2) ⊆ Pts(p1) mean

that the sets Pts(p1) and Pts(p2) are equivalent (even though &p1 and &p2 may

not be equivalent). Such cycles can be detected either during constraint resolution

[FFSA98, HT01, PKH04b, HL07a], or a priori [RC00, HL07b, Sim09]. Much of the

work is focused on how to balance the cost of cycle detection and the completeness

of search, e.g., using heuristics based on the likelihood of finding cycles.

79

Flow-Sens Inclusion Field-Sens Context-Sens Heap-Clone

Steens-FI
DSA SSA X X X

Anders-FI X
Anders-FS SSA X X

WL X X X X X

Figure 4.1: Summary of analyses. SSA indicates that it is flow-insensitive over an
SSA representation, buying some level of flow-sensitivity.

Anders-FS: We also evaluated a field-sensitive version of Andersen. There are no

additional optimizations related to field-sensitivity.

WL: This is a context-, field-, and flow-sensitive algorithm that performs heap-

cloning. It uses a context-sensitivity abstraction similar to that of Wilson and

Lam (WL) [WL95] and Relevant Context Inference [CRL99]. In particular, the

context for a call-site is the dataflow information at the call-site, but abstracted

away to the pointers/fields that are actually dereferenced in the callee. Thus,

contexts that differ on inessential details (i.e., : differ on pointers/fields not used

in the callee) are merged together. There is a common belief that the Wilson

and Lam context-sensitivity approach does not scale to large C programs, a belief

that our experiments confirm. However, if we limit Wilson and Lam to only track

pointers that transitively reach function pointers (rather than all pointers), then

the analysis does in fact scale to large realistic programs (shown in Appendix B).

The WL context abstraction is useful for constructing context-sensitive call-

graphs for clients, as it keeps the number of contexts low (the majority of functions

in real C programs end up having a single context). In contrast, context-sensitive

approaches like [WL04, ZC04] generate an exponential number of contexts, and

they use BDDs to compactly represent redundant information across the many

contexts. This requires the client analysis to also be formulated in terms of BDD

operations to scale.

A summary of the above pointer analysis algorithms and their properties is

show in Figure 4.1. Furthermore, we also consider the following two lower bounds

on the precision of call-graphs.

80

NoFP: The NoFP call-graph treats every indirect call as having no targets. The

call-graph constructed in this way is clearly unsound (in that it will miss real call

edges), but it provides a lower bound showing how much more room there is for

improvement in the treatment of indirect calls.

Dynamic: The Dynamic call-graph uses calls that are recorded from runs of

the program to determine targets of indirect calls. From this information, we

generate a context-insensitive call-graph (although it would also be possible to

generate a context-sensitive call-graph using a callstring context-abstraction or

using other context-abstractions by recording more runtime information). The

empirical lower bound provided by the Dynamic call-graph is tighter than the

lower bound provided by NoFP. It serves as a great sanity check to make sure

that none of our algorithms are missing any real calls.

4.3 Results for Call-graph Precision

The goal of our study is to determine how the various pointer analyses

described in Section 4.2 affect the precision of the constructed call-graph, and the

precision/running-time of client analyses that make use of the call-graph. We start

in this section by evaluating the precision of the resulting call-graphs, and then in

Section 4.4 we evaluate the effect on client analyses.

4.3.1 Experimental setup

Implementations. We implemented Steens-FI, Anders-FI, and WL, using

CIL 1.3.7 and OCaml. For DSA and Anders-FS, we reused the implementations

of these pointer analyses by the authors themselves in LLVM, adding only a call-

graph generation pass. In particular, we used the DSA implementation (based

on the work in [LLA07]) found in version 2.6 of LLVM, and we used the scalable

implementation of Anders-FS (based on the work in [HL07a, HL07b]) found on

one of the author’s web page: http://www.cs.ucsb.edu/~benh/downloads.html.

Benchmarks. The C programs that we used as benchmarks are shown in Fig-

http://www.cs.ucsb.edu/~benh/downloads.html

81

Benchmark KLOC #ind #all %ind WL avg ctxts

Bzip2 1.0.5 12 20 1185 1.7 1.06
Icecast 2.3.2 28 199 4848 4.1 1.76
Unzip 6.0 31 381 2271 16.8 1.01
OpenSSH 5.2 56 141 11910 1.2 1.06
smtpd 2.6.2 67 337 10150 3.3 1.72
Mutt 1.5.9 83 743 16833 4.4 1.08
Git 1.3.3 171 91 27612 0.3 1.26
Vim 7.2 230 27 29305 0.1 1.06
Emacs 22.3 272 288 34491 0.8 1.06
Nethack 3.4.3 284 863 38432 2.2 1.02

Figure 4.2: Benchmark characteristics including number of indirect calls vs. all
calls and average number of contexts for WL

ure 4.2. The first column gives the name and version of the benchmark, the second

column the lines of code (in KLOC), and the third column the number of indi-

rect callsites, which are callsites that use function pointers to determine the callee.

We don’t provide exact numbers for the running times and memory usage of the

various analyses because it’s not clear that the implementations are directly com-

parable (some are implemented in OCaml, some in C++). However, the general

trends are as follows. Not surprisingly, Steens-FI is the fastest of the analyses,

finishing in under 2 minutes for each benchmark. DSA and Andersen’s are slightly

slower, finishing in under 3 minutes. The slowest analysis by far is WL, finishing

in under 100 minutes. In terms of memory usage, all analyses finish within 1 GB

of memory, except for DSA on 5 benchmarks, where it did not finish within 3 GB.

4.3.2 Call-graph Metrics and Results

Metrics. To evaluate precision, we considered several metrics. The first is fan-

out, which is the number of targets per indirect call. Fan-out is important because

it measures how much unnecessary smearing can occur in a client inter-procedural

analysis that uses the constructed call-graph. The second metric is the size of the

SCC that each function belongs to. Our previous experience in building bottom-up

summary-based inter-procedural analyses [VJL07, CVJL08] is that the maximum

82

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP

Dynamic
WL
Anders-FS

Anders-FI
DSA

1 10 32 57 314 449 558 1477 1883 2288

Figure 4.3: Max SCC size (normalized to Steensgaard)

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP
Dynamic
WL
Anders-FS
Anders-FI
DSA

1 1.5 2.1 29.1 82.6 73.3 253.3 902.6 1064.3 1520.8

Figure 4.4: Avg. SCC size (normalized to Steensgaard)

1 2 24 28 43 139 64 124 278 1148

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP
Dynamic
WL
Anders-FS
Anders-FI
DSA

Figure 4.5: Max Fan-out (normalized to Steensgaard)

SCC size is a big determining factor for scalability. This is because many bottom-

up analyses compute the result for all functions in a given SCC at once. The

83

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP
Dynamic
WL
Anders-FS
Anders-FI
DSA

1 1.98 4.67 3.78 3.28 19.07 33.43 7.46 42.19 52.52

Figure 4.6: Avg. Fan-out (normalized to Steensgaard)

largest SCC is therefore the hardest to analyze, and all other SCCs typically pale

in comparison. We measured each of these two metrics (fan-out and SCC size),

both as a maximum and as an average. To make the context-sensitive call-graph

of WL comparable to the context-insensitive call-graphs, we take the max value

(SCC or fan-out) out of all contexts for each particular function.

Organization of Results. The results are shown in Figures 4.3, 4.4, 4.5, and 4.6.

The benchmarks are arranged left-to-right in increasing size of maximum SCC pro-

duced by Steens-FI. For each benchmark, the bars represent different algorithms

for constructing the call-graph, all normalized to the results that Steens-FI would

produce. We use a bar made out of stars (“∗”) for DSA to indicate that it ran

out of memory (the actual size of the “∗” bars does not mean anything). Because

the numbers are normalized to the Steensgaard results for that benchmark (where

Steensgaard is therefore 1), it is hard to see the scale of the actual numbers. To give

a better feel for the absolute values, we display on top of the bars the Steensgaard

result for each benchmark, thus giving an indication of what the “1” represents for

that benchmark.

We used the Dynamic measurements as a sanity check to gain confidence

that our algorithms would not miss real calls. We only gathered Dynamic mea-

surements for SCC size (not fan-out). Also, we were unable to collect Dynamic

measurements for Smtpd because we were unable to run the instrumented version

of Smtpd.

84

Benchmark KLOC #ind ind Coverage

Bzip2 1.0.5 12 20 1.0
Icecast 2.3.2 28 199 0.04
Unzip 6.0 31 381 0.08
OpenSSH 5.2 56 141 0.14
smtpd 2.6.2 67 337 *
Mutt 1.5.9 83 743 0.02
Git 1.3.3 171 91 0.22
Vim 7.2 230 27 0.16
Emacs 22.3 272 288 0.08
Nethack 3.4.3 284 863 0.17

Figure 4.7: Indirect call coverage of the dynamic test suite

To estimate the tightness of the Dynamic lower bound we also measure

the coverage of the tests used to generate these results. The coverage metric is the

following. Let I(b) be the number of functions with indirect calls for a benchmark

b. Let C(b) be the number of functions with indirect calls for benchmark b that are

visited in the test suite. Coverage is defined as C(b)/I(b) (a value between 0 and

1). Note that with a value C(b)/I(b) = 1 it is still possible that the dynamic lower

bound is not tight. This coverage metric only measures the number of indirect call

sites, not all of the different possible values that can flow into the function pointer

at each of these call sites (because that is unknown!). Figure 4.7 contains coverage

data for each benchmark.

Small Benchmarks: Field-Sensitivity and Context-Sensitivity. Over the

small benchmarks (under 60 KLOC) there is little difference in fan-out and SCC

size. The only points that stand out are fan-out for Unzip and Icecast, and SCC

sizes for Icecast. First, let’s consider Unzip and fan-out. By looking at the code of

Unzip, we determined that field-sensitivity is the key property needed to conclude

that the max fan-out for Unzip is 1. And indeed, our experiments show that

Anders-FS and WL, both of which are field-sensitive, compute a max fan-out

of 1. However, it is surprising that DSA, which is also field-sensitive, computes

a max fan-out of 2. By looking further at this discrepancy, we found that DSA

is overly conservative in this case because Unzip stores arrays inside of structures,

85

void avl_tree_free(..., int (*free_key_fun)(void *key)) {

1: (*free_key_fun)(...);

}

void httpp_clear(...) {

2: avl_tree_free(..., & _free_vars);

}

void source_free_source(...) {

3: avl_tree_free(..., & _free_client);

}

static int _free_client(void *key) {

4: httpp_clear(...); // cycle complete

}

Figure 4.8: How context-sensitivity reduces max SCC (for Icecast)

httpp_clear src_free_src

avltree_free

free_clientfree_vars

httpp_clear src_free_src

avltree_free avltree_free

free_clientfree_vars

Figure 4.9: (a) Imprecise (b) Precise call-graph for Icecast

and DSA essentially loses field-sensitivity in these scenarios. Moving to Icecast, we

found that many of the function pointers are stored in different fields of the same

structure, and so field-sensitivity is helpful (compare Anders-FS with Anders-

FI). Field-sensitivity also gives DSA an edge for Icecast over Anders-FI, but it

still performs significantly worse than Anders-FS and WL.

Besides field-sensitivity, context-sensitivity makes a difference (but a small

one) in Icecast, as evidenced by the fact that WL has a max SCC of 2 vs. 7.

Figure 4.8 is simplified code that illustrates how the larger SCC has been divided

by a context-sensitive approach. The function avl tree free is a generic free

routine for AVL trees that is parameterized by a freeing function free key fun

86

g:228:builtin_merge_options ptsTo g:152:cmd_diff_files ::

Base: g:168:commands = &g:152:cmd_diff_files @ test.c:58

ComplexR: t:0:__TEMP__ = g:168:commands @ test.c:79

l:171:p ptsTo g:168:commands ::

Base: l:171:p = &g:168:commands @ test.c:77

Base: l:166:cmd = t:0:__TEMP__ @ test.c:79

ComplexL: l:162:_a50_1462_test_1 = l:166:cmd @ test.c:54

l:164:c__heapify__0 ptsTo l:162:_a50_1462_test_1 ::

Base: l:164:c__heapify__0 = &l:162:_a50_1462_test_1 @ test.c:50

ComplexR: t:4:__TEMP__ = l:162:_a50_1462_test_1 @ test.c:212

l:244:num_hits ptsTo l:162:_a50_1462_test_1 ::

Base: l:164:c__heapify__0 = &l:162:_a50_1462_test_1 @ test.c:50

Base: l:251:data = l:164:c__heapify__0 @ test.c:55

Base: l:247:data = l:251:data @ test.c:227

FP: l:244:num_hits = l:247:data @ test.c:220

l:246:fn ptsTo g:239:get_remote_group ::

Base: l:250:fn = &g:239:get_remote_group @ test.c:213

Base: l:246:fn = l:250:fn @ test.c:227

ComplexL: l:210:_a154_4011_test_2 = t:4:__TEMP__ @ test.c:212

\\ more of flow...

Figure 4.10: Example value flow witness (for a prefix of example 4.11)

for the keys of the AVL tree. The avl tree free routine is then called in two

contexts (lines 2 and 3), each time passing a different freeing routine for the keys.

The freeing routine passed in at one callsite of avl tree free (line 3) calls back

into the function that contains the other callsite to avl tree free. A context-

insensitive call-graph for this example — shown in Figure 4.9(a) — would contain

a spurious cycle, whereas the context-sensitive call-graph that WL computes —

shown in Figure 4.9(b) — eliminates the cycle.

Medium Benchmarks and Field-Sensitivity. The benchmarks between 60

KLOC and 200 KLOC are Mutt, Git, and Smtpd. The largest difference is

between field-sensitive Andersen’s (Anders-FS) and field-insensitive Andersen’s

(Anders-FI). For example, the max SCC reported by Anders-FI for Git is 449

while the max SCC reported by Anders-FS is 13. WL only reduces this number

slightly, to 6. This points to the fact that context-sensitivity does not provide a

87

significant amount of additional precision, beyond field-sensitivity.

To investigate how field-sensitivity helps in these cases, we need to find a

small code snippet exemplifying the coding patterns that causes the difference. In

a program with 200 KLOC this can be non-trivial, and so we used the following

methodology to find small examples to report. First, we used Delta Debugging

[ZH02] to reduce the code size of Git while preserving the property that Anders-

FI reports a “large” SCC (e.g., 20). With Delta Debugging, we were able to reduce

the code from 171 KLOC to 300 lines. Despite the reduced code size, understanding

the nature of the imprecise flow for Anders-FI was still difficult. The next step

then was to augment Anders-FI so that, in addition to the points-to graph, it

also generates a witness of the value flows that it computes. Figure 4.10 shows a

snippet of an example witness. Using this information, we found the code shown

in Figure 4.11.

Essentially, the example code shows how the function pointers stored in the

array (of 93 elements) at line 1 can flow to a call-site for which it does not belong.

Flow begins at line 1, where a pointer to function cmd diff is stored in the field

fn of a structure that is in the array comms, along with many other functions.

Because Anders-FI is field-insensitive, this pointer value flows out of the array

and structure at line 2 through a different field, cmd, and ends up in the cmd field

of structure con, declared at line 3.

Strangely enough, Anders-FI will conclude that this value ends up flowing

from con into a field of the structure opt, which is defined at line 8. To see how

this happens, we first observe that Anders-FI’s context-insensitivity causes it to

conclude that line 7 can call get remote group, since the call to git config from

line 6 passes &get remote group as the first parameter. Thus, any value passed to

the data parameter of git config flows to the last parameter of get remote group

(namely num hits). Now, notice that both &opt and &con are passed to the

data parameter of git config (on lines 4 and 9), meaning that they both flow

to num hits, and thus to tmp on line 5. Finally, the assignment on line 5 copies

values between all targets of tmp, creating a spurious flow from con to opt.

Summarizing what has happened so far, Anders-FI concludes that the

88

struct cmd_struct {

char const *cmd;

int (*fn) (...);

};

struct cmd_struct comms[93] = {

1: {"diff", &cmd_diff},

};

handle_internal_command (...) {

2: check_pager_config(comms[i].cmd);

}

check_pager_config (char const *cmd) {

3: struct pager_config con;

con.cmd = cmd;

4: git_config (&pcg, (void *)(&con));

}

get_remote_group (..., void *num_hits) {

int *tmp = (int *) num_hits;

5: *tmp = *tmp + 1;

6: git_config (&get_remote_group, ...);

}

git_config (int (*fn) (...), void *data) {

7: (*fn) (..., data);

}

cmd_grep (...) {

8: struct grep_opt opt;

9: git_config (&grc, (void *)(&opt));

10: strbuf_addch (..., opt.cm[0]);

}

Figure 4.11: Importance of either field-, or context-sensitivity (from Git)

89

pointer to the function cmd diff flows (1) from comms to con, due to field-insensit-

ivity and (2) from con to opt, due to context-insensitivity. The pointer to cmd diff

will then continue its journey in a similar manner starting at line 10 from opt and

will eventually reach an indirect callsite that it should not reach (which we do not

show here). All the steps required to get the entire spurious flow from the comms

array to the indirect call site are similar to either step (1) or (2) above. Thus, either

field-sensitivity or context-sensitivity will stop these spurious flows, as evidenced

by the Git results for Anders-FS and WL. Because DSA is also context-sensitive

and field-sensitive, we suspect that it would also be able to prevent these spurious

flows , but DSA did not finish on Git (it ran out of memory).

Largest Benchmarks and Inclusion vs. Unification. For the 3 largest bench-

marks Nethack, Vim, and Emacs (over 200 KLOC), we find that there is little

difference between WL, Anders-FS, and Anders-FI in terms of max SCC size

and max fan-out. The only difference is in average fan-out. However, there is

a significant gap between the unification-based Steens-FI (to which all bars are

normalized) and the inclusion-based approaches. For example, the max fan-out for

Emacs drops from 1148 for Steens-FI to 62 for Anders-FI and 28 for Anders-

FS and WL. We also notice that these applications have very large SCCs, even

when function pointers are ignored (that is to say, the NoFP bar has over 1000

functions).Finally, we noticed that all the pointer analyses perform equally poorly

for Vim. Further investigation revealed the code seen in Figure 4.12, which shows

how Vim makes heavy use of arrays to store function pointers. Because pointer

analyses use a single summary node to represent all elements of the array, the call

at line 3 has a fan-out of at least 72 (there are 72 unique functions pointed to by

the elements of nv cmds).

4.3.3 Recap

Field-sensitivity and inclusion constraints matter most: Our experiments

demonstrate that, for the purpose of building call-graphs for C programs, field

sensitivity and inclusion constraints are the two biggest contributors to preci-

90

struct nv_cmd {

void (*cmd_func)(cmdarg_T *cap) ;

//...

};

struct nv_cmd nv_cmds[182] = {

{ &nv_error, /* ... */ },

{ &nv_mouse, /* ... */ },

{ &nv_mouse, /* ... */ }, //...

};

void normal_cmd(oparg_T *oap , int toplevel) {

1: c = safe_vgetc();

if (*) {

ca.cmdchar = c;

} else { ... }

2: idx = find_command(ca.cmdchar);

3: (*(nv_cmds[idx].cmd_func))(& ca); // Fans-out 72 ways

}

Figure 4.12: Smallest of 3 large function pointer arrays in Vim

sion and both are present in Anders-FS. Moreover, when comparing WL to

Anders-FS, recall that there are three main differences: (1) flow-sensitivity, (2)

context-sensitivity, and (3) heap-cloning. Our experiments show that there is lit-

tle difference between WL and Anders-FS, meaning that these three additional

components do not contribute a substantial amount of additional precision.

SCCs are large even ignoring function pointers: Our experiments also re-

veal that large C benchmarks may have large SCCs even if function pointers are

completely ignored. Given the high lower-bound for max SCC in our largest bench-

marks (as seen in the NoFP bar), inter-procedural client analyses that operate

on one SCC at a time may need to decompose the problem further to improve

scalability.

91

void callee(int *p) {

if (p) {

0: init(*p);

}

1: use(*p);

}

void caller(int *z) {

int x; int *y = NULL;

2: callee(&x);

3: callee(y);

4: callee(z);

}

Figure 4.13: Illustrating example for a bottom-up null-safety analysis

4.4 Effect on Client Analyses

Aside from measuring the precision of various C pointer analyses for the

purpose of constructing call-graphs, our goal is to also measure the effect of call-

graph construction on client inter-procedural analyses. To this end, we have imple-

mented an inter-procedural null-pointer safety analysis, which runs bottom-up on

the call-graph, analyzing one SCC at a time. In addition to this null-pointer anal-

ysis we have also adapted Relay to make use of the constructed call-graphs. Both

of these analyses are representative of the many inter-procedural analyses that use

a bottom-up-one-SCC-at-a-time approach in order to scale, for example the ESP

type-state verifier [DLS02, HDWY06a], the Saturn analysis system [XA05] and

recent work on Shape analysis [CDOY09].

We first give a description of the null-pointer analysis (Section 4.4.1), then

present our experimental results for the null-pointer analysis (Section 4.4.2) and

the Relay race detector (Section 4.4.3), and finally recap the main conclusions

that can be drawn from these experiments (Section 4.4.4).

4.4.1 Inter-procedural Null Pointer Analysis

Overview. Our null pointer analysis proceeds in two phases. The first computes

may-be-null and must-be-non-null information for each pointer at each program

point in a function. The second pass uses the nullness information to check the

safety of dereferences in that function.

As the analysis is bottom-up on the call-graph, there are cases in which

92

the state of a pointer p is unknown when analyzing a callee because of informa-

tion missing from callers. For example, in the code snippet from Figure 4.13, the

dereference at line 1 cannot be verified when analyzing callee. Instead of conser-

vatively saying that the pointer may be null, we instead add a pre-condition for

the function requiring NonNull(p). A dereference whose check is deferred with a

pre-condition is unsafe if any caller violates the pre-condition. For example, the

call at line 2 is verified to be safe, but the call at line 3 is certainly unsafe. There-

fore the use at line 1 is unsafe. If a caller is also unable to verify a pre-condition,

the pre-condition itself may be deferred further up the call-chain. In the example,

the pre-condition for the call at line 4 will be deferred to the callers of caller

(that is, callers of caller will have to guarantee that the parameter to caller is

non-null).

For our experiments we are only concerned with the precision of the call-

graph, and so we use a fixed pointer-analysis (namely Anders-FI) for the other

cases in which pointers are involved during the null-pointer analysis (e.g., to check

aliasing between lvalues when handling writes).

First Pass: Nullness States. The first pass of our analysis computes sets of

pointers that may be null. To capture what information has changed relative to the

beginning of the current function and to distinguish between non-null, null, and

unknown caller-provided information, we track relative nullsets at each program

point. A relative nullset is a pair of disjoint sets of lvalues (N+, N−). N+ contains

pointers that must be non-null due to program statements since the beginning of

the function while N− contains pointers that may be null due to program state-

ments since the beginning of the function. The nullness of any pointers that are

in neither of the sets is determined by the caller. After a function is analyzed, its

effects on the nullness of pointers can be summarized by the relative nullset at the

exit node of the function. These summaries can then be used by callers to take

into account the effects of calls.

More formally, we denote by Lvals the set of all lvalues, and N = 2Lvals ×
2Lvals the set of all relative nullsets. The lattice of facts then is (N ,⊥,>,v,t,u),

where the ordering is defined as:

93

• ⊥ = (Lvals , ∅), > = (∅,Lvals)

• (N+, N−) v (N ′+, N
′
−) iff N ′+ ⊆ N+ ∧N− ⊆ N ′−

• (N+, N−) t (N ′+, N
′
−) = (N+ ∩N ′+, N− ∪N ′−)

• (N+, N−) u (N ′+, N
′
−) = (N+ ∪N ′+, N− ∩N ′−)

Dataflow information is initialized with (∅,Locals) at the beginning of a

function. N+ being ∅ corresponds to the fact that no pointers have changed since

the beginning of the function, and N− being Locals corresponds to the fact that

locals (which are not initialized yet) may be null. All other program points are

initialized to ⊥.

The transfer functions are straightforward (Figure 4.14(b)). When analyz-

ing a statement, if we can determine that a pointer has definitely become non-null,

we add it to N+, and remove it from N−. Conversely, when a pointer becomes

possibly null, we add it to N−, and remove it from N+. The helper functions Plus

and Minus are used to add elements to N+ and N−, respectively, while maintaining

the invariant that they are disjoint. For (possibly indirect) function calls, we use

the call-graph to compute the set of possible targets for the call. For each target

function, we look up its summary (which is a relative nullset) and rename all the

lvalues in the summary to the caller’s context. Once the summary is renamed,

we simply apply the summary to the information before the call to get the in-

formation after the call. In particular, if (N+, N−) is the information before the

call, and (N r
+, N

r
−) is the renamed summary, then the information after the call is

((N+ ∪N r
+) \N r

− , (N− ∪N r
−) \N r

+). When there are multiple targets for a call,

we simply merge the results from all the possible calls.

Second Pass: Checking Dereferences. The second phase that checks derefer-

ence safety is straight-forward. It does not require iteration and simply uses the

dataflow information computed in the first pass. When a dereference for a pointer

lv, or a call with a pre-condition NonNull(lv) is encountered, and (N+, N−) is the

relative set for that program point, the following decision is made:

• If lv ∈ N+ then we count it as safe

94

Plus : N × 2Lvals → N

Plus((N+, N−), S) =
return (N+ ∪ S, N− − S)

Minus : N × 2Lvals → N

Plus((N+, N−), S) =
return (N+ − S, N− ∪ S)

ApplyDiff : N ×N → N

ApplyDiff((N+, N−), (Nd
+, Nd

−)) =
let N ′+ = (N+ ∪Nd

+)−Nd
− in

let N ′− = (N− ∪Nd
−)−Nd

+ in
return (N ′+, N ′−)

F : Node ×N × PPoint → N

F (l := malloc(), N in, p) =
F (l := &l , N in, p) =

return Plus(N in, {l})
F (l := l ′, (N in

+ , N in
−), p) =

if (l ′ ∈ N in
+) :

return Plus((N in
+ , N in

−), {l})
else if (∃ lr ∈ N in

− .Alias(l ′, lr) :
let S = {l l ∈ Lvals | Alias(l , l l)} in
return Minus((N in

+ , N in
−), S)

else
return (N in

+ , N in
−)

F (l := e, N in, p) =
let S = {l ′ ∈ Lvals | Alias(l , l ′)} in
return Minus(N in, S)

F (assume(l 6= null), N in, p) =
return Plus(N in, {l})

F (assume(l = null), N in, p) =
return Minus(N in, {l})

F (call(e, e ′),N in , p) =
let T = CallTargets(p) in⊔
(f,c)∈T

let Nf = NullEffects(f, c) in
let N ′f = Rebind(Nf , f, e′) in
ApplyDiff(N in, N ′f)

Figure 4.14: Non-null dataflow analysis

• If lv ∈ N− then we count it as unsafe

• If lv is not in either set, we add the requirement NonNull(lv) to the current

function’s pre-condition.

95

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP
WL
Anders-FS
Anders-FI
DSA
Steens

11.4 7.7 43.7 55.4 5808.4 4477.6 9077.8

Figure 4.15: Time in seconds for client (normalized to max)

4.4.2 Results for Null-pointer Analysis

Metrics of Interest. Given the definition of the client analysis, let us present

metrics of interest and briefly discuss (qualitatively) reasons in which a more precise

call-graph can benefit the client.

• Time and memory usage: A more precise call-graph will (1) reduce the

number of callee summaries to apply at each callsite, and (2) reduce the sizes

of the SCCs. Smaller SCCs will reduce the maximum working set size, as all

dataflow information for the SCC is kept in memory during analysis.

• Number of dereferences shown safe: A more precise call-graph will

reduce the number of spurious callees. Fewer spurious callees translate to

(1) fewer opportunities for a pre-condition to fail and hence a dereference

to be shown unsafe, and (2) fewer spurious modifications that may nullify

pointers.

Results. Figure 4.15 and 4.16 show the time and memory usage of the client

analysis on each of the benchmarks, with each of the constructed call-graphs. The

numbers are normalized for each benchmark to the largest of the values for that

benchmark. Even though the time and memory measurements are fairly close for

the small benchmarks, more generally, the trend is that smaller SCCs translate to

faster running times and lower memory usage. For example, for Smtpd, NoFP

96

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP
WL
Anders-FS
Anders-FI
DSA
Steens

15 31 126 87 1281 609 2146

Figure 4.16: Memory used by client in MB (normalized to max)

Bzip Unzip Openssh Icecast Mutt Git Smtpd Nethack Vim Emacs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoFP
WL
Anders-FS
Anders-FI
DSA
Steens

65.72 45.02 77.95 64.23 65.34 73.56 66.44

Figure 4.17: Precision of client as % of dereferences shown safe (normalized to
max)

runs in 58 seconds using 84MB; WL, Anders-FS, and DSA finish in under 600

seconds using under 300 MB; Anders-FI takes over 4000 seconds and uses over

1.7GB of memory; and finally Steens-FI takes over 9000 seconds and over 2.1 GB.

Finally, the three benchmarks with over 1000 functions in an SCC fail to complete

within our memory budget using any of the call-graphs, as does Git when using

Anders-FI and Steens-FI (449 max SCC). The client paired with Anders-FS

does not exceed the memory budget for Git, but fails to complete within 12 hours.

Another result we have found is that although the max SCC can be smaller

for WL than for Anders-FS, the client can still complete more quickly with

Anders-FS. For example, the max SCC for Mutt is 246 functions for WL vs

304 for Anders-FS, but the client is over 150 seconds faster and uses 98MB less

97

memory when using the Anders-FS call-graph. This is explained by the fact

that WL constructs a context-sensitive call-graph. Given a context-sensitive call-

graph, the client must re-analyze a function additional times depending on how

many additional contexts are created in the call-graph, for that function.

Finally, Figure 4.17 compares the precision of the client analysis with the

various call-graphs. The precision numbers measure the percentage of dereferences

that are proven safe in each of the cases. For each benchmark, the percentage values

are normalized to the largest percentage value for that benchmark. We can see

that for Smtpd, the precise call-graphs provide substantially better results than

the imprecise ones (22% difference between WL and Steens-FI). What may be

surprising is that only three of the benchmarks show much difference between any

of the pointer analyses, even when compared to the unsound NoFP. One possible

explanation is that indirect calls only make up 3.5% of the total calls on average

across the benchmarks (Figure 4.2). Another possible explanation is that many

of the targets of the indirect calls are relatively pure (do not modify or nullify

parameter pointers). For example, in Mutt, 689 out of the 743 indirect calls are

for printf like functions, comparison functions supplied to a sort routine, or getter

functions. Finally, it is also possible that the imprecision of the client is dominated

by the Alias Analysis and not the call-graph analysis.

4.4.3 Results for Relay Race Detector

Aside from the non-null client, we have also adapted our Relay data-race

analysis [VJL07] to make use of the constructed call-graphs. The Relay analysis

only makes sense for multithreaded programs in our benchmarks suite, namely

Icecast and Git.

The results for time, memory, and data-race warnings follow a similar trend

to the null-pointer analysis. For Icecast, NoFP completes in 7 seconds w/ 52MB,

WL completes in (320 s, 475 MB), Anders-FS in (17 s, 95 MB), DSA in (66 s, 97

MB), Anders-FI in (91 s, 100 MB), and Steens-FI in (109 s, 125 MB). With this

client, it is also the case that the context-sensitive call-graph can generate more

work than a context-insensitive call-graph. In terms of precision, the different

98

call-graphs result in roughly the same number of data-race warnings except for

NoFP, which leads to half as many warnings. For Git completes in (86 s, 293

MB), WL in (449 s, 1066 MB), Anders-FS in (238 s, 796 MB). The less precise

analyses Anders-FI and Steens-FI are unable to finish without exceeding our

3GB memory budget. In terms of precision, the sound analyses are again very

close, but here again the unsound NoFP reports substantially fewer warnings

than Anders-FS.

4.4.4 Recap

More precise call-graphs improve client performance: Our results show

that in general more precise call-graphs can dramatically improve the running

time and memory usage of inter-procedural analyses that use a bottom-up one-

SCC-at-a-time approach for scaling. This is due to the fact that the improved

precision in the call-graphs reduces the size of the largest SCC.

More precise call-graphs don’t necessarily help client precision: Our ex-

periments also show that improved call-graph precision does not necessarily lead

to improved precision for the client analysis. In particular, for the client analyses

we considered, the primary purpose for getting a more precise call-graph is for

scalability, rather than precision of the end results.

4.5 Other Call-graph Algorithms and Studies

We give a brief survey of previous research on callgraph construction and

empirical comparisons of different value-flow analyses.

Call-graphs for High-Level Languages. There is a rich literature on the sub-

ject of call-graph construction for higher-level functional and class-based Object-

Oriented languages. [Shi88] presented the now classical k−CFA for Scheme, that

uses the call-strings method to determine the set of possible closures that reach a

particular call-site. The method cannot be directly applied to C for a variety of

reasons — including the fact that it relies on a prepass that translates the code

99

to continuation-passing style. The problem of call-graph construction has received

much attention from researchers looking to optimize the overheads associated with

dynamic dispatch in Object-Oriented languages. In this setting, the question re-

duces to determining, for each call-site, the particular classes a receiver object

can belong to. There are a variety of type-based mechanisms, such as the Carte-

sian Product Algorithm [Age95] and flow-based algorithms such as [TP00] that

can reconstruct this information. [GC01] describes a unified framework within

which many of these algorithms (and others, like k-CFA) can be expressed and

provides a detailed experimental comparison of the different techniques on a set

of common benchmarks. However, all the above rely heavily on class information

which is non-existent in C programs — indeed, C does not even help with deter-

mining which fields of a structure hold function pointers — and hence, cannot be

directly applied to low-level systems code. The problem of call-graph construc-

tion for C has received some attention. [Atk04] describes ways to combine types,

syntactic pattern-matching and run-time pointer information to precisely recon-

struct call-graphs. While these techniques are applicable in the setting of program

comprehension, they are unsound for static program analysis.

Experimental Comparisons. Several authors have presented experimental com-

parisons of different alias, points-to and value-flow analyses. Milanova, Ryder and

Rountev [MRR04] show experimentally that a field-sensitive, context- and flow-

insensitive algorithm from [ZRL96] suffices to construct precise call-graphs for C

programs. However, these experiments were for benchmarks that are an order of

magnitude smaller than ours. Our results agree that field-sensitivity is important.

[DLFR01] studies how the one-level flow algorithm (OLF) fares against a general-

ized, context-sensitive version (GOLF) with regards to certain client optimizations.

It uses a metric to represent client optimizations (instead of directly carrying out

the optimizations), and moreover, the client is itself an intra-procedural analysis.

[CDC+04] studies how a variety of alias analyses affect a set of compiler opti-

mizations. However, the client optimizations considered in the paper are intra-

procedural, and the most precise (but sound) analysis that was studied was [IH97]

which is scalable but less precise than Anders-FI. [PKH04a] compares the sizes

100

of the points-to sets returned by field-insensitive and sensitive versions of Ander-

sen’s algorithm. The paper notes that field-sensitivity starts to become important

in larger programs, but does not report on the effect on clients. Finally, Mock

et al. [MACE02] measure the impact of Steens-FI in comparison to a lower

bound (dynamic points-to data), for a program-slicing client. They find that re-

sults follow a bimodal distribution. For programs with few function pointers in

use, slicing with Steens-FI is already close to the lower bound even though deref-

erence set sizes are greatly improved. Only programs that use function pointers

heavily benefit from a more precise points-to analysis (approximated by the dy-

namic points-to data). To explain this lack of improvement, they cite Amdahl’s

Law. For program slicing, they find that most of the data dependencies are in-

duced by direct variable-to-variable assignments or parameter passing. Therefore,

improved pointer information only affects a few of the data dependencies and yields

few benefits. In a way, this is similar to our findings. We find that precision of

some clients is not improved by a more precise callgraph, since indirect function

calls make up a small fraction of all function calls for C programs.

Chapter 5

Instantiating and Evaluating

Radar

This chapter describes how to instantiate the Radar framework using Re-

lay. We call this instantiation Radar(Relay). This instantiation is then applied

to several sequential dataflow analyses to obtain versions that are sound when the

analyzed program contains multiple threads sharing memory. This chapter ends

with experimental results demonstrating the effectiveness of such conversions com-

pared to appropriate upper and lower bounds.

5.1 Putting Relay into Radar

We now show how to instantiate the three functions Reg , RacyRead , and

SumReg using Relay. The result is an instantiation of Radar using Relay,

namely Radar(Relay).

Region Map. We define regions as R = Funs × Locks , where Funs is the set of

function identifiers. Given a program point p, Reg(p) returns (g , (L+, L−)), where

g is the function to which p belongs, and (L+, L−) is the relative lockset computed

at p by the Relay lockset analysis.

Summary Map. To define the SumReg function, we first define a helper function

AllUnlocks . Intuitively, the set AllUnlocks(cs) represents an over-approximation

101

102

of the set of locks that could possibly be released by performing the call at cs . In

particular, given a call-site cs , AllUnlocks(cs) computes the union of all the L−

sets in the function being called at cs , and then converts this set into the caller

context. The conversion consists of replacing the callee’s formals that occur in the

locksets with the parameters passed in at the call-site.

Given a call-site cs ∈ CS where function h calls g , and given that (L+, L−)

is the relative lockset computed by Relay for the program point right before the

call to g at cs , then SumReg(cs) is defined as follows:

SumReg(cs) = (h, (L+ − AllUnlocks(cs), L− ∪ AllUnlocks(cs)))

Essentially, SumReg subtracts the AllUnlocks set from the locks that were

held before the call is made. The result of this subtraction is a conservative ap-

proximation of the set of locks that are guaranteed to remain locked at all points

during the call.

Race Detection Engine. Given a region r = (g , (L+, L−)) and an lvalue l ,

RacyRead(r, l) conceptually runs a full Relay analysis bottom-up, except that

when it analyzes function g , it inserts an additional guarded access to the guarded

access set. The additional guarded access is the triple (l , (L+, L−), read), indicating

that we are simulating a read of l with a lockset of (L+, L−). The RacyRead(r, l)

function returns true if and only if, after being propagated up to the thread roots,

this pseudo-read leads to a Relay race warning.

This conceptual description of RacyRead(r, l) is not how we implement it,

since each call to RacyRead would lead to an entire Relay bottom-up analysis

of the program. Instead, we structure the execution of Radar(Relay) into the

following four passes, two of which are the Relay bottom-up analysis.

• First pass. Radar(Relay) runs the bottom-up Relay analysis to com-

pute the relative locksets at each program point, and hence, the race equiv-

alence regions and the summaries needed for AllUnlocks .

• Second pass. Radar(Relay) runs the sequential analysis on the entire

program with a RacyRead function that returns false all the time. This has

103

the effect of running the sequential analysis without any adjusting, but it

allows Radar(Relay) to collect the parameters of all the RacyRead queries

into a set S of (r , l) pairs. Since the sequential analysis computes a superset

of the facts computed by the adjusted analysis, the set S is a superset of the

queries that the adjusted analysis will make.

• Third pass. Radar(Relay) then runs the bottom-up Relay analysis

again to insert pseudo-accesses. In particular, when analyzing a function

g , for each pair (r , l) ∈ S where r = (g , (L+, L−)), Radar(Relay) adds

the guarded access (l , (L+, L−), read) to the guarded access summary of

g . Radar(Relay) uses the results of this second Relay run to build a

map RelayResults : S → Bool . Given (r , l) ∈ S, RelayResults(r , l) returns

whether or not the pseudo-read inserted for (r , l) caused a race warning.

• Fourth pass. Finally, Radar(Relay) runs the sequential analysis again,

but this time performs the adjusting process. To do so, Radar(Relay)

uses the RelayResults map computed during the third pass to answer the

RacyRead queries.

Reuse of Passes Between Analyses. If a client has several sequential analyses,

for example lazy code motion depends on several uni-directional dataflow analyses,

then pass one and pass three (the data-race engine passes) can be shared by all

of the dataflow analyses, assuming that the dataflow analyses are not dependent

upon each other. Reuse of pass one is obvious because it does not depend on the

sequential analysis at all. Reuse of pass three is possible, given sufficient book-

keeping, because each sequential analysis only generates pseudo-reads and reads

cannot race with each other. Therefore the race-engine queries for the different

analyses do not interfere with one another during pass three.

Example: Relative Locksets. We now illustrate how Radar(Relay) would

analyze the program in Figure 2.5 with the non-null analysis.

104

• First pass. Relay computes the Reg map where Reg(p) is:

(Producer, (∅, ∅)) if p ∈ {P0}

(Producer, ({buf lock}, ∅)) if p ∈ {P3, P4, P5, P6, P8, P9}

(Producer, (∅, {buf lock})) if p ∈ {P1, P2, PA}

(Consumer, (∅, ∅)) if p ∈ {C0}

(Consumer, ({buf lock}, ∅)) if p ∈ {C3, C4, C5, C6, C7}

(Consumer, (∅, {buf lock})) if p ∈ {C1, C2}

(foo, (∅, ∅)) if p ∈ {G0}

(foo, (∅, {buf lock})) if p ∈ {G1}

Notice that both locksets are empty at the first point in each function mean-

ing the lockset is trivially the same as at the entry point. Using the above

Reg map, Radar(Relay) determines:

AllUnlocks(P5) ={buf lock}

as the buf lock is released inside foo. Thus,

SumReg(P5) =(Producer, (∅, {buf lock}))

• Second pass. In the second pass, Radar(Relay) runs a sequential non-

null analysis which generates the flow facts shown on the left in Figure 2.5,

including the facts crossed out by a line. Using these facts, Radar(Relay)

computes the superset S as the set of tuples {(Reg(p), l) | NonNull(l) at p}.

• Third pass. Radar(Relay) then inserts pseudo-reads corresponding to

the queries S generated above, and builds the map RelayResults which yields

the following RacyRead map:

RacyRead((g, (L+, L−)), l) =

(l = px->data ∧ buf lock 6∈ L+)

∨ (l = cx->data ∧ buf lock 6∈ L+)

105

• Fourth pass. When the adjusted sequential analysis is performed, the fact

NonNull(px->data) gets killed at P5 since the summary region at that call-

site does not include buf lock in L+. The result is shown on the left in

Figure 2.5 – the dataflow solution includes only the facts that are not crossed

out.

5.2 Analyses Converted by Radar(Relay)

The Radar framework has been tested with several dataflow analyses,

including both forwards and backwards directional analyses. Some analyses are

targeted towards optimizations and others for checking safety properties.

One purpose of evaluating Radar against multiple clients is to show that

the framework is general – each client sequential analysis uses the same simple

interface. The client is only expected to expose three functions (1) the flow function

F , (2) a function enumerating lvalues that a fact depends upon Lvals , and (3) a

function for removing elements from a set of flow facts as dictated by ThreadKill .

The tested analyses are:

• Constant Values. For each program point, this analysis computes sets of

lvalues holding constants (ConstValue(x, c)). This analysis is used to perform

the constant propagation optimization. Constant folding is also done during

the analysis using the dataflow facts. It is an intra-procedural forward must

analysis and is the canonical non-distributive dataflow analysis. Procedure

calls are handled by checking a summary of modified lvalues and killing facts

that are modified by the call. A sound version of the analysis would avoid

the incorrect optimization shown in Figure 5.1, where a busy-wait loop is

optimized into an infinite loop. A sequential-minded analysis mistakenly

deduces that the flag variable invariantly holds the value 1 during the loop,

ignoring the effects of the second thread.

• Very Busy Expressions (or, anticipatable expressions). For each

program point, this computes a set of expressions that are (1) evaluated

106

Thread 1 Thread 2 Thread 1 Thread 2
flag = 1;

spawn th2;

while (flag){}

proceed();

doWork();

flag = 0;
⇒

flag = 1;

spawn th2;

while (1){}

proceed();

/*

unchanged

*/

Figure 5.1: Unsound constant analysis leads to non-termination

along every path after the given program point, and (2) none of the lvalues

in the expression are re-defined before the evaluation. It serves as one of the

three analyses used to perform the lazy code motion optimization [KRS92].

It is an intra-procedural backwards must analysis. Again, procedure calls are

handled by checking a summary of modified lvalues. A sound version of the

analysis would avoid the incorrect optimization shown in Figure 5.2, which

ignores the re-definition of y made by the second thread and causes thread

one to loop forever.

• Non-Null. This computes sets of lvalues that hold non-null values, and

therefore can be safely dereferenced. It is an inter-procedural forwards must

analysis. It uses the relative dataflow framework and is described in Sec-

tion 4.4.1. The must set in the relative dataflow formulation is adjusted by

Radar, but the may set only tracks thread-local may information and there-

fore is not adjusted by Radar. The may information serves as a more precise

modifies summary. A sound version would catch bugs like those described in

the overview section and shown in Figure 2.2.

5.3 Evaluation

Another purpose of evaluating Radar against multiple clients (and multi-

ple benchmarks) is to extrapolate trends in the precision of our approach. This

section describes such measurements comparing the Radar(Relay)-generated

versions of each analysis to lower and upper bounds.

107

Thread 1 Thread 2 Thread 1 Thread 2

x = 0; y = 0;

spawn th2;

while (x < 1000)

x = x+(10*y);

x = x+(10*y);

y = 1; ⇒

x = 0; y = 0;

t = 10*y;

spawn th2;

while (x < 1000)

x = x+t;

x = x+t;

/*

unchanged

*/

Figure 5.2: Unsound VBE analysis can cause non-termination

5.3.1 Alternative Instantiations and Bounds

The main component of Radar that determines its precision is the black

box that answers RacyRead queries. Radar(Relay) is one instantiation, but it

is also possible to instantiate more scalable but less precise versions, or even an

upper bound on precision by changing the black box. This section compares four

different instantiations.

Steensgaard-based Instantiation. The simplest and least precise instantiation

we consider is based on Steensgaard’s pointer analysis [Ste96a], and we call this

instantiation Radar(Steens). For this instantiation, RacyRead(r , l) ignores the

region r it is passed and returns true if l is reachable from a global or a thread

parameter, according to the Steensgaard’s points-to graph. This matches our in-

tuition that lvalues that cannot be reached from globals and thread parameters

cannot be shared, and thus cannot be racy.

Relay-based Instantiations. We have already described the Relay-based in-

stantiation of Radar in Section 5.1. However, for the purpose of better un-

derstanding where the precision of Radar(Relay) is coming from, we separate

Radar(Relay) into two instantiations based on the observation that Relay can

prove the absence of a race in two different ways: given a write and another access

to two lvalues in two different threads (1) show that the two lvalues do not alias;

and (2) if they can alias, show that the intersection of the locksets is non-empty.

To better understand how these two different ways of showing the absence

of a race contribute to Radar(Relay), we separate the instantiation into two

108

parts, Radar(Relay¬L) and Radar(Relay). We have already seen the latter;

it is just as described in Section 5.1. The former is a version of Radar(Relay)

where we change the Reg map to always return >, which represents the empty set

of locks. This modification simulates a version of Relay that only answers race

queries based on possible aliasing relationships and the existence of accesses in at

least two threads (with at least one write), but not on locksets.

Optimistic Instantiation. The last instantiation we consider is the most opti-

mistic possible: the one where RacyRead always returns false. We call this version

Seq because it is equivalent to the sequential analysis without any adjusting. Al-

though this instantiation of Radar is unsound, it establishes an upper bound on

how well any adjusted analysis can do.

Each one of these instantiations – Radar(Steens), Radar(Relay¬L),

Radar(Relay), and Seq – is more precise than the previous, with the last one

being unsound.

5.3.2 Instantiations with Varying Call-graphs

It is possible to arrive at different instantiations of Radar by varying

the underlying callgraph construction algorithm used by the different components

(e.g. by Relay or by the dataflow analyses under adjustment). The goal of the ex-

periments in this section is to compare the precision of each instantiation. However,

results from Section 4.4 indicate that more precise call-graphs do not necessarily

increase the precision of client analyses. A more precise callgraph does, however,

improve the scalability of inter-procedural analyses like Relay and the non-null

dataflow analysis. Therefore, in this section we simply pick the most precise call-

graph that can be generated within resource limits, for each benchmark.

5.3.3 Radar Benchmarks

To compare each instantiation of our framework, we have collected the

eight benchmarks shown in Figure 5.3, totaling over one million LOC. Briefly,

the benchmarks consist of two media servers Icecast and mtdaapd, the Retawq

109

Benchmark KLOC Call-graph max SCC

Icecast 28 WL 2
Retawq 40 WL 90
Mtdaapd 57 WL 9
TokyoTyrant 101 WL 1
Apache 142 Anders-FS 575
Git 170 WL 6
Stunnel 183 Anders-FS 1180
Linux 830 Per-File 144∗

Figure 5.3: Radar Benchmark characteristics

text-based web browser, the Apache web server configured to handle requests with

threads instead of processes, the Git distributed version control system, the Tokyo

Tyrant lightweight database server, the stunnel program which encrypts any client

TCP connection with OpenSSL, and a subset of the Linux kernel. The table also

indicates the most precise call-graph generated for each benchmark. If it is the

case that even the most precise callgraph contains an SCC which is too large for

Relay, we fall back on the unsound call-graph generated by a per-file pointer

analysis. This is only the case for Linux.

5.3.4 Running Times and Memory Usage

Running all four passes of Radar(Relay) on a single 3.2 GHz Pentium 4

machine never requires more than 2GB of RAM. Averaging over all three analyses

(non-null, constant propagation, and very-busy expressions), the running time of

Radar(Relay) ranges from less than a minute on small benchmarks, all the

way to 9.7 hours on Linux, with an average of 2.2 hours. The longest-running

benchmark was Linux (9.7 hours), because of its many lines of code and threads.

The next longest-running benchmark was Stunnel (4.5 hours), because of its large

SCC of over 1,000 functions. All other benchmarks ran in less than 3.2 hours.

Although parallelizing Radar(Relay) for Stunnel is a challenge because of its

large SCC, in the case of Linux, the implementation of Radar(Relay) can easily

be parallelized in the same way as Relay [VJL07] by analyzing independent call-

110

Icecast Retawq Mtdaapd T.Tyrant Apache Git Stunnel Linux Average
0

20

40

60

80

100

%
 d

e
re

fs
 s

a
fe

Null analysis with blobs

Steens
RadarNL
Radar
Seq

Radar

RadarNL

21.0 100.0 64.6 99.6 26.5 56.4 45.3 63.6 59.6

21.0 100.0 64.6 99.6 26.5 56.4 45.2 45.3 57.3

Figure 5.4: Percentage of all dereferences proven safe by each instantiation (top),
and percentage of gap bridged (bottom).

graph SCCs in parallel. This would allow Radar(Relay) to run much faster on

a cluster of nodes.

5.3.5 Comparison of Precision

Null Analysis Results

Figure 5.4 shows the number of dereferences proven safe, as a fraction of all

dereferences, by each of the four Radar-adjusted analyses. As expected, the size

of each bar grows from left to right, indicating that each analysis is more precise.

The first thing to notice is that for each benchmark the sequential analysis

(the fourth bar in each cluster) can prove only a small percentage of dereferences

safe, between 44.35% and 80.41%. Thus, no matter how precise the adjusting

process, the resulting multithreaded analysis will not be able to prove the safety

of a significant number of dereferences.

The imprecision in the sequential non-null analysis is mostly due to impre-

cision in analyzing the heap. The alias analysis we use merges many of the lvalues

on the heap into “blob” nodes, thus losing precision for heap-allocated variables.

111

Icecast Retawq Mtdaapd T.Tyrant Apache Git Stunnel Linux Average
0

20

40

60

80

100

%
 d

e
re

fs
 s

a
fe

Null analysis without blobs

Steens
RadarNL
Radar
Seq

Radar

RadarNL

17.3 100.0 63.7 99.2 29.2 53.3 42.0 63.1 58.5

17.3 100.0 63.7 99.2 29.2 53.3 41.9 46.8 56.4

Figure 5.5: Percentage of non-blobby dereferences proven safe (top), and percent-
age of gap bridged (bottom).

Previous null-pointer analyses [DDA07] have also found that heap structures are

hard to analyze precisely and lead to many false-positives when performing null-

dereference checks. To factor this degree of imprecision out of our experiments,

we plot in Figure 5.5 the percentages of safe dereferences to pointers not includ-

ing those in blob nodes. These non-blobby dereferences account for a majority

of dereferences – on average 76.37%. Considering these remaining dereferences,

the sequential analysis is able to prove the safety of a majority of dereferences

on each benchmark (again the fourth bar in each cluster). Although this filter

may remove true bugs as well as false warnings unrelated to the heap analysis

(e.g. false warnings from path-insensitivity), this simulates a precise version of

the sequential analysis for testing Radar, without making the sequential analysis

itself non-scalable.

Recall that the sequential analysis is unsound in the concurrent setting.

Nevertheless, because we cannot know what an oracle would provide as the “cor-

rect” answer for adjusting, we use Seq as an upper bound; the other three analyses,

as well as the oracle, cannot do any better. At the other end of the spectrum is

Radar(Steens), the least precise of the analyses. We included this Steensgaard-

112

based approach in our evaluation because it can easily be implemented in a com-

piler or program analyzer that needs to be sound but is not concerned with being

extremely precise. We therefore use Radar(Steens) as a lower bound for com-

parison.

We now evaluate how the Radar(Relay¬L) and Radar(Relay) instan-

tiations compare to the Radar(Steens) lower bound and the Seq upper bound.

We consider what percentage of this gap – the difference between the results of

Seq and Radar(Steens) – is bridged by the other two analyses. Keep in mind

that because Seq is an unsound over-approximation, the real gap – the difference

between a perfect oracle and Radar(Steens) – may be smaller than the gap we

consider. Thus, the percentages we report are in fact lower bounds on how much

of the real gap we bridge. These results are presented along the bottom of figures

5.4 and 5.5. When all dereferences are considered (Figure 5.4), Radar(Relay)

bridges on average 59.6% of the gap and Radar(Relay¬L) bridges 57.3%. When

blobby dereferences are taken out (Figure 5.5), Radar(Relay) bridges on average

58.5% of the gap, and Radar(Relay¬L) bridges 56.4%.

The results on Linux are what we would expect: each analysis is incremen-

tally better than the previous one. From left to right, each analysis incorporates, in

the following order, a simple and fast alias analysis, a more precise thread sharing

analysis, and a lockset analysis. As a result, each analysis better captures con-

currency interactions in the program. This leads to more precise race detection,

which is ultimately the factor that determines Radar’s effectiveness.

Other than Linux and Stunnel, however, Radar(Relay¬L) is just as effec-

tive as Radar(Relay). To better understand the small difference for the other

benchmarks, recall how the two instantiations differ: Radar(Relay) uses the

full version of Relay, whereas Radar(Relay¬L) uses a version of Relay that

answers race queries based only on possible aliasing relationships and access types

in each parallel thread (at least one must be a write), but not on locksets. The

fact that Radar(Relay¬L) is nearly as precise as Radar(Relay) indicates that

in many of the cases arising in our non-null analysis, the lvalue being adjusted is

simply not shared. This corroborates with the results of [NAW06], which shows

113

Icecast Retawq Mtdaapd T.Tyrant Apache Git Stunnel Linux Average
0

20

40

60

80

100

N
o
rm

a
liz

e
d
 D

a
ta

fl
o
w

 I
n
fo

.

Constant Analysis

Steens
RadarNL
Radar
Seq

Radar

RadarNL

24.2 98.5 93.9 99.8 51.7 95.7 46.4 53.0 70.4

22.3 98.5 93.5 99.8 51.7 95.7 46.3 28.7 67.1

Figure 5.6: Amount of dataflow information for constant analysis (top), and per-
centage of gap bridged (bottom). Normalized to sequential analysis.

that in Java benchmarks a large majority of potential races are ruled-out by a

precise sharing analysis.

Finally, note that for a few benchmarks – Retawq and Tokyo Tyrant –

Radar(Relay) and Radar(Relay¬L) are able to bridge close to 100% of the

gap. In both of these cases, the program only has a handful of threads other

than the main thread, and these threads only read and write a small fraction of

the global variables, none of which are pointer variables. For these benchmarks,

Radar(Steens) is clearly overly conservative in assuming that anything reachable

from a global is potentially racy.

Constant Values Analysis and Very Busy Expressions

For the constants and very-busy expressions anlayses, we measured the

following value for each benchmark: the number of dataflow facts that each analysis

finds to hold true at each program point, summed over all program points. We then

used the sum from the optimistic upper bound Seq as a baseline and normalized

the sums.

Figures 5.6 and 5.7 contain these normalized dataflow counts. Overall,

114

Icecast Retawq Mtdaapd T.Tyrant Apache Git Stunnel Linux Average
0

20

40

60

80

100

N
o
rm

a
liz

e
d
 D

a
ta

fl
o
w

 I
n
fo

.

Very Busy Expressions Analysis

Steens
RadarNL
Radar
Seq

Radar

RadarNL

25.0 99.3 94.9 99.0 46.4 70.5 39.3 67.2 67.7

24.3 99.3 94.4 99.0 46.3 70.5 39.3 55.8 66.1

Figure 5.7: Amount of dataflow information for VBE analysis (top), and percent-
age of gap bridged (bottom). Normalized to sequential analysis.

the results follow similar trends as the results from the non-null analysis. First,

Radar(Relay) bridges over 50% of the gap between Radar(Steens) and Seq,

on average. Second, there is still very little difference between Radar(Relay)

and Radar(Relay¬L), except on the Linux benchmark. However, there is now

a more visible difference in some of the other benchmarks, Icecast being one of

them.

One data point that stands out is that for the Git benchmark, under the

constants analysis, there is an enormous gap between Radar(Steens) and the

other instantiations of Radar. The reason is that Git has many functions with

the following pattern: many fields of an array or heap structure are initialized at

the beginning of a long function, forming dataflow facts that are propagated to

the end of the function. Radar is able to determine that these heap structures

are not shared and preserves these facts. On the other hand, Radar(Steens)

is led to believe that these heap locations are shared and kills the dataflow facts

immediately. Although the gap is large, the heap lvalues holding constants are

only used a few times, so the amount of the gap bridged may not be a reliable

indicator of the amount of performance gain to expect from optimization.

115

5.4 Summary

This chapter described several instantiations of Radar including one based

on the Relay race detection engine and experimentally evaluated these instanti-

ations.

Overall, our experiments on Radar(Relay) demonstrate the precision and

scalability of Radar. In each of the test cases, Radar(Relay) was able to

bridge a sizable portion of the gap between optimistic and conservative concurrent

dataflow analyses, while still producing a sound result. Finally, adapting each

dataflow analysis and Relay to the Radar framework required few changes. The

dataflow analysis designer did not have to explicitly worry about concurrency – all

of the concurrency reasoning happened in the tunable race detection engine.

Acknowledgments: Chapter 5 in part, has been published as “Dataflow Anal-

ysis for Concurrent Programs using Datarace Detection” by Ravi Chugh, Jan

Voung, Ranjit Jhala, and Sorin Lerner in PLDI 08: Proceedings of the 2008

ACM SIGPLAN conference on Programming Language Design and Implementa-

tion [CVJL08]. The dissertation author was the primary investigator and author

of this paper.

Chapter 6

Related Work

There is a large body of work in analyzing concurrent programs. This

chapter compares Relay (finding data-races) and Radar (dataflow analysis for

concurrent programs) to related approaches.

6.1 Datarace Detection

Dynamic Datarace Detection. Most race detection techniques used in practice

are dynamic. These detectors principally use two techniques. The first is Lamport’s

happens-before relation [Lam78], represented dynamically by vector clocks, used

in [DS91, MC93]. The second is dynamically computed locksets, popularized by

[SBN+97]. The first approach handles more synchronization mechanisms to elimi-

nate false positives, while the second has less overhead but may find false positives.

Much recent effort has gone into lowering the overhead imposed by dynamic anal-

ysis – for example by using statically pre-computed locksets to prune redundant

checks [CLL+02], or by using a combination of vector clocks and lighter-weight

instrumentation that provide a fast-path for race-free accesses (the majority of ac-

cesses) [YRC05, PS07, FF09]. [MMN09] reduces overhead with sampling directed

at cold code blocks, as races in hot code blocks should have already been found

and fixed, or are benign. Other recent developments include the extension of these

techniques to find atomicity [FQ03] violations in Java code [WS06, FF04a], and

116

117

the use of automated replay to determine whether a given dynamically detected

race is benign or harmful [NWT+07]. The drawbacks with dynamic approaches

is that they only work on closed programs which can be executed, they require

tests that sufficiently exercise the code, and that ultimately, they cannot be used

to classify all potential accesses.

Static Datarace Detection for Java. Java’s native support for multithreading

coupled with its restricted use of syntactically scoped locks has given rise to a vari-

ety of static techniques for detecting and proving the absence of races in Java code.

Early work includes the development of type systems that encode a static lockset

analysis [FA99, FF00]. These type based approaches were made more expressive

by incorporating a notion of ownership [BLR02]. Similar type systems were de-

signed to ensure race-freedom in Cyclone [Gro03]. While these type systems are

eminently scalable, they require user annotation, though there has been some work

on using SAT solvers [FF04b] and dynamic locksets [ASWS05] to infer the lock an-

notations. Another line of work is that of [vPG03] which finds races by computing

an Object Use Graph that statically approximates the dynamic happens-before re-

lation. A recent line of work [NAW06] shows how to effectively use cloning-based

context-sensitivity to drastically improve the precision of lockset computations.

The approach was further refined in [NA07] by using a notion of must-not aliasing

to prune the set of warnings. The above techniques exploit key properties of Java

– namely the scoped use of locks, which mitigates the need for flow-sensitivity.

Thus, while they are not directly applicable to our setting, we believe that it may

be possible to apply ideas like ownership and must-not aliasing to lower the false

positives that arise due to initialization and unlikely aliasing respectively.

Static Datarace Detection for C. Analyses devised for finding races in C pro-

grams must cope with several additional problems. Principal among them is the use

of unstructured locks, which force the analysis to be flow- and context- sensitive.

The only approach we know of that has scaled to millions of lines is RacerX, which

also finds deadlocks, and runs over large code bases in minutes. Unlike Relay,

RacerX uses a top-down approach to computing the locksets at each program

point. The paper reports that in order to scale, several drastic compromises had

118

to be made, such as truncating the summaries and representing all lvalues with

their types. As a result, the analysis discards valuable information prematurely,

discarding possible races well before the warning generation phase. Consequently,

the tool was only able to unearth a small handful of warnings and an order of mag-

nitude fewer races. A more precise approach is that of Locksmith [PFH06] which

uses a constraint based technique to compute correlations that describe the locks

that protect an lvalue. While this approach is as precise as ours, it has only been

applied to programs two orders of magnitude smaller than the Linux kernel. We

conjecture that the principle bottleneck is the difficult task of solving a monolithic

set of constraints generated over millions of lines of code. This is in contrast to

Relay whose algorithm is modular and readily parallelizable. LP-Race [Ter08]

is a race detector designed after Relay that is based on a fractional capability sys-

tem. Threads are modeled as holding capabilities to read or write shared locations,

and synchronization events transfer capabilities between threads. Capability map-

pings are inferred by a linear programming (LP) solver for each abstract location.

In principle the approach is scalable since each LP instance can be parallelized,

but the implementation has only been tested on programs an order of magnitude

smaller than Relay. The main benefit of this formalization is that it is a unified

system for handling locks as well as non-lock-based synchronization such as condi-

tion variables and thread joins. However, initialization, thread local accesses and

re-entrant locks (problems in Relay) are also problems for LP-Race.

Finally, heavyweight techniques such as model checking [HJM04, QW04]

have been applied to find and prove the absence of races. These techniques are

essential in situations where the synchronization is not lock-based, but instead

is via exotic mechanisms like state variables, interrupt disabling, or the idioms

described in Section 3.5. It is unclear whether such heavyweight methods can be

scaled to large code bases.

Finally, while others have designed bottom-up analyses using complete sum-

maries [CmWH00, DLS02], our work, and the notion of parallelization is directly

inspired by the approach taken by [HA06].

119

6.2 Dataflow Analysis for Concurrent Programs

Frameworks for Dataflow Analysis. There are frameworks for dataflow anal-

ysis of concurrent programs, limited to the use of nested ParBegin and ParEnd

constructs. These frameworks work by building a parallel flow graph (PFG) (a

control flow graph with parallel sections). The dataflow analysis is lifted by ex-

tending the flow equations to handle the fork and join of the parallel sections.

Examples include a reaching definitions analysis [GS93] and bit-vector analyses

[KSV96], and a pointer analysis [RR99]. Other representation-based approaches

include [Sar97] which uses ParBegin/ParEnd and wait/notify constructs to build

a Parallel Program Graph, analogous to the PDG, and [LPM99] which describes a

Concurrent SSA (CSSA) representation which enables subsequent optimizations.

The causal dataflow analysis framework of [FM07] handle more forms of synchro-

nization including locks. Their approach is based on checking coverability [ERV96]

of a Petri net representation of the program and its dataflow facts. The approach

is limited to recursion-free programs with bounded numbers of threads and finite

dataflow domains. Recently, [CR06] proposed an analysis framework for optimiz-

ing embedded programs written in nesC [GLvB+03]. This framework is tailored

to nesC ’s interrupt-based concurrency and explicit atomic sections.

All the above frameworks are more precise than our framework in which

facts can only be killed by concurrent interactions. In contrast, these frameworks

exploit specific concurrency constructs to also allow new facts to be generated by

concurrent interactions. However, Radar is more general, as it is independent of

the underlying concurrency constructs, requiring only that a race detector exists

for the constructs. For example, none of these approaches could be applied to our

thread-based benchmarks.

Leveraging Sequential Analyses with a Context Bound. For the purpose

of bug-finding, recent work has shown that concurrency bugs can be demonstrated

with a small number of context switches. KISS [QW04] converts a concurrent

program P to a sequential program P s that simulates P restricted to two context

switches. This allows sequential analyses to run on P s while having the results

120

apply to P . The benefit is that it avoids the exponential complexity of exhaustively

analyzing all thread interleavings. [LR08] provide a translation which allows all

thread schedules with arbitrary context bound of k to be analyzed using a single

round-robin thread schedule.

The main issue is that while such transformations allow the reuse of sequen-

tial analyses, context bounding is unsound, and thus not applicable to compiler

optimizations. Furthermore, requirements on the sequential analysis used are heav-

ier – it is crucial that the analysis handle branch conditions/ASSUME statements

and symbolic constants. Finally, though sequential analyses used along with this

approach are more precise, they are still limited in scalability.

Model Checking. Model checkers explore all interleavings to verify arbitrary

safety properties, and so they can be used to encode dataflow analyses [Sch98].

Flavers [CCO02] is a finite-state property checker that employs conservative state

and interleaving reductions, e.g. a may-happen-in-parallel analysis ([NAC99]) that

conservatively prunes interleavings. Even with techniques like these and others

like partial-order and symmetry reduction that mitigate the effect of combinatorial

explosion in interleavings, model checking has only been shown to scale to relatively

small code bases. A technique related to Radar is the thread-modular approach,

proposed in [OG76, Jon83] which requires that users provide annotations describing

when other threads can modify shared state. Model checking can be used to infer

the annotations [FQ03, HJM04], but these techniques do not scale. If the programs

include recursive procedures, model checking (and hence, “exact” dataflow analysis

in the sense of computing MOP solutions) is undecidable [Ram00].

In contrast to the above, the principal benefit of our framework Radar

is that it is not tied to any particular concurrency constructs or structure, as all

reasoning about concurrency is folded into the race detection engine. This allows

Radar to switch between race detection engines to explore the tradeoff between

precision and scalability of the dataflow analysis. Moreover, Radar enables a finer

view of concurrency by preserving facts that are not killed by other threads, with-

out exploring interleavings caused by irrelevant atomicity breaks as in Figure 2.1.

Chapter 7

Conclusions and Future Work

We have presented a framework called Radar for converting a sequential

dataflow analysis into a concurrent one using a race detection engine as a black

box. The main benefit of this approach is that it cleanly separates the part of the

analysis that deals with concurrency, the race detection engine, from the rest of the

analysis. With this separation in place, the race detection engine can be fine-tuned

to improve its precision without changing any of the client analyses. As a result,

Radar provides a framework that allows the precision with which concurrency is

analyzed to be easily tuned.

Paired with the Relay data-race detection engine, our experiments show

that the framework scales, and for several dataflow analyses, achieves good preci-

sion with respect to some upper and lower bounds.

Our experience also shows that there is still room for improvement in terms

of the precision of the overall concurrent analysis and its running time. All com-

ponents of the analyses play an important role: the alias and escape analysis, the

race detector, and the sequential analyses can all affect precision. The call-graph

analysis can drastically affect scalability. We have identified several lines of future

work that will, in combination, lead to understanding and addressing these issues.

121

122

7.1 Experience and Idioms

Adjust Additional Analyses. The first direction is to apply the adjusting

approach to lift additional previously developed sequential analyses to the con-

current setting. This direction of future research may include discovering what

is required to adjust other forms of analyses besides dataflow analyses. Exam-

ples include array bounds checking analyses [VB04, HDWY06b], and other kinds

of null-dereference analyses [DDA07, BH08]. It may also be worthwhile to push

the Radar versions of compiler-assisting analyses (e.g. in section 5.2) through an

optimizer to measure actual performance impact.

A wide variety of Radar-converted analyses will allow us to tune the preci-

sion of the race detector using actual facts deduced while analyzing real systems for

a variety of properties. The generated concurrent analyses can lead to an empirical

understanding of the concurrency idioms used in real programs. These patterns

can then be used to iteratively tune the precision of parts of the framework.

7.2 Precision and Performance

On-Demand Refinement of Concurrency Analysis. The second direction

is to explore precise and scalable race detection techniques for other concurrency

constructs. One starter possibility is to take the successive refinement approach

with two race detection engines – one scalable engine like Relay, which handles

lock-based synchronization, and one precise engine like [HJM04], which handles

more general forms of synchronization including flag-based synchronization. First,

run the scalable engine and take each warning (two data accesses) as a seed for

slicing the program. The hope is that at least some slices will be small enough for

the precise engine to confirm or refute the warning, within a given time budget.

A side benefit is that a precise race detection engine based on model checking can

produce concrete error traces [KSG09].

Other obvious areas to improve include the alias and escape analysis, and

123

perhaps a lightweight may-happen-in-parallel analysis to handle “static” synchro-

nization mechanisms spawn and join.

Annotations. If it proves too difficult to automatically and statically improve the

precision of the relevant modules, one possibly is to have the programmer supply

annotations. These annotations should be checked statically, but may still provide

valuable hints. [AGEB08], for example, suggests that annotations about how data

is shared between threads are valuable. Many of their annotations are checked

statically, but some are checked at run-time (similar to dynamic casts). Although

annotations add human effort, the burden can be lowered if done at a higher-level

– e.g. annotations for all instances of particular types or over entire modules. Such

higher-level annotations can serve as documentation as well.

Runtime Support. Besides annotations, it may be useful for the runtime or

hardware to provide assistance to Radar. For example, if there existed hardware

that was capable of avoiding certain interleavings, would static analyses be more

precise or more tractable? An example of increased tractability include analyses

which are only sound up to a context-bound [QR05]. Of course, this exact assump-

tion is unlikely to be guaranteed by the runtime system but perhaps finer-grain

reductions in interleavings will be useful. For example, one can instrument the pro-

gram with additional synchronization or use work such as [YN09], which develop

hardware with the goal of avoiding interleavings not seen during testing.

Modularity and Separate Compilation. Finally, while compiler optimization-

oriented dataflow analyses converted by Radar are more precise than those relying

on more conservative assumptions, they are not modular. Radar involves a whole-

program analysis (the race detector). Code generated for a function f using a

Radar-adjusted constant propagation analysis may now be sensitive to racy writes

in other functions and compilation units. Again, runtime schemes ([RRRV09]) may

be of assistance, ensuring isolation between modules. However, they suffer from

certain drawbacks including the introduction of deadlock. Other methods of re-

enabling separate compilation, while retaining precision, may be interesting.

Appendix A

Properties of Relative Dataflow

Analyses

This chapter contains proofs that the flow functions presented for our rela-

tive dataflow analyses (e.g. the lockset analysis in Relay, and the non-null client

for Radar) have the two classical properties of dataflow analyses: monotonic-

ity and distributivity. Distributivity actually implies monotonicity, but we show

proofs for each individual property.

Abstract Relative Analysis. In order for the proofs to work for a general

relative dataflow analysis (and not just the lockset analysis, or the non-null analysis

in particular), we begin with an abstraction of relative dataflow analyses and do

proofs on this abstraction. First, dataflow facts are restricted to be pairs of sets

with one set being the set of facts that must have become true since the beginning

of the current procedure and the other a may set for the negation of the must facts.

Any fact not mentioned in either set is preserved by the current procedure. Next,

how the flow functions transform the input can be described by two sets. One set,

which is denoted here as S+, dictates what should be added to the must-sets and

removed from the may-sets. The other set, S−, dictates what should be added to

the may-sets and removed from the must-sets. They are like GEN and KILL sets,

but they swap roles between the relative must-sets and the may-sets. These sets

(S+, S−) may come from function summaries, or be based on the other kinds of

124

125

statements (assignments and branches). Thus, every flow function is parameterized

by some pair (S+, S−) and has the following shape:

FS+,S−(A+, A−) = ((A+ ∪ S+)− S−, (A− ∪ S−)− S+)

Aside from fixing the form of flow functions, we also assume the lattice relations

(t,v) to be:

(A+, A−) t (B+, B−) = (A+ ∩B+, A− ∪B−)

(A+, A−) v (B+, B−) iff A+ ⊆ B+ and B− ⊆ A−

The proofs below simply rely on algebraic properties (distributivity of set inter-

section w.r.t. set union), so similar proofs would apply if ∩ and ∪ were swapped

in the above relations.

Monotonicity. Now we can show that if A v B, then FS+,S−(A) v FS+,S−(B).

Assuming the hypothesis, compare each set in the pairs FS+,S−(A) and FS+,S−(B)

pointwise.

For the positive sets, we know A+ ⊆ B+. Thus, (A+ ∪S+) ⊆ (B+ ∪S+) for

any set S+. This implies that (1) (A+ ∪ S+) − S− ⊆ (B+ ∪ S+) − S− for any set

S+ and set S−.

For the negative sets, we know B− ⊆ A−. Thus, (B− ∪ S−) ⊆ (A− ∪ S−),

and we can conclude that (2) (B− ∪ S−)− S+) ⊆ (A− ∪ S−)− S+).

Given (1) and (2) and by the definition of v, we can conclude that if A v B,

then FS+,S−(A) v FS+,S−(B).

Distributivity. To show that FS+,S− is distributive, we must show that FS+,S−(At
B) = FS+,S−(A) t FS+,S−(B). This can be shown with some basic set algebra:

126

FS+,S−((A+, A−) t (B+, B−))

= FS+,S−(A+ ∩B+, A− ∪B−)

= (((A+ ∩B+) ∪ S+)− S−, ((A− ∪B−) ∪ S−)− S+)

= (((A+ ∪ S+) ∩ (B+ ∪ S+))− S−, ((A− ∪ S−) ∪ (B− ∪ S−))− S+)

= (((A+ ∪ S+) ∩ (B+ ∪ S+)) ∩ Sc
−, ((A− ∪ S−) ∪ (B− ∪ S−)) ∩ Sc

+)

= (((A+ ∪ S+) ∩ (B+ ∪ S+)) ∩ Sc
− ∩ Sc

−, ((A− ∪ S−) ∪ (B− ∪ S−)) ∩ Sc
+)

= (((A+ ∪ S+) ∩ Sc
−) ∩ ((B+ ∪ S+) ∩ Sc

−), ((A− ∪ S−) ∪ (B− ∪ S−)) ∩ Sc
+)

= (((A+ ∪ S+) ∩ Sc
−) ∩ ((B+ ∪ S+) ∩ Sc

−), ((A− ∪ S−) ∩ Sc
+) ∪ ((B− ∪ S−) ∩ Sc

+))

= FS+,S−((A+, A−)) t FS+,S−((B+, B−)).

Appendix B

Function Pointer Slicing for WL

Chapter 4 compares several callgraph construction algorithms, including

one based on a context-sensitive, flow-sensitive, and field-sensitive pointer analysis

– a version of the Wilson-Lam algorithm (WL) restricted to function values. Here

we describe the approach to slicing out non-function values. The approach is

based on possibly unsound assumptions, but it is able to detect or correct when

the assumptions may be unsound for a given input program.

B.1 Evaluating Benefits of Slicing

It is believed that the WL algorithm on its own is not scalable. By only

track pointers that transitively reach function pointers it is possible to analyze

large, hundred thousand-line programs. Figure B.1 compares time and memory

usage with and without this form of slicing. Without slicing, two of the benchmarks

are unable to complete within a 6 hour time budget (Vim and Nethack) and two

others take at least 4 times longer to complete (Mutt and Git). For the benchmarks

over 60 KLOC, memory usage is also noticeably higher.

B.2 Difficulties in Slicing

Because of the weak C type system, casts, the use of pointer arithmetic, the

ability to embed structs within structs, and the ability for a pointer to reference

127

128

Benchmark Time (s) Mem (MB)
KLOC #fp-calls sliced all-ptr sliced all-ptr

Bzip21.0.5 12 20 4.8 5.4 15 11
Icecast2.3.2 28 199 232.3 391.0 62 71
Unzip6.0 31 381 59.3 66.1 45 35
OpenSSH5.2 56 141 43.3 48.3 57 50
smtpd2.6.2 67 337 6042.1 7582.4 159 227
Mutt1.5.9 83 743 213.2 11586.8 82 204
Git1.3.3 171 91 446.2 1816.9 170 278
Vim7.2 230 27 5371.3 T-O 281 490
Emacs22.3 272 288 3000 3549 281 367
Nethack3.4.3 284 863 1655.9 T-O 287 2147

Figure B.1: Time and memory usage of WL with and without slicing

arbitrary fields within structures, slicing out non-function-pointer-related pointers

takes some care.

Typically the concern with C casts, structures, and pointer arithmetic is

with the soundness of a field-sensitive pointer analysis [YHR99, Ste96b]. We are

instead concerned with the problem of slicing without relying on a dependence

analysis, which would essentially involve another pointer analysis.

One attempt at a lightweight approach to slicing-out pointers unrelated to

function pointers is to simply look at type declarations. Figure B.2 illustrates some

of the problems with such an approach, given the C type system. In the figure,

there are only three user-defined structs string t, dlist t, and obj t. Given a

pointer to each type of structure, can such a pointer be used to access a function

pointer? The programmer-intended answers are “no”, “yes”, and “yes”. That

obj t∗ can be used to access a function pointer is obvious.

Casts. For string t∗ to not reach a function pointer (get a “no” answer), an

analysis must trust that the pointer field char∗ is not cast to/from pointer types

that do reach function addresses.

Embedding Structs and Pointer Arithmetic. To notice that dlist t∗ does

reach a function address (get a “yes” answer), an analysis must notice that two

129

things. First, the pointer may reference a dlist t that is embedded within an obj t

struct (the otherObjs field). Second, that with pointer arithmetic the container

obj t and its function pointer field can be accessed. Lines 2 and 3 in the figure

show how this is possible. However, if the analysis is not careful, it may think

that a pointer to string t may also be a pointer to an embedded string (the id

field) and that the pointer can be used to access the container obj t structure.

Therefore, simply looking at the types and how they are embedded within each

other can mean that almost no pointers are ever sliced out of the analysis. The

analysis must look at what pointer arithmetic expressions are actually present in

the code as well.

B.3 Approach to Slicing

Callgraph construction with WL involves two phases. First, a pointer anal-

ysis computes a mapping from memory locations which represent pointers to tar-

gets (which are other memory locations including function addresses). Second, the

mapping is consulted to generate the actual callgraph. The goal is to reduce the

time spent in the first phase, as it is the dominant phase.

The core of pointer analysis involves analyzing sets of assignments (l := e)

which are either explicit in the program (or implicit from parameter passing and

function returns). This analysis builds a map from lvalues (pointers) to sets of

lvalues and functions (targets). Rather than perform program slicing based on

program dependencies for indirect calls to reduce the size of the input program,

this approach “filters-out” assignments by flowing a non-function pointer address,

Nfp, in place of the pointer value of the expression on the right side which would

have been flowed without slicing. Replacing concrete pointer sets with Nfp speeds

up convergence of the dataflow analysis and reduces memory usage.

Slicing with Assumptions and Coping With Deviance. Our technique for

slicing is based on certain assumptions (e.g. only certain forms of pointer arithmetic

are present) and it is possible that this approach is unsound. This form of slicing

allows us to cope with violated assumptions and actually ensure soundness. If

130

typedef struct string {

int len; char *buff;

} string_t;

typedef struct dlist {

struct dlist *prev; struct dlist *next;

} dlist_t;

typedef struct obj {

void (*fp)(char *);

dlist_t otherObjs;

string_t id;

} obj_t;

#define offsetof(T, f) \

1: ((size_t) ((char *)&((T *)(0))->f - (char *)0))

void test() {

dlist_t *head, *l;

obj_t *o;

head = allocate_list();

//...

for (l = head->next; l != head; l = l->next) {

2: o = (obj *)((char *)l - offsetof(obj_t, otherObjs));

3: o->fp(o->id.buff);

}

}

Figure B.2: Example: Embedded structs complicate slicing

in the second phase of callgraph construction, the pointer analysis results map a

function pointer to Nfp it is possible to correct this unsoundness by using a second

pointer analysis (such as Steens-FI which does not rely on slicing but is scalable).

Unsoundness can also be detected during the pointer analysis when Nfp

values are encountered. Inevitably, the pointers with Nfp will be dereferenced as

part of other assignment statements. In cases where the dereference is on the rhs

of an assignment, we simply flow another Nfp, as Nfp pointers should only reach

Nfp values. If this is not true it is caught during the callgraph construction phase

131

as mentioned above. In cases where the dereference is on the lhs of an assignment,

the rhs must be an Nfp value. If it is, then the write can be ignored, as the actual

target should not relevant. Otherwise it means that a function pointer related

value is to be written to a location, but the possible locations were not tracked.

In this case, the analysis can issue a warning to reduce the strictness of slicing

or rewrite the source to match the assumptions used for slicing. For example,

one case in which the source may need to be written is when char∗ is used as a

polymorphic pointer instead of void∗. Thus, this approach of using Nfp instead of

slicing the original code allows us to detect and/or compensate for unsoundness.

When to Generate Nfp Values. Assignments l := e either propagate existing

pointer information from e, or are base assignments where e is of the form &x,

“strLiteral”, or calls to malloc. String literals can be filtered out with Nfp.

For the case of &x we know the concrete C type of the target. For the case of

dynamically allocated malloc cells, the concrete C type of the target can also be

known, assuming that the input C program has been transformed appropriately:

• malloc is called with a single sizeof(T) argument. A common counterexam-

ple involves the case where multiple blocks of memory may be allocated in

one shot (e.g. sizeof(T1) + sizeof(T2)). This is done to simplify checks for

out-of-memory situations and ensure memory locality, among other things.

Such calls to malloc are rewritten into individual calls.

• The sizeof(T) argument to malloc must accurately reflect the intended use

of the allocated memory. A counter-example is custom allocators, which

allocate large blocks of memory and hand out sub-blocks at a later point.

Calls to custom allocators are transformed into calls to malloc.

Given a base assignment with the C type of a location, we estimate whether

or not the location will ever reach a function pointer through a sequence of deref-

erences, field accesses, and pointer arithmetic operations. If it does not, then the

analysis flows an Nfp value in the place of its address. If it does, then the address

is used in the pointer analysis. Note that although the C type of the initial lo-

cation is known, because base assignments have been transformed to make them

132

known, further locations that are reachable from accesses to pointer fields or deref-

erences may not be precise. Slicing relies on a reachability analysis that uses type

declarations of structure fields as well as the following assumptions:

• Pointer arithmetic can be used to stride along an array (e.g. p + 1). However,

strides along arrays are ignored since arrays are modeled as a single summary

node. The expression p + 1 can also be used to reference memory which

follows a block of memory in the case that multiple blocks of memory, each

of different type, are allocated in a single call to malloc. As noted earlier,

such forms of allocation are assumed to be rewritten.

• Pointer arithmetic can be of the form (byte∗)p + c where c is a constant

expression based on recognizable patterns that give the offset of a structure

field (for example, line 1 of figure B.2). These patterns relate two types by

a constant, D(T1, T2, c). In other words, all other pointer arithmetic is on

the byte-level and is used transform pointers into a struct to pointers to the

beginning of a struct.

• A related assumption is that one may only access the fields of a structure T1

given a pointer to T2, if (a) T2 is embedded at the beginning of T1, or (b)

there exists a constant such that D(T1, T2, c).

• Pointer fields declared as T2∗ are assumed to point to a location of type

T2, with the possibility that it is embedded in another struct. This allows

structural subtyping, where the pointer T2∗ can be used to access fields of a

structure of type T1 if T2 is embedded as a prefix of T1 (due to case (a) of

the above assumption).

• Pointer fields which are polymorphic and do not follow structural subtyping

must be declared T∗ where T is an empty structure such as void (rather

than char∗). Pointers to empty structs are assumed to be opaque and are

conservatively assumed to reach any type including function pointers.

• Pointers which are cast to numeric types are either (1) only done so tem-

porarily (stored as a local or function parameter) and so are not stored in a

133

structure field, or (2) may be stored in a structure field but never cast back

into a pointer (e.g. if an address is used as a hash value).

Given those assumptions, the types declared in the program, and a scan of

pointer arithmetic expressions in the program to construct the relation D, testing

reachability from a C type to a function pointer is straightforward.

Bibliography

[Age95] Ole Agesen. The cartesian product algorithm: Simple and precise
type inference of parametric polymorphism. In ECOOP, pages 2–26,
1995.

[AGEB08] Zachary Anderson, David Gay, Rob Ennals, and Eric Brewer. Sharc:
checking data sharing strategies for multithreaded c. SIGPLAN Not.,
43(6):149–158, 2008.

[And94] L.O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
1994.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[ASWS05] R. Agarwal, A. Sasturkar, L. Wang, and S.D. Stoller. Optimized run-
time race detection and atomicity checking using partial discovered
types. In ASE 05: Automated Software Engineering, pages 233–242,
2005.

[Atk04] Darren C. Atkinson. Accurate call graph extraction of programs with
function pointers using type signatures. In APSEC, pages 326–335,
2004.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In PLDI 03: Programming Languages Design and Imple-
mentation, pages 196–207. ACM, 2003.

[BH08] Domagoj Babic and Alan J. Hu. Calysto: scalable and precise ex-
tended static checking. In ICSE ’08: International conference on
Software engineering, pages 211–220, New York, NY, USA, 2008.
ACM.

134

135

[BLQ+03] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie J. Hendren, and
Navindra Umanee. Points-to analysis using bdds. In PLDI, pages
103–114, 2003.

[BLR02] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: preventing data races and deadlocks. In OOPSLA 02:
Object-Oriented Programming, Systems, Languages and Applications,
pages 211–230, 2002.

[BR02] T. Ball and S.K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL 02: Principles of Programming
Languages, pages 1–3. ACM, 2002.

[CCO02] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. FLAVERS: A
finite state verification technique for software systems. IBM Systems
Journal, 41(1):140–165, 2002.

[CDC+04] Rezaul Alam Chowdhury, Peter Djeu, Brendon Cahoon, James H.
Burrill, and Kathryn S. McKinley. The limits of alias analysis for
scalar optimizations. In CC, pages 24–38, 2004.

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and
Hongseok Yang. Compositional shape analysis by means of bi-
abduction. In POPL, pages 289–300, 2009.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Conference Record of the
Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM
Press, New York, NY.

[CLL+02] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for multi-
threaded object-oriented programs. In PLDI 2002: Programming
Languages Design and Implementation, pages 258–269. ACM, 2002.

[CmWH00] Ben-Chung Cheng and Wen mei W. Hwu. Modular interprocedu-
ral pointer analysis using access paths: design, implementation, and
evaluation. In PLDI, pages 57–69, 2000.

[CR06] N. Cooprider and J. Regehr. Pluggable abstract domains for analyz-
ing embedded software. In LCTES, pages 44–53, 2006.

[CRL99] Ramkrishna Chatterjee, Barbara G. Ryder, and William Landi. Rel-
evant context inference. In POPL, pages 133–146, 1999.

136

[CVJL08] Ravi Chugh, Jan Wen Voung, Ranjit Jhala, and Sorin Lerner.
Dataflow analysis for concurrent programs using datarace detection.
In PLDI, pages 316–326, 2008.

[DDA07] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection
using semantic inconsistency inference. SIGPLAN Not., 42(6):435–
445, 2007.

[Det] Dave Detlefs. Array bounds check elimination in the clr.
http://blogs.msdn.com/clrcodegeneration/archive/2009/

08/13/array-bounds-check-elimination-in-the-clr.aspx.

[DLFR01] Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof. Esti-
mating the impact of scalable pointer analysis on optimization. Lec-
ture Notes in Computer Science, 2126:260–??, 2001.

[DLS02] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program ver-
ification in polynomial time. In PLDI 02: Programming Language
Design and Implementation, pages 57–68. ACM, 2002.

[DRS03] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: towards a real-
istic tool for statically detecting all buffer overflows in c. SIGPLAN
Not., 38(5):155–167, 2003.

[DS91] Annette Dinning and Edith Schonberg. Detecting access anomalies in
programs with critical sections. In ACM/ONR Workshop on Parallel
and Distributed Debugging, 1991.

[EA03] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection
of race conditions and deadlocks. In SOSP 03: ACM Symposium on
Operating System Principles, pages 237–252. ACM Press, 2003.

[ERV96] Javier Esparza, Stefan Rmer, and Walter Vogler. An improvement
of mcmillan’s unfolding algorithm. In Formal Methods in System
Design, pages 87–106. Springer-Verlag, 1996.

[FA99] C. Flanagan and M. Abadi. Types for safe locking. In ESOP 99:
European Symposium on Programming, LNCS 1576, pages 91–108.
Springer, 1999.

[FF00] C. Flanagan and S.N. Freund. Type-based race detection for Java.
In PLDI 00: Programming Languages Design and Implementation,
pages 219–232. ACM, 2000.

[FF04a] Cormac Flanagan and Stephen N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In POPL, pages 256–
267, 2004.

http://blogs.msdn.com/clrcodegeneration/archive/2009/08/13/array-bounds-check-elimination-in-the-clr.aspx
http://blogs.msdn.com/clrcodegeneration/archive/2009/08/13/array-bounds-check-elimination-in-the-clr.aspx

137

[FF04b] Cormac Flanagan and Stephen N. Freund. Type inference against
races. In SAS, pages 116–132, 2004.

[FF09] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and
precise dynamic race detection. In PLDI, pages 121–133, New York,
NY, USA, 2009. ACM.

[FFSA98] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander
Aiken. Partial online cycle elimination in inclusion constraint graphs.
In PLDI, pages 85–96, New York, NY, USA, 1998. ACM.

[FM07] Azadeh Farzan and P. Madhusudan. Causal dataflow analysis for
concurrent programs. In TACAS, pages 102–116, 2007.

[FQ03] C. Flanagan and S. Qadeer. Thread-modular model checking. In
SPIN 03: Model Checking Software, LNCS 2648, pages 213–224.
Springer, 2003.

[GC01] David Grove and Craig Chambers. A framework for call graph con-
struction algorithms. ACM Trans. Program. Lang. Syst., 23(6):685–
746, 2001.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In PLDI 2003: Programming Languages Design and Imple-
mentation, pages 1–11. ACM, 2003.

[Gro03] Dan Grossman. Type-safe multithreading in cyclone. In TLDI, pages
13–25, 2003.

[GS93] D. Grunwald and H. Srinivasan. Data flow equations for explicitly
parallel programs. In PPoPP, San Diego, CA, 1993.

[Gup93] Rajiv Gupta. Optimizing array bound checks using flow analysis.
ACM Letters on Programming Languages and Systems, 2:135–150,
1993.

[HA06] Brian Hackett and Alex Aiken. How is aliasing used in systems soft-
ware ? In FSE 2006: Foundations of Software Engineering, pages
69–80. ACM, 2006.

[HDWY06a] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular
checking for buffer overflows in the large. In ICSE, pages 232–241,
2006.

[HDWY06b] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular
checking for buffer overflows in the large. In ICSE, pages 129–144.
ACM, 2006.

138

[HJM04] T.A. Henzinger, R. Jhala, and R. Majumdar. Race checking by con-
text inference. In PLDI, pages 1–12. ACM, 2004.

[HL07a] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code. In PLDI,
pages 290–299, 2007.

[HL07b] Ben Hardekopf and Calvin Lin. Exploiting pointer and location
equivalence to optimize pointer analysis. In SAS, pages 265–280,
2007.

[HT01] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using
CLA: A million lines of c code in a second. In PLDI, pages 254–263,
2001.

[IH97] Marc Shapiro II and Susan Horwitz. Fast and accurate flow-
insensitive points-to analysis. In POPL, pages 1–14, 1997.

[Jon83] C.B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Transactions on Programming Languages and
Systems, 5(4):596–619, 1983.

[KRS92] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy code mo-
tion. SIGPLAN Not., 27(7):224–234, 1992.

[KSG09] Vineet Kahlon, Sriram Sankaranarayanan, and Aarti Gupta. Se-
mantic reduction of thread interleavings in concurrent programs. In
TACAS ’09: Tools and Algorithms for the Construction and Analysis
of Systems, pages 124–138, Berlin, Heidelberg, 2009. Springer-Verlag.

[KSV96] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Effi-
cient and optimal bitvector analyses for parallel programs. TOPLAS,
18(3):268–299, May 1996.

[KU77] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis
frameworks. Acta Inf., 7:305–317, 1977.

[KYSG07] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti
Gupta. Fast and accurate static data-race detection for concurrent
programs. In CAV, pages 226–239, 2007.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125–143, 1977.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21(7):558–565, 1978.

139

[Lip75] R.J. Lipton. Reduction: A new method of proving properties of
systems of processes. In POPL, pages 78–86, 1975.

[LLA07] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making
Context-Sensitive Points-to Analysis with Heap Cloning Practical
For The Real World. In PLDI, San Diego, California, June 2007.

[LPM99] J. Lee, D.A. Padua, and S.P. Midkiff. Basic compiler algorithms for
parallel programs. In PPOPP, pages 1–12, 1999.

[LR08] Akash Lal and Thomas Reps. Reducing concurrent analysis under a
context bound to sequential analysis. In CAV ’08: Computer Aided
Verification, pages 37–51, Berlin, Heidelberg, 2008. Springer-Verlag.

[MACE02] Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J.
Eggers. Improving program slicing with dynamic points-to data. SIG-
SOFT Softw. Eng. Notes, 27(6):71–80, 2002.

[MC93] John M. Mellor-Crummey. Compile-time support for efficient data
race detection in shared-memory parallel programs. In Workshop on
Parallel and Distributed Debugging, pages 129–139, 1993.

[MMN09] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Lit-
erace: effective sampling for lightweight data-race detection. In PLDI
’09, pages 134–143, New York, NY, USA, 2009. ACM.

[MRR04] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise call
graphs for c programs with function pointers. Automated Software
Engineering, 11(1):7–26, 2004.

[NA07] Mayur Naik and Alex Aiken. Conditional must not aliasing for static
race detection. In POPL, pages 327–338, 2007.

[NAC99] G. Naumovich, G.S. Avrunin, and L.A. Clarke. An efficient algorithm
for computing mhp information for concurrent java programs. In
ESEC / SIGSOFT FSE, pages 338–354, 1999.

[NAW06] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
java. In PLDI, pages 308–319, 2006.

[NMRW02] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for analysis and transformation of C
programs. In CC 02: Compiler Construction, Lecture Notes in Com-
puter Science 2304, pages 213–228. Springer, 2002.

[NWT+07] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-
wards, and Brad Calder. Automatically classifying benign and harm-
ful data races using replay analysis. In PLDI, pages 22–31, 2007.

140

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6(4):319–340, 1976.

[PFH06] P. Pratikakis, J.S. Foster, and M.W. Hicks. Locksmith: context-
sensitive correlation analysis for race detection. In PLDI, pages 320–
331, 2006.

[PKH04a] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient field-
sensitive pointer analysis for C. In PASTE. ACM Press, 2004.

[PKH04b] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online cycle de-
tection and difference propagation: Applications to pointer analysis.
Software Quality Control, 12(4):311–337, 2004.

[Pra08] Polyvios Pratikakis. Sound, Precise and Efficient Static Race Detec-
tion for Multithreaded Programs. PhD thesis, University of Maryland,
College Park, 2008.

[PS07] Eli Pozniansky and Assaf Schuster. Multirace: efficient on-the-fly
data race detection in multithreaded c++ programs: Research arti-
cles. Concurr. Comput. : Pract. Exper., 19(3):327–340, 2007.

[QR05] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of
concurrent software. In In TACAS, pages 93–107. Springer, 2005.

[QW04] Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential.
In PLDI, pages 14–24, 2004.

[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analysis
is undecidable. TOPLAS, 22(2):416–430, 2000.

[RC00] Atanas Rountev and Satish Chandra. Off-line variable substitution
for scaling points-to analysis. In PLDI, pages 47–56, 2000.

[RR99] R. Rugina and M.C. Rinard. Pointer analysis for multithreaded pro-
grams. In PLDI, pages 77–90, 1999.

[RRRV09] Sriram Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath,
and Kapil Vaswani. Isolator: dynamically ensuring isolation in com-
current programs. In ASPLOS: Architectural Support for Program-
ming Languages and Operating Systems, pages 181–192, New York,
NY, USA, 2009. ACM.

[Sar97] V. Sarkar. Analysis and optimization of explicitly parallel programs
using the parallel program graph representation. In LCPC, pages
94–113, 1997.

141

[SBN+97] S. Savage, M. Burrows, C.G. Nelson, P. Sobalvarro, and T.A. An-
derson. Eraser: A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems, 15(4):391–411,
1997.

[Sch98] D.A. Schmidt. Data flow analysis is model checking of abstract in-
terpretation. In POPL 98: Principles of Programming Languages,
pages 38–48. ACM, 1998.

[Shi88] Olin Shivers. Control-flow analysis in scheme. In PLDI, pages 164–
174, 1988.

[Sim09] Luke Simon. Optimizing pointer analysis using bisimilarity. In SAS,
2009.

[SR01] A. Salcianu and M.C. Rinard. Pointer and escape analysis for multi-
threaded programs. In PPOPP, pages 12–23, 2001.

[Ste93] N. Sterling. Warlock: a static data race analysis tool. In USENIX
Winter 1993 Technical Conference, pages 97–106, 1993.

[Ste96a] B. Steensgaard. Points-to analysis in almost linear time. In POPL,
1996.

[Ste96b] Bjarne Steensgaard. Points-to analysis by type inference of programs
with structures and unions. pages 136–150. Springer-Verlag, 1996.

[Ter08] Tachio Terauchi. Checking race freedom via linear programming. In
PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, pages 1–10, New
York, NY, USA, 2008. ACM.

[TP00] Frank Tip and Jens Palsberg. Scalable propagation-based call graph
construction algorithms. In OOPSLA, pages 281–293, 2000.

[VB04] A. Venet and G.P. Brat. Precise and efficient static array bound
checking for large embedded c programs. In PLDI, pages 231–242,
2004.

[VJL07] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: Static race
detection on millions of lines of code. In ESEC/FSE. ACM, 2007.

[vPG03] C. von Praun and T.R. Gross. Static conflict analysis for multi-
threaded object-oriented programs. In PLDI, pages 115–128, 2003.

142

[WFBA00] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander
Aiken. A first step towards automated detection of buffer overrun
vulnerabilities. In In Network and Distributed System Security Sym-
posium, pages 3–17, 2000.

[WL95] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive
pointer analysis for c programs. In PLDI, pages 1–12, 1995.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI, pages
131–144, 2004.

[WS06] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for
multithreaded programs. IEEE Trans. Software Eng., 32(2):93–110,
2006.

[WWM07] Thomas Würthinger, Christian Wimmer, and Hanspeter
Mössenböck. Array bounds check elimination for the java
hotspotTMclient compiler. In PPPJ ’07: Principles and prac-
tice of programming in Java, pages 125–133, New York, NY, USA,
2007. ACM.

[XA05] Y. Xie and A. Aiken. Scalable error detection using boolean satisfi-
ability. In POPL, pages 351–363. ACM, 2005.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vulnerabil-
ities in scripting languages. In USENIX-SS’06: USENIX Security
Symposium, Berkeley, CA, USA, 2006. USENIX Association.

[YHR99] Suan Hsi Yong, Susan Horwitz, and Thomas Reps. Pointer analysis
for programs with structures and casting. In PLDI, pages 91–103,
1999.

[YN09] Jie Yu and Satish Narayanasamy. A case for an interleaving con-
strained shared-memory multi-processor. In ISCA ’09: International
Symposium on Computer architecture, pages 325–336, New York, NY,
USA, 2009. ACM.

[YRC05] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient de-
tection of data race conditions via adaptive tracking. In SOSP, pages
221–234, 2005.

[ZC04] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited.
In PLDI, pages 145–157, 2004.

143

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng., 28(2):183–200,
2002.

[ZRL96] Sean Zhang, Barbara G. Ryder, and William Landi. Program de-
composition for pointer aliasing: A step toward practical analyses.
In FSE, pages 81–92, 1996.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Approach of this Dissertation
	Factoring out the Concurrency Analysis
	Scalable Data Race Detection
	Evaluation of Call-graph Construction
	Contributions and Outline

	Radar: Dataflow Analysis for Concurrent Programs
	Overview of Radar
	Sequential Non-Null Analysis
	The Problem: Adjusting for Multiple Threads
	Our Solution: Pseudo-Race Detection
	Multithreaded Non-Null Analysis

	The Radar Framework
	Intra-procedural Framework
	Impact of Unsoundness from the Race Detector
	Optimization: Race Equivalence Regions
	Inter-procedural Framework
	Limitations
	May Analyses and Backwards Analyses
	Preservation of Monotonicity and Distributivity

	Summary

	The Relay Data-Race Detector
	Motivation and Contributions
	Overview of Relay
	Ingredients that Enable Modular Analysis
	Putting the Ingredients Together

	The Relay Algorithm
	Symbolic Execution
	Lockset Analysis
	Guarded Access Analysis
	Warning Generation

	Optimizations
	SCC-wide Summaries for Accesses to Globals
	Optimized Warning Generation

	Evaluation
	Implementation
	Clustering Warnings and Counting Warnings
	Warning Categorization
	Filters
	Other Filters Considered
	Results
	Comparison to Other Race Detectors

	Summary

	Evaluation of Call-graph Construction Algorithms
	Motivation
	Overview of Pointer Analyses
	Dimensions of Difference
	List of Algorithms

	Results for Call-graph Precision
	Experimental setup
	Call-graph Metrics and Results
	Recap

	Effect on Client Analyses
	Inter-procedural Null Pointer Analysis
	Results for Null-pointer Analysis
	Results for Relay Race Detector
	Recap

	Other Call-graph Algorithms and Studies

	Instantiating and Evaluating Radar
	Putting Relay into Radar
	Analyses Converted by Radar (Relay)
	Evaluation
	Alternative Instantiations and Bounds
	Instantiations with Varying Call-graphs
	Radar Benchmarks
	Running Times and Memory Usage
	Comparison of Precision

	Summary

	Related Work
	Datarace Detection
	Dataflow Analysis for Concurrent Programs

	Conclusions and Future Work
	Experience and Idioms
	Precision and Performance

	Properties of Relative Dataflow Analyses
	Function Pointer Slicing for WL
	Evaluating Benefits of Slicing
	Difficulties in Slicing
	Approach to Slicing

	Bibliography

