
R A N J I T J H A L A , E R I C S E I D E L , N I K I VA Z O U

P R O G R A M M I N G W I T H

R E F I N E M E N T T Y P E S

A N I N T R O D U C T I O N T O L I Q U I D H A S K E L L

Copyright © 2015 Ranjit Jhala

goto.ucsd.edu/liquid

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents

1 Introduction 9

Well-Typed Programs Do Go Wrong 9

Refinement Types 11

Audience 11

Getting Started 11

Sample Code 12

2 Refinement Types 13

Defining Types 13

Errors 14

Subtyping 14

Writing Specifications 15

Refining Function Types: Pre-conditions 16

Refining Function Types: Post-conditions 17

Testing Values: Booleans and Propositions 17

Putting It All Together 19

Recap 19

4 ranjit jhala, eric seidel, niki vazou

3 Polymorphism 21

Specification: Vector Bounds 22

Verification: Vector Lookup 23

Inference: Our First Recursive Function 24

Higher-Order Functions: Bottling Recursion in a loop 25

Refinements and Polymorphism 27

Recap 28

4 Refined Datatypes 29

Sparse Vectors Revisited 29

Ordered Lists 31

Ordered Trees 34

Recap 37

5 Boolean Measures 39

Partial Functions 39

Lifting Functions to Measures 40

A Safe List API 42

Recap 45

6 Numeric Measures 47

Wholemeal Programming 47

Specifying List Dimensions 49

Lists: Size Preserving API 50

programming with refinement types 5

Lists: Size Reducing API 52

Dimension Safe Vector API 53

Dimension Safe Matrix API 55

Recap 57

7 Elemental Measures 59

Talking about Sets 59

Proving QuickCheck Style Properties 60

Content-Aware List API 62

Permutations 64

Uniqueness 65

Unique Zippers 67

Recap 69

8 Case Study: Associative Maps 71

Specifying Maps 71

Using Maps: Well Scoped Expressions 72

Implementing Maps: Binary Search Trees 76

Recap 80

9 Case Study: Pointers and ByteStrings 81

HeartBleeds in Haskell 81

Low-level Pointer API 82

A Refined Pointer API 84

6 ranjit jhala, eric seidel, niki vazou

Assumptions vs Guarantees 87

ByteString API 87

Application API 91

Nested ByteStrings 92

Recap: Types Against Overflows 94

List of Exercises

2.1 Exercise (List Average) . 17

2.2 Exercise (Propositions) . 18

2.3 Exercise (Assertions) . 18

3.1 Exercise (Vector Head) . 24

3.2 Exercise (Unsafe Lookup) 24

3.3 Exercise (Safe Lookup) . 24

3.4 Exercise (Guards) . 25

3.5 Exercise (Absolute Sum) 25

3.6 Exercise (Off by one?) . 25

3.7 Exercise (Using Higher-Order Loops) 26

3.8 Exercise (Dot Product) . 26

1

Introduction

One of the great things about Haskell is its brainy type system that
allows one to enforce a variety of invariants at compile time, thereby
nipping in the bud a large swathe of run-time errors.

Well-Typed Programs Do Go Wrong

Alas, well-typed programs do go quite wrong, in a variety of ways.

Division by Zero This innocuous function computes the average of
a list of integers:

average :: [Int] -> Int

average xs = sum xs `div` length xs

We get the desired result on a non-empty list of numbers:

ghci> average [10, 20, 30, 40]

25

However, if we call it with an empty list, we get a rather unpleas-
ant crash: 0 We might solve this problem by

writing average more defensively,
perhaps returning a Maybe or Either
value. However, this merely kicks the
can down the road. Ultimately, we will
want to extract the Int from the Maybe
and if the inputs were invalid to start
with, then at that point we’d be stuck.

ghci> average []

*** Exception: divide by zero

Missing Keys Associative key-value maps are the new lists; they
come “built-in” with modern languages like Go, Python, JavaScript
and Lua; and of course, they’re widely used in Haskell too.

10 programming with refinement types

ghci> :m +Data.Map

ghci> let m = fromList [("haskell", "lazy")

, ("ocaml" , "eager")]

ghci> m ! "haskell"

"lazy"

Alas, maps are another source of vexing errors that are tickled
when we try to find the value of an absent key: 0 Again, one could use a Maybe but its

just deferring the inevitable.
ghci> m ! "javascript"

"*** Exception: key is not in the map

Segmentation Faults Say what? How can one possibly get a
segmentation fault with a safe language like Haskell. Well, here’s the
thing: every safe language is built on a foundation of machine code,
or at the very least, C. Consider the ubiquitous vector library:

ghci> :m +Data.Vector

ghci> let v = fromList ["haskell", "ocaml"]

ghci> unsafeIndex v 0

"haskell"

However, invalid inputs at the safe upper levels can percolate all
the way down and stir a mutiny down below:

ghci> unsafeIndex v 3

'ghci' terminated by signal SIGSEGV ...
0 Why use a function marked unsafe?
Because it’s very fast! Furthermore,
even if we used the safe variant, we’d
get a run-time exception which is only
marginally better. Finally, we should
remember to thank the developers for
carefully marking it unsafe, because
in general, given the many layers of
abstraction, it is hard to know which
functions are indeed safe.

Heart Bleeds Finally, for certain kinds of programs, there is a
fate worse than death. text is a high-performance string processing
library for Haskell, that is used, for example, to build web services.

ghci> :m + Data.Text Data.Text.Unsafe

ghci> let t = pack "Voltage"

ghci> takeWord16 5 t

"Volta"

A cunning adversary can use invalid, or rather, well-crafted, inputs
that go well outside the size of the given text‘ to read extra bytes and
thus extract secrets without anyone being any the wiser.

ghci> takeWord16 20 t

"Voltage\1912\3148\SOH\NUL\15928\2486\SOH\NUL"

The above call returns the bytes residing in memory immediately
after the string Voltage. These bytes could be junk, or could be either
the name of your favorite TV show, or, more worryingly, your bank
account password.

introduction 11

Refinement Types

Refinement types allow us to enrich Haskell’s type system with
predicates that precisely describe the sets of valid inputs and outputs
of functions, values held inside containers, and so on. These predi-
cates are drawn from special logics for which there are fast decision
procedures called SMT solvers.

By combining types with predicates you can specify contracts
which describe valid inputs and outputs of functions. The refinement
type system guarantees at compile-time that functions adhere to their
contracts. That is, you can rest assured that the above calamities
cannot occur at run-time.

LiquidHaskell is a Refinement Type Checker for Haskell, and in this
tutorial we’ll describe how you can use it to make programs better
and programming even more fun. 0 If you are familiar with the notion of

Dependent Types, for example, as in the
Coq proof assistant, then Refinement
Types can be thought of as restricted
class of the former where the logic is
restricted, at the cost of expressiveness,
but with the reward of a considerable
amount of automation.

Audience

Do you

• know a bit of basic arithmetic and logic?
• know the difference between a nand and an xor?
• know any typed languages e.g. ML, Haskell, Scala, F# or (Typed)

Racket?
• know what forall a. a -> a means?
• like it when your code editor politely points out infinite loops?
• like your programs to not have bugs?

Then this tutorial is for you!

Getting Started

First things first; lets see how to install and run LiquidHaskell.

LiquidHaskell Requires in addition to the cabal dependencies the
binary executable for an SMTLIB2 compatible solver, e.g. one of

• Z3

• CVC4

• MathSat

To Install LiquidHaskell, just do:

http://z3.codeplex.com/
http://cvc4.cs.nyu.edu/
http://mathsat.fbk.eu/download.html

12 programming with refinement types

$ cabal install liquidhaskell

Command Line execution simply requires you type:

$ liquid /path/to/file.hs

You will see a report of SAFE or UNSAFE together with type errors at
various points in the source.

Emacs and Vim have LiquidHaskell plugins, which run liquid in the
background as you edit any Haskell file, highlight errors, and display
the inferred types, all of which we find to be extremely useful. Hence
we strongly recommend these over the command line option.

• Emacs’ flycheck plugin is described here
• Vim’s syntastic checker is described here

Sample Code

This tutorial is written in literate Haskell and the code for it is avail-
able here. We strongly recommend you grab the code, and follow
along, and especially that you do the exercises.

https://github.com/ucsd-progsys/liquidhaskell#emacs
https://github.com/ucsd-progsys/liquidhaskell#vim
http://github.com/ucsd-pl/liquidhaskell-tutorial.git

2
Refinement Types

What is a Refinement Type? In a nutshell,

Refinement Types = Types + Predicates

That is, refinement types allow us to decorate types with logical pred-
icates, which you can think of as boolean-valued Haskell expressions,
that constrain the set of values described by the type. This lets us
specify sophisticated invariants of the underlying values.

Defining Types

Let us define some refinement types:

{-@ type Zero = {v:Int | v == 0} @-}

{-@ type NonZero = {v:Int | v /= 0} @-}

The Value Variable v denotes the set of valid inhabitants of each
refinement type. Hence, Zero describes the set of Int values that are
equal to 0, that is, the singleton set containing just 0, and NonZero

describes the set of Int values that are not equal to 0, that is, the set
{1, -1, 2, -2, ...} and so on. 0 We will use @-marked comments to

write refinement type annotations
the Haskell source file, making these
types, quite literally, machine-checked
comments!

To use these types we can write:

{-@ zero :: Zero @-}

zero = 0 :: Int

{-@ one, two, three :: NonZero @-}

one = 1 :: Int

two = 2 :: Int

three = 3 :: Int

14 programming with refinement types

Errors

If we try to say nonsensical things like:

{-@ one' :: Zero @-}

one' = 1 :: Int

LiquidHaskell will complain with an error message:

02-basic.lhs:58:8: Error: Liquid Type Mismatch

Inferred type

VV : Int | VV == (1 : int)

not a subtype of Required type

VV : Int | VV == 0

The message says that the expression 1 :: Int has the type

{v:Int | v == 1}

which is not (a subtype of) the required type

{v:Int | v == 0}

as 1 is not equal to 0.

Subtyping

What is this business of subtyping? Suppose we have some more
refinements of Int

{-@ type Nat = {v:Int | 0 <= v} @-}

{-@ type Even = {v:Int | v mod 2 == 0 } @-}

{-@ type Lt100 = {v:Int | v < 100} @-}

What is the type of zero? Zero of course, but also Nat:

{-@ zero' :: Nat @-}

zero' = zero

and also Even:

{-@ zero'' :: Even @-}

zero'' = zero

and also any other satisfactory refinement, such as:

refinement types 15

{-@ zero''' :: Lt100 @-}

zero''' = zero
0 We use a different names ‘zero’‘,
‘zero”‘ etc. as (currently) LiquidHaskell
supports at most one refinement type
for each top-level name.Subtyping and Implication Zero is the most precise type for

0::Int, as it is subtype of Nat, Even and Lt100. This is because the
set of values defined by Zero is a subset of the values defined by Nat,
Even and Lt100, as the following logical implications are valid:

• v = 0⇒ 0 ≤ v
• v = 0⇒ v mod 2 = 0
• v = 0⇒ v < 100

Composing Refinements If P ⇒ Q and P ⇒ R then P ⇒ Q ∧ R.
Thus, when a term satisfies multiple refinements, we can compose
those refinements with &&:

\begin{comment} ES: this is confusingly worded \end{commment}

{-@ zero'''' :: {v:Int | 0 <= v && v mod 2 == 0 && v < 100} @-}

zero'''' = 0

In Summary the key points about refinement types are:

1. A refinement type is just a type decorated with logical predicates.
2. A term can have different refinements for different properties.
3. When we erase the predicates we get the standard Haskell types.

0 Dually, a standard Haskell type, has
the trivial refinement true. For example,
Int is equivalent to {v:Int|true}.

Writing Specifications

Let’s write some more interesting specifications.

Typing Dead Code We can wrap the usual error function in a
function die with the type:

{-@ die :: {v:String | false} -> a @-}

die msg = error msg

The interesting thing about die is that the input type has the
refinement false, meaning the function must only be called with
Strings that satisfy the predicate false. This seems bizarre; isn’t it
impossible to satisfy false? Indeed! Thus, a program containing die

typechecks only when LiquidHaskell can prove that die is never called.
For example, LiquidHaskell will accept

16 programming with refinement types

cantDie = if 1 + 1 == 3

then die "horrible death"

else ()

by inferring that the branch condition is always False and so die

cannot be called. However, LiquidHaskell will reject

canDie = if 1 + 1 == 2

then die "horrible death"

else ()

as the branch may (will!) be True and so die can be called.

Refining Function Types: Pre-conditions

Let’s use die to write a safe division function that only accepts non-zero
denominators.

divide' :: Int -> Int -> Int

divide' n 0 = die "divide by zero"

divide' n d = n `div` d

From the above, it is clear to us that div is only called with non-
zero divisors. However, LiquidHaskell reports an error at the call to
"die" because, what if divide' is actually invoked with a 0 divisor?

We can specify that will not happen, with a pre-condition that says
that the second argument is non-zero:

{-@ divide :: Int -> NonZero -> Int @-}

divide _ 0 = die "divide by zero"

divide n d = n `div` d

To Verify that divide never calls die, LiquidHaskell infers that
"divide by zero" is not merely of type String, but in fact has the the
refined type {v:String | false} in the context in which the call to
die' occurs. LiquidHaskell arrives at this conclusion by using the fact
that in the first equation for divide the denominator is in fact

0 :: {v: Int | v == 0}

which contradicts the pre-condition (i.e. input) type. Thus, by contra-
dition, LiquidHaskell deduces that the first equation is dead code and
hence die will not be called at run-time.

Establishing Pre-conditions The above signature forces us
to ensure that that when we use divide, we only supply provably
NonZero arguments. Hence, these two uses of divide are fine:

refinement types 17

avg2 x y = divide (x + y) 2

avg3 x y z = divide (x + y + z) 3

Exercise 2.1 (List Average). Consider the function avg:

1. Why does LiquidHaskell flag an error at n ?
2. How can you change the code so LiquidHaskell verifies it?

avg :: [Int] -> Int

avg xs = divide total n

where

total = sum xs

n = length xs

Refining Function Types: Post-conditions

Next, let’s see how we can use refinements to describe the outputs of
a function. Consider the following simple absolute value function

abs :: Int -> Int

abs n

| 0 < n = n

| otherwise = 0 - n

We can use a refinement on the output type to specify that the
function returns non-negative values

{-@ abs :: Int -> Nat @-}

LiquidHaskell verifies that abs indeed enjoys the above type by
deducing that n is trivially non-negative when 0 < n and that in the
otherwise case, the value 0 - n is indeed non-negative. 0 LiquidHaskell is able to automatically

make these arithmetic deductions by
using an SMT solver which has built-in
decision procedures for arithmetic, to
reason about the logical refinements.

Testing Values: Booleans and Propositions

In the above example, we compute a value that is guaranteed to be a
Nat. Sometimes, we need to test if a value satisfies some property, e.g.,
is NonZero. For example, let’s write a command-line calculator:

calc = do putStrLn "Enter numerator"

n <- readLn

putStrLn "Enter denominator"

d <- readLn

putStrLn (result n d)

calc

http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

18 programming with refinement types

which takes two numbers and divides them. The function result

checks if d is strictly positive (and hence, non-zero), and does the
division, or otherwise complains to the user:

result n d

| isPositive d = "Result = " ++ show (n `divide` d)

| otherwise = "Humph, please enter positive denominator!"

Finally, isPositive is a test that returns a True if its input is
strictly greater than 0 or False otherwise:

isPositive :: Int -> Bool

isPositive x = x > 0

To verify the call to divide inside result we need to tell Liquid-
Haskell that the division only happens with a NonZero value d. How-
ever, the non-zero-ness is established via the test that occurs inside
the guard isPositive d. Hence, we require a post-condition that states
that isPositive only returns True when the argument is positive:

{-@ isPositive :: x:Int -> {v:Bool | Prop v <=> x > 0} @-}

In the above signature, read Prop v as “v is True”; dually, read
not (Prop v) as “v is False”. Hence, the output type (post-condition)
states that isPositive x returns True if and only if x was in fact
strictly greater than 0. In other words, we can write post-conditions
for plain-old Bool-valued tests to establish that user-supplied values
satisfy some desirable property (here, Pos and hence NonZero) in
order to then safely perform some computation on it.

Exercise 2.2 (Propositions). What happens if you delete the type for
isPositive ? Can you change the type for isPositive (i.e. write some
other type) to while preserving safety?

Exercise 2.3 (Assertions). Consider the following assert function, and two
use sites. Write a suitable refinement type signature for lAssert so that
lAssert and yes are accepted but no is rejected.

{-@ lAssert :: Bool -> a -> a @-}

lAssert True x = x

lAssert False _ = die "yikes, assertion fails!"

yes = lAssert (1 + 1 == 2) ()

no = lAssert (1 + 1 == 3) ()

Hint: You need a pre-condition that lAssert is only called with True.

https://www.haskell.org/hoogle/?hoogle=assert

refinement types 19

Putting It All Together

Let’s wrap up this introduction with a simple truncate function that
connects all the dots.

truncate :: Int -> Int -> Int

truncate i max

| i' <= max' = i

| otherwise = max' * (i `divide` i')

where

i' = abs i

max' = abs max

The expression truncate i n evaluates to i when the absolute value
of i is less the upper bound max, and otherwise truncates the value at
the maximum n. LiquidHaskell verifies that the use of divide is safe
by inferring that:

1. max' < i' from the branch condition,
2. 0 <= i' from the abs post-condition, and
3. 0 <= max' from the abs post-condition.

From the above, LiquidHaskell infers that i' /= 0. That is, at
the call site i' :: NonZero, thereby satisfying the pre-condition for
divide and verifying that the program has no pesky divide-by-zero
errors.

Recap

This concludes our quick introduction to Refinement Types and
LiquidHaskell. Hopefully you have some sense of how to

1. Specify fine-grained properties of values by decorating their types
with logical predicates.

2. Encode assertions, pre-conditions, and post-conditions with
suitable function types.

3. Verify semantic properties of code by using automatic logic
engines (SMT solvers) to track and establish the key relationships
between program values.

3
Polymorphism

Refinement types shine when we want to establish properties of
polymorphic datatypes and higher-order functions. Rather than be
abstract, let’s illustrate this with a classic and concrete use-case.

Array Bounds Verification aims to ensure that the indices used
to retrieve values from an array are indeed valid for the array, i.e. are
between 0 and the size of the array. For example, suppose we create
an array with two elements and then attempt to look it up at various
indices:

twoLangs = fromList ["haskell", "javascript"]

eeks = [ok, yup, nono]

where

ok = twoLangs ! 0

yup = twoLangs ! 1

nono = twoLangs ! 3

If we try to run the above, we get a nasty shock: an exception that
says we’re trying to look up twoLangs at index 3 whereas the size of
twoLangs is just 2.

Prelude> :l 03-poly.lhs

[1 of 1] Compiling VectorBounds (03-poly.lhs, interpreted)

Ok, modules loaded: VectorBounds.

*VectorBounds> eeks

Loading package ... done.

"*** Exception: ./Data/Vector/Generic.hs:249 ((!)): index out of bounds (3,2)

In a suitable Editor e.g. Vim or Emacs, you will you will literally
see the error without running the code. Next, let’s see how Liquid-
Haskell checks ok and yup but flags nono, and along the way, learn
how LiquidHaskell reasons about recursion, higher-order functions, data
types, and polymorphism.

http://www.cs.bu.edu/~hwxi/academic/papers/pldi98.pdf

22 programming with refinement types

Specification: Vector Bounds

First, let’s see how to specify array bounds safety by refining the types
for the key functions exported by Data.Vector, i.e. how to

1. define the size of a Vector

2. compute the size of a Vector

3. restrict the indices to those that are valid for a given size.

Imports We can write specifications for imported modules – for
which we lack the code – either directly in the client’s source file
or better, in .spec files which can be reused across multiple client
modules. For example, we can write specifications for Data.Vector

inside include/Data/Vector.spec which contains:

-- | Define the size

measure vlen :: Vector a -> Int

-- | Compute the size

assume length :: x:Vector a -> {v:Int | v = vlen x}

-- | Restrict the indices

assume ! :: x:Vector a -> {v:Nat | v < vlen x} -> a

Measures are used to define properties of Haskell data values that are
useful for specification and verification. Think of vlen as the actual
size of a Vector regardless of how the size was computed.

Assumes are used to specify types describing the semantics of
functions that we cannot verify e.g. because we don’t have the
code for them. Here, we are assuming that the library function
Data.Vector.length indeed computes the size of the input vector.
Furthermore, we are stipulating that the lookup function (!) requires
an index that is betwen 0 and the real size of the input vector x.

Dependent Refinements are used to describe relationships between
the elements of a specification. For example, notice how the signature
for length names the input with the binder x that then appears in the
output type to constrain the output Int. Similarly, the signature for
(!) names the input vector x so that the index can be constrained to
be valid for x. Thus, dependency is essential for writing properties
that connect different program values.

Aliases are extremely useful for defining abbreviations for commonly
occuring types. Just as we enjoy abstractions when programming, we

https://github.com/ucsd-progsys/liquidhaskell/blob/master/include/Data/Vector.spec

polymorphism 23

will find it handy to have abstractions in the specification mechanism.
To this end, LiquidHaskell supports type aliases. For example, we can
define Vectors of a given size N as:

{-@ type VectorN a N = {v:Vector a | vlen v == N} @-}

and now use this to type twoLangs above as:

{-@ twoLangs :: VectorN String 2 @-}

twoLangs = fromList ["haskell", "javascript"]

Similarly, we can define an alias for Int values between Lo and Hi:

{-@ type Btwn Lo Hi = {v:Int | Lo <= v && v < Hi} @-}

after which we can specify (!) as:

(!) :: x:Vector a -> Btwn 0 (vlen x) -> a

Verification: Vector Lookup

Let’s try write some functions to sanity check the specifications. First,
find the starting element – or head of a Vector

head :: Vector a -> a

head vec = vec ! 0

When we check the above, we get an error:

src/03-poly.lhs:127:23: Error: Liquid Type Mismatch

Inferred type

VV : Int | VV == ?a && VV == 0

not a subtype of Required type

VV : Int | VV >= 0 && VV < vlen vec

In Context

VV : Int | VV == ?a && VV == 0

vec : Vector a | 0 <= vlen vec

?a : Int | ?a == (0 : int)

LiquidHaskell is saying that 0 is not a valid index as it is not between
0 and vlen vec. Say what? Well, what if vec had no elements! A
formal verifier doesn’t make off by one errors.

To Fix the problem we can do one of two things.

24 programming with refinement types

1. Require that the input vec be non-empty, or
2. Return an output if vec is non-empty, or

Here’s an implementation of the first approach, where we define
and use an alias NEVector for non-empty Vectors

{-@ type NEVector a = {v:Vector a | 0 < vlen v} @-}

{-@ head' :: NEVector a -> a @-}

head' vec = vec ! 0

Exercise 3.1 (Vector Head). Replace the undefined with an implementa-
tion of head'' which accepts all Vectors but returns a value only when the
input vec is not empty.

head'' :: Vector a -> Maybe a

head'' vec = undefined

Exercise 3.2 (Unsafe Lookup). The function unsafeLookup is a wrapper
around the (!) with the arguments flipped. Modify the specification for
unsafeLookup so that the implementation is accepted by LiquidHaskell.

{-@ unsafeLookup :: Int -> Vector a -> a @-}

unsafeLookup index vec = vec ! index

Exercise 3.3 (Safe Lookup). Complete the implementation of safeLookup

by filling in the implementation of ok so that it performs a bounds check
before the access.

{-@ safeLookup :: Vector a -> Int -> Maybe a @-}

safeLookup x i

| ok = Just (x ! i)

| otherwise = Nothing

where

ok = undefined

Inference: Our First Recursive Function

Ok, let’s write some code! Let’s start with a recursive function that
adds up the values of the elements of an Int vector.

-- >>> vectorSum (fromList [1, -2, 3])

-- 2

vectorSum :: Vector Int -> Int

vectorSum vec = go 0 0

polymorphism 25

where

go acc i

| i < sz = go (acc + (vec ! i)) (i + 1)

| otherwise = acc

sz = length vec

Exercise 3.4 (Guards). What happens if you replace the guard with i <=

sz?

Exercise 3.5 (Absolute Sum). Write a variant of the above function that
computes the absoluteSum of the elements of the vector.

-- >>> absoluteSum (fromList [1, -2, 3])

-- 6

{-@ absoluteSum :: Vector Int -> Nat @-}

absoluteSum = undefined

Inference LiquidHaskell verifies vectorSum – or, to be precise, the
safety of the vector accesses vec ! i. The verification works out
because LiquidHaskell is able to automatically infer 0 In your editor, click on go to see the

inferred type.

go :: Int -> {v:Int | 0 <= v && v <= sz} -> Int

which states that the second parameter i is between 0 and the length
of vec (inclusive). LiquidHaskell uses this and the test that i < sz to
establish that i is between 0 and (vlen vec) to prove safety.

Exercise 3.6 (Off by one?). Why does the type of go have v <= sz and not
v < sz ?

Higher-Order Functions: Bottling Recursion in a loop

Let’s refactor the above low-level recursive function into a generic
higher-order loop.

loop :: Int -> Int -> a -> (Int -> a -> a) -> a

loop lo hi base f = go base lo

where

go acc i

| i < hi = go (f i acc) (i + 1)

| otherwise = acc

We can now use loop to implement vectorSum:

26 programming with refinement types

vectorSum' :: Vector Int -> Int

vectorSum' vec = loop 0 n 0 body

where

body i acc = acc + (vec ! i)

n = length vec

Inference is a convenient option. LiquidHaskell finds:

loop :: lo:Nat -> hi:{Nat|lo <= hi} -> a -> (Btwn lo hi -> a -> a) -> a

In english, the above type states that

• lo the loop lower bound is a non-negative integer
• hi the loop upper bound is a greater than lo,
• f the loop body is only called with integers between lo and hi.

It can be tedious to have to keep typing things like the above. If we
wanted to make loop a public or exported function, we could use the
inferred type to generate an explicit signature.

At the call loop 0 n 0 body the parameters lo and hi are instan-
tiated with 0 and n respectively, which, by the way is where the
inference engine deduces non-negativity. Thus LiquidHaskell con-
cludes that body is only called with values of i that are between 0 and
(vlen vec), which verifies the safety of the call vec ! i.

Exercise 3.7 (Using Higher-Order Loops). Complete the implementa-
tion of absoluteSum' below. When you are done, what is the type that is
inferred for body?

-- >>> absoluteSum' (fromList [1, -2, 3])

-- 6

{-@ absoluteSum' :: Vector Int -> Nat @-}

absoluteSum' vec = loop 0 n 0 body

where

n = length vec

body i acc = undefined

Exercise 3.8 (Dot Product). The following function uses loop to com-
pute dotProducts. Why does LiquidHaskell flag an error? Fix the code or
specification so that LiquidHaskell accepts it.

polymorphism 27

-- >>> dotProduct (fromList [1,2,3]) (fromList [4,5,6])

-- 32

{-@ dotProduct :: x:Vector Int -> y:Vector Int -> Int @-}

dotProduct x y = loop 0 sz 0 body

where

sz = length x

body i acc = acc + (x ! i) * (y ! i)

Refinements and Polymorphism

While the standard Vector is great for dense arrays, often we have to
manipulate sparse vectors where most elements are just 0. We might
represent such vectors as a list of index-value tuples:

{-@ type SparseN a N = [(Btwn 0 N, a)] @-}

Implicitly, all indices other than those in the list have the value 0 (or
the equivalent value for the type a).

Alias SparseN is just a shorthand for the (longer) type on the right,
it does not define a new type. If you are familiar with the index-style
length encoding e.g. as found in DML or Agda, then note that de-
spite appearances, our Sparse definition is not indexed.

Sparse Products Let’s write a function to compute a sparse product

{-@ sparseProduct :: x:Vector _ -> SparseN _ (vlen x) -> _ @-}

sparseProduct x y = go 0 y

where

go n ((i,v):y') = go (n + (x!i) * v) y'

go n [] = n

LiquidHaskell verifies the above by using the specification to
conclude that for each tuple (i, v) in the list y, the value of i is
within the bounds of the vector x, thereby proving x ! i safe.

Folds The sharp reader will have undoubtedly noticed that the sparse
product can be more cleanly expressed as a fold:

foldl' :: (a -> b -> a) -> a -> [b] -> a

We can simply fold over the sparse vector, accumulating the sum as
we go along

http://www.cs.bu.edu/~hwxi/DML/DML.html
http://code.haskell.org/Agda/examples/Vec.agda
http://hackage.haskell.org/packages/archive/base/latest/doc/html/src/Data-List.html

28 programming with refinement types

{-@ sparseProduct' :: x:Vector _ -> SparseN _ (vlen x) -> _ @-}

sparseProduct' x y = foldl' body 0 y

where

body sum (i, v) = sum + (x ! i) * v

LiquidHaskell digests this without difficulty. The main trick is in how
the polymorphism of foldl' is instantiated.

1. GHC infers that at this site, the type variable b from the signature
of foldl' is instantiated to the Haskell type (Int, a).

2. Correspondingly, LiquidHaskell infers that in fact b can be instan-
tiated to the refined (Btwn 0 v (vlen x), a).

Thus, the inference mechanism saves us a fair bit of typing and
allows us to reuse existing polymorphic functions over containers
and such without ceremony.

Recap

This chapter gave you an idea of how one can use refinements to
verify size related properties, and more generally, to specify and
verify properties of recursive and polymorphic functions. Next, let’s
see how we can use LiquidHaskell to prevent the creation of illegal
values by refining data type definitions.

4
Refined Datatypes

So far, we have seen how to refine the types of functions, to specify,
for example, pre-conditions on the inputs, or postconditions on the
outputs. Very often, we wish to define datatypes that satisfy certain
invariants. In these cases, it is handy to be able to directly refine the
the data definition, making it impossible to create illegal inhabitants.

Sparse Vectors Revisited

As our first example of a refined datatype, let’s revisit the sparse
vector representation that we saw earlier. The SparseN type alias
we used got the job done, but is not pleasant to work with because
we have no way of determining the dimension of the sparse vector.
Instead, let’s create a new datatype to represent such vectors:

data Sparse a = SP { spDim :: Int

, spElems :: [(Int, a)] }

Thus, a sparse vector is a pair of a dimension and a list of index-
value tuples. Implicitly, all indices other than those in the list have the
value 0 or the equivalent value type a.

Legal Sparse vectors satisfy two crucial properties. First, the di-
mension stored in spDim is non-negative. Second, every index in
spElems must be valid, i.e. between 0 and the dimension. Unfortu-
nately, Haskell’s type system does not make it easy to ensure that
illegal vectors are not representable. 0 The standard approach is to use

abstract types and smart constructors
but even then there is only the informal
guarantee that the smart constructor
establishes the right invariants.

Data Invariants LiquidHaskell lets us enforce these invariants with
a refined data definition:

{-@ data Sparse a = SP { spDim :: Nat

, spElems :: [(Btwn 0 spDim, a)]} @-}

https://www.haskell.org/haskellwiki/Smart_constructors

30 programming with refinement types

Where, as before, the we use the aliases:

{-@ type Nat = {v:Int | 0 <= v} @-}

{-@ type Btwn Lo Hi = {v:Int | Lo <= v && v < Hi} @-}

Refined Data Constructors The refined data definition is
internally converted into refined types for the data constructor SP:

-- Generated Internal representation

data Sparse a where

SP :: spDim:Nat -> spElems:[(Btwn 0 spDim, a)] -> Sparse a

{#autosmart} In other words, by using refined input types for
SP we have automatically converted it into a smart constructor that
ensures that every instance of a Sparse is legal. Consequently, Liquid-
Haskell verifies:

okSP :: Sparse String

okSP = SP 5 [(0, "cat")

, (3, "dog")]

but rejects, due to the invalid index:

badSP :: Sparse String

badSP = SP 5 [(0, "cat")

, (6, "dog")]

Field Measures It is convenient to write an alias for sparse vectors
of a given size N. We can use the field name spDim as a measure, like
vlen. That is, we can use spDim inside refinements:

{-@ type SparseN a N = {v:Sparse a | spDim v == N} @-}

Sparse Products Let’s write a function to compute a sparse product

{-@ dotProd :: x:Vector Int -> SparseN Int (vlen x) -> Int @-}

dotProd x (SP _ y) = go 0 y

where

go sum ((i, v) : y') = go (sum + (x ! i) * v) y'

go sum [] = sum

LiquidHaskell verifies the above by using the specification to
conclude that for each tuple (i, v) in the list y, the value of i is
within the bounds of the vector x, thereby proving x ! i safe.

Folded Product We can port the fold-based product to our new
representation:

refined datatypes 31

{-@ dotProd' :: x:Vector Int -> SparseN Int (vlen x) -> Int @-}

dotProd' x (SP _ y) = foldl' body 0 y

where

body sum (i, v) = sum + (x ! i) * v

As before, LiquidHaskell checks the above by automatically instan-
tiating refinements for the type parameters of foldl', saving us a
fair bit of typing and enabling the use of the elegant polymorphic,
higher-order combinators we know and love.

Exercise 4.1. [Sanitization] Invariants are all well and good for data
computed inside our programs. The only way to ensure the legality
of data coming from outside, i.e. from the “real world”, is to writing a
sanitizer that will check the appropriate invariants before construct-
ing a Sparse vector. Write the specification and implementation of a
sanitizer fromList, so that the following typechecks:

fromList :: Int -> [(Int, a)] -> Maybe (Sparse a)

fromList dim elts = undefined

{-@ test1 :: SparseN String 3 @-}

test1 = fromJust $ fromList 3 [(0, "cat"), (2, "mouse")]

Exercise 4.2. [Addition] Write the specification and implementation
of a function plus that performs the addition of two Sparse vectors of
the same dimension, yielding an output of that dimension. When you
are done, the following code should typecheck:

plus :: (Num a) => Sparse a -> Sparse a -> Sparse a

plus x y = undefined

{-@ test2 :: SparseN Int 3 @-}

test2 = plus vec1 vec2

where

vec1 = SP 3 [(0, 12), (2, 9)]

vec2 = SP 3 [(0, 8), (1, 100)]

Ordered Lists

As a second example of refined data types, let’s consider a different
problem: representing ordered sequences. Here’s a type for sequences
that mimics the classical list:

32 programming with refinement types

data IncList a = Emp

| (:<) { hd :: a, tl :: IncList a }

infixr 9 :<

The Haskell type above does not state that the elements be in order of
course, but we can specify that requirement by refining every element
in tl to be greater than hd:

{-@ data IncList a = Emp

| (:<) { hd :: a, tl :: IncList {v:a | hd <= v} }

@-}

Refined Data Constructors Once again, the refined data defini-
tion is internally converted into a “smart” refined data constructor

-- Generated Internal representation

data IncList a where

Emp :: IncList a

(:<) :: hd:a -> tl:IncList {v:a | hd <= v} -> IncList a

which ensures that we can only create legal ordered lists.

okList = 1 :< 2 :< 3 :< Emp -- accepted by LH

badList = 2 :< 1 :< 3 :< Emp -- rejected by LH

Its all very well to specify ordered lists. Next, lets see how its equally
easy to establish these invariants by implementing several textbook
sorting routines.

Insertion Sort First, lets implement insertion sort, which converts
an ordinary list [a] into an ordered list IncList a.

insertSort :: (Ord a) => [a] -> IncList a

insertSort [] = Emp

insertSort (x:xs) = insert x (insertSort xs)

The hard work is done by insert which places an element into the
correct position of a sorted list. LiquidHaskell infers that if you give
insert an element and a sorted list, it returns a sorted list.

insert :: (Ord a) => a -> IncList a -> IncList a

insert y Emp = y :< Emp

insert y (x :< xs)

| y <= x = y :< x :< xs

| otherwise = x :< insert y xs

refined datatypes 33

Exercise 4.3. Complete the implementation of the function below to
use foldr to eliminate the explicit recursion in insertSort.

insertSort' :: (Ord a) => [a] -> IncList a

insertSort' xs = foldr f b xs

where

f = undefined -- Fill this in

b = undefined -- Fill this in

Merge Sort Similarly, it is easy to write merge sort, by implementing
the three steps. First, we write a function that splits the input into two
equal sized halves:

split :: [a] -> ([a], [a])

split (x:y:zs) = (x:xs, y:ys)

where

(xs, ys) = split zs

split xs = (xs, [])

Second, we need a function that combines two ordered lists

merge :: (Ord a) => IncList a -> IncList a -> IncList a

merge xs Emp = xs

merge Emp ys = ys

merge (x :< xs) (y :< ys)

| x <= y = x :< merge xs (y :< ys)

| otherwise = y :< merge (x :< xs) ys

Finally, we compose the above steps to divide (i.e. split) and con-
quer (sort and merge) the input list:

{-@ mergeSort :: (Ord a) => [a] -> IncList a @-}

mergeSort [] = Emp

mergeSort [x] = x :< Emp

mergeSort xs = merge (mergeSort ys) (mergeSort zs)

where

(ys, zs) = split xs

Exercise 4.4. Why is the following implementation of quickSort
rejected by LiquidHaskell? Modify it so it is accepted.

quickSort :: (Ord a) => [a] -> IncList a

quickSort [] = Emp

quickSort (x:xs) = append lessers greaters

where

34 programming with refinement types

lessers = quickSort [y | y <- xs, y < x]

greaters = quickSort [z | z <- xs, z >= x]

append :: (Ord a) => IncList a -> IncList a -> IncList a

append Emp ys = ys

append (x :< xs) ys = x :< append xs ys

Ordered Trees

As a last example of refined data types, let us consider binary search
ordered trees, defined thus:

data BST a = Leaf

| Node { root :: a

, left :: BST a

, right :: BST a }

Binary Search Trees enjoy the property that each root lies (strictly)
between the elements belonging in the left and right subtrees
hanging off the the root. The ordering invariant makes it easy to
check whether a certain value occurs in the tree. If the tree is empty
i.e. a Leaf, then the value does not occur in the tree. If the given value
is at the root then the value does occur in the tree. If it is less than
(respectively greater than) the root, we recursively check whether the
value occurs in the left (respectively right) subtree.

Figure 4.1: A Binary Search Tree with
values between 1 and 9. Each root’s
value lies between the values appearing
in its left and right subtrees.

Figure 4.1 shows a binary search tree whose nodes are labeled
with a subset of values from 1 to 9. We might represent such a tree
with the Haskell value:

okBST :: BST Int

okBST = Node 6

(Node 2

(Node 1 Leaf Leaf)

(Node 4 Leaf Leaf))

(Node 9

(Node 7 Leaf Leaf)

Leaf)

Refined Data Type The Haskell type says nothing about the
ordering invariant, and hence, cannot prevent us from creating illegal
BST values that violate the invariant. We can remedy this with a
refined data definition that captures the invariant:

http://en.wikipedia.org/wiki/Binary_search_tree

refined datatypes 35

{-@ data BST a = Leaf

| Node { root :: a

, left :: BST {v:a | v < root}

, right :: BST {v:a | root < v} }

@-}

Refined Data Constructors As before, the above data definition
creates a refined “smart” constructor for BST

data BST a where

Leaf :: BST a

Node :: r:a -> BST {v:a | v < r} -> BST {v:a | r < v} -> BST a

which prevents us from creating illegal trees

badBST :: BST Int

badBST = Node 6

(Node 4

(Node 1 Leaf Leaf)

(Node 2 Leaf Leaf)) -- Out of order, rejected by LH

(Node 9

(Node 7 Leaf Leaf)

Leaf)

Exercise 4.5. Can a BST Int contain duplicates?

Membership Lets write some functions to create and manipulate
these trees. First, a function to check whether a value is in a BST:

mem :: (Ord a) => a -> BST a -> Bool

mem _ Leaf = False

mem k (Node k' l r)

| k == k' = True

| k < k' = mem k l

| otherwise = mem k r

Singleton Next, another easy warm-up: a function to create a BST

with a single given element:

one :: a -> BST a

one x = Node x Leaf Leaf

Insertion Next, lets write a function that adds an element to a BST. 0 Amusingly, while typing out the below
I swapped the k and k' which caused
LiquidHaskell to complain.

36 programming with refinement types

add :: (Ord a) => a -> BST a -> BST a

add k' Leaf = one k'

add k' t@(Node k l r)

| k' < k = Node k (add k' l) r

| k < k' = Node k l (add k' r)

| otherwise = t

Minimum Next, lets write a function to delete the minimum element
from a BST. This function will return a pair of outputs – the smallest
element and the remainder of the tree. We can say that the output ele-
ment is indeed the smallest, by saying that the remainder’s elements
exceed the element. To this end, lets define a helper type: 0 This helper type approach is rather

verbose. We should be able to just
use plain old pairs and specify the
above requirement as a dependency
between the pairs’ elements. Later, we
will see how to do so using abstract
refinements.

data MinPair a = MP { minElt :: a, rest :: BST a }

We can specify that minElt is indeed smaller than all the elements in
rest via the data type refinement:

{-@ data MinPair a = MP { minElt :: a, rest :: BST {v:a | minElt < v} } @-}

Finally, we can write the code to compute MinPair

delMin :: (Ord a) => BST a -> MinPair a

delMin (Node k Leaf r) = MP k r

delMin (Node k l r) = MP k' (Node k l' r)

where

MP k' l' = delMin l

delMin Leaf = die "Don't say I didn't say I didn't warn ya!"

Exercise 4.6. [Deletion] Use delMin to complete the implementation
of del which deletes a given element from a BST, if it is present.

del :: (Ord a) => a -> BST a -> BST a

del k' t@(Node k l r) = undefined

del _ t = t

Exercise 4.7. The function delMin is only sensible for non-empty
trees. Read ahead to learn how to specify and verify that it is only
called with such trees, and then apply that technique here to verify
the call to die in delMin.

Exercise 4.8. Complete the implementation of toIncList to obtain a
BST based sorting routine bstSort.

http://goto.ucsd.edu/~rjhala/liquid/abstract_refinement_types.pdf
http://goto.ucsd.edu/~rjhala/liquid/abstract_refinement_types.pdf

refined datatypes 37

bstSort :: (Ord a) => [a] -> IncList a

bstSort = toIncList . toBST

toBST :: (Ord a) => [a] -> BST a

toBST = foldr add Leaf

toIncList :: BST a -> IncList a

toIncList = undefined

Hint: This exercise will be a lot easier after you finish the quickSort

exercise. Note that the signature for toIncList does not use Ord and
so you cannot use a sorting procedure to implement it.

Recap

In this chapter we saw how LiquidHaskell lets you refine data type
definitions to capture sophisticated invariants. These definitions are
internally represented by refining the types of the data constructors,
automatically making them “smart” in that they preclude the cre-
ation of illegal values that violate the invariants. We will see much
more of this handy technique in future chapters.

One recurring theme in this chapter was that we had to create
new versions of standard datatypes, just in order to specify certain
invariants. For example, we had to write a special list type, with its
own copies of nil and cons. Similarly, to implement delMin we had to
create our own pair type.

This duplication of types is quite tedious. There should be a
way to just slap the desired invariants on to existing types, thereby
facilitating their reuse. In a few chapters, we will see how to achieve
this reuse by abstracting refinements from the definitions of datatypes
or functions in the same way we abstract the element type a from
containers like [a] or BST a.

5
Boolean Measures

In the last two chapters, we saw how refinements could be used to
reason about the properties of basic Int values like vector indices, or
the elements of a list. Next, lets see how we can describe properties
of aggregate structures like lists and trees, and use these properties to
improve the APIs for operating over such structures.

Partial Functions

As a motivating example, let us return to problem of ensuring the
safety of division. Recall that we wrote:

{-@ divide :: Int -> NonZero -> Int @-}

divide _ 0 = die "divide-by-zero"

divide x n = x `div` n

The Precondition asserted by the input type NonZero allows
LiquidHaskell to prove that the die is never executed at run-time, but
consequently, requires us to establish that wherever divide is used,
the second parameter be provably non-zero. This is requirement is
not onerous when we know exactly what the divisor is statically

avg2 x y = divide (x + y) 2

avg3 x y z = divide (x + y + z) 3

However, it can be more of a challenge when the divisor is obtained
dynamically. For example, lets write a function to find the number of
elements in a list

size :: [a] -> Int

size [] = 0

size (_:xs) = 1 + size xs

40 programming with refinement types

and use it to compute the average value of a list:

avgMany xs = divide total elems

where

total = sum xs

elems = size xs

Uh oh. LiquidHaskell wags its finger at us!

src/04-measure.lhs:77:27-31: Error: Liquid Type Mismatch

Inferred type

VV : Int | VV == elems

not a subtype of Required type

VV : Int | 0 /= VV

In Context

VV : Int | VV == elems

elems : Int

We cannot prove that the divisor is NonZero, because it can be 0
– when the list is empty. Thus, we need a way of specifying that the
input to avgMany is indeed non-empty!

Lifting Functions to Measures

How shall we tell LiquidHaskell that a list is non-empty? Recall
the notion of measure previously introduced to describe the size of
a Data.Vector. In that spirit, lets write a function that computes
whether a list is not empty:

notEmpty :: [a] -> Bool

notEmpty [] = False

notEmpty (_:_) = True

A measure is a total Haskell function,

1. With a single equation per data constructor, and
2. Guaranteed to terminate, typically via structural recursion.

We can tell LiquidHaskell to lift a function meeting the above require-
ments into the refinement logic by declaring:

boolean measures 41

{-@ measure notEmpty @-}

Non-Empty Lists To use the newly defined measure, we define an
alias for non-empty lists, i.e. the subset of plain old Haskell lists [a]

for which the predicate notEmpty holds

{-@ type NEList a = {v:[a] | notEmpty v} @-}

We can now refine various signatures to establish the safety of the
list-average function.

Size First, we specify that size returns a non-zero value when the
input list is not-empty:

{-@ size :: xs:[a] -> {v:Nat | notEmpty xs => v > 0} @-}

Average Second, we specify that the average is only sensible for
non-empty lists:

{-@ average :: NEList Int -> Int @-}

average xs = divide total elems

where

total = sum xs

elems = size xs

Exercise 5.1. Fix the code below to obtain an alternate variant
average' that returns Nothing for empty lists:

average' :: [Int] -> Maybe Int

average' xs

| ok = Just $ divide total elems

| otherwise = Nothing

where

total = sum xs

elems = size xs

ok = True -- What expression goes here?

Exercise 5.2. An important aspect of formal verifiers like Liq-
uidHaskell is that they help establish properties not just of your
implementations but equally, or more importantly, of your specifications.
In that spirit, can you explain why the following two variants of size
are rejected by LiquidHaskell?

42 programming with refinement types

{-@ size1 :: xs:(NEList a) -> Pos @-}

size1 [] = 0

size1 (_:xs) = 1 + size1 xs

{-@ size2 :: xs:[a] -> {v:Int | notEmpty xs => v > 0} @-}

size2 [] = 0

size2 (_:xs) = 1 + size2 xs

TODO solution

A Safe List API

Now that we can talk about non-empty lists, we can ensure the safety
of various list-manipulating functions which are only well-defined
on non-empty lists and which crash with unexpected run-time errors
otherwise.

Heads and Tails For example, we can type the potentially danger-
ous head and tail as:

{-@ head :: NEList a -> a @-}

head (x:_) = x

head [] = die "Fear not! 'twill ne'er come to pass"

{-@ tail :: NEList a -> [a] @-}

tail (_:xs) = xs

tail [] = die "Relaxeth! this too shall ne'er be"

LiquidHaskell deduces that the second equations are dead code
thanks to the precondition, which ensures callers only supply non-
empty arguments.

Exercise 5.3. Write down a specification for null such that safeHead
is verified:

safeHead :: [a] -> Maybe a

safeHead xs

| null xs = Nothing

| otherwise = Just $ head xs

{-@ null :: xs:[a] -> Bool @-}

null [] = True

null (_:_) = False

boolean measures 43

Groups Lets use the above to write a function that chunks sequences
into non-empty groups of equal elements:

{-@ groupEq :: (Eq a) => [a] -> [NEList a] @-}

groupEq [] = []

groupEq (x:xs) = (x:ys) : groupEq zs

where

(ys, zs) = span (x ==) xs

By using the fact that each element in the output returned by groupEq

is in fact of the form x:ys, LiquidHaskell infers that groupEq returns a
[NEList a] that is, a list of non-empty lists.

We can use groupEq to write a function that eliminates stuttering
from a String:

-- >>> eliminateStutter "ssstringssss liiiiiike thisss"

-- "strings like this"

eliminateStutter xs = map head $ groupEq xs

LiquidHaskell automatically instantiates the type parameter for map

in eliminateStutter to notEmpty v to deduce that head is only called
on non-empty lists.

Folds One of my favorite folds is foldr1 which uses the first element
of the sequence as the initial value. Of course, it should only be
called with non-empty sequences!

{-@ foldr1 :: (a -> a -> a) -> NEList a -> a @-}

foldr1 f (x:xs) = foldr f x xs

foldr1 _ [] = die "foldr1"

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ acc [] = acc

foldr f acc (x:xs) = f x (foldr f acc xs)

Sum Thanks to the precondition, LiquidHaskell will prove that the die

code is indeed dead. Thus, we can write

{-@ sum :: (Num a) => NEList a -> a @-}

sum [] = die "cannot add up empty list"

sum xs = foldr1 (+) xs

Consequently, we can only invoke sum on non-empty lists, so:

44 programming with refinement types

sumOk = sum [1,2,3,4,5] -- accepted by LH

sumBad = sum [] -- rejected by LH

Exercise 5.4. The function below computes a weighted average of its
input. Unfortunately, LiquidHaskell is not very happy about it. Can
you figure out why, and fix the code or specification appropriately?

{-@ wtAverage :: NEList (Pos, Pos) -> Int @-}

wtAverage wxs = divide totElems totWeight

where

elems = map (\(w, x) -> w * x) wxs

weights = map (\(w, _) -> w) wxs

totElems = sum elems

totWeight = sum weights

sum = foldr1 (+)

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

Hint: On what variables are the errors? How are those variables’
values computed? Can you think of a better specification for the
function(s) doing those computations?

Exercise 5.5. Non-empty lists pop up in many places, and it is rather
convenient to have the type system track non-emptiness without
having to make up special types. Consider the risers function: 0 Popularized by [Neil

Mitchell](http://neilmitchell.blogspot.com/2008/03/sorting-
at-speed.html)risers :: (Ord a) => [a] -> [[a]]

risers [] = []

risers [x] = [[x]]

risers (x:y:etc)

| x <= y = (x:s) : ss

| otherwise = [x] : (s : ss)

where

(s, ss) = safeSplit $ risers (y:etc)

{-@ safeSplit :: NEList a -> (a, [a]) @-}

safeSplit (x:xs) = (x, xs)

safeSplit _ = die "don't worry, be happy"

The call to safeSplit requires its input be non-empty, and Liquid-
Haskell does not believe that the call inside risers meets this re-
quirement. Can you devise a specification for risers that allows
LiquidHaskell to verify the call to safeSplit that risers will not die?

boolean measures 45

Recap

In this chapter we saw how LiquidHaskell lets you

1. Define structural properties of data types,

2. Use refinements over these properties to describe key invariants
that establish, at compile-time, the safety of operations that might
otherwise fail on unexpected values at run-time, all while,

3. Working with plain Haskell types, here, Lists, without having
to make up new types which can have the unfortunate effect of
adding a multitude of constructors and conversions which often
clutter implementations and specifications.

Of course, We can do a lot more with measures, so lets press on!

http://blog.jbapple.com/2008/01/extra-type-safety-using-polymorphic.html

6
Numeric Measures

Many of the programs we have seen so far, for example those in here,
suffer from indexitis 0 A term coined by Richard Bird

a tendency to perform low-level manipulations to iterate over
the indices into a collection, which opens the door to various off-
by-one errors. Such errors can be entirely eliminated by instead
programming at a higher level, using a wholemeal approach where
the emphasis is on using aggregate operations, like map, fold and
reduce. However, wholemeal programming requires us to take
care when operating on multiple collections; if these collections
are incompatible, e.g. have the wrong dimensions, then we end up
with a fate worse than a crash, a meaningless result.

Fortunately, LiquidHaskell can help. Lets see how we can use
measures to specify dimensions and create a dimension-aware API
for lists which can be used to implement wholemeal dimension-safe
APIs. 0 In a later chapter we will use this API

to implement K-means clustering.

Wholemeal Programming

Indexitis begone! As an example of wholemeal programming, lets
write a small library that represents vectors as lists and matrices as
nested vectors:

data Vector a = V { vDim :: Int

, vElts :: [a]

}

deriving (Eq)

data Matrix a = M { mRow :: Int

, mCol :: Int

, mElts :: Vector (Vector a)

}

deriving (Eq)

http://www.amazon.com/Pearls-Functional-Algorithm-Design-Richard/dp/0521513383
http://www.cs.ox.ac.uk/ralf.hinze/publications/ICFP09.pdf

48 programming with refinement types

Vector Product We can write the dot product of two Vectors using
a fold:

dotProd :: (Num a) => Vector a -> Vector a -> a

dotProd vx vy = sum (prod xs ys)

where

prod = zipWith (\x y -> x * y)

xs = vElts vx

ys = vElts vy

Matrix Product Similarly, we can compute the product of two
matrices in a wholemeal fashion, without performing any low-level
index manipulations, but instead using a high-level “iterator” over
the elements of the matrix.

matProd :: (Num a) => Matrix a -> Matrix a -> Matrix a

matProd (M rx _ xs) (M _ cy ys)

= M rx cy elts

where

elts = for xs $ \xi ->

for ys $ \yj ->

dotProd xi yj

Iteration In the above, the “iteration” embodied in for is simply a
map over the elements of the vector.

for (V n xs) f = V n (map f xs)

Wholemeal programming frees us from having to fret about
low-level index range manipulation, but is hardly a panacea. Instead,
we must now think carefully about the compatibility of the various
aggreates. For example,

• dotProd is only sensible on vectors of the same dimension; if one
vector is shorter than another (i.e. has fewer elements) then we
will won’t get a run-time crash but instead will get some gibberish
result that will be dreadfully hard to debug.

• matProd is only well defined on matrices of compatible dimensions;
the number of columns of mx must equal the number of rows of
my. Otherwise, again, rather than an error, we will get the wrong
output. 0 In fact, while the implementation of

‘matProd‘ breezes past GHC it is quite
wrong!

numeric measures 49

Specifying List Dimensions

In order to start reasoning about dimensions, we need a way to
represent the dimension of a list inside the refinement logic. 0 We could just use ‘vDim‘, but that is a

lazy cheat as there is no guarantee that
the field’s value actually equals the size
of the list!Measures are ideal for this task. Previously we saw how we could lift

Haskell functions up to the refinement logic. Lets write a measure to 0 Recall that these must be inductively
defined functions, with a single equa-
tion per data-constructor

describe the length of a list:

{-@ measure len @-}

len :: [a] -> Int

len [] = 0

len (_:xs) = 1 + len xs

{-@ measure size @-}

{- size :: xs:[a] -> {v:Nat | v = size xs && v = len xs} @-}

{-@ size :: xs:[a] -> Nat @-}

size :: [a] -> Int

size (_:rs) = 1 + size rs

size [] = 0

Measures Refine Constructors As with refined data definitions,
the measures are translated into strengthened types for the type’s
constructors. For example, the size measure is translated into:

data [a] where

[] :: {v: [a] | size v = 0}

(:) :: x:a -> xs:[a] -> {v:[a] | size v = 1 + size xs}

Multiple Measures We can write several different measures for
a datatype. For example, in addition to the size measure, we can
define a notEmpty measure for the list type:

{-@ measure notEmpty @-}

notEmpty :: [a] -> Bool

notEmpty [] = False

notEmpty (_:_) = True

Composing Measures LiquidHaskell lets you compose the different
measures simply by conjoining the refinements in the strengthened
constructors. For example, the two measures for lists end up yielding
the constructors:

data [a] where

[] :: {v: [a] | not (notEmpty v) && size v = 0}

(:) :: x:a -> xs:[a] -> {v:[a] | notEmpty v && size v = 1 + size xs}

50 programming with refinement types

This is a very significant advantage of using measures instead of
indices as in DML or Agda, as decouples property from structure, which
crucially enables the use of the same structure for many different
purposes. That is, we need not know a priori what indices to bake
into the structure, but can define a generic structure and refine it a
posteriori as needed with new measures.

Lets use size to create a dimension-aware API for lists. To get the
ball rolling, lets defining a few helpful type aliases:

An ‘N‘-List is a list with exactly N elements: 0 Note that when defining refinement
type aliases, we use uppercase variables
like ‘N‘ to distinguish value- parame-
ters from the lowercase type parameters
like ‘a‘.

{-@ type ListN a N = {v : [a] | size v = N} @-}

To make the signatures symmetric, lets use an alias for plain old
Lists:

type List a = [a]

Lists: Size Preserving API

With the types firmly in hand, let us write dimension-aware variants
of the usual list functions. The implementations are the same as in
the standard library i.e. Data.List; but the specifications are enriched
with dimension information.

‘map‘ yields a list with the same size as the input:

{-@ map :: (a -> b) -> xs:List a -> ListN b (size xs) @-}

map _ [] = []

map f (x:xs) = f x : map f xs

zipWith requires both lists to have the same size, and produces a list
with that same size. 0 Note that as made explicit by the call

to ‘die‘, the input type *rules out* the
case where one list is empty and the
other is not, as in that case the former’s
length is zero while the latter’s is not,
and hence, different.

{-@ invariant {v:[a] | 0 <= size v} @-}

{-@ zipWith :: _ -> xs:List a -> ListN b (size xs) -> ListN c (size xs) @-}

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith _ [] [] = []

zipWith _ _ _ = die "no other cases"

unsafeZip The signature for zipWith is quite severe – it rules out the
case where the zipping occurs only upto the shorter input. Here’s a

http://www.cs.bu.edu/~hwxi/DML/DML.html
http://code.haskell.org/Agda/examples/Vec.agda
http://hackage.haskell.org/packages/archive/base/latest/doc/html/src/Data-List.html

numeric measures 51

function that actually allows for that case, where the output type is
the shorter of the two inputs:

{-@ zip :: as:[a] -> bs:[b] -> {v:[(a,b)] | Min (size v) (size as) (size bs)} @-}

zip (a:as) (b:bs) = (a, b) : zip as bs

zip [] _ = []

zip _ [] = []

The output type uses the following which defines X to be the smaller
of Y and Z. 0 Note that if p then q else r is

simply an abbreviation for p => q &&
not p => r{-@ predicate Min X Y Z = (if X < Y then X = Y else X = Z) @-}

Exercise 6.1. [Zip Unless Empty] In my experience, zip as shown
above is far too permissive and lets all sorts of bugs into my code. As
middle ground, consider zipOrNull below. Write a specification for
zipOrNull such that the code below is verified by LiquidHaskell:

zipOrNull :: [a] -> [b] -> [(a, b)]

zipOrNull [] _ = []

zipOrNull _ [] = []

zipOrNull xs ys = zipWith (,) xs ys

{-@ test1 :: {v: _ | size v = 2} @-}

test1 = zipOrNull [0, 1] [True, False]

{-@ test2 :: {v: _ | size v = 0} @-}

test2 = zipOrNull [] [True, False]

{-@ test3 :: {v: _ | size v = 0} @-}

test3 = zipOrNull ["cat", "dog"] []

Hint: Yes, the type is rather gross; it uses a bunch of disjunctions || ,
conjunctions && and implications =>.

Exercise 6.2. [Reverse] Consider the code below that reverses
a list using the tail-recursive go. Fix the signature for go so that
LiquidHaskell can prove the specification for reverse.

{-@ reverse :: xs:[a] -> {v:[a] | size v = size xs} @-}

reverse xs = go [] xs

where

{-@ go :: xs:[a] -> ys:[a] -> [a] @-}

go acc [] = acc

go acc (x:xs) = go (x:acc) xs

Hint: How big is the list returned by go?

52 programming with refinement types

Lists: Size Reducing API

Next, lets look at some functions that truncate lists, in one way or
another.

Take lets us grab the first k elements from a list:

{-@ take' :: n:Nat -> {v:List a | n <= size v} -> ListN a n @-}

take' 0 _ = []

take' n (x:xs) = x : take' (n-1) xs

take' _ _ = die "won't happen"

Exercise 6.3. [Drop] is the yang to take’s yin: it returns the
remainder after extracting the first k elements. Write a suitable
specification for it so that the below typechecks:

drop 0 xs = xs

drop n (_:xs) = drop (n-1) xs

drop _ _ = die "won't happen"

{-@ test4 :: ListN String 2 @-}

test4 = drop 1 ["cat", "dog", "mouse"]

Exercise 6.4. [Take it easy] The version take' above is too
restrictive; it insists that the list actually have at least n elements.
Modify the signature for the real take function so that the code below
is accepted by LiquidHaskell:

take 0 _ = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

{-@ test5 :: [ListN String 2] @-}

test5 = [take 2 ["cat", "dog", "mouse"]

, take 20 ["cow", "goat"]]

Partition As one last example, lets look at the function that
partitions a list using a user supplied predicate:

partition _ [] = ([], [])

partition f (x:xs)

| f x = (x:ys, zs)

| otherwise = (ys, x:zs)

where

(ys, zs) = partition f xs

numeric measures 53

We would like to specify that the sum of the output tuple’s dimen-
sions equal the input list’s dimension. Lets write measures to access
the elements of the output:

{-@ measure first @-}

first (x, _) = x

{-@ measure second @-}

second (_, y) = y

We can use the above to type partition as

{-@ partition :: (a -> Bool) -> xs:_ -> ListPair a (size xs) @-}

using an alias for a pair of lists whose total dimension equals N

{-@ type ListPair a N = {v:([a], [a]) | size (first v) + size (second v) = N} @-}

Exercise 6.5. [QuickSort] Use the partition function above to
implement quickSort:

-- >> quickSort [1,4,3,2]

-- [1,2,3,4]

{-@ quickSort :: (Ord a) => xs:List a -> ListN a (size xs) @-}

quickSort [] = []

quickSort (x:xs) = undefined

{-@ test10 :: ListN String 2 @-}

test10 = quickSort test4

Dimension Safe Vector API

We can use the dimension aware lists to create a safe vector API.

Legal Vectors are those whose vDim field actually equals the size of
the underlying list:

{-@ data Vector a = V { vDim :: Nat

, vElts :: ListN a vDim }

@-}

The refined data type prevents the creation of illegal vectors:

54 programming with refinement types

okVec = V 2 [10, 20] -- accepted by LH

badVec = V 2 [10, 20, 30] -- rejected by LH

Access Next, lets write some functions to access the elements of a
vector:

{-@ vCons :: a -> x:Vector a -> {v:Vector a | vDim v = vDim x + 1} @-}

vCons x (V n xs) = V (n+1) (x:xs)

{-@ type VectorNE a = {v:Vector a | vDim v > 0} @-}

{-@ vHd :: VectorNE a -> a @-}

vHd (V _ (x:_)) = x

vHd _ = die "nope"

{-@ vTl :: x:VectorNE a -> {v:Vector a | vDim v = vDim x - 1} @-}

vTl (V n (_:xs)) = V (n-1) xs

vTl _ = die "nope"

Iteration It is straightforward to see that:

{-@ for :: x:Vector a -> (a -> b) -> VectorN b (vDim x) @-}

Binary Operations We want to apply various binary operations to
compatible vectors, i.e. vectors with equal dimensions. To this end, it is
handy to have an alias for vectors of a given size:

{-@ type VectorN a N = {v:Vector a | vDim v = N} @-}

We can now write a generic binary operator:

{-@ vBin :: (a -> b -> c) -> vx:Vector a -> vy:VectorN b (vDim vx) -> VectorN c (vDim vx) @-}

vBin :: (a -> b -> c) -> Vector a -> Vector b -> Vector c

vBin op (V n xs) (V _ ys) = V n (zipWith op xs ys)

Dot Product Finally, we can implement a wholemeal, dimension
safe dot product operator as:

{-@ dotProduct :: (Num a) => x:Vector a -> y:VectorN a (vDim x) -> a @-}

dotProduct x y = sum $ vElts $ vBin (*) x y

Exercise 6.6. [Vector Constructor] Complete the specification
and implementation of vecFromList which creates a Vector from a plain
old list.

numeric measures 55

vecFromList :: [a] -> Vector a

vecFromList xs = undefined

test6 = dotProduct vx vy -- should be accepted by LH

where

vx = vecFromList [1,2,3]

vy = vecFromList [4,5,6]

Dimension Safe Matrix API

The same methods let us create a dimension safe Matrix API which
ensures that only legal matrices are created and that operations are
performed on compatible matrices.

Legal Matrices are those where the dimension of the outer vector
equals the number of rows mRow and the dimension of each inner
vector is mCol. We can specify legality in a refined data definition:

{-@ data Matrix a = M { mRow :: Pos

, mCol :: Pos

, mElts :: VectorN (VectorN a mCol) mRow

}

@-}

Notice that we avoid disallow degenerate matrices by requiring the
dimensions to be positive.

{-@ type Pos = {v:Int | 0 < v} @-}

It is convenient to have an alias for matrices of a given size:

{-@ type MatrixN a R C = {v:Matrix a | mRow v = R && mCol v = C} @-}

after LiquidHaskell accepts:

ok23 = M 2 3 (V 2 [V 3 [1, 2, 3]

, V 3 [4, 5, 6]])

Exercise 6.7. [Legal Matrix] Modify the definitions of bad1 and
bad2 so that they are legal matrices accepted by LiquidHaskell.

bad1 :: Matrix Int

bad1 = M 2 3 (V 2 [V 3 [1, 2]

, V 3 [4, 5, 6]])

56 programming with refinement types

bad2 :: Matrix Int

bad2 = M 2 3 (V 2 [V 2 [1, 2]

, V 2 [4, 5]])

Exercise 6.8. [Matrix Constructor] ? Write a function to
construct a Matrix from a nested list.

matFromList :: [[a]] -> Maybe (Matrix a)

matFromList [] = Nothing -- no meaningful dimensions!

matFromList xss@(xs:_)

| ok = Just (M r c vs)

| otherwise = Nothing

where

r = size xss

c = size xs

ok = undefined

vs = undefined

Exercise 6.9. [Refined Matrix Constructor] ?? Refine the
specification for matFromList so that the following is accepted by
LiquidHaskell:

{-@ mat23 :: Maybe (MatrixN Integer 2 2) @-}

mat23 = matFromList [[1, 2]

, [3, 4]]

Hint: It is easy to specify the number of rows from xss. How will you
figure out the number of columns? A measure may be useful.

Matrix Multiplication Ok, lets now implement matrix multiplica-
tion. You’d think we did it already, but in fact the implementation at
the top of this chapter is all wrong. Indeed, you cannot just multiply 0 You could run it of course, or you

could just replace ‘dotProd‘ with our
type-safe ‘dotProduct‘ and see what
happens!

any two matrices: the number of columns of the first must equal to
the rows of the second – after which point the result comprises the
dotProduct of the rows of the first matrix with the columns of the
second.

{-@ matProduct :: (Num a) => x:Matrix a

-> y:{Matrix a | mCol x = mRow y}

-> MatrixN a (mRow x) (mCol y)

@-}

matProduct (M rx _ xs) my@(M _ cy _)

= M rx cy elts

numeric measures 57

where

elts = for xs $ \xi ->

for ys' $ \yj ->

dotProduct xi yj

M _ _ ys' = transpose my

Transposition To iterate over the columns of my we just transpose it
so the columns become rows.

-- >>> ok32 == transpose ok23

-- True

ok32 = M 3 2 (V 3 [V 2 [1, 4]

, V 2 [2, 5]

, V 2 [3, 6]])

Exercise 6.10. [Matrix Transposition] ?? Use the Vector API
to Complete the implementation of txgo. For inspiration, you might
look at the implementation of Data.List.transpose from the prelude.
Better still, don’t.

{-@ transpose :: m:Matrix a -> MatrixN a (mCol m) (mRow m) @-}

transpose (M r c rows) = M c r $ txgo c r rows

{-@ txgo :: c:Nat -> r:Nat

-> VectorN (VectorN a c) r

-> VectorN (VectorN a r) c @-}

txgo c r rows = undefined

Hint: As shown by ok23 and ok32, transpose works by stripping out
the heads of the input rows, to create the corresponding output rows.

Recap

In this chapter, we saw how to use measures to describe numeric
properties of structures like lists (Vector) and nested lists (Matrix). To
recap:

1. Measures are structurally recursive functions, with a single equa-
tion per data constructor,

2. Measures can be used to create refined data definitions that pre-
vent the creation of illegal values,

3. Measures can then be used to enable safe wholemeal program-
ming, via dimension-aware APIs that ensure that operators only
apply to compatible values.

http://hackage.haskell.org/packages/archive/base/latest/doc/html/src/Data-List.html#transpose

58 programming with refinement types

We can use numeric measures to encode various other properties
of structures; in subsequent chapters we will see examples rang-
ing from high-level height-balanced trees, to low-level safe pointer
arithmetic.

7
Elemental Measures

Often, correctness requires us to reason about the set of elements
represented inside a data structure, or manipulated by a function.

Sets appear everywhere. For example, we’d like to know that:

• sorting routines return permutations of their inputs – i.e. return
collections whose elements are the same as the input’ set,

• resource management functions do not inadvertently create duplicate
elements or drop elements from set of tracked resources.

• syntax-tree manipulating procedures create well-scoped trees
where (the set of) used variables are (contained within the set of
variables) previously defined.

SMT Solvers support rather expressive logics. In addition to the
linear arithmetic and uninterpreted functions, they can efficiently
decide formulas over sets. Next, lets see how LiquidHaskell lets
us exploit this fact to develop types and interfaces that guarantee
invariants over the (set of) elements of a structures.

Talking about Sets

First, we need a way to talk about sets in the refinement logic. We
could roll our own special Haskell type , but for now, lets just use the 0 See

[this](http://goto.ucsd.edu/ rjhala/liquid/haskell/blog/blog/2013/03/26/talking-
about-sets.lhs/) for a brief description
of how to do so

Set a type from the prelude’s Data.Set.

Lifted Operators The LiquidHaskell prelude lifts the basic set
operators from Data.Set into the refinement logic, i.e. defines the
following logical functions that correspond to the Haskell functions
of the same name:

measure empty :: Set a

measure singleton :: a -> Set a

60 programming with refinement types

measure member :: a -> Set a -> Bool

measure union :: Set a -> Set a -> Set a

measure intersection :: Set a -> Set a -> Set a

measure difference :: Set a -> Set a -> Set a

Interpreted Operators The above operators are interpreted by the
SMT solver. That is, just like the SMT solver “knows”, via the axioms
of the theory of arithmetic that:

x = 2 + 2⇒ x = 4

is a valid formula, i.e. holds for all x, the solver “knows” that:

x = (singleton 1)⇒ y = (singleton 2)⇒ x = (intersection x (union y x))

This is because, the above formulas belong to a decidable Theory of
Sets reduces to McCarthy’s more general Theory of Arrays. 0 See [this recent

paper](http://research.microsoft.com/en-
us/um/people/leonardo/fmcad09.pdf)
to learn how modern SMT solvers
prove equalities like the above.

Proving QuickCheck Style Properties

To get the hang of whats going on, lets do a few warmup exercises,
using LiquidHaskell to prove various simple “theorems” about sets
and operations over them.

Refined Set API To make it easy to write down theorems, we’ve
refined the types of the operators in Data.Set so that they mirror
their logical counterparts:

empty :: {v:Set a | v = empty}

singleton :: x:a -> {v:Set a | v = singleton x}

union :: x:Set a -> y:Set a -> {v:Set a | v = union x y}

intersection :: x:Set a -> y:Set a -> {v:Set a | v = intersection x y}

difference :: x:Set a -> y:Set a -> {v:Set a | v = difference x y}

member :: x:a -> s:Set a -> {v:Bool | Prop v <=> member x s}

Asserting Properties Lets write our theorems as QuickCheck style
properties, that is, as functions from arbitrary inputs to a Bool output
that must always be True. Lets define aliases for the singletons True

and False:

{-@ type True = {v:Bool | Prop v } @-}

{-@ type False = {v:Bool | not (Prop v)} @-}

We can use True to state and prove theorems. For example, some-
thing (boring) like the arithmetic equality above becomes:

http://www-formal.stanford.edu/jmc/towards.ps

elemental measures 61

{-@ prop_one_plus_one_eq_two :: _ -> True @-}

prop_one_plus_one_eq_two x = (x == 1 + 1) `implies` (x == 2)

Where implies is just the implication function over Bool

{-@ implies :: p:_ -> q:_ -> {v:Bool | Prop v <=> (Prop p => Prop q)} @-}

implies False _ = True

implies _ True = True

implies _ _ = False

-- implies p q = not p || q

Exercise 7.1. [Bounded Addition] Write a QuickCheck style
proof of the fact that x < 100∧ y < 100⇒ x + y < 200.

{-@ prop_x_y_200 :: _ -> _ -> True @-}

prop_x_y_200 x y = False -- fill in the appropriate body to obtain the theorem.

Intersection is Commutative Ok, lets prove things about sets and
their operators! First, lets check that intersection is commutative:

{-@ prop_intersection_comm :: _ -> _ -> True @-}

prop_intersection_comm x y

= (x `intersection` y) == (y `intersection` x)

Union is Associative Similarly, we might verify that union is
associative:

{-@ prop_intersection_comm :: _ -> _ -> True @-}

prop_union_assoc x y z

= (x `union` (y `union` z)) == (x `union` y) `union` z

Union Distributes over Intersection and while we’re at it,
check various distributivity laws of Boolean algebra:

{-@ prop_intersection_dist :: _ -> _ -> _ -> True @-}

prop_intersection_dist x y z

= x `intersection` (y `union` z) == (x `intersection` y) `union` (x `intersection` z)

Non-Theorems Of course, while we’re at it, let’s make sure Liquid-
Haskell doesn’t prove anything that isn’t true . . .

{-@ prop_cup_dif_bad :: _ -> _ -> True @-}

prop_cup_dif_bad x y

62 programming with refinement types

= pre `implies` (x == ((x `union` y) `difference` y))

where

pre = True -- Fix this with a non-trivial precondition

Exercise 7.2. [Set Difference] Do you know why the above
fails? 1. Use QuickCheck to find a counterexample for the property
prop_cup_dif_bad, and, 2. Use the counterexample to assign pre

a non-trivial (i.e. non False) condition so that the property can be
proved.

Thus, LiquidHaskell’s refined types offer a nice interface for
interacting with the SMT solvers in order to prove theorems, while
letting us use QuickCheck to generate counterexamples. 0 The

[SBV](https://github.com/LeventErkok/sbv)
and [Leon](http://lara.epfl.ch/w/leon)
projects describe a different DSL based
approach for using SMT solvers from
Haskell and Scala respectively.

Content-Aware List API

Our overall goal is to verify properties of programs. Lets start off by
refining the list API to precisely track the list elements.

Elements of a List To specify the permutation property, we need a
way to talk about the set of elements in a list. At this point, hopefully
you know what we’re going to do: write a measure!

{-@ measure elems @-}

elems :: (Ord a) => [a] -> Set a

elems [] = empty

elems (x:xs) = singleton x `union` elems xs

Strengthened Constructors Recall, that as before, the above
definition automatically strengthens the types for the constructors:

data [a] where

[] :: {v:[a] | v = empty }

(:) :: x:a -> xs:[a] -> {v:[a] | elems v = union (singleton x) (elems xs)}

Next, to make the specifications concise, let’s define a few predi-
cate aliases:

{-@ predicate EqElts X Y = elems X = elems Y @-}

{-@ predicate SubElts X Y = Set_sub (elems X) (elems Y) @-}

{-@ predicate DisjElts X Y = Set_empty 0 = Set_cap (elems X) (elems Y) @-}

{-@ predicate Empty X = elems X = Set_empty 0 @-}

{-@ predicate UnElts X Y Z = elems X = Set_cup (elems Y) (elems Z) @-}

{-@ predicate UnElt X Y Z = elems X = Set_cup (Set_sng Y) (elems Z) @-}

{-@ predicate Elem X Y = Set_mem X (elems Y) @-}

elemental measures 63

Append First, here’s good old append, but now with a specification
that states that the output indeed includes the elements from both the
input lists.

{-@ append' :: xs:[a] -> ys:[a] -> {v:[a] | UnElts v xs ys} @-}

append' [] ys = ys

append' (x:xs) ys = x : append' xs ys

Exercise 7.3. [Reverse] Write down a type for revHelper so that
reverse' is verified by LiquidHaskell:

{-@ reverse' :: xs:[a] -> {v:[a] | EqElts v xs} @-}

reverse' xs = revHelper [] xs

revHelper acc [] = acc

revHelper acc (x:xs) = revHelper (x:acc) xs

Exercise 7.4. [Partition] ? Write down a specification for
split such that the subsequent “theorem” prop_partition_appent is
proved by LiquidHaskell.

split :: Int -> [a] -> ([a], [a])

split 0 xs = ([], xs)

split n (x:y:zs) = (x:xs, y:ys) where (xs, ys) = split (n-1) zs

split _ xs = ([], xs)

{-@ prop_split_append :: _ -> _ -> True @-}

prop_split_append n xs = elems xs == elems xs'

where

xs' = append' ys zs

(ys, zs) = split n xs

Hint: You may want to remind yourself about the “dimension-aware”
signature for partition from the earlier chapter.

Exercise 7.5. [Membership] Write down a signature for elem that
suffices to verify test1 and test2 by LiquidHaskell.

{-@ elem :: (Eq a) => a -> [a] -> Bool @-}

elem x (y:ys) = x == y || elem x ys

elem _ [] = False

{-@ test1 :: True @-}

test1 = elem 2 [1,2,3]

64 programming with refinement types

{-@ test2 :: False @-}

test2 = elem 2 [1,3]

Permutations

Next, lets use the refined list API to prove that various list-sorting
routines return permutations of their inputs, that is, return output lists
whose elements are the same as those of the input lists. Since we are
focusing on the elements, lets not distract ourselves with the ordering
invariant just, and reuse plain old lists. 0 See

[this](http://goto.ucsd.edu/ rjhala/liquid/haskell/blog/blog/2013/07/29/putting-
things-in-order.lhs/) for how to specify
and verify order with plain old lists.InsertionSort is the simplest of all the list sorting routines; we build

up an (ordered) output list inserting each element of the input list
into the appropriate position of the output:

insert x [] = [x]

insert x (y:ys)

| x <= y = x : y : ys

| otherwise = y : insert x ys

Thus, the output of insert has all the elements of the input xs, plus
the new element x:

{-@ insert :: x:a -> xs:[a] -> {v:[a] | UnElt v x xs } @-}

Which then lets us prove that the output of the sorting routine indeed
has the elements of the input:

{-@ insertSort :: (Ord a) => xs:[a] -> {v:[a] | EqElts v xs} @-}

insertSort [] = []

insertSort (x:xs) = insert x (insertSort xs)

Exercise 7.6. [Merge] Write down a specification of merge such that
the subsequent property is verified by LiquidHaskell:

{-@ merge :: xs:_ -> ys:_ -> {v:_ | UnElts v xs ys} @-}

merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

merge [] ys = ys

merge xs [] = xs

{-@ prop_merge_app :: _ -> _ -> True @-}

elemental measures 65

prop_merge_app xs ys = elems zs == elems zs'

where

zs = append' xs ys

zs' = merge xs ys

Exercise 7.7. [MergeSort] ?? Once you write the correct type for
merge above, you should be able to prove the surprising signature for
mergeSort below.

{-@ mergeSort :: (Ord a) => xs:[a] -> {v:[a] | Empty v} @-}

mergeSort [] = []

mergeSort xs = merge (mergeSort ys) (mergeSort zs)

where

(ys, zs) = split mid xs

mid = length xs `div` 2

First, make sure you are able verify the given signature. Next, obvi-
ously we don’t want mergeSort to return the empty list, so there’s a
bug somewhere in the code. Find and fix it, so that you cannot prove
that the output is empty, but can prove that EqElts v xs.

Uniqueness

Often, we want to enforce the invariant that a particular collection
contains no duplicates; as multiple copies in a collection of file handles
or system resources can create unpleasant leaks. For example, the
XMonad window manager creates a sophisticated zipper data struc-
ture to hold the list of active user windows, and carefully maintains
the invariant that that there are no duplicates. Next, lets see how to
specify and verify this invariant using LiquidHaskell, first for lists,
and then for a simplified zipper.

Specifying Uniqueness How would we even describe the fact that
a list has no duplicates? There are in fact multiple different ways, but
the simplest is a measure:

{-@ measure unique @-}

unique :: (Ord a) => [a] -> Bool

unique [] = True

unique (x:xs) = unique xs && not (member x (elems xs))

We can define an alias for duplicate-free lists

66 programming with refinement types

{-@ type UList a = {v:[a] | unique v }@-}

and then do a quick sanity check, that the right lists are indeed
unique

{-@ isUnique :: UList Int @-}

isUnique = [1, 2, 3] -- accepted by LH

{-@ isNotUnique :: UList Int @-}

isNotUnique = [1, 2, 3, 1] -- rejected by LH

Filter Lets write some functions that preserve uniqueness. For
example, filter returns a subset of its elements. Hence, if the input
was unique, the output is too:

{-@ filter :: _ -> xs:UList a -> {v: UList a | SubElts v xs} @-}

filter _ [] = []

filter f (x:xs)

| f x = x : xs'

| otherwise = xs'

where

xs' = filter f xs

Exercise 7.8. [Reverse] ? When we reverse their order, the set of
elements is unchanged, and hence unique (if the input was unique).
Why does LiquidHaskell reject the below? Can you fix things so that
we can prove that the output is a UList a?

{-@ reverse :: xs:UList a -> UList a @-}

reverse = go []

where

{-@ go :: acc:[a] -> xs:[a] -> [a] @-}

go a [] = a

go a (x:xs) = go (x:a) xs

Nub One way to create a unique list is to start with an ordinary list
and throw away elements that we have seen already.

nub xs = go [] xs

where

go seen [] = seen

go seen (x:xs)

| x `isin` seen = go seen xs

| otherwise = go (x:seen) xs

elemental measures 67

The key membership test is done by isin, whose output is True

exactly when the element is in the given list. 0 Which should be clear by now, if you
did the exercise above . . .

{-@ isin :: x:_ -> ys:_ -> {v:Bool | Prop v <=> Elem x ys }@-}

isin x (y:ys)

| x == y = True

| otherwise = x `isin` ys

isin _ [] = False

Exercise 7.9. [Append] ? Why does appending two ULists not
return a UList? Fix the type signature below so that you can prove
that the output is indeed unique.

{-@ append :: UList a -> UList a -> UList a @-}

append [] ys = ys

append (x:xs) ys = x : append xs ys

Exercise 7.10. [Range] ?? In the below range i j returns the list
of all Int between i and j. Yet, LiquidHaskell refuses to acknowledge
that the output is indeed a UList. Modify the specification and
implementation, if needed, to obtain an equivalent of range which
provably returns a UList Int.

{-@ type Btwn I J = {v:_ | I <= v && v < J} @-}

{-@ range :: i:Int -> j:Int -> UList (Btwn i j) @-}

range i j

| i < j = i : range (i + 1) j

| otherwise = []

Unique Zippers

A zipper is an aggregate data stucture that is used to arbitrarily
traverse the structure and update its contents. For example, a zipper
for a list is a data type that contains an element (called focus) that we
are currently focus-ed on, a list of elements to the left of (i.e. before)
the focus, and a list of elements to the right (i.e. after) the focus.

data Zipper a = Zipper {

focus :: a

, left :: [a]

, right :: [a]

}

68 programming with refinement types

XMonad is a wonderful tiling window manager, that uses a zipper
to store the set of windows being managed. Xmonad requires the
crucial invariant that the values in the zipper be unique, i.e. have no
duplicates.

Refined Zipper

We can specify that all the values in the zipper are unique by
refining the Zipper data declaration to express that both the lists in
the structure are unique, disjoint, and do not include focus.

{-@ data Zipper a = Zipper {

focus :: a

, left :: {v: UList a | not (Elem focus v)}

, right :: {v: UList a | not (Elem focus v) && DisjElts v left }

} @-}

Constructing Zippers Our refined type makes illegal states unrep-
resentable; by construction, we will ensure that every Zipper is free of
duplicates. Of course, it is straightforward to create a valid Zipper

from a unique list:

{-@ differentiate :: UList a -> Maybe (Zipper a) @-}

differentiate [] = Nothing

differentiate (x:xs) = Just $ Zipper x [] xs

Exercise 7.11. [Deconstructing Zippers] ? Dually, the elements
of a unique zipper tumble out into a unique list. Strengthen the types
of reverse and append above so that LiquidHaskell accepts the below
signatures for integrate:

{-@ integrate :: Zipper a -> UList a @-}

integrate (Zipper x l r) = reverse l `append` (x : r)

Shifting Focus We can shift the focus element left or right while
preserving the invariants:

focusLeft :: Zipper a -> Zipper a

focusLeft (Zipper t [] rs) = Zipper x xs [] where (x:xs) = reverse (t:rs)

focusLeft (Zipper t (l:ls) rs) = Zipper l ls (t:rs)

focusRight :: Zipper a -> Zipper a

focusRight = reverseZipper . focusLeft . reverseZipper

reverseZipper :: Zipper a -> Zipper a

reverseZipper (Zipper t ls rs) = Zipper t rs ls

elemental measures 69

Filter Finally, using the filter operation on lists allows LiquidHaskell
to prove that filtering a zipper also preserves uniqueness.

filterZipper :: (a -> Bool) -> Zipper a -> Maybe (Zipper a)

filterZipper p (Zipper f ls rs) = case filter p (f:rs) of

f':rs' -> Just $ Zipper f' (filter p ls) rs' -- maybe move focus right

[] -> case filter p ls of -- filter back left

f':ls' -> Just $ Zipper f' ls' [] -- else left

[] -> Nothing

Recap

In this chapter, we saw how SMT solvers can let us reason precisely
about the actual contents of data structures, via the theory of sets. We
can

• Lift the set-theoretic primitives to (refined) Haskell functions from
the Data.Set library,

• Use the functions to define measures like elems that characterize
the contents of structures, and unique that describe high-level
application specific properties.

• Use LiquidHaskell to then specify and verify that implementations
enjoy various functional correctness properties, e.g. that sorting
routines return permutations of their inputs, and various zipper
operators preserve uniqueness.

Next, we present a variety of case-studies illustrating the techniques
so far on particular application domains.

8
Case Study: Associative Maps

Recall the following from the introduction.

ghci> :m +Data.Map

ghci> let m = fromList [("haskell" , "lazy")

, ("javascript", "eager")]

ghci> m ! "haskell"

"lazy"

ghci> m ! "python"

"*** Exception: key is not in the map

The problem illustrated above is quite a pervasive one; associative
maps pop up everywhere. Failed lookups are the equivalent of
NullPointerDereference exceptions in languages like Haskell. It is
rather difficult to use Haskell’s type system to precisely characterize
the behavior of associative map APIs as ultimately, this requires
tracking the dynamic set of keys in the map.

In this case study, we’ll see how to combine two techniques –
measures for reasoning about the sets of elements in structures, and
refined data types for reasoning about order invariants – can be
applied to programs that use associative maps (e.g. Data.Map or
Data.HashMap).

Specifying Maps

Lets start by defining a refined API for Associative Maps that tracks
the set of keys stored in the map, in order to statically ensure the
safety of lookups.

Types First, we need an (currently abstract) type for Maps. As usual,
lets parameterize the type with k for the type of keys and v for the
type of values.

72 programming with refinement types

-- | Data Type

data Map k v

Keys To talk about the set of keys in a map, we will use a measure

measure keys :: Map k v -> Set k

that associates each Map to the Set of its defined keys. Next, we use
the above measure, and the usual Set operators to refine the types
of the functions that create, add and lookup key-value bindings, in
order to precisely track, within the type system, the keys that are
dynamically defined within each Map.

Empty Maps have no keys in them. Hence, we defined a predicate alias,
NoKey and use it to type emp which is used to denote the empty Map:

emp :: {m:Map k v | NoKey m}

predicate NoKey M = keys M = Set_empty 0

Add The function set takes a key k a value v and a map m and returns
the new map obtained by extending m with the binding k 7→ v. Thus,
the set of keys of the output Map includes those of the input plus the
singleton k, that is:

set :: (Ord k) => k:k -> v -> m:Map k v -> {n: Map k v | PlusKey k m n}

predicate PlusKey K M N = keys N = Set_cup (Set_sng K) (keys M)

Query Finally, queries will only succeed for keys that are defined a
given Map. Thus, we define an alias:

predicate HasKey K M = Set_mem K (keys M)

and use it to type mem which checks if a key is defined in the Map and
get which actually returns the value associated with a given key.

-- | Check if key is defined

mem :: (Ord k) => k:k -> m:Map k v -> {v:Bool | Prop v <=> HasKey k m}

-- | Lookup key's value

get :: (Ord k) => k:k -> {m:Map k v | HasKey k m} -> v

Using Maps: Well Scoped Expressions

Rather than jumping into the implementation of the above Map API,
lets write a client that uses Maps to implement an interpreter for a

case study: associative maps 73

tiny language. In particular, we will use maps as an environment
containing the values of bound variables, and we will use the refined
API to ensure that lookups never fail, and hence, that well-scoped
programs always reduce to a value.

Expressions Lets work with a simple language with integer con-
stants, variables, binding and arithmetic operators: 0 Feel free to embellish the language

with fancier features like functions,
tuples etc.

type Var = String

data Expr = Const Int

| Var Var

| Plus Expr Expr

| Let Var Expr Expr

Values We can use refinements to formally describe values as a subset
of Expr allowing us to reuse a bunch of code. To this end, we simply
define a (measure) predicate characterizing values:

{-@ measure val @-}

val :: Expr -> Bool

val (Const _) = True

val (Var _) = False

val (Plus _ _) = False

val (Let _ _ _) = False

and then we can use the lifted measure to define an alias for Val

denoting values:

{-@ type Val = {v:Expr | val v} @-}

we can use the above to write simple operators on Val, for example:

{-@ plus :: Val -> Val -> Val @-}

plus (Const i) (Const j) = Const (i+j)

plus _ _ = die "Bad call to plus"

Environments let us save values for the “local” i.e. let-bound
variables; when evaluating an expression Var x we simply look up
the value of x in the environment. This is why Maps were invented!
Lets define our environments as Maps from Variables to Values:

{-@ type Env = Map Var Val @-}

74 programming with refinement types

The above definition essentially specifies, inside the types, an eager
evaluation strategy: LiquidHaskell will prevent us from sticking
unevaluated Exprs inside the environments.

Evaluation proceeds via a straightforward recursion over the
structure of the expression. When we hit a Var we simply query its
value from the environment. When we hit a Let we compute the
bound expression and tuck its value into the environment before
proceeding within.

eval _ i@(Const _) = i

eval g (Var x) = get x g

eval g (Plus e1 e2) = plus (eval g e1) (eval g e2)

eval g (Let x e1 e2) = eval g' e2

where

g' = set x v1 g

v1 = eval g e1

The above eval seems rather unsafe; whats the guarantee that get
x g will succeed? For example, surely trying:

ghci> eval emp (Var "x")

will lead to some unpleasant crash. Shouldn’t we check if the vari-
ables is present and if not, fail with some sort of Variable Not Bound

error? We could, but we can do better: we can prove at compile time,
that such errors will not occur.

Free Variables are those whose values are not bound within an
expression, that is, the set of variables that appear in the expression,
but are not bound by a dominating Let. We can formalize this notion
as a (lifted) function:

{-@ measure free @-}

free :: Expr -> (Set Var)

free (Const _) = empty

free (Var x) = singleton x

free (Plus e1 e2) = (free e1) `union` (free e2)

free (Let x e1 e2) = (free e1) `union` ((free e2) `difference` (singleton x))

An Expression is Closed with respect to an environment G if all
the free variables in the expression appear in G, i.e. the environment
contains bindings for all the variables in the expression that are
not bound within the expression. As we’ve seen repeatedly, often
a whole pile of informal handwaving, can be succinctly captured

case study: associative maps 75

by a type definition that says the free variables in the Expr must be
contained in the keys of the environment G:

{-@ type ClosedExpr G = {v:Expr | Subset (free v) (keys G)} @-}

Closed Evaluation never goes wrong, i.e. we can ensure that eval
will not crash with unbound variables, as long as it is invoked with
suitable environments:

{-@ eval :: g:Env -> ClosedExpr g -> Val @-}

We can be sure an Expr is well-scoped if it has no free variables.Lets
use that to write a “top-level” evaluator:

{-@ topEval :: {v:Expr | Empty (free v)} -> Val @-}

topEval = eval emp

Exercise 8.1. Complete the definition of the below function which
checks if an Expr is well formed before evaluating it:

{-@ evalAny :: Env -> Expr -> Maybe Val @-}

evalAny g e

| ok = Just $ eval g e

| otherwise = Nothing

where

ok = undefined

Proof is all well and good, in the end, you need a few sanity tests to
kick the tires. So:

tests = [v1, v2]

where

v1 = topEval e1 -- Rejected by LH

v2 = topEval e2 -- Accepted by LH

e1 = (Var x) `Plus` c1

e2 = Let x c10 e1

x = "x"

c1 = Const 1

c10 = Const 10

Exercise 8.2. [Functions and Closures] ?? Extend the language
above to include functions. That is, extend

data Expr = ... | Fun Var Expr | App Expr Expr

Just focus on ensuring the safety of variable lookups; ensuring
full type-safety (i.e. every application is to a function) is rather more
complicated and beyond the scope of what we’ve seen so far.

76 programming with refinement types

Implementing Maps: Binary Search Trees

We just saw how easy it is to use the Associative Map API to ensure
the safety of lookups, even though the Map has a “dynamically” gen-
erated set of keys. Next, lets see how we can implement a Map library
that respects the API using Binary Search Trees

Data Type First, lets provide an implementation of the (hitherto
abstract) data type for Map. We shall use Binary Search Trees, wherein,
at each Node, the left (resp. right) subtree has keys that are less than
(resp. greater than) the root key.

{-@ data Map k v = Node { key :: k

, value :: v

, left :: Map {v:k | v < key} v

, right :: Map {v:k | key < v} v }

| Tip

@-}

[Recall](#binarysearchtree) that the above refined data definition
yields strengthened data constructors that statically ensure that only
legal, binary-search ordered trees are created in the program.

Defined Keys Next, we must provide an implementation of the
notion of the keys that are defined for a given Map. This is achieved
via the (lifted) measure function:

{-@ measure keys @-}

keys :: (Ord k) => Map k v -> Set k

keys Tip = empty

keys (Node k _ l r) = union (singleton k) (union (keys l) (keys r))

Armed with the basic type and measure definition, we can start to
fill in the operations for Maps.

Exercise 8.3. [Empty Maps] To make sure you are following, fill in
the definition for an empty Map:

{-@ emp :: {m:Map k v | NoKey m} @-}

emp = undefined

Exercise 8.4. [Insert] To add a key k' to a Map we recursively
traverse the Map zigging left or right depending on the result of
comparisons with the keys along the path. Unfortunately, the ver-
sion below has an (all too common!) bug, and hence, is rejected by
LiquidHaskell. Find and fix the bug so that the function is verified.

case study: associative maps 77

{-@ set :: (Ord k) => k:k -> v -> m:Map k v -> {n: Map k v | PlusKey k m n} @-}

set k' v' (Node k v l r)

| k' == k = Node k v' l r

| k' < k = set k' v l

| otherwise = set k' v r

set k' v' Tip = Node k' v' Tip Tip

Lookup Next, lets write the mem function that returns the value
associated with a key k'. To do so we just compare k' with the root
key, if they are equal, we return the binding, and otherwise we go
down the left (resp. right) subtree if sought for key is less (resp.
greater) than the root key. Crucially, we want to check that lookup
never fails, and hence, we implement the Tip (i.e. empty) case with
die gets LiquidHaskell to prove that that case is indeed dead code,
i.e. never happens at run-time.

{-@ get' :: (Ord k) => k:k -> m:{Map k v | HasKey k m} -> v @-}

get' k' m@(Node k v l r)

| k' == k = v

| k' < k = get' k' l

| otherwise = get' k' r

get' _ Tip = die "Lookup Never Fails"

Unfortunately the function above is rejected by LiquidHaskell. This
is a puzzler (and a bummer!) because in fact it is correct. So what
gives? Well, lets look at the error for the call get' k' l

src/07-case-study-associative-maps.lhs:411:25: Error: Liquid Type Mismatch

Inferred type

VV : (Map a b) | VV == l

not a subtype of Required type

VV : (Map a b) | Set_mem k' (keys VV)

In Context

VV : (Map a b) | VV == l

k : a

l : (Map a b)

k' : a

LiquidHaskell is unable to deduce that the the key k' definitely
belongs in the left subtree l. Well, lets ask ourselves: why must k'
belong in the left subtree? From the input, we know HasKey k' m

i.e. that k' is somewhere in m. That is one of the following holds:

78 programming with refinement types

1. k' == k or,
2. HasKey k' l or,
3. HasKey k' r.

As the preceding guard k' == k fails, we (and LiquidHaskell) can
rule out case (1). Now, what about the Map tells us that case (2) must
hold, i.e. that case (3) cannot hold? The BST invariant, all keys in r

exceed k which itself exceeds k'. That is, all nodes in r are disequal to
k' and hence k' cannot be in r, ruling out case (3). Formally, we need
the fact that:

∀ key, t.t :: Map {key′ : k | key′ 6= key} v ⇒ ¬(HasKey key t)

Conversion Lemmas Unfortunately, LiquidHaskell cannot auto-
matically deduce facts like the above, as they relate refinements of a
container’s type parameters (here: key′ 6= key, which refines the Maps
first type parameter) with properties of the entire container (here:
HasKey key t). Fortunately, it is both easy to state, prove and use facts 0 Why not? This is tricky to describe.

Intuitively, because there is no way of
automatically connecting the *traversal*
corresponding to ‘keys‘ with the type
variable ‘k‘. I wish I had a better way
to explain this rather subtle point;
suggestions welcome!

like the above.

Defining Lemmas To state a lemma, we need only convert it into
a type by viewing universal quantifiers as function parameters, and
implications as function types:

{-@ lemma_notMem :: key:k -> m:Map {k:k | k /= key} v -> {v:Bool | not (HasKey key m)} @-}

lemma_notMem _ Tip = True

lemma_notMem key (Node _ _ l r) = lemma_notMem key l && lemma_notMem key r

Proving Lemmas Note how the signature for lemma_notMem corre-
sponds exactly to the missing fact from above. The “output” type
is a Bool refined with the proposition that we desire. We prove the
lemma simply by traversing the tree which lets LiquidHaskell build
up a proof for the output fact by inductively combining the proofs
from the subtrees.

Using Lemmas To use a lemma, we need to instantiate it to the par-
ticular keys and trees we care about, by “calling” the lemma function,
and forcing its result to be in the environment used to typecheck the
expression where we want to use the lemma. Say what? Here is a
verified get:

{-@ get :: (Ord k) => k:k -> m:{Map k v | HasKey k m} -> v @-}

get k' (Node k v l r)

| k' == k = v

| k' < k = assert (lemma_notMem k' r) $

case study: associative maps 79

get k' l

| otherwise = assert (lemma_notMem k' l) $

get k' r

get _ Tip = die "Lookup failed? Impossible."

By calling lemma_notMem we create a dummy Bool that carries
the desired refinement that tells LiquidHaskell that not (HasKey k'

r) (resp. not (HasKey k' l)). We force the calls to get k' l (resp.
get k' r) to be typechecked using the materialized refinement by
wrapping the calls within a function assert

assert _ x = x

Ghost Values This technique of materializing auxiliary facts via
ghost values is a well known idea in the program verification literature.
Usually, one has to take care to ensure that ghost computations do
not interfere with the regular computations. If we had to actually
execute lemma_notMem it would totally wreck the efficient logarithmic
lookup times as we’d traverse the entire tree all the time 0 Assuming we kept the trees balanced

0 Which is what makes dynamic con-
tract checking [rather slow](findler-
contract) for such invariantsLaziness comes to our rescue: as the ghost value is (trivially) not

needed, it is never computed. In fact, it is straightforward to entirely
erase the call in the compiled code, which lets us freely assert such
lemmas to carry out proofs, without paying any runtime penalty. In
an eager language we would have to do a bit of work to specifically
mark the computation as a ghost or irrelevant but in the lazy setting
we get this for free.

Exercise 8.5. [Membership Test] Capisce? Fix the definition of mem
so that it verifiably implements the given signature:

{-@ mem :: (Ord k) => k:k -> m:Map k v -> {v:Bool | Prop v <=> HasKey k m} @-}

mem k' (Node k _ l r)

| k' == k = True

| k' < k = mem k' l

| otherwise = mem k' r

mem _ Tip = False

Exercise 8.6. [Fresh] ?? To make sure you really understand this
business of ghosts values and proofs, complete the implementation
of the following function which returns a fresh integer that is distinct
from all the values in its input list:

80 programming with refinement types

{-@ fresh :: xs:[Int] -> {v:Int | not (Elem v xs)} @-}

fresh = undefined

To refresh your memory, here are the definitions for Elem we saw
earlier

{-@ predicate Elem X Ys = Set_mem X (elems Ys) @-}

{-@ measure elems @-}

elems [] = empty

elems (x:xs) = (singleton x) `union` (elems xs)

Recap

In this chapter we saw how to combine several of the techniques
from previous chapters in a case study. We learnt how to:

1. Define an API for associative maps that used refinements to track
the set of keys stored in a map, in order to prevent lookup failures,
the NullPointerDereference errors of the functional world,

2. Use the API to implement a small interpreter that is guaranteed
to never fail with UnboundVariable errors, as long as the input
expressions were closed,

3. Implement the API using Binary Search Trees; in particular, using
ghost lemmas to assert facts that LiquidHaskell is otherwise unable
to deduce automatically.

9
Case Study: Pointers and ByteStrings

A large part of the allure of Haskell is its elegant, high-level ADTs
that ensure that programs won’t be plagued by problems like the
infamous SSL heartbleed bug. However, another part of Haskell’s 0 Assuming, of course, the absence of

errors in the compiler and run-time...charm is that when you really really need to, you can drop down to
low-level pointer twiddling to squeeze the most performance out of
your machine. But of course, that opens the door to the heartbleeds.

Wouldn’t it be nice to have have our cake and eat it too? Wouldn’t
it be great if we could twiddle pointers at a low-level and still get
the nice safety assurances of high-level types? Lets see how Liquid-
Haskell lets us have our cake and eat it too.

HeartBleeds in Haskell

Modern Languages like Haskell are ultimately built upon the foun-
dation of C. Thus, implementation errors could open up unpleasant
vulnerabilities that could easily slither past the type system and even
code inspection. As a concrete example, lets look at a a function that
uses the ByteString library to truncate strings:

chop' :: String -> Int -> String

chop' s n = s'

where

b = pack s -- down to low-level

b' = unsafeTake n b -- grab n chars

s' = unpack b' -- up to high-level

First, the function packs the string into a low-level bytestring b, then
it grabs the first n Characters from b and translates them back into a
high-level String. Lets see how the function works on a small test:

ghci> let ex = "Ranjit Loves Burritos"

heartbleed.com

82 programming with refinement types

We get the right result when we chop a valid prefix:

ghci> chop' ex 10

"Ranjit Lov"

But, as illustrated in fig. 9.1, the machine silently reveals (or more
colorfully, bleeds) the contents of adjacent memory or if we use an
invalid prefix:

ghci> heartBleed ex 30

"Ranjit Loves Burritos\NUL\201\&1j\DC3\SOH\NUL"

Figure 9.1: Can we prevent the program
from leaking ‘secret‘s?

Types against Overflows Now that we have stared the problem
straight in the eye, look at how we can use LiquidHaskell to prevent
the above at compile time. To this end, we decompose the system
into a hierarchy of levels (i.e. modules). Here, we have three levels:

1. Machine level Pointers
2. Library level ByteString
3. User level Application

Our strategy, as before, is to develop an refined API for each level such
that errors at each level are prevented by using the typed interfaces
for the lower levels. Next, lets see how this strategy lets us safely
manipulate pointers.

Low-level Pointer API

To get started, lets look at the low-level pointer API that is offered
by GHC and the run-time. First, lets see who the dramatis personae
are and how they might let heartbleeds in. Then we will see how to
batten down the hatches with LiquidHaskell.

Pointers are an (abstract) type Ptr a implemented by GHC.

-- | A value of type `Ptr a` represents a pointer to an object,

-- or an array of objects, which may be marshalled to or from

-- Haskell values of type `a`.

data Ptr a

case study: pointers and bytestrings 83

Foreign Pointers are wrapped pointers that can be exported to and
from C code via the Foreign Function Interface.

data ForeignPtr a

To Create a pointer we use mallocForeignPtrBytes n which creates
a Ptr to a buffer of size n and wraps it as a ForeignPtr

mallocForeignPtrBytes :: Int -> ForeignPtr a

To Unwrap and actually use the ForeignPtr we use

withForeignPtr :: ForeignPtr a -- pointer

-> (Ptr a -> IO b) -- action

-> IO b -- result

That is, withForeignPtr fp act lets us execute a action act on the ac-
tual Ptr wrapped within the fp. These actions are typically sequences
of dereferences, i.e. reads or writes.

To Dereference a pointer, i.e. to read or update the contents at the
corresponding memory location, we use peek and poke respectively. 0 We elide the Storable type class

constraint to strip this presentation
down to the absolute essentials.peek :: Ptr a -> IO a -- Read

poke :: Ptr a -> a -> IO () -- Write

For Fine Grained Access we can directly shift pointers to arbitrary
offsets using the pointer arithmetic operation plusPtr p off which
takes a pointer p an integer off and returns the address obtained
shifting p by off:

plusPtr :: Ptr a -> Int -> Ptr b

Example That was rather dry; lets look at a concrete example of how
one might use the low-level API. The following function allocates a
block of 4 bytes and fills it with zeros:

zero4 = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

poke (p `plusPtr` 3) zero

return fp

where

zero = 0 :: Word8

http://hackage.haskell.org/package/base/docs/Foreign-Ptr.html

84 programming with refinement types

While the above is perfectly all right, a small typo could easily slip
past the type system (and run-time!) leading to hard to find errors:

zero4' = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

poke (p `plusPtr` 8) zero

return fp

where

zero = 0 :: Word8

A Refined Pointer API

Wouldn’t it be great if we had an assistant to helpfully point out
the error above as soon as we wrote it? We will use the following 0 In Vim or Emacs, you’d see the error

helpfully underlined.strategy to turn LiquidHaskell into such an assistant:

1. Refine pointers with allocated buffer size,
2. Track sizes in pointer operations,
3. Enforce pointer are valid at reads and writes.

To Refine Pointers with the size of their associated buffers, we
can use an abstract measure, i.e. a measure specification without any
underlying implementation.

-- | Size of `Ptr`

measure plen :: Ptr a -> Int

-- | Size of `ForeignPtr`

measure fplen :: ForeignPtr a -> Int

It is helpful to define aliases for pointers of a given size N:

type PtrN a N = {v:Ptr a | plen v = N}

type ForeignPtrN a N = {v:ForeignPtr a | fplen v = N}

Abstract Measures are extremely useful when we don’t have
a concrete implementation of the underlying value, but we know
that the value exists. Here, we don’t have the value – inside Haskell
– because the buffers are manipulated within C. However, this is no
cause for alarm as we will simply use measures to refine the API, not
to perform any computations. 0 This is another example of a ghost

specification.HEREHEREHEREHERE

case study: pointers and bytestrings 85

To Refine Allocation we stipulate that the size parameter be
non-negative, and that the returned pointer indeed refers to a buffer
with exactly n bytes:

mallocForeignPtrBytes :: n:Nat -> ForeignPtrN a n

To Refine Unwrapping we specify that the action gets as input, an
unwrapped Ptr whose size equals that of the given ForeignPtr.

withForeignPtr :: fp:ForeignPtr a

-> (PtrN a (fplen fp) -> IO b)

-> IO b

This is a rather interesting higher-order specification. Consider a call
withForeignPtr fp act. If the act requires a Ptr whose size exceeds
that of fp then LiquidHaskell will flag a (subtyping) error indicating
the overflow. If instead the act requires a buffer of size less than fp

then via contra-variant function subtyping, the input type of act will
be widened to the large size, and the code will be accepted.

To Refine Reads and Writes we specify that they can only be done
if the pointer refers to a non-empty (remaining) buffer. That is, we
define an alias:

type OkPtr a = {v:Ptr a | 0 < plen v}

that describes pointers referring to non-empty buffers (of strictly
positive plen), and then use the alias to refine:

peek :: OkPtr a -> IO a

poke :: OkPtr a -> a -> IO ()

In essence the above type says that no matter how arithmetic was
used to shift pointers around, when the actual dereference happens,
the size “remaining” after the pointer must be non-negative (so that a
byte can be safely read from or written to the underlying buffer.)

To Refine the Shift operations, we simply check that the pointer
remains within the bounds of the buffer, and update the plen to
reflect the size remaining after the shift: 0 This signature precludes "left" or

"backward" shifts; for that there is an
analogous ‘minusPtr‘ which we elide
for simplicityplusPtr :: p:Ptr a -> off:NatLE (plen p) -> PtrN b (plen p - off)

using the alias NatLE, defined as:

type NatLE N = {v:Nat | v <= N}

86 programming with refinement types

0 The alert reader will note that we have
strengthened the type of ‘plusPtr‘ to
prevent the pointer from wandering
outside the boundary of the buffer. We
could instead use a weaker requirement
for ‘plusPtr‘ that omits this requirement,
and instead have the error be flagged
when the pointer was used to read or
write memory.

Types Prevent Overflows Lets revisit the zero-fill example from
above to understand how the refinements help detect the error:

exBad = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

poke (p `plusPtr` 5) zero

return fp

where

zero = 0 :: Word8

Lets read the tea leaves to understand the above error:

Error: Liquid Type Mismatch

Inferred type

VV : {VV : Int | VV == ?a && VV == 5}

not a subtype of Required type

VV : {VV : Int | VV <= plen p}

in Context

zero : {zero : Word8 | zero == ?b}

VV : {VV : Int | VV == ?a && VV == (5 : int)}

fp : {fp : ForeignPtr a | fplen fp == ?c && 0 <= fplen fp}

p : {p : Ptr a | fplen fp == plen p && ?c <= plen p && ?b <= plen p && zero <= plen p}

?a : {?a : Int | ?a == 5}

?c : {?c : Int | ?c == 4}

?b : {?b : Integer | ?b == 0}

The error says we’re bumping p up by VV == 5 using plusPtr but
the latter requires that bump-offset be within the size of the buffer
referred to by p, i.e. VV <= plen p. Indeed, in this context, we have:

p : {p : Ptr a | fplen fp == plen p && ?c <= plen p && ?b <= plen p && zero <= plen p}

fp : {fp : ForeignPtr a | fplen fp == ?c && 0 <= fplen fp}

that is, the size of p, namely plen p equals the size of fp, namely
fplen fp (thanks to the withForeignPtr call), and finally the latter is
equal to ?c which is 4 bytes. Thus, since the offset 5 is not less than
the buffer size 4, LiquidHaskell cannot prove that the call to plusPtr

is safe, hence the error.

case study: pointers and bytestrings 87

Assumptions vs Guarantees

At this point you ought to wonder: where is the code for peek, poke or
mallocForeignPtrBytes and so on? How can we know that the types
we assigned to them are in fact legitimate?

Frankly, we cannot as those functions are externally implemented
(in this case, in C), and hence, invisible to the otherwise all-seeing
eyes of LiquidHaskell. Thus, we are assuming or trusting that those
functions behave according to their types. Put another way, the types
for the low-level API are our specification for what low-level pointer
safety. We shall now guarantee that the higher level modules that
build upon this API in fact use the low-level function in a manner
consistent with this specification.

Assumptions are a Feature and not a bug, as they let us to verify
systems that use some modules for which we do not have the code.
Here, we can assume a boundary specification, and then guarantee that
the rest of the system is safe with respect to that specification. 0 If we so desire, we can also check

the boundary specifications at run-
time, but that is outside the scope of
LiquidHaskell.ByteString API

Next, lets see how the low-level API can be used to implement to
implement ByteStrings, in a way that lets us perform fast string
operations without opening the door to overflows.

A ByteString is implemented as a record

data ByteString = BS {

bPtr :: ForeignPtr Word8

, bOff :: !Int

, bLen :: !Int

}

comprising

• a pointer bPtr to a contiguous block of memory,
• an offset bOff that denotes the position inside the block where the

string begins, and
• a length bLen that denotes the number of bytes (from the offset)

that belong to the string.

These entities are illustrated in Figure~9.2; the green portion
represents the actual contents of a particular ByteString. This rep-
resentation makes it possible to implement various operations like

http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
https://hackage.haskell.org/package/bytestring

88 programming with refinement types

Figure 9.2: Representing ByteStrings in
memory.

computing prefixes and suffixes extremely quickly, simply by pointer
arithmetic.

In a Legal ByteString the start (bOff) and end (bOff + bLen) offsets
lie inside the buffer referred to by the pointer bPtr. We can formalize
this invariant with a data definition that will then make it impossible
to create illegal ByteStrings:

{-@ data ByteString = BS {

bPtr :: ForeignPtr Word8

, bOff :: {v:Nat| v <= fplen bPtr}

, bLen :: {v:Nat| v + bOff <= fplen bPtr}

}

@-}

The refinements on bOff and bLen correspond exactly to the legality
requirements that the start and end of the ByteString be within the
block of memory referred to by bPtr.

For brevity lets define an alias for ByteStrings of a given size:

{-@ type ByteStringN N = {v:ByteString | bLen v = N} @-}

Legal Bytestrings can be created by directly using the constructor,
as long as we pass in suitable offsets and lengths. For example,

{-@ good1 :: IO (ByteStringN 5) @-}

good1 = do fp <- mallocForeignPtrBytes 5

return (BS fp 0 5)

creates a valid ByteString of size 5; however we need not start at the
beginning of the block, or use up all the buffer, and can instead do:

{-@ good2 :: IO (ByteStringN 2) @-}

good2 = do fp <- mallocForeignPtrBytes 5

return (BS fp 3 2)

case study: pointers and bytestrings 89

Note that the length of good2 is just 2 which is less than allocated size
5.

Illegal Bytestrings are rejected by LiquidHaskell. For example,
bad1’s length is rather more than the buffer size, and is flagged as
such:

bad1 = do fp <- mallocForeignPtrBytes 3

return (BS fp 0 10)

Similarly, bad2 does have 2 bytes but not if we start at the offset of 2:

bad2 = do fp <- mallocForeignPtrBytes 3

return (BS fp 2 2)

Exercise 9.1. [Fix the ByteString] Modify the definitions of bad1
and bad2 so they are accepted by LiquidHaskell.

To Flexibly but Safely Create a ByteString the implementation
defines a higher order create function, that takes a size n and accepts
a fill action, and runs the action after allocating the pointer. After
running the action, the function tucks the pointer into and returns a
ByteString of size n.

{-@ create :: n:Nat -> (Ptr Word8 -> IO ()) -> ByteStringN n @-}

create n fill = unsafePerformIO $ do

fp <- mallocForeignPtrBytes n

withForeignPtr fp fill

return (BS fp 0 n)

Exercise 9.2. [Create] ? Why does LiquidHaskell reject the
following function that creates a ByteString corresponding to "GHC"?

bsGHC = create 3 $ \p -> do

poke (p `plusPtr` 0) (c2w 'G')

poke (p `plusPtr` 1) (c2w 'H')

poke (p `plusPtr` 2) (c2w 'C')

Hint: The function writes into 3 slots starting at p. How big should
plen p be to allow this? What type does LiquidHaskell infer for p

above? Does it meet the requirement? Which part of the specification
or implementation needs to be modified so that the relevant informa-
tion about p becomes available within the do-block above? Make sure
you figure out the above before proceeding.

90 programming with refinement types

To ‘pack‘ a String into a ByteString we simply call create with the
appropriate fill action: 0 The code uses ‘create’‘ which is just

‘create‘ with the *correct* signature
in case you want to skip the previous
exercise. (But don’t!)pack str = create' n $ \p -> go p xs

where

n = length str

xs = map c2w str

go p (x:xs) = poke p x >> go (plusPtr p 1) xs

go _ [] = return ()

Exercise 9.3. [Pack] We can compute the size of a ByteString by
using the function:

Fix the specification for pack so that (it still typechecks!) and
furthermore, the following QuickCheck style property is proved by
LiquidHaskell:

{-@ prop_pack_length :: [Char] -> {v:Bool | Prop v} @-}

prop_pack_length xs = bLen (pack xs) == length xs

Hint: Look at the type of length, and recall that len is a numeric
measure denoting the size of a list.

The magic of inference ensures that pack just works. Notice there
is a tricky little recursive loop go that is used to recursively fill in the
ByteString and actually, it has a rather subtle type signature that
LiquidHaskell is able to automatically infer.

Exercise 9.4. ? Still, we’re here to learn, so can you write down
the type signature for the loop so that the below variant of pack is
accepted by LiquidHaskell (Do this without cheating by peeping at
the type inferred for go above!)

packEx str = create' n $ \p -> pLoop p xs

where

n = length str

xs = map c2w str

{-@ pLoop :: (Storable a) => p:Ptr a -> xs:[a] -> IO () @-}

pLoop p (x:xs) = poke p x >> pLoop (plusPtr p 1) xs

pLoop _ [] = return ()

Hint: Remember that len xs denotes the size of the list xs.

Exercise 9.5. [‘unsafeTake‘ and ‘unsafeDrop‘] respectively
extract the prefix and suffix of a ByteString from a given position.

case study: pointers and bytestrings 91

They are really fast since we only have to change the offsets. But why
does LiquidHaskell reject them? Can you fix the specifications so that
they are accepted?

{-@ unsafeTake :: n:Nat -> b:ByteString -> ByteStringN n @-}

unsafeTake n (BS x s _) = BS x s n

{-@ unsafeDrop :: n:Nat -> b:ByteString -> ByteStringN {bLen b - n} @-}

unsafeDrop n (BS x s l) = BS x (s + n) (l - n)

Hint: Under what conditions are the returned ByteStrings legal?

To ‘unpack‘ a ByteString into a plain old String, we essentially
run pack in reverse, by walking over the pointer, and reading out the
characters one by one till we reach the end:

unpack :: ByteString -> String

unpack (BS _ _ 0) = []

unpack (BS ps s l) = unsafePerformIO $ withForeignPtr ps $ \p ->

go (p `plusPtr` s) (l - 1) []

where

{-@ go :: p:_ -> n:_ -> acc:_ -> IO {v:_ | true } @-}

go p 0 acc = peek p >>= \e -> return (w2c e : acc)

go p n acc = peek (p `plusPtr` n) >>= \e -> go p (n-1) (w2c e : acc)

Exercise 9.6. [Unpack] ? Fix the specification for unpack so that
the below QuickCheck style property is proved by LiquidHaskell.

{-@ prop_unpack_length :: ByteString -> {v:Bool | Prop v} @-}

prop_unpack_length b = bLen b == length (unpack b)

Hint: You will also have to fix the specification of the helper go. Can
you determine the output refinement should be (instead of just true?)
How big is the output list in terms of p, n and acc.

Application API

Finally, lets revisit our potentially “bleeding” chop function to see
how the refined ByteString API can prevent errors.
The signature specifies that the prefix size n must be less than the size
of the input string s.

92 programming with refinement types

{-@ chop :: s:String -> n:NatLE (len s) -> String @-}

chop s n = s'

where

b = pack s -- down to low-level

b' = unsafeTake n b -- grab n chars

s' = unpack b' -- up to high-level

Overflows are prevented by LiquidHaskell, as it rejects calls
to chop where the prefix size is too large (which is what led to the
overflow that spilled the contents of memory after the string, as
illustrated in Figure~9.1). Thus, in the code below, the first use of
chop which defines ex6 is accepted as 6 <= len ex but the second call
is rejected because 30 > len ex.

demo = [ex6, ex30]

where

ex = ['L','I','Q','U','I','D']

ex6 = chop ex 6 -- accepted by LH

ex30 = chop ex 30 -- rejected by LH

Exercise 9.7. [Chop] Fix the specification for chop so that the
following property is proved:

{-@ prop_chop_length :: String -> Nat -> {v:Bool | Prop v} @-}

prop_chop_length s n

| n <= length s = length (chop s n) == n

| otherwise = True

Nested ByteStrings

For a more in-depth example, let’s take a look at group, which trans-
forms strings like

`"foobaaar"`

into lists of strings like

`["f","oo", "b", "aaa", "r"]`.

The specification is that group should produce a

1. list of non-empty ByteStrings,
2. the sum of whose lengths equals that of the input string.

Non-empty ByteStrings are those whose length is non-zero:

case study: pointers and bytestrings 93

{-@ type ByteStringNE = {v:ByteString | bLen v /= 0} @-}

We can use these to define enrich the ByteString API with a null

check

{-@ null :: b:ByteString -> {v:Bool | Prop v <=> bLen b == 0} @-}

null (BS _ _ l) = l == 0

This check is used to determine if it is safe to extract the head and
tail of the ByteString. Notice how we can use refinements to ensure
the safety of the operations, and also track the sizes. 0 ‘peekByteOff p i‘ is equivalent to ‘peek

(plusPtr p i)‘

{-@ unsafeHead :: ByteStringNE -> Word8 @-}

unsafeHead (BS x s _) = unsafePerformIO $

withForeignPtr x $ \p ->

peekByteOff p s

{-@ unsafeTail :: b:ByteStringNE -> ByteStringN {bLen b - 1} @-}

unsafeTail (BS ps s l) = BS ps (s + 1) (l - 1)

The ‘group‘ function recursively calls spanByte to carve off the next
group, and then returns the accumulated results:

{-@ group :: b:ByteString -> {v: [ByteStringNE] | bLens v = bLen b} @-}

group xs

| null xs = []

| otherwise = let y = unsafeHead xs

(ys, zs) = spanByte y (unsafeTail xs)

in (y `cons` ys) : group zs

The first requirement, that the groups be non-empty is captured by
the fact that the output is a [ByteStringNE]. The second requirement,
that the sum of the lengths is preserved, is expressed by a writing a
numeric measure:

{-@ measure bLens @-}

bLens :: [ByteString] -> Int

bLens [] = 0

bLens (b:bs) = bLen b + bLens bs

‘spanByte‘ does a lot of the heavy lifting. It uses low-level pointer
arithmetic to find the first position in the ByteString that is different
from the input character c and then splits the ByteString into a pair
comprising the prefix and suffix at that point.

94 programming with refinement types

{-@ spanByte :: Word8 -> b:ByteString -> ByteString2 b @-}

spanByte c ps@(BS x s l) = unsafePerformIO $ withForeignPtr x $ \p ->

go (p `plusPtr` s) 0

where

go p i | i >= l = return (ps, empty)

| otherwise = do c' <- peekByteOff p i

if c /= c'

then return (unsafeTake i ps, unsafeDrop i ps)

else go p (i+1)

LiquidHaskell infers that 0 <= i <= l and therefore that all of the
memory accesses are safe. Furthermore, due to the precise specifica-
tions given to unsafeTake and unsafeDrop, it is able to prove that the
output pair’s lengths add up to the size of the input ByteString.

{-@ type ByteString2 B = {v:_ | bLen (fst v) + bLen (snd v) = bLen B} @-}

Recap: Types Against Overflows

In this chapter we saw a case study illustrating how measures and
refinements enable safe low-level pointer arithmetic in Haskell. The
take away messages are:

1. larger systems are composed of layers of smaller ones,
2. we can write refined APIs for each layer,
3. that can be used to inform the design and ensure correctness of the

layers above.

We saw this in action by developing a low-level Pointer API,
using it to implement fast ByteStrings API, and then building some
higher-level functions on top of the ByteStrings.

The Trusted Computing Base in this approach includes exactly
those layers for which the code is not available, for example, because
they are implemented outside the language and accessed via the
FFI as with mallocForeignPtrBytes and peek and poke. In this case,
we can make progress by assuming the APIs hold for those layers
and verify the rest of the system with respect to that API. It is im-
portant to note that in the entire case study, it is only the above FFI
signatures that are trusted; the rest are all verified by LiquidHaskell.

	Introduction
	Well-Typed Programs Do Go Wrong
	Refinement Types
	Audience
	Getting Started
	Sample Code

	Refinement Types
	Defining Types
	Errors
	Subtyping
	Writing Specifications
	Refining Function Types: Pre-conditions
	Refining Function Types: Post-conditions
	Testing Values: Booleans and Propositions
	Putting It All Together
	Recap

	Polymorphism
	Specification: Vector Bounds
	Verification: Vector Lookup
	Inference: Our First Recursive Function
	Higher-Order Functions: Bottling Recursion in a loop
	Refinements and Polymorphism
	Recap

	Refined Datatypes
	Sparse Vectors Revisited
	Ordered Lists
	Ordered Trees
	Recap

	Boolean Measures
	Partial Functions
	Lifting Functions to Measures
	A Safe List API
	Recap

	Numeric Measures
	Wholemeal Programming
	Specifying List Dimensions
	Lists: Size Preserving API
	Lists: Size Reducing API
	Dimension Safe Vector API
	Dimension Safe Matrix API
	Recap

	Elemental Measures
	Talking about Sets
	Proving QuickCheck Style Properties
	Content-Aware List API
	Permutations
	Uniqueness
	Unique Zippers
	Recap

	Case Study: Associative Maps
	Specifying Maps
	Using Maps: Well Scoped Expressions
	Implementing Maps: Binary Search Trees
	Recap

	Case Study: Pointers and ByteStrings
	HeartBleeds in Haskell
	Low-level Pointer API
	A Refined Pointer API
	Assumptions vs Guarantees
	ByteString API
	Application API
	Nested ByteStrings
	Recap: Types Against Overflows

