
Liquid Types

Patrick Rondon Ming Kawaguchi Ranjit Jhala

March 5, 2008

Abstract

We present Logically Qualified Data Types, abbreviated to Liquid Types, a system that combines
Hindley-Milner type inference with Predicate Abstraction to automatically infer dependent types precise
enough to prove a variety of safety properties. Liquid types allow programmers to reap many of the
benefits of dependent types, namely static verification of critical properties and the elimination of ex-
pensive run-time checks, without paying the heavy price of of manual annotation. We have implemented
liquid type inference in Dsolve, which takes as input an Ocaml program and a set of logical qualifiers
and infers dependent types for the expressions in the Ocaml program. To demonstrate the utility of
our approach, we describe experiments using Dsolve to statically verify the safety of array accesses on
a set of Ocaml benchmarks that were previously annotated with dependent types as part of the DML
project. We show that when used in conjunction with an elementary method for automatically generat-
ing qualifiers from program text, Dsolve reduces the amount of manual annotation required for proving
safety from 31% of program text to under 1%.

1 Introduction

Modern functional programming languages, like ML and Haskell, have many features that dramatically
improve programmer productivity and software reliability. Two of the most significant are strong static
typing, which detects a host of errors at compile-time, and type inference, which (almost) eliminates the
burden of annotating the program with type information; we get the benefits of strong static typing for free.

The utility of these type systems stems from their ability to predict, at compile-time, invariants about
the run-time values computed by the program. Unfortunately, classical type systems only capture relatively
coarse invariants. For example, the system can express the fact that a variable i is of the type int, meaning
that it is always an integer, but not that it is always an integer within a certain range, say between 1 and 99.
Thus, the type system is unable to statically ensure the safety of critical operations, such as the accessing
of an array a of size 100 at the index i, or a division by i. Instead, the language can only provide a weaker
dynamic safety guarantee at additional cost of high performance overhead.

In an exciting development, several authors [14, 23, 2, 24, 19, 9] have proposed the use of dependent types
as a mechanism for enhancing the expressivity of type systems. Such a system can express the fact:

i :: {ν :int | 1 ≤ ν ∧ ν ≤ 99}

which is the usual type int together with a refinement stating that the run-time value of i is an always an
integer between 1 and 99. Pfenning and Xi devised DML, a practical way to integrate such types into ML,
and demonstrated that they could be used to recover static guarantees about the safety of array accesses,
while simultaneously making the program significantly faster by eliminating run-time checking overhead [23].
However, these benefits came at the price of automatic inference. In the benchmarks analyzed by Xi and
Pfenning, about 31% of the code (or 17% by number of lines) was annotation that the programmer had to
enter to enable the type checker to prove safety. We believe that this non-trivial annotation burden hampered
the widespread adoption of dependent types despite their enormous safety and performance benefits.

We present Logically Qualified Data Types, abbreviated to Liquid Types, a system for automatically infer-
ring dependent types precise enough to prove a variety of safety properties, thereby allowing programmers to
reap many of the benefits of dependent types without paying the heavy price of of manual annotation. The

1

technical heart of our inference algorithm is a technique for synergistically blending Hindley-Milner type
inference with predicate abstraction, a technique for synthesizing loop invariants for imperative programs
that forms the algorithmic core of industrial-strength software model checkers like SLAM [3]. Our system
takes as input a closed program and a set of logical qualifiers Q, which are simple boolean predicates over
the program variables and a special value variable ν. The system then uses the qualifiers to infer liquid types
which are dependent types where the refinement predicates are conjunctions of the logical qualifiers.

In our system, type checking and inference are decidable for three reasons (Section 3): First, we use
a conservative but decidable notion of subtyping, where we reduce the subtyping of arbitrary dependent
types to a set of implication checks over base types, which are deemed to hold iff an embedding of the
implication into a decidable logic yields a valid formula in the logic. Second, an expression has a valid liquid
type derivation only if it has a valid ML type derivation, and the dependent type of every subexpression
is a refinement of its ML type. Third, in any valid type derivation, the types of certain expressions, such
as λ-abstractions, if-then-else expressions, and recursive functions must be liquid. Thus, inference becomes
decidable, as the space of possible types is bounded. We use these features to design a three-step constraint-
based algorithm for dependent type inference (Section 4).
Step 1: Hindley-Milner Type Inference: First, our algorithm invokes Hindley-Milner [6] to infer types
for each subexpression and the necessary type generalization and instantiation annotations. Next, our
algorithm uses the computed ML types to assign to each subexpression a template, a dependent type with
the same structure as the inferred ML type, but which has liquid type variables representing the unknown
type refinements.
Step 2: Liquid Constraint Generation: Second, we use the syntax-directed liquid typing rules to
generate a system of constraints that capture the subtyping relationships between the templates that must
be met for a liquid type derivation to exist.
Step 3: Liquid Constraint Solving: Third, our algorithm uses the subtyping rules to split the complex
template constraints into simple constraints over the liquid type variables, and then solves these simple
constraints using a fixpoint computation inspired by predicate abstraction.

Of course, there may be safe programs which cannot be well-typed in our system due either to an
inappropriate choice of Q or the conservativeness of our notion of subtyping. In the former case, we can use
the readable results of the inference to manually add more qualifiers, and in the latter case we can use the
results of the inference to insert a minimal set of run-time checks [19, 9].

To validate the utility of our technique, we have built Dsolve, which does liquid type inference for
Ocaml. While liquid types can be used to statically prove a variety of properties [1], in this paper we focus
on the canonical problem of proving the safety of array accesses, itself the foundation for other kinds of safety
policies. Furthermore, by obviating run-time bounds checks, we achieve this safety without performance
penalty.

We use a diverse set of challenging benchmarks taken from the DML project to demonstrate that, for
many programs, Dsolve, in conjunction with a simple automatic qualifier generation procedure, can prove
safety completely automatically (Section 5). For the few programs where the automatic generator does not
return sufficient qualifiers, the programmer typically needs to only specify one or two extra qualifiers. Even
in these rare cases, the dependent types inferred by Dsolve using only the generated qualifiers help the
programmer rapidly identify the relevant extra qualifiers. We show that, over all the benchmarks, Dsolve
with automatic qualifier generation reduces the manual annotation required to prove safety from 31% of
program text (or 17% by number of lines) to about 1%. Finally, we describe a case study where Dsolve
was able to pinpoint an error in an open-source Ocaml bitvector library implementation, in a function
that contained an explicit (but insufficient) safety check.

2 Overview

We begin with an overview of our technique for inferring dependent types using a set of logical qualifiers
Q. First, we describe dependent types, logical qualifiers, and liquid types, and then, through a series of
examples, show how our system infers dependent types.

2

Dependent Types. Following [2, 9], our system allows base refinements of the form {ν :B | e}, where ν is
a special value variable not appearing in the program, B is a base type and e is a boolean valued expression
called the refinement predicate constraining the value variable. Intuitively, the base refinement predicate
specifies the set of values c of the base type B such that the predicate [c/ν]e evaluates to true. For example,
{ν :int | 0 < ν} specifies the set of positive integers, and {ν :int | ν ≤ n} specifies the set of integers whose
value is less than or equal to the value of the variable n. Thus, B is an abbreviation for {ν :B | true}. We
use the base refinements to build up dependent function types, written x :T1→T2 (following [2, 9]). Here, T1

is the domain type of the function, and the formal parameter x may appear in the base refinements of the
range type T2.
Logical Qualifiers and Liquid Types. The set of logical qualifiers Q is a finite set of boolean valued
expression (or predicates) over the program variables and the special value variable ν distinct from the
program variables. There are no restrictions on the expressions appearing in Q. When synthesizing dependent
types from the logical qualifiers, our system ensures that the types are well-formed, i.e., for each expression,
the inferred type is over variables in the innermost statically enclosing lexical scope. A liquid type over Q
is a dependent type where the base refinement predicates are conjunctions of expressions from the logical
qualifiers Q.
Liquid Type Inference. For the rest of this section, assume that: Q ≡
{0 ≤ ν, x ≤ ν, y ≤ ν, ν < n, ν < len a}. Our algorithm proceeds in three steps: First, we perform
Hindley-Milner (HM) type inference and use the results to generate templates which are complex types with
unknown base refinements represented by liquid type variables κ. Second, we generate constraints on the
templates that capture the subtyping relationships between the refinements. Third, we solve the constraints
using predicate abstraction to infer dependent types over Q. Next, through a series of examples, we show
how our type inference algorithm incorporates features essential for inferring precise dependent types —
namely path-sensitivity, recursion, higher-order functions and polymorphism — and thus can statically
prove the safety of array accesses.

Notation: We write B as an abbreviation for {ν :B | true}. Additionally, when the base type B is clear
from the context, we abbreviate {ν :B | κ} as κ when κ is a liquid type variable, and {ν :B | e} as {e} when e
is a refinement predicate. For example, x :int→y :int→{x ≤ ν ∧ y ≤ ν} denotes the type of a function that
takes two (curried) integer arguments x, y and returns an integer no less than x and y.

Example 1: Path Sensitivity. Consider the max function shown in Figure 1 as an Ocaml program. We
will show how we infer that max returns a value no less than both arguments.
(Step 1) HM infers that max has the type x :int→y :int→int. Using this type, we create a template for
the liquid type of max, x :κx→y :κy→κ1, where κx, κy, κ1 are liquid type variables representing the unknown
refinements for the formals x, y and the body of max respectively.
(Step 2) As the body is an if expression, our system generates the following two constraints that stipulate
that, under the appropriate branch condition, the “then” and “else” expressions, respectively x, y, have
types that are subtypes of the entire body’s type:

x :κx; y :κy; (x > y) `Q{ν = x} <: κ1 (1.1)
x :κx; y :κy;¬(x > y) `Q{ν = y} <: κ1 (1.2)

Constraint (1.1) (resp. (1.2)) stipulates that, under the condition that x and y have the types κx and κy

respectively and x > y (resp. ¬(x > y)), the type of the expression x (resp. y), namely the set of all values
equal to x (resp. y), be a subtype of the body κ1.
(Step 3) Since the program is “open”, i.e., there are no calls to max, we assign κx, κy to true, meaning
that any integer arguments can be passed, and use a theorem prover to find the strongest conjunction of
predicates in Q that satisfies the subtyping constraints. The theorem prover deduces that when x > y (resp.
¬(x > y)) if ν = x (resp. ν = y) then x ≤ ν and y ≤ ν. Hence, our technique infers that x ≤ ν ∧ y ≤ ν is
the strongest solution for κ1 that satisfies the two constraints, and by substituting the solution for κ1 into
the template for max, infers

max :: x :int→y :int→{ν :int | (x ≤ ν) ∧ (y ≤ ν)}

3

Example 2: Recursion. Next, we show how our system infers that the recursive function sum from
Figure 1 always returns a non-negative value.
(Step 1) HM infers that sum has the type k :int→int. Using this type, we create a template for the
liquid type of sum, k :κk→κ2, where κk and κ2 represent the unknown refinements for the formal k and body,
respectively. Due to the let rec, we use the created template as the type of sum when generating constraints
for the body of sum.
(Step 2) Again, as the body is an if expression, we generate constraints that stipulate that under the
appropriate branch conditions, the “then” and “else” expressions have subtypes of the body κ2. For the
“then” branch, we get a constraint:

sum : . . .; k :κk; k < 0 `Q{ν = 0} <: κ2 (2.1)

The else branch is a let expression. First, considering the expression that is locally bound, we generate a
constraint

sum : . . .; k :κk;¬(k < 0) `Q{ν = k− 1} <: κk (2.2)

from the call to sum that forces the actual passed in at the callsite to be a subtype of the formal of sum.
The locally bound variable s gets assigned the template corresponding to the output of the application,
[k− 1/k]κ2, i.e., the output template of sum with the formal replaced with the actual argument, and we get
the next constraint that ensures the “else” expression is a subtype of the body κ2.

¬(k < 0); s : [k− 1/k]κ2 `Q{ν = s + k} <: κ2 (2.3)

(Step 3) Here, as sum is called, we try to find the strongest conjunction of qualifiers for κk and κ2 that
satisfies the constraints. To satisfy (2.2), κk can only be assigned true (the empty conjunction), as when
¬(k < 0), the value of k−1 can be either negative, zero or positive. On the other hand, κ2 is assigned 0 ≤ ν,
the strongest conjunction of qualifiers that satisfies (2.1) and (2.3). Constraint (2.1) is trivially satisfied as
the theorem prover deduces that if ν = 0 then 0 ≤ ν. Constraint (2.3) is satisfied as the theorem prover
deduces that when ¬(k < 0) and [s/ν](0 ≤ ν), if ν = s + k then 0 ≤ ν. The substitution [s/ν](0 ≤ ν)
effectively asserts to the solver the knowledge about the type of s, and crucially allows the solver to use the
fact that s is non-negative when determining the type of s + k. Thus, recursion enters the picture, as the
solution for the output of the recursive call, which is bound to the type of s, is used in conjunction with the
branch information to prove that the output expression is non-negative. Plugging the solutions for κk and
κ2 into the template, our system infers

sum :: k :int→{0 ≤ ν}

Example 3: Higher-Order Functions. Next, consider a program comprising only the higher-order
accumulator foldn shown in Figure 1. We show how our system infers that f is only called with arguments
between 0 and n.
(Step 1) HM infers that foldn has the polymorphic type ∀α.n :int→b :α→f : (int→α→α)→α. From this ML
type, we create the new template ∀α.n :κn→b :α→f : (κ3→α→α)→α for foldn, where κn and κ3 represent
the unknown refinements for the formal n and the first parameter for the accumulation function f passed
into foldn. This is a polymorphic template as the occurrences of α are preserved. This will allow us to
instantiate α with an appropriate dependent type at places where foldn is called. HM infers that the type
of loop is i :int→c :α→α, from which we generate a template i :κi→c :α→α, for loop, which, as for sum,
we will use when analyzing the body of loop.
(Step 2) First, we generate constraints inside the body of loop. As HM infers that the type of the body is
α, we omit the trivial subtype constraints on the “then” and “else” expressions. Instead, the two interesting
constraints are:

. . . ; i :κi; i < n `Q{ν = i + 1} <: κi (3.1)

4

let max x y =

if x > y then x else y

let rec sum k =

if k < 0 then 0 else

let s = sum (k-1) in

s + k

let foldn n b f =

let rec loop i c =

if i < n then loop (i+1) (f i c) else c in

loop 0 b

let arraymax a =

let am l m = max (sub a l) m in

foldn (len a) 0 am

Figure 1: Example Ocaml Program

which stipulates that the actual passed into the recursive call to loop is a subtype of the expected formal,
and

. . . ; i :κi; i < n `Q{ν = i} <: κ3 (3.2)

which forces the actual i to be a subtype of the first parameter of the higher-order function f, in the
environment containing the critical branch condition. Finally, the application loop 0 yields

. . . `Q{ν = 0} <: κi (3.3)

forcing the actual 0 to be a subtype of the formal i.
(Step 3) Here, as foldn is not called, we assign κn to true and try to find the strongest conjunction of
predicates in Q for κi and κ3. We can assign to κi the predicate 0 ≤ ν, which trivially satisfies (3.3), and
also satisfies (3.1) as when [i/ν](0 ≤ ν), if ν = i + 1 then 0 ≤ ν. That is the theorem prover can deduce
that if i is non-negative, then so is i+ 1. To κ3 we can assign the conjunction 0 ≤ ν ∧ ν < n which satisfies
(3.2) as when [i/ν](0 ≤ ν) and i < n, if ν = i then 0 ≤ ν and ν < n. By plugging the solutions for κ3, κn

into the template our system infers

foldn :: ∀α.n :int→b :α→f : ({0 ≤ ν ∧ ν < n}→α→α)→α

Example 4: Polymorphism and Array Bounds Checking. Consider the function arraymax that
calls foldn with a helper that calls max to compute the max of the elements of an array and 0. Suppose
there is a base type intarray representing arrays of integers. Arrays are accessed via a primitive function

sub :: a :intarray→j :{ν :int | 0 ≤ ν ∧ ν < len a}→int

where the primitive function len returns the number of elements in the array. The sub function takes an
array and an index that is between 0 and the number of elements, and returns the integer at that index
in the array. We show how our system combines predicate abstraction, (1) function subtyping, and (2)
polymorphism to prove (1) that array accesses are made with arguments between 0 and len a and hence
safe, and (2) that arraymax returns a non-negative integer.
(Step 1) HM infers that (1) arraymax has the type a :intarray→int, (2) am has the type
l :int→m :int→int, and (3) foldn called in the body is a polymorphic instance where the type vari-
able α has been instantiated with int. Consequently, our system creates the following templates: (1)
a :intarray→κ4 for arraymax, where κ4 represents the unknown refinement for the output of arraymax,

5

(2) l :κl→m :κm→κ5 for am, where κl, κm and κ5 represent the unknown refinements for the parameters and
output type of am respectively, and (3) κ6 for the type that α is instantiated with, and so the template for
the instance of foldn inside arraymax is the type computed the previous example with κ6 substitute for α
namely, n :int→b :κ6→f : ({0 ≤ ν ∧ ν < n}→κ6→κ6)→κ6

(Step 2) First, for the application sub a l our system generates

l :κl; m :κm `Q{ν = l} <: {0 ≤ ν ∧ ν < len a} (4.1)

which states that the argument passed into sub must be within the array bounds. For the application
max (sub a l)m, using the type inferred for max in Example 1, we get

l :κl; m :κm `Q{sub a l ≤ ν ∧ m ≤ ν} <: κ5 (4.2)

which constrains the output of max (with the actuals (sub a l) and m substituted for the parameters x and
y respectively), to be a subtype of the output type κ5 of am. The call foldn(len a) 0 generates:

. . . `Q{ν = 0} <: κ6 (4.3)

which forces the actual passed in for b to be a subtype of κ6 the type of the formal b in this polymorphic
instance. Similarly, the call foldn (len a) 0 am generates a constraint (4.4)

. . . `Q l :κl→m :κm→κ5 <: {0 ≤ ν ∧ ν < len a}→κ6→κ6

forcing the type of the actual am to be a subtype of the formal f inferred in Example 1, with the curried
argument len a substituted for the formal n of foldn, and

. . . `Qκ6 <: κ4 (4.5)

forcing the output of the foldn application to be a subtype of the body of arraymax. Upon simplification
using the standard rule for subtyping function types, constraint (4.4) reduces to

. . . `Q{0 ≤ ν ∧ ν < len a} <: κl (4.6)

. . . `Qκ6 <: κm (4.7)

. . . `Qκ5 <: κ6 (4.8)

(Step 3) The strongest conjunction of qualifiers that we can assign to: κm, κ4, κ5 and κ6 is the predicate
0 ≤ ν. In essence the solution infers that we can “instantiate” the type variable α with the refinement
{ν :int | 0 ≤ ν}. This is sound because the base value 0 passed in is non-negative (constraint (4.3) is
satisfied), and the accumulation function passed in (am), is such that if its second argument (m of type κm)
is non-negative then the output (of type κ5) is non-negative (constraint (4.2) is satisfied). Plugging the
solution into the template, the system infers

arraymax :: intarray→{0 ≤ ν}

The strongest conjunction over Q we can assign to κl is 0 ≤ ν ∧ ν < len a, which trivially satisfies
constraint (4.7). Moreover, with this assignment, we have satisfied the “bounds check” constraint (4.1), i.e.,
we have found an assignment of dependent types to all the program expressions that suffices to prove that
all array accesses occur within bounds.

3 Liquid Type Checking

We first present the syntax and static semantics of our core language λL, a variant of the λ-calculus with
ML-style polymorphism extended with liquid types. We begin by describing the elements of λL, including
expressions, types, and environments (Section 3.1). Next, we present the type judgments and derivation
rules and state a soundness theorem which relates the static type system with the operational semantics
(Section 3.2). We conclude this section by describing how the design of our type system enables automatic
dependent type inference (Section 3.3).

6

e ::= Expressions:
| x variable
| c constant
| λx.e abstraction
| e e application
| if e then e else e if-then-else
| let x = e in e let-binding
| let rec f = λx.e in e letrec-binding
| [Λα]e type-abstraction
| [τ]e type-instantiation

Q ::= Liquid Refinements
| true true
| q logical qualifier in Q
| Q ∧Q conjunction of qualifiers

B ::= Base Types:
| int base type of integers
| bool base type of booleans

T(B) ::= Type Skeletons:
| {ν : B | B} base
| x :T(B)→T(B) function
| α type variable

S(B) ::= Type Schema Skeletons:
| T(B) monotype
| ∀α.S(B) polytype

τ, σ ::= T(true), S(true) Types, Schemas

T, S ::= T(E), S(E) Dep. Types, Schemas

T̂ , Ŝ ::= T(Q), S(Q) Liquid Types, Schemas

Figure 2: Syntax

3.1 Elements of λL

The syntax of expressions and types for λL is summarized in Figure 2. λL expressions include variables,
special constants which include integers, arithmetic operators and other primitive operations described be-
low, λ-abstractions, and function applications. In addition, λL includes as expressions the common idioms
if-then-else and let, which the liquid type inference algorithm exploits to generate precise types, as well
as let rec which is syntactic sugar for the standard fix operator.
Types and Schemas. We use B to denote base types such as bool or int. λL has a system of refined
base types, dependent function types, and ML-style polymorphism via type variables that are universally
quantified at the outermost level to yield polymorphic type schemas. We write τ and σ for ML types and
schemas, T and S for dependent types and schemas, and T̂ and Ŝ for liquid types and schemas.
Environments and Well-formedness. A type environment Γ is a sequence of type bindings x :S and
guard predicates e. The former are standard; the latter capture constraints about the if-then-else branches
under which an expression is evaluated, which is required to make the system “path-sensitive” (Section 3.3).
Figure 3 shows the rules describing well-formed environments. Notice that in each type binding, the depen-
dent type must also be well-formed i.e., the “free variables” appearing in the refinement predicates must be
bound in the prefix of the environment.
Shapes. The function Shape maps arbitrary dependent types (schemas) to ML types (schemas), where
the shape of the dependent type (schema) S, denoted by Shape(S), is the ML type (schema) obtained by
replacing all refinement predicates with true. We lift the function Shape to type environments by dropping
the guards and observing x :Shape(S) ∈ Shape(Γ) iff x :S ∈ Γ.
Constants. As in [19, 9], the basic units of computation are the constants c built into λL, each of which has
a dependent type ty(c) that precisely captures the semantics of the constants. These include basic constants,

7

corresponding to integers and boolean values, and primitive functions, which encode various operations. The
set of constants of λL includes:

true :: {ν :bool | ν}
false :: {ν :bool | not ν}

⇔ :: x :bool→y :bool→{ν :bool | ν ⇔ (x ⇔ y)}
3 :: {ν :int | ν = 3}
= :: x :int→y :int→{ν :bool | ν ⇔ (x = y)}
+ :: x :int→y :int→{ν :int | ν = x + y}

fix :: ∀α.(α→α)→α
len :: intarray→{ν :int | 0 ≤ ν}
sub :: a :intarray→i :{ν :int | 0 ≤ ν ∧ ν < len a}→int

The types of some constants are defined in terms of themselves (e.g., “+”). This does not cause problems,
as the dynamic semantics of refinement predicates is defined in terms of the operational semantics (as in [9]),
and the static semantics is defined via a sound overapproximation of the dynamic semantics [1]. For clarity,
we will use infix notation for constants like +. To simplify the exposition, we assume there is a special base
type that encodes integer arrays in λL. The length of an array value is obtained using len. To access the
elements of the array, we use sub, which takes as input an array a and an index i that must be within the
bounds of a, i.e., non-negative, and less than the length of the array.

3.2 Liquid Type Checking Rules

Next, we present the key ingredients of the type system, the typing judgements and derivation rules sum-
marized in Figure 3. Our system has three kinds of judgements relating environments, expressions and
types.

Well-formedness Judgement Γ ` S: states that the dependent type schema S is well-formed under the
type environment Γ. Intuitively, a type is well-formed if its base refinements are boolean expressions
which refer only to variables in the scope of the corresponding expression.

Subtype Judgement Γ `Q S1 <: S2: states that dependent type schema S1 is a subtype of schema S2 in
environment Γ.

Liquid Type Judgement Γ `Q e : S: states that, using the logical qualifiers Q, the expression e has the
type schema S under the type environment Γ.

Soundness of Liquid Type Checking. Assume that variables are bound at most once in any type
environment; in other words, we assume that variables are α-renamed to ensure that substitutions (such as
in [LT-App]) avoid capture. Let ↪→ describe the single evaluation step relation for λL expressions and

∗
↪→

describe the reflexive, transitive closure of ↪→.
As the conservative subtyping rule makes it hard to prove a substitution lemma, we prove soundness

via two steps. First, we define an “exact” version of the type system, with a judgement Γ ` e : S, whose
rules use an undecidable subtyping relation. We show the standard weakening, narrowing and substitution
lemmas for this system, and thereby obtain preservation and progress theorems. Second, we show that our
decidable system is conservative: i.e., if Γ `Q e : S then Γ ` e : S. Combining the results, we conclude that
if an expression is well-typed in our decidable system then we are guaranteed that evaluation does not get
“stuck”,i.e., at run-time, every primitive operation receives valid inputs.

Theorem 1. [Liquid Type Safety]

1. (Overapproximation) If Γ `Q e : S then Γ ` e : S.

2. (Preservation) If Γ ` e : S and e ↪→ e′ then Γ ` e′ : S.

3. (Progress) If ∅ ` e : S and e is not a value then there exists an e′, e ↪→ e′.

8

We omit the details due to lack of space — the formalization and proofs can be found in [1] (Theorems 3,
4 and 5). Thus, if a program typechecks we are guaranteed that every call to sub gets an index that is
within the array’s bounds. Arbitrary safety properties (e.g., divide-by-zero errors) can be expressed by
using suitable types for the appropriate primitive constant (e.g., requiring the second argument of (/) to be
non-zero).

3.3 Features of the Liquid Type System

Next, we describe some of the features unique to the design of the Liquid Type system and how they
contribute to automatic type inference and verification.
1. Path Sensitivity. Any analysis that aims to prove properties like the safety of array accesses needs to
be sensitive to branch information; it must infer properties which hold for the entire if expression as well as
for the individual then and else expressions. For example, in the sum example from Section 2, without the
branch information, the system would not be able to infer that the occurrence of k inside the else expression
is non-negative, and hence that sum returned a non-negative value. For array bounds checking, programmers
often compare the index to some other expression – either the array length, or some other variable that is
known to be smaller than the array length (e.g., in arraymax from Section 2), and only perform the array
access under the appropriate guard. To capture this kind of information, the environment Γ also includes
branch information, shown in rule [LT-If] in Figure 3.
2. Decidable, Conservative Subtyping. As shown in Figure 3, checking that one type is a subtype of
another reduces to a set of subtype checks on base refinement predicates, which further reduces to checking
if the refinement predicate for the subtype implies the predicate for the supertype. As the refinement
predicates contain arbitrary terms, exact implication checking is undecidable. To get around this problem,
our system uses a conservative but decidable implication check. Let EUFA be the decidable logic [18] of
equality, uninterpreted functions and linear arithmetic, shown in rule [Dec-<:-Base] of Figure 3. We write
[[e]] for the embedding of the expression e into terms of the logic EUFA by encoding expressions corresponding
to integers, addition, multiplication and division by constant integers, equality, inequality and disequality
with corresponding terms in the EUFA logic, and encoding all other constructs, including λ-abstractions
and applications, with uninterpreted function terms. We write:

[[Γ]] ≡
∧
{e | e ∈ Γ} ∧

∧
{[[[x/ν]e]] | x :{ν :B | e} ∈ Γ}

as the embedding for the environment. Notice that we use the guard predicates and base type bindings in
the environment to strengthen the antecedent of the implication. However, we substitute all occurrences of
the value variable ν in the refinements from Γ with the actual variable being refined, thereby asserting in
the antecedent that the program variable satisfies the base refinement predicate. Thus, in the embedded
formula, all occurrences of ν refer to the two types that are being checked for subtyping. It is easy to check
that this embedding is conservative, i.e., the validity of the embedded implication implies the the standard,
weaker, exact requirement for subtyping of refined types [9, 19]. For example, for the then expression in
max from Section 2, the subtyping relation: x :int; y :int; x > y `Q {ν = x} <: {x ≤ ν ∧ y ≤ ν} holds as the
following implication is valid in EUFA, ((true ∧ true ∧ x > y) ∧ (ν = x)) ⇒ (x ≤ ν ∧ y ≤ ν)
3. Recursion via Polymorphism. To handle polymorphism, our type system incorporates type gener-
alization and instantiation annotations, which are over ML type variables α and monomorphic ML types
τ , respectively, and thus can be reconstructed via a standard type inference algorithm. The rule [LT-
Inst] allows a type schema to be instantiated with an arbitrary liquid type T̂ of the same shape as τ , the
monomorphic ML type used for instantiation. We use polymorphism to encode recursion via the polymorphic
type given to fix. let rec bindings are syntactic sugar: let rec f = e in e’ is internally converted to
let f = fix (fun f -> e) in e’. The expression typechecks if there is an appropriate liquid type that
can be instantiated for the α in the polymorphic type of fix; intuitively, this liquid type corresponds to the
type of the recursive function f.
4. The Liquid Type Restriction. The most critical difference between the rules for liquid type checking
and other dependent systems [19, 9] is that our rules stipulate that certain kinds of expressions have liquid
types. In essence, these expressions are the key points where appropriate dependent types must be inferred

9

– by forcing the types to be liquid, we bound the space of possible solutions, thus making inference efficiently
decidable.
[LT-Inst] For polymorphic instantiation, also the mechanism for handling recursion, the liquid type restric-
tion enables inference by making the set of candidate dependent types finite.
[LT-Fun] For λ-abstractions, we impose the restriction that the input and output be liquid to ensure
the types remain small, thereby making algorithmic checking and inference efficient. This is analogous to
procedure “summarization” for first order programs.
[LT-If] For conditional expressions we impose the liquid restriction and implicitly force the “then” and
“else” expressions to be subtypes of a fresh liquid type, instead of an explicit “join” operator as in dataflow
analysis, as the expression may have a function type and with a join operator, input type contravariance
would introduce disjunctions into the dependent type which would have unpleasant algorithmic consequences.
[LT-Let] For let-in expressions we impose the liquid restriction as a means of eliminating the locally bound
variable from the dependent type of the whole expression (as the local variable goes out of scope). The
antecedent Γ ` T̂ requires that the liquid type be well-formed in the outer environment, which, together
with the condition, enforced via alpha renaming, that each variable is bound only once in the environment,
is essential for ensuring the soundness of our system [1]. The alternative of existentially quantifying the local
variable [16] makes algorithmic checking hard .

4 Liquid Type Inference

Next, we describe the heart of our technique: an algorithm that takes a set of logical qualifiers Q and an
expression e as input and determines whether e is well-typed over Q, i.e., whether there exists some T such
that ∅ `Q e : T . Our algorithm proceeds in three steps. First, we observe that the dependent type for any
expression must be a refinement of its ML type, and so we invoke Hindley-Milner (HM) to infer the types
of subexpressions, and use the ML types to generate templates representing the unknown dependent types
for the subexpressions (Section 4.1). Second, we use the syntax-directed liquid typing rules from Figure 3
to build a system of constraints that capture the subtyping relationships between the templates that must
hold for a liquid type derivation to exist (Section 4.2). Third, we use the finite set of logical qualifiers Q to
solve the constraints using a technique inspired by predicate abstraction, thereby inferring readable types
for all subexpressions and determining whether the expression can be well-typed over Q.

4.1 ML Types and Templates

Our type inference algorithm is based on the observation that the liquid type derivations and, hence, the
dependent types for each subexpression are refinements of their ML types.
ML Type Inference Oracle. Let HM be an ML type inference oracle, which takes an ML type environment
Γ and an expression e and returns the ML type (schema) σ iff, using the classical ML type derivation rules
[6], there exists a derivation Γ ` e : σ. Observe that as the liquid type derivation rules are “refinements” of
the ML type derivation rules, if Γ `Q e : S then HM(Shape(Γ), e) = Shape(S). Moreover, we assume that
the ML type derivation oracle has “inserted” suitable type generalization ([Λα]e) and instantiation ([τ]e)
annotations. Thus, the problem of dependent type inference reduces to inferring appropriate refinements of
the ML types.
Templates. Let K be a set of liquid type variables used to represent unknown type refinement predicates. A
template F is a dependent type schema described via the grammar shown below, where some of the refinement
predicates are replaced with liquid type variables with pending substitutions. A template environment is a
map Γ from variables to templates.

θ ::= ε | [e/x]; θ (Pending Substitutions)
F ::= S(E ∪ θ ·K) (Templates)

Variables with Pending Substitutions. A sequence of pending substitutions θ is defined using the
grammar above. To understand the need for θ, consider rule [LT-App] from Figure 3 which specifies that the

10

Liquid Type Checking Γ `Q e : S

Γ `Q e : S1 Γ `Q S1 <: S2 Γ ` S2

Γ `Q e : S2

[LT-Sub]

Γ(x) = {ν :B | e}
Γ `Q x : {ν :B | ν = x}

[LT-Var]
Γ(x) not a base type

Γ `Q x : Γ(x)
[LT-Var]

Γ `Q c : ty(c)
[LT-Const]

Γ ` x : T̂x→T̂1 Γ[x 7→ T̂x] `Q e1 : T̂1

Γ `Q (λx.e1) : (x : T̂x→T̂1)
[LT-Fun]

Γ `Q e1 : (x :T1→T) Γ `Q e2 : T1

Γ `Q e1 e2 : [e2/x]T
[LT-App]

Γ `Q e1 : bool Γ; e1 `Q e2 : T̂ Γ;¬e1 `Q e3 : T̂

Γ `Q if e1 then e2 else e3 : T̂
[LT-If]

Γ ` e1 : S1 Γ;x :S1 ` e2 : T̂2 Γ ` T̂2

Γ ` let x = e1 in e2 : T̂2

[LT-Let]

Γ `Q e : S α 6∈ Γ
Γ `Q [Λα]e : ∀α.S

[LT-Gen]

Γ `Q e : ∀α.S Γ ` T̂ Shape(T̂) = τ

Γ `Q [τ]e : [T̂ /α]S
[LT-Inst]

Decidable Subtyping Γ ` S1 <: S2

Valid([[Γ]] ∧ [[e1]] ⇒ [[e2]])
Γ `Q {ν :B | e1} <: {ν :B | e2}

[Dec-<:-Base]

Γ `Q T ′
2 <: T ′

1 Γ[x 7→ T ′
2] `Q T ′′

1 <: T ′′
2

Γ `Q x :T ′
1→T ′′

1 <: x :T ′
2→T ′′

2

[Dec-<:-Fun]

Γ `Q α <: α
[<:-Var]

Γ `Q S1 <: S2

Γ `Q ∀α.S1 <: ∀α.S2

[<:-Poly]

Well-Formed Types Γ ` S

Γ; ν :B ` e : bool
Γ ` {ν :B | e}

[WT-Base]
Γ ` α

[WT-Var]

Γ;x :T1 ` T2

Γ ` x :T1→T2

[WT-Fun]
Γ ` S

Γ ` ∀α.S
[WT-Poly]

Figure 3: Rules for Liquid Type Checking

dependent type of a function application is obtained by substituting all occurrences of the formal argument
x in the output type of e1 with the actual expression e2 passed in at the application. When generating

11

the constraints, the output type of e1 is unknown and is represented by a template containing liquid type
variables. Suppose that the type of e1 is x :B→{ν :B | κ}, where κ is a liquid type variable. In this case,
we will assign the application e1 e2 the type {ν :B | [e2/x] · κ}, where [e2/x] · κ is a variable with a pending
substitution [16]. Note that substitution can be “pushed inside” type constructors, i.e., θ · ({κ1} → {κ2}) is
the same as {θ · κ1} → {θ · κ2} and so it suffices to apply the pending substitutions only to the root of the
template.

4.2 Constraint Generation

Next, we describe the algorithm that generates constraints over templates by traversing the expression in the
syntax-directed manner of a type checker, generating fresh templates for unknown types and constraints that
capture the relationships between the types of various subexpressions and requirements for well-formedness.
The generated constraints are such that they have a solution iff the expression has a valid liquid type deriva-
tion. Our inference algorithm uses two kinds of constraints over templates: Well-formedness constraints
of the form Γ ` F , where Γ is template environment, and F is a template, to ensure that the liquid types
inferred for each expression are over program variables that are in the expression’s scope. Subtyping con-
straints of the form Γ `Q F1 <: F2 where Γ is a template environment and F1 and F2 are two templates
of the same shape, ensure that the liquid types inferred for each sub-expression can be combined to yield a
valid type derivation by ensuring that appropriate subsumption relationships hold.

Our constraint generation algorithm, Cons, shown in Figure 4, takes as input a template environment Γ
and an expression e that we wish to infer the type of and returns as output a pair of a type template F ,
which corresponds to the unknown type of e, and a set of constraints C. Intuitively, Cons mirrors the type
derivation rules and generates constraints C which capture exactly the relationships that must hold between
the templates of the subexpressions in order for e to have a valid type derivation over Q. To understand
how Cons works, notice that the expressions of λL can be split into two classes: those whose types are
constructable from the environment and the types of subexpressions, and those whose types are not.
1. Expressions with Constructable Types. The first class of expressions are variables, constants,
function applications and polymorphic generalizations, whose types can be immediately constructed from
the types of subexpressions or the environment. For such expressions, Cons recursively computes templates
and constraints for the subexpressions and appropriately combines them to form the template and constraints
for the expression.

As an example, consider Cons(Γ, e1 e2). First, Cons is called to obtain the templates and constraints
for the subexpressions e1 and e2. If a valid ML type derivation exists, then e1 must be a function type
with some formal x. The returned template is the result of pushing the pending substitution of x with the
actual argument e2 into the “leaves” of the template corresponding to the return type of e1. The returned
constraints are the union of the constraints for the subexpressions, and a subtyping constraint ensuring that
the argument e2 is a subtype of the input type of e1.
2. Expressions with Liquid Types. The second class are expressions whose types cannot be derived as
above, as the subsumption rule is required to perform some kind of “over-approximation” of their concrete
semantics. These include λ-abstractions, if-then-else expressions, let-bindings, and polymorphic instanti-
ations (which includes recursive functions). To infer the types of these these expressions, we exploit two
observations. First, the shape of the dependent type is the same as the ML type of the expression. Second,
from the liquid type restriction we know that the refinement predicates for these expressions are conjunctions
of logical qualifiers from Q (cf. rules [LT-Let], [LT-Fun], [LT-If], [LT-Inst] of Figure 3). Thus, to infer
the types of these expressions, we invoke HM to determine the ML type of the expression, and then use Fresh
to generate a fresh template which has the same “shape” as the ML type but which has fresh liquid type
variables representing the unknown refinements.

As an example, consider Cons(Γ, if e1 then e2 else e3). First, a fresh template is generated using the
ML type of the expression. Next, Cons recursively generates templates and constraints for the then and
else sub-expressions. Note that for the then (resp. else) sub-expression, the environment is extended with
e1 (resp. ¬e1) as in the type derivation rule ([LT-If] from Figure 3). The fresh template is returned as the
template for the whole expression. The constraints returned are the union of those for the sub-expressions,
together with subtyping constraints forcing the templates for the then and else sub-expressions to be

12

subtypes of the whole expression’s template.

Example: Constraints. The well-formedness constraint ∅ ` x :κx→y :κy→κ1 is generated for the fresh
template for max (from Figure 1). The constraint ensures that the inferred type for max only contains pro-
gram variables that are in scope at the point where max is bound. The if expression that is the body
of max is an expression with liquid type. For this expression, a fresh template κ1′ is generated, and the
subtyping constraints: x :κx; y :κy; (x > y) `Q {ν = x} <: κ1′ , x :κx; y :κy;¬(x > y) `Q {ν = y} <: κ1′ , and
x :κx; y :κy `Q κ1′ <: κ1 are generated, capturing the relationships between the then, else expressions and
the body, and the body and the output type respectively. The constraints (1.1) and (1.2) are the above
constraints simplified for exposition. The recursive application sum (k-1) from Figure 1 is an expression
with a constructable type. For this expression the subtyping constraint (2.2) is generated, forcing the actual
to be a subtype of the formal. The output of the application, i.e., the output type κ2 of sum, with the
pending substitution of the formal k with the actual (k− 1) is shown bound to s in (2.3).

4.3 Constraint Solving

Next, we describe our two-step algorithm for solving the constraints, i.e., assigning liquid types to all
variables κ such that all the constraints are satisfied. In the first step, we use the subtyping rules to split the
complex constraints, which may contain function types, into simple constraints over variables with pending
substitutions. In the second step, we iteratively refine a trivial assignment where each liquid type variable is
assigned the conjunction of all logical qualifiers until we find the least fixpoint solution for all the simplified
constraints or determine that the constraints have no solution. We first formalize the notion of a solution
and then describe the two-step algorithm that computes solutions.
Satisfying Liquid Assignments. A Liquid Type Assignment A over a set of logical qualifiers Q is a
map from liquid type variables to conjunctions of predicates from Q. Assignments can be lifted to maps
from templates (F) to dependent types (AF) and template environments (Γ) to environments (AΓ), by
substituting each liquid type variable κ with A(κ) and then applying the pending substitutions. A satisfies
a constraint c if Ac is valid. That is, A satisfies a well-formedness constraint Γ ` F if Shape(Γ) ` AF , and
a subtyping constraint Γ `Q F1 <: F2 if AΓ `Q AF1 <: AF2. A satisfies a set of constraints C if it satisfies
each constraint in C.
Step 1: Splitting into Simple Constraints. First, we call Split,which uses the rules for well-formedness
and subtyping (Figure 3) to convert all the constraints over complex types (e.g., function types) into simple
constraints over base types. An assignment satisfies C iff it satisfies Split(C).

Example: Splitting. The well-formedness constraint ∅ ` x :κx→y :κy→κ1 splits into the three simple con-
straints: ∅ ` κx, x :κx ` κy and x :κx; y :κy ` κ1, which ensure that: the parameter x must have a refinement
over only constants as the environment has no bindings and the value variable ν; the parameter y must
have a refinement over only x and ν; and the output type’s refinement can refer to both parameters x, y
and the value variable. Constraints (4.6),(4.7),(4.8) from Section 2, are the result of splitting The function
subtyping constraint generated by the call foldn (len a) 0 am shown in (4.4) splits into the simple subtyping
constraints (4.6),(4.7),(4.8). Notice how substitution and contravariance combine to cause the flow of the
bounds information into input parameter κk (4.6) thus allowing the system to statically check the array
access.
Step 2: Iterative Weakening. Next, we call the procedure Solve, shown in Figure 5, to find a solution for
the simple constraints. Solve takes a set of simple constraints and a finite set of logical qualifiers and returns
either an assignment satisfying the constraints or fails indicating that no such assignment exists. Solve starts
with an initial assignment that maps each liquid type variable to the conjunction of all the logical qualifiers
Q, and then repeatedly picks a constraint that is not satisfied by the current assignment and refines the
assignment by removing qualifiers that prevent the constraint from being satisfied. For unsatisfied constraints
of the form: (1) Γ ` {ν :B | θ · κ}, we remove from the assignment for κ all the qualifiers q such that the ML
type of θ · q (the result of applying the pending substitutions θ to q) cannot be derived to be bool in the
environment Shape(Γ); ν :B, (2) Γ `Q {ν :B | ρ} <: {ν :B | θ · κ}, where ρ is either a refinement predicate or
a liquid variable with pending substitutions, we remove from the assignment for κ all the logical qualifiers q

13

such that the implication ([[AΓ]] ∧ [[Aρ]]) ⇒ θ · q is not valid in EUFA. (3) Γ `Q {ν :B | ρ} <: {ν :B | e}, the
weakening procedure, and therefore Solve, returns Failure.
Correctness of Solve. For two assignments A and A′, we say that A ≤ A′ if for all κ, the set of logical
qualifiers whose conjunction is A(κ) contains the set of logical qualifiers whose conjunction is A′(κ). We
can prove that if a set of constraints has a solution over Q then it has a unique minimum solution w.r.t.
≤. Intuitively, the iterative weakening starts with the least possible solution where each liquid variable is
assigned the conjunction of all qualifiers and then iteratively weakens the assignment until the minimum
solution is found. The correctness of Solve follows from the following invariant about the iterative weakening:
if A∗ is the minimum assignment that satisfies all the constraints, then in each iteration, the assignment
A ≤ A∗. Thus, if Solve(C, Q) returns a solution then it is the minimum solution for C over Q. If at some
point a constraint Γ `Q {ν :B | ρ} <: {ν :B | e} is unsatisfied, subsequent weakening cannot make it become
satisfied, and so if Solve(C, Q) returns Failure then C has no solution over Q.

By combining the steps of constraint generation, splitting and solving, we obtain our dependent type
inference algorithm Infer shown in Figure 5. The algorithm takes as input an environment Γ, an expression
e and a finite set of logical qualifiers Q, and determines whether there exists a valid liquid type derivation
over Q for e in the environment Γ.

Theorem 2. [Liquid Type Inference]

1. Infer(Γ, e, Q) terminates,

2. If Infer(Γ, e, Q) = S then Γ `Q e : S, and,

3. If Infer(Γ, e, Q) returns Failure then there is no S, Γ `Q e : S.

Due to space constraints the proof of the above theorem is omitted, but can found in [1]. Using standard
worklist-based techniques, Infer can be implemented so that its running time is linear in the size of the ML
type derivation times the number of qualifiers.

4.4 Features of Liquid Type Inference

Next, we discuss some features of the inference algorithm.
1. Type Variables and Polymorphism. There are two kinds of type variables used during inference:
ML type variables α obtained from the ML types returned by HM, and liquid type variables κ introduced
during liquid constraint generation to stand for unknown liquid types. Our system is monomorphic in the
liquid type variables – polymorphism only enters via the ML type variables as fresh liquid type variables are
created at each point where an ML type variable α is instantiated with a monomorphic ML type.
2. Whole Program Analysis and Non-General Types. Due to the above, the types we obtain
for function inputs are the strongest liquid supertype of all the arguments passed into the function. This
is in contrast with ML type inference which infers the most general type of the function independent of
how the function is used. For example, consider the function neg defined as fun x -> (-x), and sup-
pose that Q = {0 ≤ ν, 0 ≥ ν}. In a program comprising only the above function i.e., where the function
is never passed arguments, our system infers neg :: {0 ≤ ν ∧ 0 ≥ ν}→{0 ≤ ν ∧ 0 ≥ ν} which is useless but
sound. If neg is only called with (provably) non-negative (resp. non-positive) arguments, the system in-
fers neg :: {0 ≤ ν}→{0 ≥ ν} (resp. neg :: {0 ≥ ν}→{0 ≤ ν}) If neg is called with arbitrary arguments, the
system infers neg :: int→int and not a more general intersection of function types. We found this design
choice greatly simplified the inference procedure by avoiding the expensive “case splits” on all possible in-
puts [14] while still allowing us to prove the safety of challenging benchmarks. Moreover, we can represent
the intersection type in our system as: x :int→{(0 ≤ x⇒ 0 ≥ ν) ∧ (0 ≥ x ⇒ 0 ≤ ν)}, and so, if needed, we
can recover the precision of intersection types by using qualifiers containing implications. Of course, as our
system is a whole program analysis, for open systems e.g., libraries, manual annotations remain the only
way to specify API usage.
3. Scoping and Well-formedness. The wellformedness constraints ensure that types are inferred
soundly regardless of the free variables that appear in the qualifiers. If the set of constraints has a solution,

14

system solves the constraints, then by Theorem 2 a valid type derivation exists and by Theorem 1 no run
time errors occur.
4. A-Normalization. Recall the sum example from Section 2. Our system as described would fail to infer
that the output type of: let rec sum k = if k < 0 then 0 else (s + sum (k-1)) was non-negative,
as it cannot use the fact that sum (k-1) is non-negative when inferring the type of the else expression. This
is solved by A-Normalizing [12] the program so that intermediate subexpressions are bound to temporary
variables, thus allowing us to use information about types of intermediate expressions, as in the original sum
implementation.

Cons(Γ, e) =
match e with
| x −→

if HM(Γ, e) = B then ({ν :B | ν = x}, ∅)
else (Γ(x), ∅)

| c −→
(ty(c), ∅)

| e1 e2 −→
let (x :Ff → Fo, C1) = Cons(Γ, e1) in
let (Fa, C2) = Cons(Γ, e2) in
([e2/x]Fo, C1 ∪ C2 ∪ {Γ `Q Fa <: Ff})

| λx.e1 −→
let (x :Ff → Fo) = Fresh(HM(Shape(Γ), e)) in
let (Fb, Cb) = Cons(Γ; x :Ff , e1) in
(x :Ff → Fo, Cb ∪ {Γ ` x :Ff → Fo}∪
{Γ; x :Ff `Q Fb <: Fo})

| if e1 then e2 else e3 −→
let F = Fresh(HM(Shape(Γ), e)) in
let (, Cg) = Cons(Γ, e1) in
let (Ft, Ct) = Cons(Γ; e1, e2) in
let (Fe, Ce) = Cons(Γ;¬e1, e3) in
(F, Cg ∪ Ct ∪ Ce ∪ {Γ ` F}∪
{Γ; e1 `Q Ft <: F}∪
{Γ;¬e1 `Q Fe <: F})

| let x = e1 in e2 −→
let F = Fresh(HM(Shape(Γ), e)) in
let (Fx, Cx) = Cons(Γ, e1) in
let (Fb, Cb) = Cons(Γ; x :Fx, e2) in
(F, Cx ∪ Cb ∪ {Γ ` F}∪
{Γ; x :Fx `Q Fb <: F})

| [Λα]e −→
let (F, C) = Cons(Γ, e) in
(∀α.F, C)

| [τ]e −→
let Fi = Fresh(τ) in
let (∀α.F, C) = Cons(Γ, e) in
([Fi/α]F, C ∪ {Γ ` Fi})

Figure 4: Liquid Constraint Generation

Refine(A, c) =
match c with
| Γ ` {ν :B | θ · κ} −→

let Q′ = {q | Shape(Γ); ν :B ` θ · q : bool} in
A[κ 7→ A(κ) ∩Q′]

| Γ `Q {ν :B | ρ} <: {ν :B | θ · κ} −→
let Q′ = {q | [[AΓ]] ∧ [[Aρ]] ⇒ [[θ · q]]} in
A[κ 7→ A(κ) ∩Q′]

| −→ Failure

Solve(C, A) =
if exists c ∈ C such that A c is not valid
then Solve(C, Refine(A, c)) else A

Infer(Γ, e, Q) =
let (F, C) = Cons(Γ, e) in
let A = Solve(Split(C), λκ.Q) in
A(F)

Figure 5: Liquid Constraint Solving

5 Experimental Results

We now describe our implementation of liquid type inference in the tool Dsolve which does liquid type
inference for Ocaml. We describe experiments which demonstrate, over a set of benchmarks that were pre-

15

Size DML Dsolve
Program Line Char Line Char Line Char Time (s)

dotprod 7 158 3 (30%) 110 (41%) 0 (0%) 0 (0%) 0.43
bcopy 8 199 3 (27%) 172 (46%) 0 (0%) 0 (0%) 0.32
bsearch 24 486 3 (11%) 157 (24%) 0 (0%) 0 (0%) 0.96
queen 30 886 7 (19%) 309 (26%) 0 (0%) 0 (0%) 1.67
isort 33 899 12 (27%) 702 (44%) 0 (0%) 0 (0%) 1.97
tower 36 927 8 (18%) 348 (27%) 1 (2%) 28 (2%) 5.66
matmult 43 797 10 (19%) 454 (36%) 0 (0%) 0 (0%) 2.94
heapsort 85 1414 11 (12%) 433 (23%) 0 (0%) 0 (0%) 1.67
fft 107 3279 13 (11%) 790 (19%) 1 (1%) 27 (1%) 20.36
simplex 118 2712 33 (22%) 1913 (41%) 0 (0%) 0 (0%) 12.92
gauss 142 2431 22 (13%) 999 (29%) 1 (1%) 67 (2%) 5.01
TOTAL 633 14188 125 (17%) 6387 (31%) 3(1%) 122(1%)

qsort-o 62 1585 0 (0%) 0 (0%) 4.25
qsort-d 112 2735 5 (5%) 172 (6%) 17.53
bitv 85 1982 3 (4%) 110 (6%) 4.59

Table 1: Experimental Results: Size is the amount of program text (without annotation) after removing
whitespace and comments from the code. DML is the amount of manual annotation required in the DML
versions of the benchmarks. Dsolve is the amount of manual annotation required, but not automatically
generated, by Dsolve. Time describes the time taken by Dsolve to infer dependent types for each of the
examples.

viously annotated in the DML project [23], that liquid types greatly reduce (often eliminate) the significant
burden of manual dependent type annotation required to prove the safety of array accesses.

Dsolve takes as input a closed Ocaml program and a set of qualifiers Q, and outputs the dependent
types inferred for the program expressions and the set of applications of primitive operations that could not
statically be proven safe (ideally empty). Dsolve is built on top of Ocaml, and uses the Ocaml parser,
type inference engine (to implement the oracle HM), and also outputs the inferred dependent types in the
.annot files produced during compilation so that they may be inspected easily.
Automatic Qualifier Generation. To automatically generate qualifiers, we observe that array bounds
checking typically depends on the relative ordering of integer expressions. Thus, our qualifier generator tra-
verses the program AST and creates qualifiers ν ./ x where ./∈ {<,≤,=, >,≥} and x is an integer constant,
an integer variable, or len a where a is an array. Next we show experimental results demonstrating that
liquid type inference over the automatically generated qualifiers almost always suffices to prove the safety of
all array accesses. Even in the rare cases where Dsolve needs extra qualifiers, the types inferred by Dsolve
using only the generated qualifiers help the programmer quickly identify the relevant extra qualifiers.
Benchmarks. We use benchmarks from the DML project [22] (ported to Ocaml), that were previously
annotated with dependent types with the goal of statically proving the safety of array accesses [23]. The
benchmarks are listed in the first column of Table 1. The second column indicates the size of the benchmark
(ignoring comments and whitespace). The benchmarks include Ocaml implementations of: the Simplex
algorithm for Linear Programming (simplex), the Fast Fourier Transform (fft), Gaussian Elimination
(gauss), Matrix Multiplication (matmult), Binary Search in a sorted array (bsearch), computing the Dot
Product of two vectors (dotprod), Insertion sort (isort), the n-Queens problem (queen), the Towers of
Hanoi problem (tower), a fast byte copy routine (bcopy), Heap sort (heapsort). The above include all
DML array benchmarks except (quicksort), whose invariants remain unclear to us at time of writing. In
addition, we ran Dsolve on a simplified Quicksort routine from Ocaml’s Sort module (qsort-o), a version
ported from the DML (qsort-d) where one optimization is removed, and Bitv, an open source bit vector
library (bitv).
Array Bounds Checking Results. As shown in column Dsolve of Table 1, for the large majority
of programs, unlike DML, Dsolve needs no extra annotations. The qualifiers generated by the simple
syntactic method suffice to prove the safety of all array accesses in a fully automatic manner. For some of
the examples, e.g., tower, we do need to provide extra qualifiers. However, even in this case, the annotation
burden is typically just a few qualifiers. For example, in tower, we require a qualifier which is analogous to
ν = n − h1 − h2, which describes the height of the “third” tower, capturing the invariant that the height
is the total number of rings n minus the rings in the first two towers. For bitv, one qualifier states the

16

key invariant about the record-based implementation of the bitvector, and the others could be generated by
extending the heuristic to include record fields. The time for inference is robust to the number of qualifiers,
as most qualifiers are pruned away by the well-formedness constraints. This enables the use of a simple
and greedy qualifier generation method. In our prototype implementation, the time taken for inference is
reasonable even for non-trivial benchmarks like simplex and fft.
Case Study: Bit Vectors. A bit vector is an arbitrarily-sized array of bits which supports accessors,
boolean operations, etc. We used Dsolve to verify the safety of bit vector creation, initialization, and
accessors in the Bitv library[8] which represents bit vectors as records with two fields: length, the integral
number of bits it contains, and bits, an integer array containing the data. If b is the number of bits stored
per array element, length and bits are related by (len bits− 1) · b < length ≤ (len bits) · b.

Dsolve found a serious off-by-one error in Bitv’s blit function (in the latest v0.6), which copies c
bits from v1, starting at bit offset1, to v2, starting at bit offset2. This function first checks that the
arguments passed are safe, and then calls a fast but unsafe internal function unsafe blit.

let blit v1 offset1 v2 offset2 c =
if c < 0 || offset1 < 0 || offset1 + c > v1.length

offset2 < 0 || offset2 + c > v2.length
then invalid_arg "Bitv.blit";
unsafe_blit v1.bits offset1 v2.bits offset2 c

unsafe blit immediately accesses the bit at offset1 in v1, regardless of the value of c. When the pa-
rameters are such that: offset1 = v1.length and v1.length mod b = 0 and c = 0, the unsafe blit
attempts to access the bit at index v1.length, which must be located in v1.bits[v1.length / b]; but
this is v1.bits[len v1.bits], which is out of bounds and can cause a crash, as we verified with a simple
input. The problem is an off-by-one error in the test performed in blit, that is fixed by replacing the > test
with >=. Dsolve successfully typechecks the fixed version.

6 Related Work

The first component of our approach is predicate abstraction, [15] which has its roots in early work on ax-
iomatic semantics [7]. Predicate abstraction has proven extremely effective for the path-sensitive verification
of imperative programs [11, 4, 25], and forms the algorithmic core of industrial-strength tools like SLAM [3].
While it is very effective for control-dominated software, it is less effective for automated reasoning about
complex data and higher-order control flow.

The second component of our approach is constraint-based program analysis, an example of which is
the ML type inference algorithm. Unlike other investigations of type inference for HM with subtyping e.g.,
[21, 20, 17, 10], our goal is algorithmic dependent type inference, which requires incorporating path-sensitivity
and decision procedures for EUFA. We also draw inspiration from type qualifiers [13] that refine types with a
lattice of built-in and programmer-specified annotations. Our Shape and Fresh functions are similar to strip
and embed from [13]. Liquid types extend qualifiers by assigning them semantics via logical predicates, and
our inference algorithm combines value flow (via the subtyping constraints) with information drawn from
guards and assignments. The idea of assigning semantics to qualifiers has been proposed recently [5], but
with the intention of checking and inferring rules for qualifier derivations. Our approach is complementary
in that the rules themselves are fixed, but allow for the use of guard and value binding information in their
derivation, thereby yielding a more powerful analysis. For example, it is unclear whether the approach of
[5] would be able to prove the safety any of the above programs, due to the inexpressivity of the qualifiers
and inference rules. On the other hand, our technique is more computationally expensive as the decision
procedure is integrated with type inference.

The notion of type refinements was introduced in [14] with refinements limited to restrictions on the
structure of algebraic datatypes, for which inference is decidable. DML(C) [24] extends ML with dependent
types over a constraint domain C; type checking is shown to be decidable modulo the decidability of the
domain, but inference is still undecidable. Liquid types can be viewed as a controlled way to extend the
language of types using simple predicates over a decidable logic, such that both checking and inference remain

17

decidable. Our notion of variables with pending substitutions is inspired by a construct from [16], which
presents a technique to reconstruct the dependent type of an expression that captures its exact semantics
(analogous to strongest postconditions for imperative languages). The technique works in a restricted setting
without polymorphism and the reconstructed types are terms containing existentially quantified variables
(due to variables that are not in scope), and the fix operator (used to handle recursion), which make static
reasoning impossible.

References

[1] Anonymous. Please contact PC chair for details.

[2] L. Augustsson. Cayenne - a language with dependent types. In ICFP, 1998.

[3] T. Ball and S.K. Rajamani. The SLAM project: debugging system software via static analysis. In
POPL, pages 1–3. ACM, 2002.

[4] S. Chaki, J. Ouaknine, K. Yorav, and E.M. Clarke. Automated compositional abstraction refinement
for concurrent C programs: A two-level approach. In SoftMC, 2003.

[5] B. Chin, S. Markstrum, T. D. Millstein, and J. Palsberg. Inference of user-defined type qualifiers and
qualifier rules. In ESOP, pages 264–278, 2006.

[6] L. Damas and R. Milner. Principal type-schemes for functional programs. In POPL, 1982.

[7] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[8] J.-C. Filliátre. Bitv: a bit vectors library. http://www.lri.fr/ filliatr/software.en.html.

[9] C. Flanagan. Hybrid type checking. In POPL. ACM, 2006.

[10] C. Flanagan and M. Felleisen. Componential set-based analysis. ACM TOPLAS, 21(2):370–416, 1999.

[11] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In POPL. ACM, 2002.

[12] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. In
PLDI, 1993.

[13] J.S. Foster. Type Qualifiers: Lightweight Specifications to Improve Software Quality. PhD thesis, U.C.
Berkeley, 2002.

[14] T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, 1991.

[15] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV, LNCS 1254, pages
72–83. Springer, 1997.

[16] K. Knowles and C. Flanagan. Type reconstruction for general refinement types. In ESOP, 2007.

[17] P. Lincoln and J. C. Mitchell. Algorithmic aspects of type inference with subtypes. In POPL, Albe-
querque, New Mexico, 1992.

[18] G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo Alto Research
Center, 1981.

[19] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with dependent types. In IFIP TCS,
pages 437–450, 2004.

[20] F. Pottier. Simplifying subtyping constraints. In ICFP, New York, NY, USA, 1996. ACM Press.

[21] M. Sulzmann, M. Odersky, and M. Wehr. Type inference with constrained types. In FOOL, 1997.

18

[22] H. Xi. DML code examples. http://www.cs.bu.edu/fac/hwxi/DML/.

[23] H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In PLDI, 1998.

[24] H. Xi and F. Pfenning. Dependent types in practical programming. In POPL, pages 214–227, 1999.

[25] Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In POPL, pages 351–363,
2005.

A Liquid Recursive Types

We now show how the type system and inference algorithm described so far can be smoothly extended to
reason about recursively-defined datatypes. As we shall demonstrate, in this setting the ML type system
and predicate abstraction combine in a truly synergistic manner to enable the automatic inference of pro-
gram properties that are well beyond the approach of the individual analyses. In the sequel, we focus on
recursive list types — it is straightforward (but space-consuming, and not especially edifying) to generalize
the technique to full ML style recursive datatypes.
Guarded Polymorphic Lists. We extend λL with a special type for lists, defined as follows:

type α list = [] where g[]
| :: of (x1 :α, x2 :α list) where g::

This declaration is almost the same as in ML, except that as for functions, we name the parameters passed
to the constructors, and, for each constructor, [] and ::, we have a guard, a λL boolean expression over
ν and the variables used by the constructor, that describes some property of the constructed expression in
terms of the properties of the expressions corresponding to the variables.

For lists, the guard could relate the size of the constructed list to the sizes of x2:

g[]
4
= size v = 0

g::
4
= size v = (1 + size x2)

where size is a special constant, similar to len for the intarray type. Figure 6 shows how the language
of expressions is extended to handle lists: in addition to expressions [] and :: used to create lists, we have
the usual match expression to operate on lists.
Liquid Lists. Figure 6 shows how we extend the language of types to incorporate lists. A dependent list
type is of the form {ν : T list | e} where T is an element dependent type describing every element of the list,
and e is a list refinement predicate constraining the value of the list itself. A liquid list type is a dependent
list type where all the refinement predicates are conjunctions of predicates from the set of logical qualifiers
Q. We write T list as an abbreviation for {ν : T list | true}. Thus, an ML list type is a dependent list
type where all refinement predicates are true.

For example, the type {ν : int | 0 ≤ ν} list specifes lists of non-negative integers. The type

{ν : {ν′ : int | 100 ≤ ν′} list | 0 < size ν}

specifies non-empty lists of integers greater than or equal to 100. The fact that the list is non-empty, or
rather, not a [] value, is implied by the list refinement predicate which implies that the list cannot satisfy
the guard g[] for [] lists, a property formalized via our type checking rules, described next.
Type Checking. Figure 6 shows the syntax-directed type checking rules for lists. The rule for [] specifies
that the empty list can have any liquid element type, and the refinement predicate is g[]. The rule for ::
stipulates that the element type of the constructed list must be a liquid type such that the “head” element
has that type, and the “tail” is a list of elements of that liquid type. The rule ensures that whenever a
list is constructed, its element type is liquid, as it must over-approximate (i.e., be the “join” of) the head
and tail values. The refinement predicate is the guard predicate with the variables x1, x2 from the list
type definition substituted with the actual expressions passed to the constructor, analogous to the result of

19

Syntax
e ::= . . . Expressions:

| [] list-empty
| e::e list-cons
| (match e with []→ e | x1::x2→ e) list-match

T(B) ::= . . . Skeletons:
| {ν : T(B) list | B} list type

Subtyping Γ, G ` S1 <: S2

Γ, G ` T1 <: T2 Γ, G ` e1 ⇒ e2

Γ, G ` {ν : T1 list | e1} <: {ν : T2 list | e2}
[<:-List]

Well-Formed Types Γ ` S

Γ ` S Γ[ν 7→ S list] ` e : bool

Γ ` {ν : S list | e}
[WF-List]

Liquid Type Checking Γ, G ` e : S

Γ, G ` [] : {ν : T̂ list | g[]}
[T̂ -Nil]

Γ, G ` e1 : T̂ Γ, G ` e2 : T̂ list

Γ, G ` e1::e2 : {ν : T̂ list | [e1, e2/x1, x2]g::}
[T̂ -Cons]

Γ, G ` e1 : {ν : T list | e}
Γ, G ∧ [e1/ν]g[] ` e2 : T̂ Γ[x1 7→ T ; x2 7→ T list], G ∧ [e1/ν]g:: ` e3 : T̂

Γ, G ` (match e1 with []→ e2 | x1::x2→ e3) : T̂
[T̂ -Match]

Figure 6: Rules for Lists

function application, rule T̂ -App from Figure 3. The rule for the match expression checks the expression
being pattern-matched on is a list, and uses the type of the list and the constructor guards to extend the
type and guard environments appropriately when checking the individual cases. Again, as this is a “join”
point, we require that the type of the entire match expression be liquid. Theorem 1 about the soundness of
the typechecking rules continues to hold with lists.
Type Inference. As before, we assume that the expression typechecks under the ML type system, and use
the results of ML type inference to generate a system of constraints in a syntax-directed manner mimicking
the typechecking rules. For brevity, we have omitted the defintions of Shape, Fresh, and Cons, and Push
for lists. Observe that we have already given such definitions for a datatype constructor, →, which is
contravariant in its first arugment and covariant in its second. The definitions of these functions applied to
covariant lists follow a similar pattern.

Once the constraints are generated and split, solving proceeds exactly as before, via the iterative refine-
ment described in Figure 5. Propositions ?? and ?? and Theorem 2 about the correctness and running time
of the inference procedure continue to hold in this setting.
Example. We now show a small example to illustrate how our system works. It is easy to check that, using
the set of logical qualifiers Q = {0 ≤ ν; 0 < size ν}, our system allows us to derive:

∅, true ` [] : {ν : {ν : int | 0 ≤ ν} list | size ν = 0}

20

and from this, derive:

∅, true ` let nil = [] in (1::nil) : {ν : int | 0 ≤ ν} list
∅, true ` let nil = [] in (1::nil) : {ν : int list | 0 < size ν}

Using the above qualifiers, our rules allow us to check that:

let nil = [] in
let x = 1::nil in
(match x with []→ error 0 | x1::x2→ x1)

has the type {ν : int | 0 ≤ ν}. That is, the type system can statically infer that the [] pattern is never
matched, and the result of the expression is non-negative. This is because in the [] case, the application
error 0 is checked under the type environment: Γ

4
= [x 7→ {ν : {ν : int | 0 ≤ ν} list | 0 < size ν}] and

guard environment G
4
= size x = 0 obtained by substituting x for ν in g[]. It is easy to see that in this

case, Γ, G ` e ⇒ false and so the application to error typechecks, and its result has the type false which
is a subtype of {ν : int | 0 ≤ ν}. In the :: case, the x1 is checked under an environment where its type is
bound to the list refinement predicate, and thus can be shown to be non-negative.
A-Normalization. Note that derivations like the one at the end of the previous section fail without the
use of nil (i.e., if a type constructor like :: is applied to arbitrary expressions whose types are not “bound”
in the environment). However, we can simply sidestep this issue by first converting to A-Normal Form[12],
where all the intermediate subexpressions get bound to temporary variables, thereby allowing us to infer the
strongest possible liquid types.

B Other Applications of Liquid Types

We now demonstrate the expressiveness and flexibility of our technique by showing some interesting examples
that our implementation can prove safe via liquid type inference. For clarity, we have elided quantifiers ∀α
from polymorphic types.
Divide By Zero. Conside the integer truncation function “Truncation”, shown in Figure 7. Recall that /
is a constant of the type x :int→ y :{ν : int | ν 6= 0} → int. Using the logical qualifiers Q = {0 ≤ ν}, our
system is able to infer that abs from Section 1 has the liquid type int → {ν :int | 0 ≤ ν}. Thus, both ia
and na have the type {ν :int | 0 ≤ ν}. This, coupled with the guard ¬(ia ≤ na) in the else branch allows the
system to infer that the ia passed to the divide function (in the else branch) has the type {ν : int | 0 < ν},
a subtype of the input type, allowing the type system to statically prove that no divide by zero errors occur
at runtime.
Array Bounds Violations. Consider the function bsearch from [23], shown in the “Binary Search” box
of Figure 7. Our system is able to infer that all array accesses in the are safe using just the logical qualifiers
Q = {0 ≤ ν; ν < len a}. The generated constraints have the minimal assignment which yields the liquid
type: l :{ν :int | 0 ≤ ν} → h :{ν :int | ν < (len a)} → int for the function look . Note that the subtyping
constraints from the curried application look 0 (len a − 1) are trivially satisfied by this assignment. It is
easy to check (and for the theorem prover to prove) that in an environment where l and h are bound to the
types specified above, and where l ≤ h, the expression bound to m, and therefore m, is also non-negative and
less than len a, thereby meeting the subtyping requirements at the array access applications. Thus at both
the recursive call sites inside look , the arguments are subtypes of the parameters for look in the assignment
described above.

In a similar manner, we can statically prove that all the array accesses from the “Dot
Product” function dotprod of Figure 7 (adapted from [23]) are safe, using the logical qualifiers:
Q = {0 ≤ ν; ν ≤ len u; ν ≤ len v}. The system infers the liquid type: i :{ν :int | 0 ≤ ν} →
n :{ν :int | ν ≤ (len u) ∧ ν ≤ (len v)} → int for the function loop. To see why this is a valid fixpoint
solution, observe that under the environment where i and n are bounded as specified above, and ¬(i ≥ n) (in
the else branch): (1) the value i used to access the array has a type that is within bounds, and, (2) (i + 1)
is non-negative, and n continues to be bounded as above, meeting the subtype requirements at the recursive

21

callsite. The “base” application also meets the requirements as 0 ≤ 0 and the guard in the branch ensures
that N gets the liquid type: {ν :int | ν ≤ (len u) ∧ ν ≤ (len v)} meeting the requirements of the inferred
type for loop. If the dot product were computed using an accumulator like foldn instead, our system would
still be able to prove the accesses safe, using the same set of qualifers, using reasoning similar to that used
for magnitude in Section ??.
List Data. Next, we show a few examples that illustrate how the liquid type inference algorithm can
statically prove properties of programs manipulating recursive data structures. The box “Generate” in
Figure 7 shows a function generate that, given a parameter n, a base value b, and function f , generates
the list [f0(b); . . . ; fn(b)]. ML type inference finds that generate has the ML type (α → α) → α → int →
α list. Using the qualifier set Q = {0 < ν}, we are able to determine that the function double has the type
k :{ν : int | 0 < ν} → {ν : int | 0 < ν}, i.e., when applied to a positive number, it returns a positive number.
As the “base” parameter 1 is positive, our system infers that that the list generated by generate double 1 10
has the type {ν :int | 0 < ν} list.

This is effected by automatically instantiating the polymorphic type variable α with a fresh liquid type
variable κ. and generating the constraints: · ` κ1 → κ2 <: κ → κ, · ` {ν :int | ν = 1} <: κ, for the curried
application to generate, where κ1 → κ2 is the template for double, whose body generates the constraint:
[k 7→ κ1], true ` {ν :int | ν = k + k} <: κ2. As the minimal satisfying assignment to these constraints maps
κ, κ1, κ2 to 0 < ν, the system infers that the output is a list of positive integers.
Uninterpreted Functions. Next, we show an example illustrating how uninterpreted functions combine
with polymorphism to allow us to statically prove properties that may at first blush seem only to be within
the grasp of dynamic checking. Consider the mapfilter function shown in “Map Filter” of Figure 7. λL can
encode the polymorphic option type in a manner akin to lists. mapfilter has the type: (α → β option) →
α list → β list. Using the logical qualifier prime ν, and generating constraints on fresh liquid type
variables corresponding to the instantiation of polymorphic type variables, our system infers that xs ′ has the
liquid type {ν : int | prime ν} list, and so x1 has the liquid type {ν : int | prime ν}, which, by treating
applications of prime as an applications of uninterpreted functions, as is done in our embedding to the
decidable logic, suffices to typecheck the program. Thus, we prove that the error in the else branch is never
called! Of course, the system has not proved that x1 is a prime integer, merely that applications prime x1

always evaluate to true. We note that our system would not work for the usual filter function as we currently
prohibit refinements of values whose base type is a polymorphic type variable.
List Sizes. The box “Append” in Figure 7 shows the append function on two lists. Using only the logical
qualifier: Q = {size ν = size l + size m}, our system infers that append has the liquid type l :α list →
m :α list→ L(l,m) where L(l,m) is an abbreviation for {ν :α list | size ν = size l + size m}.

To derive this type, our system infers that both branches of the match return values of the type L(l, m).
This trivially holds for the [] case, which is is evaluated under a guard environment strengthened with
[l/ν]g[]. In the x1::x2 case, notice that the guard environment contains contains the predicate [l/ν]g::,
which is size l = size x2 + 1. In the fixpoint solution, the system uses the type environment assump-
tion that the return value of append is L(m,n) to infer that the expression append x2 m has the type
{ν :α list | size ν = size x2 + size m}. This, coupled with the guard predicate g::, allows the system to
infer that the type of x1::(append x2 m) is {ν :α list | size ν = size x2 + size m + 1}. As this occurs in
the case where l matches with x1::x2, the predicate [l/ν]g:: in the guard environment allows the system to
infer in that environment, {size ν = size x2 + size m + 1} is a subtype of {size ν = size l + size m},
thereby showing that the inferred type is indeed a fixpoint.

Using similar reasoning, our system infers, using only the logical qualifers Q = {size ν ≤ size l}, that
mapfilter from box “Map Filter” in Figure 7, has the liquid type:

(α → β option) → α list→ {ν :β list | size ν ≤ size l}

and a similar type for the usual filter function (here the required refinement is on the list, not a polymorphic
type variable). Note that, by constraining the output value’s size, our system avoids the need for existentially
quantified types [23].
Pattern Match Errors. Finally, we note that liquid types can be used to statically prove the redun-
dancy of certain cases of match expressions. Using only the logical qualifiers Q = {0 < size ν} our system

22

let trunc = λn. λi. Truncation
let ia = abs i in
let na = abs n in

if ia ≤ na then i else na ∗ (i/ia)

let bsearch = λk.λa. Binary Search

let rec look = λl.λh.
if l ≤ h then

let m = l + ((h− l)/2) in

if (sub a m) = k then m else

if (sub a m) < k then look l (m− 1)
else look (m + 1) h

else (−1)
in look 0 ((len a)− 1)

let dotprod = λu.λv. Dot Product
let rec loop = λi.λn.λs.

if n ≤ i then s
else loop (i + 1) n (s + ((sub u i) ∗ (sub v i))) in

let N = if len u < len v then (len u) else (len v) in

loop 0 N 0

let rec generate = λf.λb.λn. Generate
if n = 0 then b::[]
else let h = f b in h::(generate (n− 1) f h) in

let double = λk.k + k in

generate double 1 10

let rec mapfilter = λf.λl. MapFilter

match l with []→ []

| (x1::x2) →
match f h with None→ mapfilter f x2

| Some x → x::(mapfilter f x2) in

. . .
let prime = λx.(∗ tricky primality test∗) in

. . .
let xs ′ =

mapfilter (λx. if prime x then Some x else None) xs
in . . .
match xs ′ with []→ . . .
| x1::x2 → if prime x1 then . . . else error 0

let rec append = λl.λm. Append

match l with []→ m
| x1::x2 → (x1::(append x2 m))

let pow2 = λn. Power 2
let x = generate double 1 n
(match x with []→ error 0 | x1::x2→ x1)

Figure 7: Liquid Type Examples

infers that the function generate in the box “Generate”, has the liquid type (α → α) → α → int →
{ν :α list | 0 < size ν}. Consider the function pow2 in the box “Power 2” in Figure 7. Our system uses

23

the liquid type inferred for generate, to infer that x has the liquid type {ν :int list | 0 < size ν}, i.e., is
not an empty list. Using reasoning similar to the example from Section A, our system is able to typecheck
pow2 by showing that error is never called.

C Formal Semantics of λL

Syntax. The syntax for λL expressions, types and schemas is shown in Fig 2.

Dynamic Semantics. The (call-by-value) dynamic semantics of λL, are formalized using the usual, small-
step (contextual) operational semantics, whose rules are shown in Figure 8.

Static Semantics. The exact dependent type derivation rules of λL, that yield judgements of the form
Γ ` e : S, are shown in Figures 9 and 10. The rules for liquid type derivation, from Figure 3 are a conservative
approximation of the exact rules (Theorem 5).

Contexts C
v ::= Values:

| c constants
| λx.e λ-terms

C ::= Contexts:
| • hole
| C e application left
| v C application right
| if C then e else e if-then-else
| let x = C in e let-binding

Evaluation e ↪→ e′

c v ↪→ [[c]](v) [E-Prim]
(λx.e) v ↪→ [v/x]e [E-β]

if true then e else e′ ↪→ e [E-If-True]
if false then e else e′ ↪→ e′ [E-If-False]

let x = v in e ↪→ [v/x]e [E-Let]
C[e] ↪→ C[e′] if e ↪→ e′ [E-Compat]

Figure 8: Small-Step Operational Semantics

D Correctness of Type Checking

Definition 1. (Constants) Each constant c has a type ty(c) such that:

1. ∅ ` ty(c),

2. If ty(c) is x :T1 → T2 then for all values v such that ∅ ` v : T1, [[c]](v) is defined and, ∅ ` [[c]](v) :
[v/x]T2, and,

3. If ty(c) is {ν :B | e} then e ≡ ν = c.

Definition 2. (Embedding) We define [[]] to be a map from expressions and environments to formulas in
a decidable logic such that for all Γ, e1, e2, if Γ ` e1 : bool, Γ ` e2 : bool, Valid([[Γ]] ∧ [[e1]] ⇒ [[e2]]), then
Γ ` e1 ⇒ e2.

Lemma 1. (Free Variables)

24

Well-Formed Types Γ ` S

Γ; ν :B ` e : bool
Γ ` {ν :B | e}

[WT-Base]
Γ ` α

[WT-Var]

Γ;x :T1 ` T2

Γ ` x :T1 → T2

[WT-Fun]
Γ ` S α 6∈ Γ

Γ ` ∀α.S
[WT-Poly]

Well-Formed Environments ` Γ

` ∅
[WE-Empty]

` Γ Γ ` S

` Γ;x :S
[WE-Ext]

` Γ Γ ` e : bool
` Γ; e

[WE-Gxt]

Well-Formed Substitutions Γ |= ρ

∅ |= ∅
[WS-Empty]

Γ |= ρ ∅ ` v : ρS

Γ;x :S |= ρ; [x 7→ v]
[WS-Ext]

Γ |= ρ ρe
∗

↪→true

Γ; e |= ρ
[WS-Gxt]

Figure 9: Rules for Well-formed Dependent Types, Environments, Substitutions

1. If Γ ` S then FreeVars(S) ⊆ Dom(Γ).

2. If Γ ` e : S then FreeVars(e) ∪ FreeVars(S) ⊆ Dom(Γ).

3. If Γ |= ρ then Dom(ρ) = Dom(Γ) and FreeVars(Rng(ρ)) = ∅.

Proof. Induction on the derivation of Γ ` S, Γ ` e : S, Γ |= ρ respectively.
2

Lemma 2. (Well-Formedness) If Γ ` e : S then Γ ` S.

Proof. Induction on the derivation of Γ ` e : S. 2

Lemma 3. (Substitution Permutation) If Γ |= ρ1; ρ2 then:

1. Dom(ρ1) ∩ Dom(ρ2) = ∅,

2. for all e, (ρ1; ρ2)e = (ρ2; ρ1)e,

3. for all S, (ρ1; ρ2)S = (ρ2; ρ1)S.

Proof. (1) Induction on the derivation of Γ |= ρ1; ρ2 and the fact that a variable is bound at most once in Γ.
(2) As Γ |= ρ1; ρ2, from Lemma 1 we have: FreeVars(Rng(ρ1)) = FreeVars(Rng(ρ2)) = ∅. The proof follows
by induction on the structure of e using (1). (3) Induction on the structure of S using (2). 2

Lemma 4. (Well-formed Substitution)

1. If Γ |= ρ1; ρ2 then there are Γ1,Γ2 such that Γ ≡ Γ1; Γ2, Dom(ρ1) = Dom(Γ1), Dom(ρ2) = Dom(Γ2).

2. If Γ1; Γ2 |= ρ then there are ρ1, ρ2 such that ρ ≡ ρ1; ρ2, Dom(ρ1) = Dom(Γ1), Dom(ρ2) = Dom(Γ2).

3. Γ1; Γ2 |= ρ1; ρ2, Dom(ρ1) = Dom(Γ1), Dom(ρ2) = Dom(Γ2) iff Γ1 |= ρ1, ρ1Γ2 |= ρ2.

Proof. We consider each case in turn.

1. By induction on Γ.

25

Dependent Type Checking Γ ` e : S

Γ ` e : S1 Γ ` S1 <: S2 Γ ` S2

Γ ` e : S2

[T-Sub]

Γ(x) = {ν :B | e}
Γ ` x : {ν :B | ν = x}

[T-Var-Base]
Γ(x) not a base type

Γ ` x : Γ(x)
[T-Var]

Γ ` c : ty(c)
[T-Const]

Γ ` T Γ;x :T ` e1 : T1

Γ ` (λx.e1) : (x :T → T1)
[T-Fun]

Γ ` e1 : (x :T2 → T) Γ ` e2 : T2

Γ ` e1 e2 : [e2/x]T
[T-App]

Γ ` e1 : bool Γ; e1 ` e2 : S Γ;¬e1 ` e3 : S

Γ ` if e1 then e2 else e3 : S
[T-If]

Γ ` e1 : S1 Γ;x :S1 ` e2 : S2 Γ ` S2

Γ ` let x = e1 in e2 : S2

[T-Let]

Γ ` e : S α 6∈ Γ
Γ ` [Λα]e : ∀α.S

[T-Gen]
Γ ` e : ∀α.S Γ ` T Shape(T) = τ

Γ ` [τ]e : [T/α]S
[T-Inst]

Implication Γ ` e1 ⇒ e2

Γ ` e1 : bool Γ ` e2 : bool ∀ρ.(Γ |= ρ and ρe1
∗

↪→true implies ρe2
∗

↪→true

Γ ` e1 ⇒ e2

[Imp]

Subtyping Γ ` S1 <: S2

Γ; ν :B ` e1 ⇒ e2

Γ ` {ν :B | e1} <: {ν :B | e2}
[<:-Base]

Γ ` T ′
2 <: T ′

1 Γ[x 7→ T ′
2] ` T ′′

1 <: T ′′
2

Γ ` x :T ′
1 → T ′′

1 <: x :T ′
2 → T ′′

2

[<:-Fun]

Γ ` α <: α
[<:-Var]

Γ ` S1 <: S2

Γ ` ∀α.S1 <: ∀α.S2

[<:-Poly]

Figure 10: Rules for Dependent Type Checking

2. By induction on ρ2.

3. By induction on Γ2.

26

4. By induction on Γ2.

• case Γ2 ≡ ∅: Trivial, as Dom(ρ2) ⊆ ∅, i.e.,, ρ2 ≡ ∅.
• case Γ2 ≡ Γ′2; e:

Γ1; Γ′2; e |= ρ1; ρ2; ⇐⇒ Γ1; Γ′2; |=ρ1; ρ2, (ρ1; ρ2)e
∗

↪→true

(by rule [WS-Gxt])
⇐⇒ Γ1 |= ρ1, ρ1Γ′2 |= ρ2, (ρ2; ρ1)e

∗
↪→true

(by IH, Lemma 3)
⇐⇒ Γ1 |= ρ1, ρ1Γ′2; ρ1e |= ρ2

(by rule [WS-Gxt])
⇐⇒ Γ1 |= ρ1, ρ1Γ2 |= ρ2

• case Γ2 ≡ Γ′2;x :S:

Γ1; Γ′2;x :S |= ρ1; ρ2; ⇐⇒ Γ1; Γ′2; |=ρ1; ρ′2, ∅ |= v : (ρ1; ρ′2)S, ρ2 ≡ ρ′2; [x 7→ v]
(by rule [WS-Ext])

⇐⇒ Γ1 |= ρ1, ρ1Γ′2 |= ρ′2, ∅ |= v : (ρ′2; ρ1)S, ρ2 ≡ ρ′2; [x 7→ v]
(by IH, Lemma 3, rule [WS-Ext])

⇐⇒ Γ1 |= ρ1, ρ1Γ′2;x :ρ1S |= ρ2

⇐⇒ Γ1 |= ρ1, ρ1Γ2 |= ρ2

2

Corollary 1. (Well-formed Substitution)

1. Γ1;x :Sx; Γ2 |= ρ1; [x 7→ vx]; ρ2 ⇐⇒ Γ1 |= ρ1, ∅ ` vx : ρ1Sx, (ρ1; [x 7→ vx])Γ2 |= ρ2,

2. If Γ |= ρ and x :S ∈ Γ then ∅ |= ρ(x) : ρS.

Proof. Corollary of Lemma 4. 2

Lemma 5. (Weakening) If

Γ = Γ1; Γ2

Γ′ = Γ1;x :Sx; Γ2

x 6∈ FreeVars(Γ2)

then:

1. if Γ′ |= ρ1; [x 7→ v]; ρ2 then Γ |= ρ1; ρ2,

2. if Γ ` e1 ⇒ e2 then Γ′ ` e1 ⇒ e2,

3. if Γ ` S1 <: S2 then Γ′ ` S1 <: S2,

4. if Γ ` S then Γ′ ` S,

5. if Γ ` e : S then Γ′ ` e : S.

Proof. By simultaneous induction on the derivations. Without loss of generality, assume that all type
variables that are generalized under an environment with prefix Γ are suitably α-renamed to variables
different from the free type variables in Sx.

27

1. Assume

Γ′ |= ρ1; [x 7→ v]; ρ2

Using the definition of Γ′ and Corollary 1, we have

Γ1 |= ρ1, ∅ ` v : ρ1Sx, (ρ1; [x 7→ v])Γ2 |= ρ2

As x 6∈ FreeVars(Γ2) we have (ρ1; [x 7→ v])Γ2 ≡ Γ2, thus

Γ1 |= ρ1, ∅ ` v : ρ1Sx, ρ1Γ2 |= ρ2

By Corollary 1,

Γ1; Γ2 |= ρ1; ρ2

Finally, by the definition of Γ

Γ |= ρ1; ρ2

2. Assume

Γ ` e1 ⇒ e2 (a)

From the rule [Imp], we have

Γ ` e1 : bool, Γ ` e2 : bool, (b)
∀ρ.Γ |= ρ and ρe1

∗
↪→true implies ρe2

∗
↪→true (c)

By induction (4.) we conclude that

Γ′ ` e1 : bool, Γ′ ` e2 : bool (d)

Next, consider any ρ′ such that Γ′ |= ρ′ and ρ′e1
∗

↪→true. We shall prove that ρ′e2
∗

↪→true. By Lemma 4,
ρ′ ≡ ρ1; [x 7→ vx]; ρ2 where Dom(ρ1) = Dom(Γ1) and Dom(ρ2) = Dom(Γ2). Consider ρ ≡ ρ1; ρ2. From
(b) and Lemma 1, x 6∈ FreeVars(e1) ∪ FreeVars(e2), and so

ρe1 = ρ′e1, ρe2 = ρ′e2 (e)

applying (c) completes the proof.

3. By induction on the derivation of Γ ` S1 <: S2 and (2.).

• case S1, S2 ≡ α, α: Trivial.

• case S1, S2 ≡ {ν :B | e1}, {ν :B | e2}: Assume

Γ ` S1 <: S2

By rule [<:-Base]

Γ; ν :B ` e1 ⇒ e2

28

By induction (2.)

Γ′; ν :B ` e1 ⇒ e2

By rule [<:-Base]

Γ′ ` S1 <: S2

• case S1, S2 ≡ y :T1 → T ′
1, y :T2 → T ′

2: Assume

Γ ` S1 <: S2

By rule [<:-Fun]

Γ ` y :T2 <: y :T1, Γ; y :T1 ` T ′
1 <: T ′

2

By induction

Γ′ ` y :T2 <: y :T1, Γ′; y :T1 ` T ′
1 <: T ′

2

By rule [<:-Fun]

Γ′ ` S1 <: S2

• case S1, S2 ≡ ∀α.S′
1,∀α.S′

2: Assume

Γ ` S1 <: S2

By rule [<:-Poly]

Γ ` S′
1 <: S′

2

By induction

Γ′ ` S′
1 <: S′

2

By rule [<:-Poly]

Γ′ ` S1 <: S2

4. By induction on the derivation Γ ` S. We split cases on the structure of S. In each case, the proof
proceeds by inversion, applying the IH and finally, applying the rule.

• case S ≡ {ν :B | e}: Assume,

Γ ` S

By inversion (rule [WT-Base]

Γ; ν :B ` e : bool

By IH (5.)

Γ′; ν :B ` e : bool

By rule [WT-Base]

Γ′ ` S

29

• case S ≡ α: Trivial.

• case S ≡ y :T → T ′: Assume,

Γ ` S

By inversion (rule [WT-Fun])

Γ ` T, Γ; y :T ` T ′

By IH

Γ′ ` T, Γ′; y :T ` T ′

By rule [WT-Fun]

Γ′ ` S

• case S ≡ ∀α.T ′: Where due to renaming, α not free in Sx. Assume,

Γ ` S

By inversion (rule [WT-Poly])

Γ ` S′, α 6∈ Γ

By IH

Γ′ ` S′, α 6∈ Γ′

By rule [WT-Poly]

Γ′ ` S

5. By induction on the derivation Γ ` e : S. We split cases on the rule used at the root of the derivation.
In each case, the proof proceeds by inversion, applying the IH and finally, applying the rule.

• case [T-Sub]: Assume,

Γ ` e : S

By inversion

Γ ` e : S′, Γ ` S′ <: S, Γ ` S

For some S′. By IH, (3.) and (4.)

Γ′ ` e : S′, Γ′ ` S′ <: S, Γ′ ` S

By rule [T-Sub]

Γ′ ` e : S

30

• case [T-Var-Base]: Assume,

Γ ` e : S

Where e ≡ y for some variable y and S ≡ {ν :B | ν = y}. By inversion

Γ(y) = {ν :B | ey}

By Lemma 1, y ∈ Dom(Γ), i.e., y is different from x. Thus, we have Γ′(y) = Γ(y), and hence

Γ′(y) = {ν :B | ey}

By rule [T-Var-Base]

Γ′ ` e : S

• case [T-Var]: Similar to case [T-Var-Base].

• case [T-Const]: Trivial.

• case [T-Fun]: Assume,

Γ ` e : S

Where e ≡ λy.e1, and S ≡ y :T → T1. By inversion

Γ ` T, Γ; y :T ` e1 : T1

By IH, (4.)

Γ′ ` T, Γ′; y :T ` e1 : T1

By rule [T-Fun]

Γ′ ` e : S

• case [T-App]: Assume,

Γ ` e : S

Where e ≡ e1e2, and S ≡ [e2/y]T for some T . By inversion

Γ ` e1 : y :T2 → T, Γ ` e2 : T2

By IH

Γ′ ` e1 : y :T2 → T, Γ′ ` e2 : T2

By rule [T-App]

Γ′ ` e : S

31

• case [T-If]: Assume,

Γ ` e : S

Where e ≡ if e1 then e2 else e3. By inversion

Γ ` e1 : bool, Γ; e1 ` e2 : S, Γ;¬e1 ` e3 : S

By IH

Γ′ ` e1 : bool, Γ′; e1 ` e2 : S, Γ′;¬e1 ` e3 : S

By rule [T-If]

Γ′ ` e : S

• case [T-Let]: Assume,

Γ ` e : S

Where e ≡ let y = e1 in e2. By inversion

Γ ` e1 : Sy, Γ; y :Sy ` e2 : S, Γ ` S

By IH, (4.)

Γ′ ` e1 : Sy, Γ′; y :Sy ` e2 : S

Γ′ ` S

By rule [T-Let]

Γ′ ` e : S

• case [T-Gen]: Assume,

Γ ` e : S

Where e ≡ [Λα]e1 and S ≡ ∀α.S1. By inversion

Γ ` e1 : S1, α 6∈ Γ

By IH and α not in free variables of Sx,

Γ′ ` e1 : S1, α 6∈ Γ′

By rule [T-Gen]

Γ′ ` e : S

• case [T-Inst]: Assume,

Γ ` e : S

32

Where e ≡ [τ]e1, S ≡ [T/α]S1 and Shape(T) = τ . By inversion

Γ ` e1 : ∀α.S1, Γ ` T

By IH, (4.)

Γ′ ` e1 : ∀α.S1, Γ′ ` T

By rule [T-Inst]

Γ′ ` e : S

2

Lemma 6. (Guard Weakening) If

Γ = Γ1; Γ2

Γ′ = Γ1; e; Γ2

then,

1. if Γ′ |= ρ then Γ |= ρ,

2. if Γ ` e1 ⇒ e2 then Γ′ ` e1 ⇒ e2,

3. if Γ ` S1 <: S2 then Γ′ ` S1 <: S2,

4. if Γ ` S then Γ′ ` S,

5. if Γ ` e : S then Γ′ ` e : S.

Proof. By simultaneous induction on the typing derivations, similar to proof of Lemma 5. 2

Lemma 7. (True Guard) If

Γ = Γ1; true; Γ2

Γ′ = Γ1; Γ2

then,

1. Γ |= ρ iff Γ′ |= ρ,

2. Γ ` e1 ⇒ e2 iff Γ′ ` e1 ⇒ e2,

3. Γ ` S1 <: S2 iff Γ′ ` S1 <: S2,

4. Γ ` S iff Γ′ ` S,

5. Γ ` e : S iff Γ′ ` e : S.

Proof. The proof follows by using (a) the fact that as true is a constant, for any ρ, we have ρ true
∗

↪→true
and (b) simultaneous induction on the typing derivations, similar to Lemma 5. 2

Lemma 8. (Narrowing) If

Γ1 ` S′
x

Γ1 ` Sx <: S′
x

Γ = Γ1;x :Sx; Γ2

Γ′ = Γ1;x :S′
x; Γ2

then:

33

1. if Γ |= ρ then Γ′ |= ρ,

2. if Γ′ ` e1 ⇒ e2 then Γ ` e1 ⇒ e2,

3. if Γ′ ` S1 <: S2 then Γ ` S1 <: S2,

4. if Γ′ ` S then Γ ` S,

5. if Γ′ ` e : S then Γ ` e : S.

Proof. By simultaneous induction on the derivations. Without loss of generality, assume that all type
variables that are generalized under an environment with prefix Γ or Γ′ are suitably α-renamed to variables
different from the free type variables in Sx and S′

x.

1. Assume

Γ |= ρ

That is,

Γ1;x :Sx; Γ2 |= ρ

By Lemma 4, ρ ≡ ρ1; [x 7→ vx]; ρ2 where Dom(ρ1) = Dom(Γ1) and Dom(ρ2) = Dom(Γ2) and by Cor. 1

Γ1 |= ρ1, ∅ ` vx : ρ1Sx, (ρ1; [x 7→ vx])Γ2 |= ρ2 (a)

As Γ1 ` Sx <: S′
x, Lemma 10 yields

∅ ` ρ1Sx <: ρ1S
′
x (b)

Combining (a), (b) with rule [T-Sub] yields

Γ1 |= ρ1, ∅ ` vx : ρ1S
′
x, (ρ1; [x 7→ vx])Γ2 |= ρ2

Finally, using Cor. 1

Γ′ |= ρ

2. Assume

Γ′ ` e1 ⇒ e2

By rule [Imp]

Γ′ ` e1 : bool, Γ′ ` e2 : bool, ∀ρs.t.Γ′ |= ρ, if ρe1
∗

↪→true then ρe2
∗

↪→true (a)

By IH (5.),

Γ ` e1 : bool, Γ ` e2 : bool (b)

Consider an arbitrary ρ s.t. Γ |= ρ. By IH (1.), Γ′ |= ρ and so by (a) if ρe1
∗

↪→true then ρe2
∗

↪→true.
Hence

∀ρs.t.Γ |= ρ, if ρe1
∗

↪→true then ρe2
∗

↪→true (c)

Using (b),(c) and rule [Imp]

Γ′ ` e1 ⇒ e2

34

3. We split cases on the structure of S1, S2.

• case S1, S2 ≡ α, α: Trivial.

• case S1, S2 ≡ {ν :B | e1}, {ν :B | e2}: Assume

Γ′ ` S1 <: S2

By inversion

Γ′; ν :B ` e1 ⇒ e2

By IH (2.)

Γ; ν :B ` e1 ⇒ e2

By rule [<:-Base]

Γ ` S1 <: S2

• case S1, S2 ≡ y :T1 → T ′
1, y :T2 → T ′

2: Assume

Γ′ ` S1 <: S2

By inversion

Γ′ ` T2 <: T1, Γ′; y :T2 ` T ′
1 <: T ′

2

By IH

Γ ` T2 <: T1, Γ; y :T2 ` T ′
1 <: T ′

2

By rule [<:-Fun]

Γ ` S1 <: S2

• case S1, S2 ≡ ∀α.S′
1,∀α.S′

2: Assume

Γ′ ` S1 <: S2

By inversion

Γ′ ` S′
1 <: S′

2

By IH

Γ ` S′
1 <: S′

2

By rule [<:-Poly]

Γ ` S1 <: S2

4. By induction on the derivation Γ′ ` S. We split cases on the structure of S. In each case, the proof
proceeds by inversion, applying the IH and finally, applying the rule.

35

• case S ≡ {ν :B | e}: Assume,

Γ′ ` S

By inversion (rule [WT-Base]

Γ′; ν :B ` e : bool

By IH (5.)

Γ; ν :B ` e : bool

By rule [WT-Base]

Γ ` S

• case S ≡ α: Trivial.

• case S ≡ y :T → T ′: Assume,

Γ′ ` S

By inversion (rule [WT-Fun])

Γ′ ` T, Γ′; y :T ` T ′

By IH

Γ ` T, Γ; y :T ` T ′

By rule [WT-Fun]

Γ ` S

• case S ≡ ∀α.T ′: Assume,

Γ′ ` S

By inversion (rule [WT-Poly])

Γ′ ` S′, α 6∈ Γ′

By IH and as due to renaming, α not free in Sx or S′
x

Γ ` S′, α 6∈ Γ

By rule [WT-Poly]

Γ ` S

5. By induction on the derivation Γ′ ` e : S. We split cases on the rule used at the root of the derivation.
In each case, the proof proceeds by inversion, applying the IH and finally, applying the rule.

36

• case [T-Sub]: Assume,

Γ′ ` e : S

By inversion

Γ′ ` e : S′, Γ′ ` S′ <: S, Γ′ ` S

For some S′. By IH, (3.) and (4.)

Γ ` e : S′, Γ ` S′ <: S, Γ ` S

By rule [T-Sub]

Γ ` e : S

• case [T-Var-Base]: Assume,

Γ′ ` e : S

Where e ≡ y for some variable y and S ≡ {ν :B | ν = y}. By inversion

Γ′(y) = {ν :B | e′y}

As Γ1 ` Sx <: S′
x, we have Γ(y) = {ν :B | ey}, and hence by rule [T-Var-Base]

Γ ` e : S

• case [T-Var]: Similar to case [T-Var-Base].
• case [T-Const]: Trivial.
• case [T-Fun]: Assume,

Γ′ ` e : S

Where e ≡ λy.e1, and S ≡ y :T → T1. By inversion

Γ′ ` T, Γ′; y :T ` e1 : T1

By IH, (4.)

Γ ` T, Γ; y :T ` e1 : T1

By rule [T-Fun]

Γ ` e : S

• case [T-App]: Assume,

Γ′ ` e : S

Where e ≡ e1e2, and S ≡ [e2/y]T for some T . By inversion

Γ′ ` e1 : y :T2 → T, Γ′ ` e2 : T2

By IH

Γ ` e1 : y :T2 → T, Γ ` e2 : T2

By rule [T-App]

Γ ` e : S

37

• case [T-If]: Assume,

Γ′ ` e : S

Where e ≡ if e1 then e2 else e3. By inversion

Γ′ ` e1 : bool, Γ′; e1 ` e2 : S, Γ′;¬e1 ` e3 : S

By IH

Γ ` e1 : bool, Γ; e1 ` e2 : S, Γ;¬e1 ` e3 : S

By rule [T-If]

Γ ` e : S

• case [T-Let]: Assume,

Γ′ ` e : S

Where e ≡ let y = e1 in e2. By inversion

Γ′ ` e1 : Sy, Γ′; y :Sy ` e2 : S, Γ′ ` S

By IH, (4.)

Γ ` e1 : Sy, Γ; y :Sy ` e2 : S, Γ ` S

By rule [T-Let]

Γ ` e : S

• case [T-Gen]: Assume,

Γ′ ` e : S

Where e ≡ [Λα]e1 and S ≡ ∀α.S1. By inversion

Γ′ ` e1 : S1, α 6∈ Γ′

By IH and as α not in free variables of Sx or S′
x,

Γ ` e1 : S1, α 6∈ Γ

By rule [T-Gen]

Γ ` e : S

• case [T-Inst]: Assume,

Γ′ ` e : S

Where e ≡ [τ]e1, S ≡ [T/α]S1 and Shape(T) = τ . By inversion

Γ′ ` e1 : ∀α.S1, Γ′ ` T

38

By IH, (4.)

Γ ` e1 : ∀α.S1, Γ ` T

By rule [T-Inst]

Γ ` e : S

2

Lemma 9. (Subtyping Reflexive Transitive)

1. if Γ ` S then Γ ` S <: S,

2. if Γ ` e1 ⇒ e2 and Γ ` e2 ⇒ e3 then Γ ` e1 ⇒ e3,

3. if Γ ` S1 <: S2 and Γ ` S2 <: S3 then Γ ` S1 <: S3.

Proof. By induction on the typing derivations, using Lemmas 5 and 8.

1. By induction on the derivation Γ ` S.

2. Transitivity of implication.

3. By lexicographic induction on the structure of S1, S2, S3 and the derivations Γ ` S1 <: S2 and Γ `
S2 <: S3.

• case S1, S2, S3 ≡ α, α, α: Trivial.

• case S1, S2, S3 ≡ {ν :B | e1}, {ν :B | e2}, {ν :B | e3}: Assume

Γ ` S1 <: S2, Γ ` S2 <: S3

By inversion (rule [<:-Base])

Γ; ν :B ` e1 ⇒ e2, Γ; ν :B ` e2 ⇒ e3

By (2.)

Γ; ν :B ` e1 ⇒ e3

By rule [<:-Base]

• case S1, S2, S3 ≡ x :T1 → T ′
1, x :T2 → T ′

2, x :T3 → T ′
3: Assume

Γ ` S1 <: S2, Γ ` S2 <: S3

By inversion (rule [<:-Fun])

Γ ` T2 <: T1, Γ ` T3 <: T2 (a)
Γ;x :T2 ` T ′

1 <: T ′
2 (b)

Γ;x :T3 ` T ′
2 <: T ′

3 (c)

By IH on (a)

Γ ` T3 <: T1 (d)

39

By (a),(b) and Lemma 8

Γ;x :T3 ` T ′
1 <: T ′

2 (e)

By IH on (e), (c)

Γ;x :T3 ` T ′
1 <: T ′

3 (f)

Finally, using rule [<:-Fun] on (d),(f)

Γ ` S1 <: S3

• case S1, S2, S3 ≡ ∀α.S′
1,∀α.S′

2,∀α.S′
3: Assume

Γ ` S1 <: S2, Γ ` S2 <: S3

By inversion (rule [<:-Poly])

Γ ` S′
1 <: S′

2, Γ ` S′
2 <: S′

3

By IH

Γ ` S′
1 <: S′

3

By rule [<:-Poly]

Γ ` S1 <: S3

2

Lemma 10. (Value Substitution) If Γ |= ρ then

1. If Γ; Γ′ |= ρ; ρ′ then ρΓ′ |= ρ′,

2. If Γ; Γ′ ` e1 ⇒ e2 then ρΓ′ ` ρe1 ⇒ ρe2,

3. If Γ; Γ′ ` S1 <: S2 then ρΓ′ ` ρS1 <: ρS2,

4. If Γ; Γ′ ` S then ρΓ′ ` ρS,

5. If Γ; Γ′ ` e : S then ρΓ′ ` ρe : ρS,

Proof. By simultaneous induction on the derivations.

1. Assume

Γ |= ρ, Γ; Γ′ |= ρ; ρ′

By Lemma 1, Dom(Γ) = Dom(ρ) and Dom(Γ′) = Dom(ρ′). Hence, by Lemma 4

ρΓ |= ρ′

40

2. Assume

Γ |= ρ, Γ; Γ′ |= ρ; ρ′

By inversion (rule [Imp])

Γ; Γ′ ` e1 : bool, Γ; Γ′ ` e2 : bool (a)
∀ρ, ρ′. if Γ; Γ′ |= ρ; ρ′ and (ρ; ρ′)e1

∗
↪→true then (ρ; ρ′)e2

∗
↪→true (b)

By IH (5.), (a) yields

ρΓ′ ` ρe1 : bool, ρΓ′ ` ρe2 : bool (c)

By Lemma 3, (b) yields

∀ρ′. if Γ; Γ′ |= ρ; ρ′ and ρ′(ρe1)
∗

↪→true then ρ′(ρe2)
∗

↪→true (d)

By (1.), (d) becomes

∀ρ′. if ρΓ′ |= ρ′ and ρ′(ρe1)
∗

↪→true then ρ′(ρe2)
∗

↪→true (e)

Which combined with (c) and rule [Imp] yields

ρΓ′ ` ρe1 ⇒ ρe2

3. We split cases on the structure of S1, S2.

• case S1, S2 ≡ α, α: Trivial.
• case S1, S2 ≡ {ν :B | e1}, {ν :B | e2}: Assume

Γ; Γ′ ` S1 <: S2

By inversion (rule [<:-Base])

Γ; Γ′; ν :B ` e1 ⇒ e2

By IH (2.), and as ρB ≡ B

ρΓ′; ν :B ` ρe1 ⇒ ρe2

By rule [<:-Base]

ρΓ′ ` ρS1 <: ρS2

• case S1, S2 ≡ y :T1 → T ′
1, y :T2 → T ′

2: Assume

Γ; Γ′ ` S1 <: S2

By inversion (rule [<:-Fun])

Γ; Γ′ ` T2 <: T1, Γ; Γ′; y :T2 ` T ′
1 <: T ′

2

By IH

ρΓ′ ` ρT2 <: ρT1, ρΓ′; y :ρT2 ` ρT ′
1 <: ρT ′

2

By rule [<:-Fun]

ρΓ′ ` ρS1 <: ρS2

41

• case S1, S2 ≡ ∀α.S′
1,∀α.S′

2: Assume

Γ; Γ′ ` S1 <: S2

By inversion (rule [<:-Poly])

Γ; Γ′ ` S′
1 <: S′

2

By IH

ρΓ′ ` ρS′
1 <: ρS′

2

By rule [<:-Poly]

ρΓ′ ` S1 <: S2

4. We split cases on the structure of S. In each case, the proof proceeds by inversion, applying the IH
and finally, applying the rule.

• case S ≡ {ν :B | e}: Assume,

Γ; Γ′ ` S

By inversion (rule [WT-Base]

Γ; Γ′; ν :B ` e : bool

By IH (5.)

ρ(Γ′; ν :B) ` ρe : bool

As ρ(B) = B

ρΓ′; ν :B ` ρe : bool

By rule [WT-Base]

ρΓ′ ` ρS

• case S ≡ α: Trivial.
• case S ≡ y :T → T ′: Assume,

Γ; Γ′ ` S

By inversion (rule [WT-Fun])

Γ; Γ′ ` T, Γ; Γ′; y :T ` T ′

By IH

ρΓ′ ` ρT, ρ(Γ′; y :T) ` ρT ′

Pushing the substitution inside

ρΓ′ ` ρT, ρΓ′; y :ρT) ` ρT ′

By rule [WT-Fun]

ρΓ′ ` ρS

42

• case S ≡ ∀α.T ′: Assume,

Γ; Γ′ ` S

By inversion (rule [WT-Poly])

Γ; Γ′ ` S′, α 6∈ Γ; Γ′

By IH and as ρ is constant substitution, α not in Rng(ρ)

ρΓ′ ` ρS′, α 6∈ ρΓ′

By rule [WT-Poly]

ρΓ′ ` ρS

5. We split cases on the rule used at the root of the derivation. In each case, the proof proceeds by
inversion, applying the IH and finally, applying the rule.

• case [T-Sub]: Assume,

Γ; Γ′ ` e : S

By inversion

Γ; Γ′ ` e : S′, Γ; Γ′ ` S′ <: S, Γ; Γ′ ` S

For some S′. By IH, (3.) and (4.)

ρΓ′ ` ρe : ρS′, ρΓ′ ` ρS′ <: ρS, ρΓ′ ` ρS

By rule [T-Sub]

ρΓ′ ` ρe : ρS

• case [T-Var-Base]: Assume,

Γ; Γ′ ` e : S

Where e ≡ y for some variable y and S ≡ {ν :B | ν = y}. By inversion

Γ; Γ′(y) = {ν :B | ey}

Thus, by Lemmas 1, 4 either

Γ(y) = {ν :B | ey}, y ∈ Dom(ρ) (a)

or

Γ′(y) = {ν :B | ey}, y 6∈ Dom(ρ) (b)

Assume (a). Then by Cor. 1

∅ |= ρ(y) : {ν :B | ρey}

43

As ρ(y) is a value, ρ(y) is a constant of base type B. Hence, by rule [T-Const] and Definition 1

ρΓ′ ` ρ(y) : {ν :B | ν = ρ(y)}

That is

ρΓ′ ` ρe : ρS

Assume (b). Then

ρy ≡ y (c)
ρΓ′(y) ≡ {ν :B | ρey} (d)

From (d) and rule [T-Var-Base]

ρΓ′ ` y : {ν :B | ν = y}

Finally, from (c)

ρΓ′ ` ρe : ρS

• case [T-Var]: Assume,

Γ; Γ′ ` e : S

Where e ≡ y for some variable y and S is not a base type. By inversion

Γ; Γ′(y) = S

Thus, by Lemmas 1, 4 either

Γ(y) = S, y ∈ Dom(ρ) (a)

or

Γ′(y) = S, y 6∈ Dom(ρ) (b)

Assume (a). Then by Cor. 1

∅ |= ρ(y) : ρS

By Lemma 5

ρΓ′ |= ρ(y) : ρS

That is

ρΓ′ ` ρe : ρS

Assume (b). Then

ρy ≡ y (c)
(ρΓ′)(y) ≡ ρ(Γ′(y)) ≡ ρS (d)

44

From (d) and rule [T-Var]

ρΓ′ ` y : ρS

Finally, from (c)

ρΓ′ ` ρe : ρS

• case [T-Const]: Trivial, as by Def. 1 and Lemma 1, ty(c) has no free variables.

• case [T-Fun]: Assume,

Γ; Γ′ ` e : S

Where e ≡ λy.e1, and S ≡ y :T → T1. By inversion

Γ; Γ′ ` T, Γ; Γ′; y :T ` e1 : T1 (a)

And as y is bound at most once in Γ; Γ′; y :T

y 6∈ Dom(Γ) (b)

By IH, (4.) (a) yields

ρΓ′ ` ρT, ρΓ′; y :ρT ` ρe1 : ρT1

By rule [T-Fun] and (b)

ρΓ′ ` λy.ρe1 : y :ρT → ρT1

Finally, by (a)

ρΓ′ ` ρe : ρS

• case [T-App]: Assume,

Γ; Γ′ ` e : S

Where e ≡ e1e2, and S ≡ [e2/y]T for some T , where y 6∈ Dom(Γ; Γ′) i.e., by Lemma 1, y 6∈ Dom(ρ).
By inversion

Γ; Γ′ ` e1 : y :T2 → T, Γ; Γ′ ` e2 : T2

By IH

ρΓ′ ` ρe1 : ρ(y :T2 → T), ρΓ′ ` ρe2 : ρT2

As y 6∈ Dom(ρ)

ρΓ′ ` ρe1 : y :ρT2 → ρT

By rule [T-App]

ρΓ′ ` ρe : ρS

45

• case [T-If]: Assume,

Γ; Γ′ ` e : S

Where e ≡ if e1 then e2 else e3. By inversion

Γ; Γ′ ` e1 : bool, Γ; Γ′; e1 ` e2 : S, Γ; Γ′;¬e1 ` e3 : S

By IH

ρΓ′ ` ρe1 : bool, ρΓ′; ρe1 ` ρe2 : ρS, ρΓ′;¬ρe1 ` ρe3 : ρS

By rule [T-If]

ρΓ′ ` ρe : ρS

• case [T-Let]: Assume,

Γ; Γ′ ` e : S

Where e ≡ let y = e1 in e2, where y 6∈ Dom(Γ; Γ′) i.e., by Lemma 1, y 6∈ Dom(ρ). By inversion

Γ; Γ′ ` e1 : Sy, Γ; Γ′; y :Sy ` e2 : S, Γ; Γ′ ` S

By IH, (4.)

ρΓ′ ` ρe1 : ρSy, ρΓ′; y :ρSy ` ρe2 : ρS

ρΓ′ ` ρS

By rule [T-Let]

ρΓ′ ` let y = ρe1 in ρe2 : ρS

As y 6∈ Dom(ρ)

ρΓ′ ` ρe : ρS

• case [T-Gen]: Assume,

Γ; Γ′ ` e : S

Where e ≡ [Λα]e1 and S ≡ ∀α.S1. By inversion

Γ; Γ′ ` e1 : S1, α 6∈ Γ; Γ′

As ρ is only applied to refinement predicates, the free type variables of ρΓ′ are the same as those
of Γ′. Hence

ρΓ′ ` ρe1 : ρS1, α 6∈ ρΓ′

By rule [T-Gen]

ρΓ′ ` ρe : ρS

46

• case [T-Inst]: Assume,

Γ; Γ′ ` e : S

Where e ≡ [τ]e1, S ≡ [T/α]S1 and Shape(T) = τ . By inversion

Γ; Γ′ ` e1 : ∀α.S1, Γ; Γ′ ` T

By IH, (4.)

ρΓ′ ` ρe1 : ∀α.ρS1, ρΓ′ ` ρT

As Shape(ρT) = Shape(T) = τ , by rule [T-Inst]

ρΓ′ ` [τ]ρe1 : [ρT/α]ρS1

As α 6∈ Dom(ρ) ∪ Rng(ρ)

ρΓ′ ` ρe : ρS

2

Notice that we use a non-standard substitution lemma, where the substitutions only involve values. The
value substitution lemma is easier to prove than the usual substitution lemma that allows arbitrary (well-
typed) expressions in the substitutions, as in the latter case, to handle substitutions of a variable x of base
type B with another (well-typed) expression ex of base type, we would have to prove Γ ` ex : {ν :B | ν = ex}.
As our dynamic semantics (Figure 8) require that only values are substituted during a single step, the weaker
Lemma 10 suffices to the following preservation theorem.

Lemma 11. (Guard Evaluation) If

e↪→e′

∅ ` e : bool
∅ ` e′ : bool
Γ = Γ1; e; Γ2

Γ = Γ1; e′; Γ2

then:

1. Γ |= ρ iff Γ′ |= ρ,

2. Γ ` e1 ⇒ e2 iff Γ′ ` e1 ⇒ e2,

3. Γ ` S1 <: S2 iff Γ ` S1 <: S2,

4. Γ ` S iff Γ′ ` S,

5. Γ ` e1 : S iff Γ′ ` e1 : S.

Proof. By simultaneous induction on the derivations, similar to the proof of Lemma 8. The key difference
is the proof of (1.).

1. By Lemma 1, ∅ ` e : bool and ∅e′ : bool imply:

For all ρ we have ρe ≡ e, ρe′ ≡ e′ (a)

47

By Lemma 12

e
∗

↪→true ⇐⇒ e′
∗

↪→true (b)

Next, observe that

Γ |= ρ ⇐⇒ Γ1; e; Γ2 |= ρ

By Lemma 4

⇐⇒ ρ ≡ ρ1; ρ2, Γ1 |= ρ1, ρ1e
∗

↪→true, ρ1Γ2 |= ρ2

By (a),(b)

⇐⇒ ρ ≡ ρ1; ρ2, Γ1 |= ρ1, ρ1e
′ ∗↪→true, ρ1Γ2 |= ρ2

By Lemma 4

⇐⇒ Γ |= ρ

2. Follows from Rule [Imp] and (1.).

3. We split cases on the structure of S1, S2, and in each case, use inversion on the appropriate rule, the
IH (or (2.)) and the rule (as in Lemma 8).

4. By induction on the derivation Γ′ ` S. We split cases on the structure of S. In each case, the proof
proceeds by inversion, applying the IH and finally, applying the rule.

5. By induction on the derivation Γ′ ` e : S. We split cases on the rule used at the root of the derivation.
In each case, the proof proceeds by inversion, applying the IH and finally, applying the rule.

2

Lemma 12. (Confluence) If e↪→e′ then e
∗

↪→v iff e′
∗

↪→v.

Proof. First, observe that the relation ↪→ is deterministic – for each e there is at most one e′ such that e↪→e′.
The ⇒ (resp. ⇐) proof follows from induction on the derivations e

∗
↪→v (resp. e′

∗
↪→v). 2

Theorem 3. (Preservation) If ∅ ` e : S and e ↪→ e′ then ∅ ` e′ : S.

Proof. By induction on the typing derivation ∅ ` e : S. We split cases on the rule used at the root of the
derivation.

• case [T-Sub]: Assume,

∅ ` e : S

By inversion

∅ ` e : S′ (a)
∅ ` S′ <: S, ∅ ` S (b)

For some S′. By IH and (a)

∅ ` e′ : S′

Which, with (b) and rule [T-Sub] yields

∅ ` e′ : S

48

• case [T-Var-Base], [T-Var], [T-Const]: Trivial as there is no e′ such that e↪→e′.

• case [T-Fun]: We split cases on the structure of e.

– case e ≡ (λx.e1) v: Here e′ ≡ [v/x]e1. By pushing applications of rule [T-Sub] down, we can
ensure the rule [T-Fun] is used at the root of the derivation of the type for λx.e1. By inversion

∅ ` λx.e1 : x :T → T ′ (a)
∅ ` v : T (b)
S ≡ [v/x]T ′ (c)

From (b) and rule [WS-Ext]

x :T |= [x 7→ v] (d)

By inversion (rule [T-Fun]) (a) implies

x :T |= e1 : T ′

Which, by (d) and Lemma 10 yields

∅ ` [v/x]e1 : [v/x]T ′

That is, from (c)

∅ ` e′ : S

– case e ≡ c v: By pushing applications of rule [T-Sub] down, we can ensure the rule [T-Const]
is used at the root of the derivation of the type for c. Here e′ ≡ [[c]](v). By inversion

∅ ` c : x :T → T ′

∅ ` v : T

S ≡ ty(c) ≡ [v/x]T ′

By Definition 1, the above imply

∅ ` [[c]](v) : [v/x]T ′

That is

∅ ` e′ : S′

– case e ≡ e1 e2 where e1 is not a value: Here e′ ≡ e′1 e2 where e1↪→e′1. Assume

∅ ` e1 e2 : S

By inversion

∅ ` e1 : x :T → T ′ (a)
∅e2 : T, S ≡ [e2/x]T ′ (b)

By IH, (a) implies

∅ ` e′1 : x :T → T ′

49

Which with (b) and rule [T-App] yields

∅ ` e′1 e2 : S

That is

∅ ` e′ : S

– case e ≡ e1e2 where e2 is not a value: Here e′ ≡ e1e
′
2 where e2↪→e′2. Assume

∅ ` e1 e2 : S

By inversion

∅ ` e1 : x :T → T ′ (a)
∅e2 : T, S ≡ [e2/x]T ′ (b)

By IH, (a) implies

∅ ` e′2 : T

Which with (b) and rule [T-App] yields

∅ ` e1 e′2 : S

That is

∅ ` e′ : S

• case [T-If]: We split cases on the structure of e.

– case e ≡ if v1 then e2 else e3 where v1 is a value: Assume

∅ ` e ≡ S

By inversion

∅ ` v1 : bool (a)
v1 `e2 : S (b)

¬v1 `e3 : S (c)

As true and false are the only values of type bool, (a) implies

v1 ≡true (d)

or

v1 ≡true (e)

Assume (d). By (b) and Lemma 7

∅ `e2 : S

50

By (d) and rule [E-If-True], e′ ≡ e2. Hence

∅ `e′ : S

Assume (e). As ¬false ≡ true, by (c) and Lemma 7

∅ `e3 : S

By (e) and rule [E-If-False], e′ ≡ e3. Hence

∅ `e′ : S

– case e ≡ if e1 then e2 else e3 where e1 is not a value: Here, e′ ≡ if e′1 then e2 else e3 where
e1↪→e′1 and as e1 is not a value, ¬e1↪→¬e′1. Assume

∅ `e ≡ S

By inversion

∅ `e1 : bool (a)
e1 `e2 : S (b)

¬e1 `e3 : S (c)

By IH

∅ `e′1 : bool (d)

and hence

∅ `¬e′1 : bool (e)

Thus, by Lemma 11 (b), (c) imply

e′1 `e2 : S

¬e′1 `e3 : S

Which, with (a) and rule [T-If] yield

∅ `e′ : S

• case [T-Let]: We split cases on the structure of e.

– case e ≡ let x = v1 in e2 where v1 is a value: Here e′ ≡ [v1/x]e2. By inversion,

∅ `v1 : S1 (a)
x :S1 `e2 : S (b)

∅ `S (c)

By (c), FreeVars(S) ≡ ∅ hence

[v1/x]S ≡S (d)

By Lemma 10, (a),(b) imply

∅ `[v1/x]e2 : [v1/x]S (d)

Which, with (d) yields

∅ `e′ : S

51

– case e ≡ let x = e1 in e2 where e1 is not a value: Here e′ ≡ let x = e′1 in e2 where e1↪→e′1.
By inversion,

∅ `e1 : S1 (a)
x :S1 `e2 : S (b)

∅ `S (c)

By IH (a) implies

∅ ` e′1 : S1

Which, with (b),(c) and rule [T-Let] yields

∅ ` e′ : S

• case [T-Gen],[T-Inst]: By inversion, applying the induction hypothesis and then the rule.

2

Theorem 4. (Progress) If ∅ ` e : S and e is not a value then there exists an e ↪→ e′.

Proof. By induction on the typing derivation. We split cases on the rule used at the root of the derivation (as
in the proof of Theorem 3. The important case is when the rule is [T-App] and e ≡ c v, i.e., the application
of a value v to a primitive constant c. By inversion, ty(c) must be of the form x :T → T ′, and as ∅ ` v : T .
Hence, by Definition 1, [[c]](v) ≡ e′ is well defined. 2

Theorem 5. (Soundness of Decidable Checking) If Γ `Q e : S then Γ ` e : S.

Proof. By induction on the typing derivation. The key observations are that each liquid type (schema) is also
a dependent type schema, each liquid type deriviation rule [LT-*] has a matching dependent type derivation
rule, and the soundness of the embedding Definition 2. 2

52

E Correctness of Type Inference

Lemma 13. (Fresh) For each type schema σ and assignment A over Q, A(Fresh(σ)) is a liquid type over Q.

Proof. By induction on the structure of σ. 2

Lemma 14. (Shape) For every liquid type assignment A:

1. Shape(F) = Shape(AF),

2. Shape(Γ) = Shape(AΓ).

Proof. (1) follows by induction on the structure of F . (2) follows from (1). 2

Lemma 15. (Derivation Projection) If Γ `Q e : S then Shape(Γ) `ML e : Shape(S).

Proof. Induction on the derivation of Γ `Q e : S, and observing that each derivation rule for `Q is a
refinement of a matching rule for `ML. 2

Lemma 16. (Constraint Substitution) For every template environment Γ, expression e, and liquid type
assignment A, if Cons(Γ, e) = (F,C) then Cons(AΓ, e) = (AF,AC).

Proof. By induction on the structure of e. 2

Lemma 17. (Update) For any assignment A, template F fresh with respect to A (if a liquid type variable
κ appears in F then it appears only once and it is not in Dom(A)) and liquid type T̂ such that Shape(T̂) =
Shape(F):

1. SolUpd(A,F, T̂)(F) = T̂

2. if LiquidVars(F ′) ⊆ Dom(A) then SolUpd(A,F, T̂)F ′ = AF ′.

Proof. By induction on the structure of F and T̂ . 2

Theorem 6. (Constraint Generation) For every type environment Γ and expression e such that
Cons(Γ, e) = (F,C), Γ `Q e : S iff there exists an assignment A over Q such that AF = S and AC is
valid.

Proof. Only if (⇒): By induction on the derivation Γ `Q e : S.

• case e ≡ c or e ≡ x: Here LiquidVars(F) = ∅ i.e., F has no liquid type variables,
and C = ∅ so any solution A suffices.

• case e ≡ λx.e1: Here,

F = x :Fx → F1

C = C1 ∪ {Γ ` F} ∪ {Γ;x :Fx `Q F ′
1 <: F1}

S = x : T̂x → T̂1

x :Fx → F1 = Fresh(Shape(x : T̂x → T̂1))
(F ′

1, C1) = Cons(Γ;x :Fx)

Let A0 = SolUpd(∅, F, S). By Lemma 16,

(A0C1, A0F
′
1) = Cons(Γ;x :A0Fx, e1)

= Cons(Γ;x : T̂x, e1)

53

By inversion, Γ ` T̂x and Γ; x : T̂x `Q e1 : T̂1. Thus, by IH, there exists A1 such that:

A1(A0C1), is valid (a)

A1(A0F
′
1) = T̂1 (b)

Thus, A = A1;A0 is such that:

AF = A1(A0F)
= A1(S)
= S as LiquidVars(S) = ∅

Moreover,

A;A1C = A1;A0C1 ∪ {Γ `Q A1;A0F} ∪ {Γ;x :A1;A0Fx `Q A1;A0F
′
1 <: F1}

as Dom(A0) and Dom(A1) are disjoint, and (b)

= A1;A0C1 ∪ {Γ `Q T} ∪ {Γ;x : T̂x `Q T̂1 <: T̂1}

which, by (a), Lemma 2 and Lemma 9 respectively, is valid.

• case e ≡ e1e2: Here,

F = [e2/x]F ′

C = C1 ∪ C2 ∪ {Γ `Q F ′
2 <: F ′′

2 }
(c :F ′′

2 → F ′, C1) = Cons(Γ, e1)
(F ′

2, C2) = Cons(Γ, e2)

By inversion there exist T2 and T such that:

Γ `Q e1 : x :T2 → T (a)
Γ `Q e2 : T2 (b)
S = [e2/x]T (c)

By IH and (a), there exist A1 such that:

A1F
′′
2 = T2 and A1F

′ = T (d)
A1C1 is valid (e)

By IH and (b), there exist A2 such that:

A2F
′
2 = T2 (f)

A2C2 is valid (g)

Moreover,

Dom(A1) = LiquidVars(x :F ′′
2 → F ′) ∪ LiquidVars(C1)

Dom(A2) = LiquidVars(F ′
2) ∪ LiquidVars(C2)

are disjoint (h)

54

as they result from generating constraints on different subexpressions and LiquidVars(Γ) = ∅. Consider
A = A1;A2.

AF =A1;A2[e2/x]F ′

which, due to delayed substitutions

=[e2/x]A1;A2F
′

which, because of disjoint domains (g)

=[e2/x]A1F
′

which, due to (d)

=[e2/x]T
=S

Moreover,

AC =A1;A2C1 ∪A1;A2C2 ∪ {Γ `Q A1;A2F
′
2 <: A1;A2F

′′
2 }

which, due to disjoint domains (g)

=A1C1 ∪A2C2 ∪ {Γ `Q A2F
′
2 <: A1F

′′
2 }

which, due to (f) and (d)

=A1C1 ∪A2C2 ∪ {Γ `Q T2 <: T2}
which, by (e),(g) and Lemma 9 is valid.

• case e ≡ if e1 then e2 else e3: Here,

F =Fresh(Shape(S)) (by Lemma 15)
C =C1 ∪ C2 ∪ C3 ∪ {Γ ` F}

∪ {Γ; e1 `Q F ′
2 <: F}

∪ {Γ;¬e1 `Q F ′
3 <: F}

(·, C1) =Cons(Γ, e1)
(F ′

2, C2) =Cons(Γ; e1, e2)
(F ′

3, C3) =Cons(Γ;¬e1, e3)

where LiquidVars(C1),LiquidVars(C2),LiquidVars(C3) are disjoint. By inversion, and applying the IH,
there exist solutions A1, A2, A3 such that:

A1C1, A2C2, A3C3 are valid (a)
A2F

′
2 =A3F

′
3 = S (b)

Γ ` S (c)

55

Consider A = SolUpd(A1;A2;A3, F, S), By Lemma 17,

AF =S

AC =A1C1 ∪A2C2 ∪A3C3 ∪ {Γ ` S}
∪ {Γ; e1 `Q A2F

′
2 <: S}

∪ {Γ;¬e1 `Q A3F
′
3 <: S}

by (b) and (c)

=A1C1 ∪A2C2 ∪A3C3 ∪ {Γ ` S}
∪ {Γ; e1 `Q S <: S}
∪ {Γ;¬e1 `Q S <: S}
which, by (a), inversion and Lemma 9 is valid.

• case e ≡ let x = e1 in e2: Here,

F = Fresh(Shape(S)) (by Lemma 15)
C = C1 ∪ C2 ∪ {Γ ` F} ∪ {Γ;x :F ′

1F
′
2 <: F} (a0)

(F ′
1, C1) = Cons(Γ, e1)

(F ′
2, C2) = Cons(Γ;x :F ′

1, e2) (a1)

By inversion there exists S1 such that:

Γ ` e1 : S1 (a)
Γ;x :S1 ` e2 : S (b)

Γ ` S (c)

By (a) and IH there exists A1 such that:

A1C1 is valid (d)
A1F

′
1 = S1 (e)

By Lemma 16 and (a1),

(A1F
′
2, A1C2) = Cons(Γ;x :A1F

′
1, e2)

= Cons(Γ;x :S′
1, e2) by (e)

By (b) and IH, there exists A2 such that:

Dom(A2) = LiquidVars(C2) which is disjoint from Dom(A1) (f)
A2(A1C2) is valid (g)
A2(A1F

′
2) = S (h)

Consider A = SolUpd(A2;A1, F, S). By Lemma 17,

AF = S

By (a0), (f), and (i):

AC = A1C1 ∪A2(A1C2) ∪ {Γ ` AF} ∪ {Γ;x :A1F
′
1A2(A1F

′
2) <: AF}

56

by (i), (e), (h)

= A1C1 ∪A2(A1C2) ∪ {Γ ` S} ∪ {Γ;x :S1 `Q S <: S}

which, by (d), (g), (c), and Lemma 9 is valid.

• case e ≡ [Λα]e1: Here,

(F,C) = (∀α.F ′
1, C1)

(F ′
1, C1) = Cons(Γ, e1)

By inversion, exists S1 such that Γ `Q e1 : S1. Thus, by IH, exists a A1 such that:

A1C1 is valid (a)
A1F

′
1 =S1 (b)

Consider A = A1.

AF =A1F

=A1(∀α.F ′
1)

=∀α.A1F
′
1

which, by (b),

=∀α.S1

=S

Finally,

AC =A1C1 which, by (a), is valid.

• case e ≡ [τ]e1: Here,

F =[Fα/α]F ′
1

C =C1 ∪ {Γ ` Fα})
(F ′

1, C1) =Cons(Γ, e1)
Fα =Fresh(τ)

By inversion, there exists T̂ , S1 such that:

Γ `T̂ (a)

Shape(T̂) =τ (b)
γ `Qe1 : ∀α.S1 (c)

By IH, there exists A1 such that:

A1C1 is valid (d)
A1F

′
1 =∀α.S1 (e)

57

Consider A = SolUpd(A1, Fα, T̂):

AF =A([Fα/α]F ′
1)

=[AFα/α]AF ′
1

by Lemma 17

=[T̂ /α]A1F
′
1

=[T̂ /α]∀α.S1

=S

If (⇐): By induction on the structure of e.

• case e ≡ c or e ≡ x Trivial as C = ∅ and F such that LiquidVars(F) = ∅ and Γ `Q e : F .

• case e ≡ λx.e1: Here

F =x :Fx → F1

C =C1 ∪ {Γ ` F} ∪ {Γ;x :Fx `Q F ′
1 <: F1}

S =x : T̂x → T̂1

x :Fx → F1 =Fresh(Shape(x : T̂x → T̂1))
(F ′

1, C1) =Cons(Γ;x :Fx)

As AC is valid,

AC1 is valid (a)
Γ `x :AFx → AF1 (b)

Γ;x :AFx `QAF ′
1 <: AF1 (c)

By Lemma 16,

(AF ′
1, AC1) =Cons(Γ;x :AFx, e1)

By (a) and the IH,

Γ;x :AFx `Qe1 : AF ′
1 (d)

By (d),(b),(c) and rule [LT-Sub],

Γ;x :AFx `Qe1 : AF1 (e)

By Lemma , and rule [LT-Fun],

Γ `Qλx.e1 : x :AFx → AF1

implies Γ `Qλx.e1 : A(x :Fx → F1)
implies Γ `Qλx.e1 : AF

58

• case e ≡ e1e2: Here,

F =[e2/x]F ′

C =C1 ∪ C2 ∪ {Γ `Q F ′
2 <: F ′′

2 }
(c :F ′′

2 → F ′, C1) =Cons(Γ, e1)
(F ′

2, C2) =Cons(Γ, e2)
AC is valid

AC1 ∪AC2 is valid
Γ `QAF ′

2 <: AF ′′
2 (a)

Hence, by the IH,

Γ `Qe1 : x :AF ′′
2 → AF ′ (b)

Γ `Qe2 : AF ′
2 (c)

From (b), and Lemma 2,

Γ `AF ′′
2 (d)

Thus, from (a),(c), (d) and rule [LT-Sub],

Γ `Qe2 : AF ′′
2

From (b) and rule [LT-App],

Γ `Qe1e2 : [e2/x]AF ′ (e)

As substitutions are delayed,

[e2/x]AF ′ =A[e2/x]F ′ = AF

and so, from (e),

Γ `Qe1e2 : AF

• case e ≡ if e1 then e2 else e3: Here,

F =Fresh(Shape(S)) (by Lemma 15)
C =C1 ∪ C2 ∪ C3 ∪ {Γ ` F} ∪ {Γ; e1 `Q F ′

2 <: F}{Γ;¬e1 `Q F ′
3 <: F}

(·, C1) =Cons(Γ, e1)
(F ′

2, C2) =Cons(Γ; e1, e2)
(F ′

3, C3) =Cons(Γ;¬e1, e3)

As AC is valid,

AC1, AC2, AC3 are valid (a)
Γ `AF (b)

Γ; e1 `QAF ′
2 <: AF (ct)

Γ;¬e1 `QAF ′
3 <: AF (cf)

59

By (a) and IH,

Γ; e1 `Qe2 : AF ′
2

Γ;¬e1 `Qe3 : AF ′
3

By (b), (ct), (cf), Lemma 6,

Γ; e1 `Qe2 : AF

Γ;¬e1 `Qe3 : AF

By (a), Lemma and rule [LT-If],

Γ `Qif e1 then e2 else e3 : AF

• case e ≡ let x = e1 in e2: Here,

F =Fresh(Shape(S)) (by Lemma 15)
C =C1 ∪ C2 ∪ {Γ ` F} ∪ {Γ;x :F ′

1F
′
2 <: F}

(F ′
1, C1) =Cons(Γ, e1)

(F ′
2, C2) =Cons(Γ;x :F ′

1, e2)

As AC is valid

AC1, AC2 are valid (a)
Γ `AF (b)

Γ;x :AF ′
1 `QAF ′

2 <: F (c)

By (a) and IH,

Γ `Qe1 : AF ′
1 (d1)

Γ;x :AF ′
1 `Qe2 : AF ′

2 (d2)

By (b), (c), (d1), Lemma 5, and rule [LT-Sub],

Γ;x :AF ′
1 `Qe2 : AF (e)

Thus, by (b), (c), (d1), (e) and rule [LT-Let],

Γ `Qlet x = e1 in e2 : AF

• case e ≡ [Λα]e1: Here,

(F,C) =(∀α.F ′
1, C1)

(F ′
1, C1) =Cons(Γ, e1)

As AC is valid, AC1 is valid, and so,

Γ `Qe : AF ′
1 (a)

60

As Shape(Γ) `ML e : σ,

α 6∈Γ (b)

Thus, by rule [LT-Gen],

Γ `Q[Λα]e1 : ∀α.AF ′
1

as α 6∈ A

implies Γ `Q[Λα]e1 : A∀α.F ′
1

implies Γ `Q[Λα]e1 : AF

• case e ≡ [τ]e1: Here,

F =[Fα/α]F ′
1

C =C1 ∪ {Γ ` Fα})
(∀α.F ′

1, C1)Cons(Γ, e1)
Fα = Fresh(τ)

As AC is valid,

AC1 is valid (a)
Γ `AFα (b)

By (a) and IH,

Γ `QA∀α.F ′
1

As α 6∈ A, A∀α.F ′
1 = ∀α.AF ′

1. Thus, by (a) and IH,

Γ `QA∀α.F ′
1 (c)

Thus, by (b), (c), Lemma 14 and rule [T-Inst],

Γ `Q[τ]e1 : [AFα/α]AF ′
1

as α 6∈ A, Fα 6∈ Rng(A)

⇒ Γ `Q[τ]e1 : A[Fα/α]F ′
1

⇒ Γ `Q[τ]e1 : AF

2

Definition 3. (Simple Constraints) A simple constraint is of the form:

• Γ `Q {ν :B | b}

• Γ `Q {ν :B | b} <: {ν :τ | b′}

61

where b, b′ are either expressions or liquid type variables with pending substitutions.

Lemma 18. (Constraint Splitting) For every set of constraints C,

1. Split(C) is a set of simple constraints,

2. For every assignment A, AC is valid iff A(Split(C)) is valid.

Proof. For both (1),(2), we prove the lemma when C is a singleton set and then lift to arbitrary sets. For
singleton sets {c}, both (1), (2) follow by induction on the structure of c. 2

Definition 4. (Minimum Solution) For two assignments A and A′ over Q, we say A ≤ A′ if for all κ,
A(κ) ⊇ A′(κ). For C, a set of constraints, A∗ is the minimum solution over Q if

1. A∗C is valid and,

2. For each A over Q, if AC is valid then A∗ ≤ A.

Lemma 19. (Embedding) If A ≤ A′ are two assignments over Q then:

1. [[Aκ]] ⇒ [[Aκ]],

2. [[A(θ · κ)]] ⇒ [[A(θ · κ)]],

3. [[AΓ]] ⇒ [[A′Γ]].

Proof. Immediate from definition of solution ordering (≤).
2

Theorem 7. (Minimum Solution) If C has a solution over Q then C has a minimum solution over Q.

Proof. By Lemma 18 it suffices to prove the theorem for sets of simple constraints C. As the number of
liquid type variables and logical qualifiers Q is finite, any C can only have a finite number of solutions over
Q. Suppose that A1, . . . , An are the solutions for C, i.e., for each 1 ≤ i ≤ n, we have AiC is valid. Then we
shall show that:

A∗ = λκ. ∩i Ai(κ)

is a minimum solution for C over Q. Trivially, for each i, we have A∗ ≤ Ai. Next, we shall prove for each
simple constraint c ∈ C, that as each Aic is valid, A∗c is also valid.

• case c ≡ Γ ` {ν :B | b}: where b is either an expression e or a variable with pending substitutions θ ·κ.

In the first case b ≡ e,

Ai(Γ `{ν :B | e})
i.e., Shape(AiΓ); ν :B `e : bool

by Lemma 14, Shape(A∗Γ) = Shape(AiΓ) = Shape(Γ), thus,

Shape(A∗Γ); ν :B `e : bool
i.e., A∗(Γ `{ν :B | e})

In the second case b ≡ θ · κ,

Ai(Γ `{ν :B | θ · κ})
i.e., Shape(AiΓ); ν :B `θ ·Ai(κ) : bool

62

i.e., for each e ∈ Ai(κ),

AiΓ `{ν :B | θe})
i.e., Shape(AiΓ); ν :B `θe : bool

as A∗(κ) ⊆ Ai(κ) and by Lemma 14, Shape(A∗Γ) = Shape(AiΓ) = Shape(Γ), for each e ∈ A∗(κ),

Shape(A∗Γ); ν :B `θe : bool
i.e., A∗(Γ `{ν :B | θ · κ})

• case c ≡ Γ `Q {ν :B | b} <: {ν :B | b′}: where each of b, b′ is either an expression or a variable with
pending substitution.

For each i, Ai(Γ `Q{ν :B | b} <: {ν :B | b′})
i.e., AiΓ `QAib ⇒ Aib

′

i.e., [[AiΓ]]∧[[Aib]] ⇒ [[Aib
′]]

by the properties of implication,

[[∧iAiΓ]]∧[[∧iAib]] ⇒ [[∧iAib
′]]

as [[A∗Γ]] = [[∧iAiΓ]] and [[A∗b]] = [[∧iAib]] and [[A∗b′]] = [[∧iAib
′]], we have:

[[A∗Γ]]∧[[A∗b]] ⇒ [[A∗b′]]
i.e., A∗(Γ `Q{ν :B | b} <: {ν :B | b′})

2

Lemma 20. (Refinement) If A′ = Refine(A, c) then:

1. A ≤ A′,

2. if Ac is not valid, then A 6= A′,

3. if A′′c is valid and A ≤ A′′ then A′ ≤ A′′.

Proof. 1. From the definition of Refine, we have:

A′ ≡ A[κc 7→ A(κ) ∩Q′]

for some κc and Q′. We shall show that for any κ, we have A′(κ) ⊆ A(κ).

Consider κ 6= κc. Here A′(κ) = A(κ) ⊆ A(κ).

Consider κ = κc. Here A′(κ) = A(κ) ∩Q′ ⊆ A(κ).

2. We split cases on the type of constraint used for refinement, and in each case, show that if A′ = A
then Ac must be valid.

• case c ≡ Γ ` {ν :B | b}: where b is an expression or a liquid type variable with pending substitu-
tions. From the definition of Refine, we have:

Shape(AΓ) `A′b : bool

63

If A = A′ then,

Shape(AΓ) `Ab : bool

i.e., Ac is valid.

• case c ≡ Γ ` b ⇒ θ · κc: From the definition of Refine, we have:

AΓ `Ab ⇒ θ ·A′(κc)

If A = A′ then,

AΓ `Ab ⇒ θ ·A(κc)

i.e., Ac is valid.

3. We split cases on the type of constraint used for refinement.

• case c ≡ Γ ` {ν :B | b}: where b is an expression or a liquid type variable with pending substitu-
tions. We have,

A′′c is valid (a)
∀κ.A′′(κ) ⊆ A(κ) (b)

as A ≤ A′′. From the definition of Refine, we have:

A′ ≡A[κc 7→ A(κ) ∩Q′] (c)
Q′ ≡{e | e ∈ Q,Shape(Γ); ν :B ` e : bool} (d)

for some κc. We shall show that for any κ, we have A′′(κ) ⊆ A′(κ).

Consider κ 6= κc. From (b)

A′′(κ) ⊆A(κ) = A′(κ)

Consider κ = κc. Now (a) implies that

for each e ∈ A′′(κc), e ∈ Q, andShape(Γ); ν :B ` e : bool
i.e.,for each e ∈ A′′(κc), e ∈ Q′

From (b),

A′′(κc) ⊆A(κc) ∩Q′ = A′(κc)

• case c ≡ Γ ` b ⇒ θ · κc: We have,

A′′c is valid (a)
∀κ.A′′(κ) ⊆ A(κ) (b)

64

as A ≤ A′′. From the definition of Refine, we have:

A′ ≡A[κc 7→ A(κ) ∩Q′] (c)
Q′ ≡{e | e ∈ Q and [[AΓ]] ∧ [[Ab]] ⇒ θe}d

We shall show that for any κ, we have A′′(κ) ⊆ A′(κ).

Consider κ 6= κc. From (b)

A′′(κ) ⊆A(κ) = A′(κ)

Consider κ = κc. Now (a) implies that

for each e ∈ A′′(κc), e ∈ Q, and[[A′′Γ)]] ∧ [[A′′b]] ⇒ θe

As A ≤ A′′, from Lemma 19 we have

[[AΓ]] ⇒[[A′′Γ]]
[[Ab]] ⇒[[A′′b]]

i.e., [[AΓ]] ∧ [[Ab]] ⇒[[A′′Γ]] ∧ [[A′′b]] ⇒

and so,

for each e ∈ A′′(κc), e ∈ Q, and[[A′′Γ)]] ∧ [[A′′b]] ⇒ θe

i.e.,for each e ∈ A′′(κc), e ∈ Q′

i.e.,A′′(κc) ⊆Q′

From (b),

A′′(κc) ⊆A(κc) ∩Q′ = A′(κc)

2

Theorem 8. (Constraint Solving) For every set of constraints C and qualifiers Q,

1. Solve(C, λκ.Q) terminates,

2. if Solve(C, λκ.Q) returns A then A is the minimum solution for C over Q,

3. if Solve(C, λκ.Q) returns Failure then C has no solution over Q.

Proof. 1. To prove that Solve terminates, we associate a well-founded measure with solutions and show
that in each iteration of the refinement loop, the potential of the solution A strictly decreases. Let,

µA ≡
∑

κ

‖A(κ)‖

where ‖A(κ)‖ is the cardinality of A(κ). Consider any loop iteration. From the definition of Solve, we
know that the constraint c chosen for refinement is such that Ac is not valid. Let A′ be the refined
solution returned by calling Solve(A, c). By Lemma 20,

A ≤A′

A 6=A′

Thus, by the definition of ≤, we have µA′ < µA, i.e., the potential of the solution strictly decreases in
the iteration. As the potential is non-negative, Refine must terminate.

65

2. Assume that Solve returns a solution A. Then AC is valid (as otherwise the loop would finish), and so
by Theorem 7, C has a minimum solution A∗ over Q. To prove that the returned solution is the same
as A∗, we show by induction over n that after n iterations of the loop in Solve, the solution A ≤ A∗.
In the base case, A has the initial assignment mapping each liquid type variable to Q and thus A is
less than every solution over Q including A∗. Let us assume the induction hypothesis, that after n
iterations, A ≤ A∗. The value of A after n + 1 iterations is Refine(A, c) where A is the solution after n
iterations. As A∗c is valid (A∗ is the minimum solution for C over Q, and A ≤ A∗ (by the induction
hypothesis), from Lemma 20, we deduce that Refine(A, c) ≤ A∗, and so after n + 1 iterations, A ≤ A∗.
Thus, if A is the solution returned by Solve, then A ≤ A∗. As A∗ is the minimum solution over Q, and
A is a valid solution, A = A∗.

3. Suppose that Solve fails,but that there is a valid solution for C over Q. Then, there exists a minimum
solution A∗ over Q, and by the reasoning above, at each iteration, A ≤ A∗. By the definition of Refine,
the outcome Failure only happens when A and the constraint c are such that c ≡ Γ `Q b ⇒ e, where
b is either an expression or a liquid variable with pending substitutions, and:

[[AΓ]] ∧ [[Ab]] 6⇒ [[e]]

Now, as A ≤ A∗, by Lemma 19, we have

[[AΓ]] ⇒ [[A∗Γ]]
[[Ab]] ⇒ [[A∗b]]

and therefore,

[[A∗Γ]] ∧ [[A∗b]] 6⇒ [[e]]

i.e., A∗c is not valid, which is a contradiction, and so there is no valid solution for C over Q.
2

Proof. (of Theorem 2 Immediate corollary of Theorems 6 and 8.
2

66

	Introduction
	Overview
	Liquid Type Checking
	Elements of L
	Liquid Type Checking Rules
	Features of the Liquid Type System

	Liquid Type Inference
	ML Types and Templates
	Constraint Generation
	Constraint Solving
	Features of Liquid Type Inference

	Experimental Results
	Related Work
	Liquid Recursive Types
	Other Applications of Liquid Types
	Formal Semantics of L
	Correctness of Type Checking
	Correctness of Type Inference

