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Abstract. We present a technique for using infeasible program paths
to automatically infer Range Predicates that describe properties of un-
bounded array segments. First, we build proofs showing the infeasibility
of the paths, using axioms that precisely encode the high-level (but in-
formal) rules with which programmers reason about arrays. Next, we
mine the proofs for Craig Interpolants which correspond to predicates
that refute the particular counterexample path. By embedding the pred-
icate inference technique within a Counterexample-Guided Abstraction-
Refinement (CEGAR) loop, we obtain a method for verifying data-
sensitive safety properties whose precision is tailored in a program- and
property-sensitive manner. Though the axioms used are simple, we show
that the method suffices to prove a variety of array-manipulating pro-
grams that were previously beyond automatic model checkers.

1 Introduction

Counterexample-guided Abstraction-Refinement(CEGAR)-based techniques [8]
have proven to be effective in the verification of control-dominated properties
of software [2,15,7,16], chiefly because they precisely track only the small set of
facts required to prove the property. However, CEGAR has not had success with
data-sensitive properties which require the automatic discovery of abstractions
for reasoning about unbounded structures. Consider for example, the following
program init that initializes an array:

for(i=0;i != n; i++) M[i] = 0;
for(j=0;j != n; j++) assert(M[j] == 0);

CEGAR-based approaches fail on such programs as for each counterexample
path corresponding to an unrolling of k iterations of the upper loop, they infer
the atomic predicates: sel(M, 0) = 0,. . . ,sel(M,k − 1) = 0, which state that the
cells 0 through k − 1 of the array M have the value 0. These predicates suffice
to refute the particular path, but not other, longer paths. Thus, the inability to
infer universally quantified predicates about unbounded segments of the array
causes CEGAR-based approaches to diverge.

In this paper, we present a technique for using infeasible counterexample
paths to infer predicates that describe properties of unbounded array segments
and therefore prove many array manipulating programs correct. Our technique is
based on two ingredients. The first ingredient is the notion of a Range Predicate,
an implicitly universally quantified predicate, defined recursively as:

RP(t1, t2, p)
4
= p[t1/α] ∧ (t1 + 1 = t2 ∨ RP(t1 + 1, t2, p)



where t1 and t2 are terms, respectively called the left and right index, p is an
atomic first-order predicate, i.e., an equality, disequality or inequality, which
contains an implicitly bound variable α. Intuitively, the range predicate cap-
tures the fact that for each element t in the sequence t1, t1 + 1, (t1 + 1) + 1, . . .
upto, but not including, t2, the fact p[t/α] holds. Thus, the range predicate:
RP(0, i, sel(M,α) = 0) states that the first i elements of the array M are equal
to 0. Similarly, RP(0, n,¬(sel(M,α) ≤ 0)) stipulates that the first n elements of
the array M are positive, and RP(i, n, (sel(M,α) ≤ sel(M,α + 1))) states that
the segment of the array M from index i through n is sorted.

For range predicates to be useful for automatic verification, we require a way
to automatically find range predicates relevant to the property being verified.
The second ingredient of our technique, is an axiom-based algorithm for automat-
ically finding relevant predicates as Craig Interpolants computed from proofs of
infeasibility of counterexample paths. We instantiate the algorithm with axioms
that precisely encode the high-level, but informal, rules with which which pro-
grammers reason about arrays, to obtain a method for automatically inferring
range predicates tailored to the property to be proved. Thus, the two ingredients
are combined to obtain a predicate inference technique which, when embedded
within a CEGAR loop [14,18], results in automatic method for verifying data-
sensitive safety properties of array-manipulating programs.

To address the challenge of computing range predicate interpolants instead
of a divergent sequence of atomic predicates describing individual array cells,
our axiom-based algorithm builds upon our previous technique of L-restricted
Interpolation [17]. Consider the family of languages L0 ⊆ L1 ⊆ . . ., where Li is
the language of predicates containing numeric constants with absolute value at
most i. We set k to 0 and for each candidate counterexample path, try to find an
interpolant belonging to Lk. If no such interpolant exists, we increase k and re-
peat. Thus, if there is an abstraction that suffices to prove the program infeasible,
there is some k such that all the predicates of the abstraction belong to Lk, and
so the abstraction-refinement loop is guaranteed to terminate. By restricting the
language we force the solver to find interpolants (and therefore, abstraction pred-
icates) that contain small constants, if these exist. Thus, in the example above,
once the counterexample path contains more than k + 1 iterations of the first
loop, the solver cannot return the interpolant sel(M, 0) = 0, . . . , sel(M,k) = 0,
and is instead forced to find the range predicate RP(0, i, sel(M,α) = 0), which
yields an inductive invariant that proves the property.

To compute L-restricted interpolants it suffices to find L-restricted split
proofs where each deduction belongs in L, and where for each deduction, there
exists a time step such that the antecedents and consequence of the deduction
are over program variables that are in scope at that time step. In Section 3 we
show a local axiom based algorithm to generate split proofs of refutation, and
therefore, interpolants. In Section 4 we present an instantiation of this frame-
work using range predicate axioms. Though the axioms for reasoning about range
predicates are simple, we present initial experiments in Section 5 that indicate
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that they are expressive enough to efficiently capture a variety of idiomatic uses
of arrays, in a manner that is precise enough to prove data intensive properties.
Related Work. The problem of synthesizing abstractions and invariants for
arrays and other unbounded data structures has received much attention. One
line of research uses templates representing families of candidate loop invari-
ants (e.g. affine constraints over program variables) to generate loop invariants
[3,4,29]. These approaches use a template of quantified invariants derived from
[6], where the problem of checking a given quantified invariant is studied. A sec-
ond line of work uses abstract interpretation based techniques for shape analysis.
Examples include those based on three-valued logic [28,22] and Separation Logic
[10]. The abstract domain for arrays presented in [12] captures properties similar
to range predicates. Predicate abstraction [13] based approaches for shape anal-
ysis [11,9,5,26,21,1] can also be viewed as an instance of abstract interpretation.
In the approaches which work for unbounded structures an expert must supply
appropriate predicates or instrumentation predicates which are combined via
a fixpoint computation to obtain an inductive invariant. Several authors have
proposed using specialized rules to build decision procedures [26], and more gen-
erally, program analyses [27].

2 Overview

We begin with an overview of safety verification via interpolant-based abstrac-
tion refinement.
Notation. In this paper, we use standard first-order logic (FOL). By L(Σ)
we refer to the set of well-formed formulas over a vocabulary Σ of non-logical
symbols, and for a given formula φ we use L(φ) to denote the set of well-formed
formulas over the vocabulary of non-logical symbols occurring in φ.

We assume that for every (non-logical) symbol s, there exists a unique symbol
s′, i.e., s with one prime added. We use s with n primes added to represent the
value of s at time step n. For any formula or term φ, we write φ〈n〉 to denote
the addition of n primes to every non-logical symbol in φ. Finally, for any set of
symbols Σ, we write Σ〈n〉 to denote {s〈n〉 | s ∈ Σ} and Σ′ to denote Σ〈1〉. For
a term (resp. predicate) t we write t[e/x] to denote the term (resp. predicate)
obtained by substituting all occurrences of x in t with e.
Programs. We model programs abstractly using logical formulas, and restrict
ourselves to single-procedure programs. Let S be a set of state variables corre-
sponding to individual program variables. A state formula is a formula in L(S),
which may contain interpreted symbols like +,=,≤ in addition to the symbols
in S. A transition is a formula in L(S ∪ S′). A program is a pair (T ,Π) where
T is a finite set of transitions and Π ⊆ T ∗ is a regular language of sequences
of transitions. Intuitively, each command (basic block or branch condition) of
the control-flow graph of the program corresponds to a transition, and the set
of paths is the regular set of syntactic control-flow paths of the program.

The following are the transitions for the program init from Section 1. For
each transition, we omit for clarity the implicit conjunction x = x′ for all pro-
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gram variables x whose primed version is not explicitly shown in the transition.
T1 : i′ = 0 T2 : i 6= n ∧M ′ = upd(M, i, 0) ∧ i′ = i + 1 T3 : i 6= n
T4 : j′ = 0 T5 : j 6= n ∧ sel(M, j) = 0 ∧ j′ = j + 1 T6 : j 6= n ∧ sel(M, j) 6= 0
The set of syntactic paths of the program that lead to the assert failure are
given by the regular expression: T1 · T ∗

2 · T3 · T4 · T ∗
5 · T6.

Path Constraints. A path π is a sequence of transitions T0, . . . , Tn in Π. For
any path π, the constraints Cons(π) is the sequence of formulas T

〈0〉
0 , . . . , T

〈n〉
n .

A path π is infeasible if the path formula
∧

Cons(π) is inconsistent, i.e., unsat-
isfiable. A program (T ,Π) is infeasible if every path in Π is infeasible.

The path formula represents all possible concrete program executions that
follow the given control-flow path. A satisfying assignment for the path formula
can be mapped back to the values taken by the program variables at each time
step from 0 (the initial value) through n+1 (at the end of the path). Thus, if the
formula is satisfiable, the path corresponds to a feasible concrete execution of
the program. The left side of Figure 1 shows the path constraints corresponding
to the path where the upper and lower loops are unrolled twice. From top to
bottom, the constraints shown are the formulas: T

〈0〉
1 , T

〈1〉
2 , T

〈2〉
2 , T

〈3〉
3 , T

〈4〉
4 , T

〈5〉
5 ,

T
〈6〉
6 . Using the standard axioms for equality and arithmetic, and McCarthy’s

axioms for sel and upd , one can check that the path formula shown on the left
in Figure 1 is inconsistent.

Safety Verification. Informally, the safety verification problem is to determine
whether the program always avoids entering a set of undesirable “error” states.
We can reduce the safety verification problem to that of determining if a program
is infeasible, by intersecting Π with the set of paths leading to the “error” states.

Interpolants. For a sequence of formulas Γ = A0, . . . , An, we say that Γ̂ =
Â0, . . . , Ân+1 is an interpolant for Γ if: (1) Â0 = True and ˆAn+1 = False,
and, (2) for all 0 ≤ i ≤ n, Âi ∧ Ai implies ˆAi+1, and, (3) for all 0 ≤ i ≤ n,

ˆAi+1 ∈ L(Ai) ∩ L(Ai+1)

Interpolants are Abstractions. For any infeasible path, the sequence of for-
mulas of the interpolant for the path constraints overapproximate the possible
program configurations along the path in a manner that is precise enough to
demonstrate the infeasibility of the path. To see this, observe that the interpolant
for path formula T

〈0〉
0 , . . . , T

〈n〉
n is a sequence of formulas T̂0, . . . , T̂n+1, such that:

(1) T̂0 is True, representing all possible initial states and T̂n is False, indicat-
ing that there is no possible state at the end of the path, (2) for all 0 ≤ i ≤ n,
executing the transition Ti from a state in T̂i takes the system into a state in
T̂i+1, and, (3) for all 0 ≤ i ≤ n, the set of possible states for time i is expressed
as a state formula over the values of the variables at time i.

Thus, the interpolant corresponding to an infeasible path can be used to
iteratively refine an abstract model of the program either directly [24], or indi-
rectly by predicate abstraction over the set of atomic predicates appearing in
the interpolant [14]. This process is repeated until all paths are shown infeasible
or a feasible path is found [8]. For example, for the path constraints shown in
Figure 1, a possible interpolant is the sequence of formulas: True, (i〈1〉 = 0),
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Path Constraints Interpolant

True

T
〈0〉
1 : i〈1〉 = 0 i〈1〉 = 0

T
〈1〉
2 : i〈1〉 6= n ∧M 〈2〉 = upd(M 〈1〉, i〈1〉, 0) ∧ i〈2〉 = i〈1〉 + 1 RP(0, i〈2〉, sel(M 〈2〉, α) = 0)

T
〈2〉
2 : i〈2〉 6= n ∧M 〈3〉 = upd(M 〈2〉, i〈2〉, 0) ∧ i〈3〉 = i〈2〉 + 1 RP(0, i〈3〉, sel(M 〈3〉, α) = 0)

T
〈3〉
3 : i〈3〉 = n RP(0, n, sel(M 〈4〉, α) = 0)

T
〈4〉
4 : j〈5〉 = 0 RP(j〈5〉, n, sel(M 〈5〉, α) = 0)

T
〈5〉
5 : j〈5〉 6= n ∧ sel(M 〈5〉, j〈5〉) = 0 ∧ j〈6〉 = j〈5〉 + 1 RP(j〈6〉, n, sel(M 〈6〉, α) = 0)

T
〈6〉
6 : j〈6〉 6= n ∧ sel(M 〈6〉, j〈6〉) 6= 0 False

Fig. 1. On the left, we show the path constraints generated by the path leading
to the assertion violation in init where each of the loops is unrolled twice.
For i ≥ 3 the i-th path constraint has an additional conjunct M 〈i+1〉 = M 〈i〉

omitted for brevity. The right column shows the interpolants generated using
range predicates. We write the i + 1-th element of the interpolant sequence to
the right of the i-th path constraint. Note that the i + 1-th element of the
interpolant sequence is implied by the conjunction of the i-th element and the
i-th path constraint.

(i〈2〉 = 1), (sel(M 〈3〉, 1) = 0), (sel(M 〈4〉, 1) = 0), (sel(M 〈5〉, 1) = 0 ∧ j〈5〉 = 0),
(sel(M 〈6〉, 1) = 0 ∧ j〈6〉 = 1), False. After dropping the superscripts, we get a
set of predicates: i = 0, i = 1,sel(M, 1) = 0, j = 0,j = 1, that suffices to refute
paths where the upper loop is unrolled at most two times.

(In)Completeness. Even though the atomic predicates suffice to eliminate
the given path, more predicates may be needed for longer paths, e.g. those
corresponding to more iterations through the loop. In our example, each path
corresponding to j iterations of the upper loop will result in new predicates
constraining the first j elements of the array to be zero, but which are insufficient
to refute longer paths. As a result, the iterative abstraction-refinement diverges.

Range Predicates. We obtain the interpolant sequence shown on the right
in Figure 1, by giving the interpolating procedure axioms for reasoning about
range predicates and simultaneously restricting it to find interpolants in the lan-
guage L1 (using numeric constants of absolute value at most 1). Note that the
restriction forces the solver to return an interpolant that states that all cells
from 0 through n have have been initialized with zero for the point after the
first loop has finished. After dropping the superscripts, we obtain the set of new
abstraction predicates: i = 0, RP(0, i, sel(M,α) = 0), RP(0, n, sel(M,α) = 0),
RP(j, n, sel(M,α) = 0). Thus, perhaps counter-intuitively [4], from a finite path
we can deduce predicates describing unbounded array segments, simply by re-
stricting the language of the interpolants. Subsequent predicate abstraction over
these predicates refutes this particular path and in fact, results in an inductive
invariant that proves the program infeasible.
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3 Generating Interpolants from Axioms

We now consider the problem of using a specialized set of axioms (in addition to
the axioms belonging to the ground theories of equality, uninterpreted functions
and difference constraints) to find L-restricted interpolants for a given sequence
of formulas Γ = A0, . . . , An.

As shown in [17], this can be achieved by the following two-step process. First,
we must find an L-restricted split proof where each deduction can be mapped
to a time step i such that the antecedents and consequence of the deduction
belong to L(Ai), and if there are no antecedents, the consequence is implied by
Ai. Second, we can convert the split proof into a set of propositional clauses
(by converting each atom into a literal) and then use propositional interpolation
[23] to find an interpolant. The latter operation is polynomial in the size of the
split-proof and results in interpolants whose atoms appear in the split proof and
are thus from the restriction language L.

Split Proofs. An L-restricted split proof over a set of hypotheses Γ =
A0, . . . , An is a triple (V,E, N), where V is a set of formulas, (V,E) is a di-
rected acyclic graph, and N is a labeling function from V to [0 . . . n] such that:

– for each vertex v ∈ V , we have AN(v), {u | (u, v) ∈ E} |= v, and,
– for each edge (u, v) ∈ E, we have u, v ∈ L(AN(v)), and,
– for each edge (u, v) ∈ E, if N(u) 6= N(v) then u ∈ L.

A L-restricted split refutation of Γ is an L-restricted split proof over Γ whose
unique sink vertex (no out-edges) is False.

Intuitively, a split proof is one where as before, each deduced formula (vertex)
can be localized to a particular time step (the formula’s label) – the formula is
implied by the conjunction of previously deduced facts (the vertex’s predecessors)
and the hypotheses corresponding to the formula’s time step. Moreover, if a
formula is deduced at a time step different from those at which a predecessor was
deduced, then the predecessor formula must belong to the restriction language
L. In other words, within a time step (e.g. within the constraints corresponding
to a large basic block of code), we may deduce formulas not in the restriction
language L, as these formulas will not appear in the subsequent interpolant.

We call a sequence of hypotheses Γ = A0, . . . , An strict if for all i, j such
that |i− j| > 1 we have L(Ai)∩L(Aj) = ∅. It is easy to check that the sequence
of hypotheses corresponding to path constraints are strict.

Theorem 1. [17] Given a strict sequence of hypotheses Γ and a propositionally
closed language L, Γ has an L-restricted interpolant iff it has a L-restricted split
refutation.

Generating Proofs from Local Axioms

Thus, to find L-restricted interpolants for Γ , we need to find L-restricted split
refutations of Γ . The problem of generating L-restricted split refutations for
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1: Input: Local axioms A
2: Input: Hypotheses Γ = A0, . . . , An

3: Output: A split refutation of Γ
4: indexed := Seed(Γ )
5: while False 6∈ pf.V do
6: choose a, I, j from A, indexed, [0, . . . , n]
7: match Project(a, I, j) with Some (I ′, Q′, c′)
8: if c′ 6∈ pf.V and ∀q ∈ Q′.Query(q) then
9: pf.V := pf.V ∪ {c′}

10: pf.E := pf.E ∪ {(h, c′) | h ∈ I ′ ∪Q′}
11: pf.N(c′) := j
12: indexed := indexed ∪ c′

13: Assert(c′)
14: return Cone(pf,False)

Fig. 2. Procedure Generate

Program Time Preds Iter

init 1.190 18 7
vararg 1.520 14 8
copy 3.650 20 11
copy-prop 9.720 38 17
find 2.240 20 12
partition 7.960 37 14
part-init 4.630 32 12
producer 45.000 39 41
insert 91.220 74 36
scull 9.180 36 14

Fig. 3. Experimental Results:
Time is the total number of
seconds spent to prove the
program safe, Preds is the
number of predicates required,
Iter is the number of it-
erations of the abstraction-
refinement loop, Experiments
were run on an IBM T42 Lap-
top with a 1.7GHz processor
and 512Mb RAM.

formulas over theories of equality, uninterpreted functions, difference bounds
and restricted use of the array operators “sel” and “upd” was addressed in [17].
Thus, we assume there is a “ground” procedure that handles the above theories
and describe how this procedure can be extended with specialized axioms.

Local Axioms. A local axiom a is a partial function that takes as input a set
of index formulas I and returns a pair of query formulas Q and a consequence
formula c, such that (1) I, Q |= c, and, (2) Q, c ∈ L(I). Intuitively, for a given set
of index formulas that is known to be true, there is a unique set of query formulas
over the ground theory which if additionally true imply the consequence formula.
To ensure that axiom instantiation results in split proofs, we require that the
queries and consequence belong to the same language as the index formulas.

Algorithm Generate. Our non-deterministic algorithm Generate for finding split
refutations for a sequence of hypotheses Γ = A0, . . . , An is shown in Figure 2.
The algorithm takes as input a set of local axioms A and a sequence of hypotheses
Γ . It maintains a set of index formulas in the variable indexed, and a split
proof pf whose vertices correspond to all the facts that have been deduced. The
overall structure of the algorithm is similar to that of saturation-based provers
[20]. First (line 4), it seeds the set of indexed formulas using the formulas that
the ground procedure derives from Γ . Next, (lines 5–13) it goes into a loop
where it repeatedly selects a set of index formulas and a candidate axiom and
attempts to derive new facts by applying the axiom to the index formulas, until
a contradiction is found (i.e., False is deduced).
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Project. The main challenge in our setting is that we need to ensure that all
the deductions can be localized to a single time step — we must ensure that
whenever we deduce a consequence c from hypotheses I,Q, there must be some
time step j ∈ 0 . . . n such that I,Q, c belong in L(Aj), i.e., contain symbols
that are local to time step j. Note that the local axiom functions are defined
only on index formulas belonging to some common time step. Thus, to make the
procedure Generate complete, we would have to undertake the expensive task
of maintaining different representatives for each formulas at each time step at
which the formula has a congruent version. We avoid this by using a procedure
Project that takes as input a set of formulas, possibly belonging to languages of
different time steps, an axiom, and a target time step j and determines whether
there is a set of formulas I ′ at time step j such that: (1) for each formula in
I, there is a congruent version in I ′, and, (2) each formula in I ′ belongs to
L(Aj), and, (3) the application of the axiom to the index formulas I ′ yields the
query formulas Q′ and a consequence c′. If a suitable I ′ exists, the procedure
updates the split proof pf with congruence proofs (using the axioms for equality
and uninterpreted functions) for the elements of I ′, and returns the tuple of
(I ′, Q′, c′).

We use the Project function in the main loop as follows. In each iteration
we choose an axiom a, a set of index formulas (from arbitrary time frames) I,
and a target time frame j (line 6), and we call Project to determine if at time
j there is a congruent version I ′ with query formulas Q′ and consequence c′,
all of which belong to time step j. If Project succeeds (line 7), we check if the
consequence c′ is not a previously known fact, and invoke the ground procedure
Query to determine whether each of the queries in Q′ is true (line 8). For each
provable query, the ground procedure updates the split proof pf with vertices
for the query formula. If all the queries Q′ are provable and the consequence c′

is new, the split proof pf is updated with the new consequence (lines 9–12) and
the consequence is asserted to the ground procedure (line 13). If this assertion
yields a contradiction i.e., causes the ground procedure to deduce False, the
algorithm returns a split refutation which is the backwards transitive closure of
False in the split proof pf.
Correctness and Termination. When the procedure Generate finishes, it re-
turns a split refutation for the hypotheses Γ . The presented procedure is ab-
stracted for clarity. In practice, by ensuring that we iterate over the indexed
formulas exhaustively we can guarantee that the procedure will find a split refu-
tation if one exists. The procedure can be terminated when it reaches a point
where no new facts in the restriction language can be deduced. Termination
follows as we restrict the language to bound the set of candidate formulas.

4 Axioms for Range Predicates

We now describe an instantiation of the framework of the previous section with
axioms for reasoning about Range Predicates which describe properties of con-
tiguous blocks of array elements. As range predicates capture facts that hold
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for sequences of array indices, we devise axioms that: generalize range pred-
icates from facts that hold about a single index, instantiate range predicates
to individual indices, extend range predicates to longer sequences, shrink range
predicates to shorter sequences, join range predicates over “adjacent” sequences,
and, preserve range predicates in the presence of array updates.

Figure 4 shows a representative subset of the axioms used for reasoning about
range predicates. We use η as an abbreviation for the map λt.t+1 from terms to
terms. Each axiom is shown as a proof rule, with the antecedents above the line
and the consequence below the line. The antecedents within boxes are the index
formulas, and those not in boxes are query formulas. Due to lack of space, we
omit the meta-theorems that show the soundness of the range predicate axioms
with respect to the recursive range predicate definition, and therefore show that
the axioms only yield semantically valid derivations.

Generalize: The axiom Generalize for creating range predicates simply takes
an ordinary formula and replaces occurrences of terms t inside the formula
with α, to obtain a range predicate that holds from t to η(t).

Instantiate: There are two rules for instantiating a range predicate:
Instantiate-Left for instantiating with the left index, and Instantiate-Right
for the right index. In either case, the consequence is p with α substituted
with the appropriate index.

Extend: There are two rules for extending a range predicate: Extend-Left for
extending at the left end and Extend-Right for extending at the right end. In
either case, the axiom has an antecedent query formula that the predicate p
hold at the appropriate index.

Shrink: There are two rules for shrinking a range predicate: Shrink-Left for
shrinking at the left end and Shrink-Right for shrinking at the right end. In
either case, the axiom has an antecedent query formula that ensures that in
the result, the left and right indices are disequal. This ensures the soundness
of the instantiation axioms.

Preserve: The trickiest rules are those that ensure that an update to the
array preserves the properties captured by a given range predicate i.e., the
properties continue to hold in the updated array, as long as the update
happens “outside” the range of indices of the range predicate. Both rules
require a syntactic condition that the read address t be linear, i.e., that
α not appear under any function symbol inside t. The Preserve-Right rule
states that for any linear read address t parameterized by α, if the address
obtained by substituting α with the right index is less than (i.e., to the left
of) the address written to (a), then the reads return the same values in the
updated array as the update does not affect the addresses read through t.
The Preserve-Left rule is the symmetric version for writes to the left of the
left index of the range predicate.

Join: The rule Join is used to join two adjacent range predicates.

Example Split Proof. Figure 5 shows a split proof generated by Foci , to
refute the path constraints from Figure 1. The constraints are simplified using
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p

RP(t, η(t), p[α/t])
Generalize

RP(t1, t2, p) RP(t2, t3, p)

RP(t1, t3, p)
Join

RP(t1, t2, p)

p[t1/α]
Instantiate-Left

RP(t1, η(t2), p)

p[t2/α]
Instantiate-Right

RP(η(t1), t2, p) p[t1/α]

RP(t1, t2, p)
Extend-Left

RP(t1, t2, p) p[t2/α]

RP(t1, η(t2), p)
Extend-Right

RP(t1, t2, p) η(t1) 6= t2

RP(η(t1), t2, p)
Shrink-Left

RP(t1, η(t2), p) t1 6= t2

RP(t1, t2, p)
Shrink-Right

RP(η(t1), t2, p) a ≤ t[t1/α] t is linear

RP(η(t1), t2, p[sel(upd(M, a, v), t)/sel(M, t)]
Preserve-Left

RP(t1, t2, p) t[t2/α] ≤ a t is linear

RP(t1, t2, p[sel(upd(M, a, v), t)/sel(M, t)]
Preserve-Right

Fig. 4. Axioms for Reasoning about Range Predicates

Static Single Assignment form [14], which avoids the equality constraints that
“copy” unmodified variables across a transition. In particular, we omit the copy
constraints for M after time step 3 (as the array is not updated subsequently).
For brevity, we write xi for x〈i〉. On the left side we show the formulas correspond-
ing to the split proof vertices on the right. Each square vertex is a hypothesis
labeled by the time step to which the hypothesis belongs (i.e., a hypothesis in Aj

is labeled j). Each circular vertex is a deduction, made using the range predicate
axioms or the axioms for equality, congruence or arithmetic, labeled by the time
step at which the deduction was made. The curly braces describe how sub-proofs
were generated, either by the application of a range predicate axiom (formulas
at lines 1,7,9,20,22), or via Project which uses one or more applications of the
axiom of congruence (formulas at lines 5,12,14,16,19). Notice that the formula at
line 9 contains variables that do not belong in time step 5 where the Shrink-Left
axiom can be applied, but which is congruent, and therefore is Project-ed to the
formula at line 16 which does belong at time step 5.

5 Experiences

We now describe our experiences so far with implementing the technique and
applying it to verify programs, some lessons drawn from our experiments and
some possible avenues for future work.
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sel(upd(M2,i2,0),i2) = 0

sel(upd(M1,i1,0) i1) = 0)

RP(i1, i1+1, sel(upd(M1,i1,0),) = 0)

i1 = 0

i2 = i1+1

RP(0, i2, sel(upd(M1,i1, 0),) = 0)

M2= upd(M1,i1,0)

RP(0,i2+1, sel(upd(M2,i2,0), ) = 0)

M3 = upd(M2, i2, 0)

i3=i2+1 

RP(0, i3, sel(M3,) = 0) 

i3=n

RP(0, n , sel( M3, ) = 0)

j5=0

RP(j5, n, sel(M3, ) = 0)

j6 = j5+1

j5+1  n 

RP(j5+1, n, sel(M3, ) = 0)

sel(M3,  j5+1) =  0

sel(M3,  j6) =  0

sel(M3, j6)  0

FALSE
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RP(0,i2, sel(upd(M2,i2,0),)=0)

1

2

2

1

2

j6  n 

Generalize

Project

Preserve-Right

Extend-Right

Project

Project

Shrink-Left

Insta-Left

Fig. 5. Split proof generated by Foci for the path constraints from Figure 1.

Implementation. We have extended the Foci split prover [17] with axioms
for range predicates. Our current implementation is specialized to the axioms
for range predicates and has an overall structure similar to procedure Generate
from Section 3, but with a few differences. First, instead of applying the gener-
alizing rule to all the atomic predicates deduced by the ground procedure, we
only generalize from a set of predicates that are obtainable by some syntactic
manipulation of the input constraints. Second, there are heuristics to bias the
prover to find simpler proofs, with more general interpolants, i.e., those which
are less specific to the particular path whose constraints are fed to the prover.
The extended prover is integrated with Blast [14]. As the predicates found re-
quire disjunctive images, we use Foci to iteratively refine the transition relation
using the method presented in [18].

Experiments. In preliminary experiments, we have applied the model checker
extended with range predicates to a variety of small array-intensive programs
hitherto beyond the grasp of automatic refinement based tools. The results are
summarized in Table 3. init is the example from Section 2. vararg is an in-
stance of the common idiom in C programs for scanning the buffer of arguments
to determine how many input parameters were passed into the program, by re-
peatedly increasing an index until a NULL cell is found, and then going backwards
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(decreasing the counter) dereferencing the contents of the array to extract the
arguments. The property proved is that in the second phase, the values deref-
erenced are non-NULL. copy(from [12]) simply copies the contents of one array
into another, and then asserts that the two are the same. copy-prop first checks
that a given source array has only non-zero elements, then copies the array into
a destination and asserts that the destination has only non-zero elements. find
(from [11]) scans the array trying to find the index at which a particular value
resides, and returns −1 if the value is not in the array. The property checks
that if −1 is returned then the value is not in the array. partition (from [4])
copies the zero and non-zero elements of a source array into two different ar-
rays and checks that the two destination arrays only have zeros and non-zeros
respectively. part-init (from [12]) copies those indices of a source array for
which the source array’s value is positive, into a target array, and checks that at
the index stored in the target array the source array’s value is indeed positive.
producer is a producer-consumer example, where a producer keeps generating
a sequence of values and writes them into increasingly larger array indices via a
head index that is incremented, while a consumer consumer uses a tail index
to read the values stored in the array. The property checked is that the sequence
of values written by the producer is the same as those read by the consumer.
insert is an in-place insertion routine, that takes a sorted array and inserts a
new element into the appropriate place by repeatedly swapping elements until
the right position is found (i.e., the inner loop in an insertion sort procedure).
The property checked is that after the insertion, the extended array is sorted.
scull is a text-book Linux device driver for which we check a property that
requires an array of devices to be appropriately initialized.

Discussion and Future Work. Our experiments show that the axioms are
expressive enough to capture many of the idiomatic uses of arrays, while yield-
ing property-sensitive abstractions. However, there are several deficiencies in the
approach that need to be remedied with future work. The main difficulty with
the approach is that the prover may find proofs which refute short paths, but
which do not generalize to longer paths, thereby delaying convergence, or worse,
cluttering the abstraction with irrelevant facts about the program causing image
computation to explode. This problem arose in our (as yet unsuccessful) attempt
to prove that an implementation of insertion-sort correctly sorted an array.
Though the range predicate axioms suffice to prove the property, Blast is over-
whelmed by irrelevant predicates generated by smaller paths. Thus, one possible
line to pursue is to find ways to make the outer loop converge more rapidly.
Finally, we view this work as first step towards an axiom-extensible technique
for verifying data-sensitive properties. To this end, we would like to implement a
generalized split-proof engine parameterized by axioms, and devise and instan-
tiate it with axioms for other data structures like lists [26,21], hash tables and
richer logical constructs like separating conjunctions [10].
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