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Abstract

Planning in adversarial and uncertain environ-
ments can be modeled as the problem of de-
vising strategies in stochastic perfect informa-
tion games. These games are generalizations of
Markov decision processes (MDPs): there are
two (adversarial) players, and a source of ran-
domness. The main practical obstacle to com-
puting winning strategies in such games is the
size of the state space. In practice therefore, one
typically works with abstractions of the model.
The difficulty is to come up with an abstraction
that is neither too coarse to remove all winning
strategies (plans), nor too fine to be intractable.
In verification, the paradigm of counterexample-
guided abstraction refinement has been success-
ful to construct useful but parsimonious abstrac-
tions automatically. We extend this paradigm to
probabilistic models (namely, perfect information
games and, as a special case, MDPs). This al-
lows us to apply the counterexample-guided ab-
straction paradigm to the AI planning problem.
As special cases, we get planning algorithms for
MDPs and deterministic systems that automati-
cally construct system abstractions.

1 Introduction

Sequential decision making under uncertainty is a
central problem in artificial intelligence and opera-
tions research. The problem involves designing se-
quences of actions (“plans”) in order to achieve cer-
tain goals. Markov decision processes (MDPs) [18]
have been extensively used to model such decision
problems in the presence of uncertainty [3, 13], and
have been augmented to the more general framework
of two player perfect information stochastic games
[8, 9]. A perfect information game consists of a di-
rected graph with three kinds of nodes: player 1 nodes,
player 2 nodes, and random choice nodes. At a player 1
(resp. 2) node, player 1 (resp. 2) decides to take an
edge to a neighboring node; at a random node, the
game proceeds to the neighboring nodes according to

a given probability distribution. A plan is now a se-
quence of actions of player 1 such that, no matter how
player 2 behaves, player 1 can achieve a certain goal.
This model generalizes MDPs by separating adversar-
ial (player 2) from random (player random) choice of
the opponent or environment. The model is useful
to represent robust stochastic optimization and con-
trol problems [9]: player 2 models worst-case uncer-
tainty in the transition matrices and rewards, hence a
player 1 plan to achieve a goal irrespective of player 2
actions is robust with respect to modeling defects.

While adopted as a useful and robust model, compu-
tational issues remain the main hurdle in solving real-
life planning problems. This is especially so in sit-
uations where systems are compactly represented and
state spaces grow exponentially in the number of mod-
eled features (the “curse of dimensionality”). The key
to the success of algorithmic planning under uncer-
tainty is abstraction. An abstract state space clusters
concrete states of the problem, ignoring irrelevant fea-
tures, and summarizing information about other fea-
tures. Useful abstractions have two desirable proper-
ties. First, the abstraction should be sound, mean-
ing that if a property (e.g., existence of a plan with a
certain reward) is proved for the abstract model of a
system, then the property holds also for the concrete
system. Second, the abstraction should be effective,
meaning that the abstract model is not too fine and
can be handled by the tools at hand. Indeed, abstrac-
tion has been successfully applied in decision-theoretic
planning [2, 14, 7]. In order to be practical, abstrac-
tions must have a third desirable property. A sound
and effective abstraction (provided it exists) should
be found automatically ; otherwise, the labor-intensive
process of constructing suitable abstract models often
negates the benefits of automatic methods. Research
has focused on the automatic extraction of abstrac-
tions: the main technique is to identify a subclass
of relevant features, and perform a cone-of-influence
computation to add other features of the problem as
relevant if they directly affect some features that are



already known to be relevant. Once a set of relevant
features has been thus computed, the abstraction clus-
ters together all states that agree on the valuations of
the relevant features. This abstraction (which is usu-
ally much smaller than the original problem) is then
solved to generate a plan. However, if the abstraction
is too coarse, then the generated abstract plan may
be far from an optimal solution. In that case, one has
to start again with a new set of relevant features and
continue.

Instead, we apply a successful paradigm from for-
mal verification to the planning domain: the method
of counterexample-guided abstraction refinement (CE-
GAR) [15, 5]. In CEGAR, one starts with a very
coarse abstract model, which is effective but may
not be informative, meaning that it may produce ex-
tremely suboptimal plans. Then the abstract model
is refined iteratively as follows: first, if the abstract
model does not exhibit the desired property, then
an abstract counterexample (that exhibits why the
property fails on the abstract model) is constructed
automatically; second, it can be checked automati-
cally if the abstract counterexample corresponds to
a concrete counterexample; if this is not the case,
then third, the abstract model is refined automati-
cally in order to eliminate the spurious counterexam-
ple. Counterexample-guided abstraction refinement
improves on cone-of-influence refinement in that new
features are added only at states where they are needed
for a plan to achieve the objective, whereas states
that need not be distinguished for planning remain
lumped together in the abstraction. In this way, a non-
uniform abstraction is constructed—exposing more de-
tail where necessary, and less detail where sufficient—
and the construction is fully automatic (algorithmic).

The method of counterexample-guided abstraction re-
finement has been developed for the verification [15, 5]
and control [10] of deterministic systems, and applied
successfully to software verification [1, 11]. We gen-
eralize the technique to work on perfect information
games. In verification, a counterexample to the sat-
isfaction of a linear-time property (a temporal prop-
erty of traces) is a possibly infinite trace that violates
the property; in control, counterexamples are strat-
egy trees. Our first insight is that for probabilistic
perfect information games with discounted or average
reward winning conditions, winning strategies for both
players are pure (deterministic) and memoryless, and
hence, counterexamples can be represented as finite
objects (graphs). These, in turn, can be iteratively
refined.

In somewhat more detail, our method proceeds as fol-
lows. Given a perfect information game structure, a
winning objective (e.g., discounted reward or average

reward), and a goal p ∈ R, we wish to check if player 1
has a strategy to achieve a value of at least p accord-
ing to the winning objective, no matter how player 2
behaves. We automatically construct an abstraction
of the given game structure that is as coarse as pos-
sible and as fine as necessary in order for player 1 to
have a strategy that achieves at least p against any
strategy of player 2. We start with a very coarse ab-
stract game structure and refine it iteratively. First,
we check if player 1 has such a strategy in the abstract
game; if so, then she has a strategy in the concrete
game; otherwise, we construct an abstract player 2
strategy that spoils against all abstract player 1 strate-
gies (i.e., restricts player 1 to a value less than p).
Second, we check if the abstract player 2 strategy cor-
responds to a spoiling strategy for player 2 in the con-
crete game; if so, then there is no feasible plan for
player 1 that achieves value p; otherwise, we refine
the abstract game in order to eliminate the abstract
player 2 strategy. In this way, we automatically syn-
thesize “maximally abstract” plans, which distinguish
two states of the system only if they need to be dis-
tinguished in order to achieve the winning objective.
While we obtain our results on the general framework
of perfect information games, as special cases, we get
counterexample-guided planning algorithms for plan-
ning problems on Markov decision processes, and on
deterministic games and transition systems.

2 Games and Abstraction

Perfect information games. A (perfect informa-
tion) game structure G = (V, E, v0, wt, r, (V1, V2, Vr))
consists of a directed graph (V, E), an initial state
v0 ∈ V , an edge weight function wt : E → (0, 1], a re-
ward function r : V → R, and a partition (V1, V2, Vr)
of the set of states V into player 1 states V1, player 2
states V2, and random states Vr. In the sequel, i ranges
over the set {1, 2} of players. We require that for ev-
ery v ∈ Vr, we have

∑
v′:(v,v′)∈E wt(v, v′) = 1, that

is, the edge weight function determines a probability
distribution over states for each random state v ∈ Vr.
Weight functions are defined for all edges for nota-
tional convenience, we shall not use weight functions
on edges outgoing from a player i state. For techni-
cal convenience, we require that all states have at least
one outgoing edge. Intuitively, at state v ∈ Vi, player i

chooses an outgoing edge (v, v′) and the game proceeds
to v′. At a random state v ∈ Vr, the game proceeds
to a neighbor v′ ∈ V with probability wt(v, v′). Per-
fect information game structures subsume several im-
portant special cases. If V2 = ∅, we have a Markov
decision process [18]. If Vr = ∅, we have a turn-based
deterministic game [20]. If both V2 and Vr are ∅, we
have a transition system.



A run of the game structure G is an infinite sequence
v0v1v2 . . . of states vj ∈ V such that for all j ≥ 0,
we have (vj , vj+1) ∈ E. A strategy of player i is a
partial function fi : V ∗ · Vi → V such that for every
state sequence u ∈ V ∗ and every state v ∈ Vi, we
have (v, fi(u · v)) ∈ E. Intuitively, a player-i strategy
suggests a move for player i given a sequence of states
that end in a player-i state. Let Fi denote the set of
player i strategies. A player i strategy fi is memoryless
if it depends only on the current state, that is, for all
u, u′ ∈ V ∗ and v ∈ Vi, we have fi(u · v) = fi(u

′ ·
v). A memoryless strategy fi can be represented as a
function fi : Vi → V .

Given two strategies f1 and f2 of players 1 and 2, the
possible outcomes Ωf1,f2

(v) from a state v ∈ V are
runs: a run v0v1v2 . . . belongs to Ωf1,f2

(v) iff v = v0

and for all j ≥ 0, vj ∈ Vi and vj+1 = fi(v0 . . . vj), or
vj ∈ Vr and (vj , vj+1) ∈ E. An event is a measurable
set of runs. Once a starting state v and strategies
f1 and f2 for the two players have been chosen, the
probabilities of events are uniquely defined.

Objectives. A game (G, Γ) consists of a game struc-
ture G and an objective Γ for player 1. We consider dis-
counted reward and average reward objectives [18, 8].
Given a strategy f1 for player 1 and f2 for player 2 the
values of the game under strategies f1 and f2 from a
state v ∈ V is defined as follows:

• Discounted reward objective. Given a discount
factor β ∈ (0, 1) the values valf1,f2

1 and valf1,f2

2

for player 1 and player 2 are defined as follows:

valf1,f2

1 (v) =
∞∑

t=0

βtEf1,f2

v [r(vt)];

valf1,f2

2 (s) = −
∞∑

t=0

βtEf1,f2
s [r(vt)].

• Average reward objective. The values valf1,f2

1 and

valf1,f2

2 for player 1 and player 2 for average re-
ward objective are defined as follows:

valf1,f2

1 (v) = lim inf
N→∞

1

N

N∑

t=0

Ef1,f2

v [r(vt)];

valf1,f2

2 (s) = − lim inf
N→∞

1

N

N∑

t=0

Ef1,f2
s [r(vt)].

Values. The values of a game (G, Γ) for player 1 (val1)
and player 2 (val2) are defined as follows:

val1(v) = supf1∈F1
inff2∈F2

valf1,f2

1 (v);

val2(v) = supf2∈F2
inff1∈F1

valf1,f2

2 (v).

A strategy f1 is optimal for player 1 from a state v if
for all strategies f2 of player 2, we have valf1,f2

1 (v) ≥
val1(v). A strategy f1 is profitable compared to a strat-

egy f ′

1 from a state v if we have inff2∈F2
valf1,f2

1 (v) >

inff2∈F2
val

f ′

1
,f2

1 (v). For a real p ∈ R, a strategy f1 is
p-optimal from state v if for all strategies f2 of player 2
we have valf1,f2

1 (v) ≥ p. A strategy is p-optimal if it
is p-optimal from v0. The following result is classical
[19, 16, 8].

Proposition 1 (Determinacy and optimal
strategies). Let G = ((V, E), v0, wt, r, (V1, V2, Vr)) be
a game structure, and Γ a discounted reward or av-
erage reward objective. Then the following assertions
hold.

1. For all states v ∈ V , we have val1(v)+val2(v) = 0.

2. Memoryless optimal strategies exist for player 1
and player 2 from every state v ∈ V .

The existence of non-randomized memoryless opti-
mal strategies in perfect information games can be
contrasted with concurrent stochastic games (games
where players make moves simultaneously at each
state) where optimal strategies may require both ran-
domization and memory. A function f1 : V1 → V is
also called a (memoryless) plan. A plan is p-feasible if
(1) it is a strategy for player 1, and (2) it is p-optimal.
The planning problem takes as input a game (G, Γ)
and a value p ∈ R, and produces a p-feasible plan for
player 1 in the game (G, Γ), or states that no such
plan exists. Observe that if a memoryless strategy f1

is fixed for player 1 then a perfect information game
reduces to a MDP. The values of a MDP with dis-
counted reward and average reward objectives can be
computed in polynomial time (details in [8, 18]). A
memoryless optimal strategy represents a polynomial
witness and the polynomial time algorithms for MDPs
is the polynomial time verification procedure. This es-
tablishes that the problem is in NP. Moreover, since
the problem is symmetric for both players it follows
that the problem is also in co-NP. This gives us the
following result.

Proposition 2 (Complexity). Let G be a perfect
information game structure, Γ a discounted reward or
average reward objective, and p ∈ R. The planning
problem (G, Γ, p) can be solved in exponential time.
The complexity of the planning problem is NP ∩ co-
NP.

Abstractions of games. Since solving a game may
be expensive, we wish to construct sound abstractions
of the game with smaller state spaces. Soundness



means that if player 1 has a p-optimal strategy in the
abstract game, then she also has a p-optimal strat-
egy in the original, concrete game. To ensure sound-
ness, we restrict the power of player 1 and increase the
power of player 2 [12, 10]. Therefore, we abstract the
player 1 states so that fewer moves are available, and
the player 2 states so that more moves are available.
Informally, abstraction represents imprecise informa-
tion about some (possibly irrelevant) state variables.
We do not abstract uncertainties in transitions. Hence,
random states (that represent transition uncertainties)
are not abstracted.

An abstraction Gα for the game structure G is a game
structure ((V α, Eα), vα

0 , wtα, rα, (V α
1 , V α

2 , V α
r )) and a

concretization function [[·]]: V α → 2V such that condi-
tions (1)–(5) hold.

1. The abstraction preserves the player structure:
for i ∈ {1, 2} and all vα ∈ V α

i , we have [[vα]] ⊆ Vi;
also, random states are not abstracted, that is,
V α

r = Vr and [[v]] = {v} for all v ∈ V α
r .

2. The abstract states partition the concrete state
space:

⋃
vα∈V α [[vα]] = V . Moreover, vα

0 is the
(unique) abstract state such that v0 ∈ [[vα

0 ]].

3. For each player 1 abstract state vα ∈ V α
1 , define

(vα, wα) ∈ Eα iff for all v ∈ [[vα]] there is a w ∈
[[wα]] such that (v, w) ∈ E. For each abstract state
vα ∈ V α

2 ∪V α
r , define (vα, wα) ∈ Eα iff there exists

v ∈ [[vα]] and w ∈ [[wα]] such that (v, w) ∈ E.

4. The abstraction preserves the probability dis-
tribution from random states. For each
edge (vα, wα) ∈ Eα, define wt(vα, wα) =∑

{wt(v, w) : v ∈ [[vα]], w ∈ [[wα]]}.

5. For each abstract state vα ∈ V α, define rα(vα) =
min{r(v) : v ∈ [[vα]]}.

Note that the abstract state space V α and the con-
cretization function [[·]] uniquely determine the ab-
straction Gα. Intuitively, each abstract state vα ∈ V α

represents a set [[vα]] ⊆ V of concrete states.

Proposition 3 (Soundness of abstraction). Let
Gα be an abstraction for a game structure G, and let
Γ be an objective for player 1. For every p ∈ R, if
player 1 has a p-optimal strategy in the abstract game
(Gα, Γ), then player 1 also has a p-optimal strategy in
the concrete game (G, Γ).

The above proposition follows from the fact that ab-
stractions preserve strategies for the players in the fol-
lowing sense: if fα

1 is a strategy for player 1 in an ab-
straction, then there is a corresponding strategy f1 for
player 1 in the concrete game; and if there is a strategy
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Figure 1: (a) A perfect information game and (b) its
abstraction.

f2 for player 2 in the concrete game, then there is a
corresponding strategy fα

2 for player 2 in the abstract
game. Hence in the abstraction player 1 is weakened
and player 2 is strengthened. It follows that if there is
a p-optimal strategy for player 1 in the abstract game,
then there is a p-optimal strategy for player 1 in the
concrete game. This establishes the soundness of the
abstraction.

Example 1 Consider the perfect information game
structure and its abstraction shown in Figure 1(a).
There are eleven states. The diamond states are
player 1 states, the box states are player 2 states, the
circle states are random states. The state marked v

is the initial state. Each state is marked with a re-
ward. We only write the edge weights for edges com-
ing out of random states. Notice that player 1 has a
strategy to get 0.7 in the average reward game from
state v. Figure 1(b) shows one particular abstraction
for this game structure. The boxes denote abstract
states, with the concrete states they represent drawn
inside them. Solid (resp. dashed) boxes denote player 1
(resp. player 2) states. The dashed arrows are the ab-
stract transitions. In the abstract game, the player 2
memoryless strategy that chooses the v2 → v0 at state
v2 ensures player 1 can only achieve an average reward
of 0.15.

3 Counterexample Guided Planning

In general, an abstraction loses information, and are
not complete. That is, since we provide more power to
player 2, it may well be that player 1 has no p-optimal
strategy in the abstract game, but has a p-optimal
strategy in the concrete game. We now show how in
this case, a counterexample can be used to refine the
abstraction.



We first informally present the idea of counter-example
guided abstraction-refinement. A counterexample to
the claim that player 1 can achieve a reward p is a
spoiling strategy for player 2 that prevents player 1
from getting p. It follows from Proposition 1 that if
there is a spoiling strategy then there is a memory-
less spoiling strategy. A counterexample for an ab-
stract game (Gα, Γ) may be either genuine, meaning
that it corresponds to a player 2 strategy for the con-
crete game (G, Γ), or spurious, meaning that it arises
due to coarseness in abstraction. If a counterexam-
ple is spurious then we refine the abstraction and the
refinement is guided by the counterexample. In the se-
quel, we denote by fα a strategy in the abstract game
Gα and by valα1 the value function for player 1 in the
abstract game Gα.

Counterexample analysis and refinement. We
now elaborate the procedure CEGAR shown in Fig-
ure 1. The procedure CEGAR takes an abstract game
Gα, a spoiling strategy fα

2 for player 2 in the ab-
stract game, and a value function valα1 for player 1
in the abstract game. It analyzes whether the spoiling
strategy fα

2 is spurious (not feasible in the concrete
game) and if so it refines the overapproximation in the
present abstraction by applying the operators Focus
and ValueFocus according to some strategy (left un-
specified). The two operators Focus and ValueFocus
break up abstract states. The operator Focus refines
the approximation made in the edge relation caused by
the abstraction, while ValueFocus refines the approx-
imation in the reward function r made by collapsing
states.

The operator Focus achieves the following:

• for a player 2 state vα in Gα it determines which
states in vα can be a part of the spoiling strat-
egy of player 2 in the concrete game. That is, it
returns the subset of states of [[vα]] that have an
edge into some state in [[fα

2 (vα)]]. Formally, for
vα ∈ V α

2 , we define Focus(vα, fα
2 , valα1 ) := {v ∈

[[vα]] : ∃w ∈ V. (v, w) ∈ E and w ∈ [[fα
2 (vα)]]}.

• for a player 1 state vα in Gα it determines which
of the states in the concrete game has a strat-
egy that is profitable compared to the optimal
strategy fα

1 in Gα. This is achieved by check-
ing locally whether there is a state v ∈ vα that
has a successor in the Gα with a greater value
than valα1 (vα). Formally, for vα ∈ V α

1 , we define
Focus(vα, fα

2 , valα1 ) := {u ∈ [[vα]] : ∃w ∈ V, wα ∈
V α.(u, w) ∈ E∧w ∈ [[wα]]∧valα1 (wα) > valα1 (vα)}.
Note that this step is similar to the policy itera-
tion based on values.

The ValueFocus operator is used to split abstract

states in vα in two classes: the set of states v ∈ vα

such that r(v) = rα(vα) and the set of states v ∈ vα

such that r(v) > rα(vα). Formally, ValueFocus(vα) :=
{v ∈ vα : r(v) = rα(vα)}.

Counterexample guided plan generation. Given
a game structure G, an objective Γ, and a goal p ∈ R,
we wish to determine if the planning problem (G, Γ, p)
has a solution, and if so, construct a plan (p-optimal
strategy) for player 1 (“synthesize a plan”). Our al-
gorithm CounterExampleGuidedPlan, which generalizes
the “abstract-verify-refine” loop of [5, 10], proceeds as
follows:

Step 1 (“Abstraction”) We first construct an initial
abstract game (Gα, Γ).

Step 2 (“Strategy synthesis”) We solve the abstract
game to find if player 1 has a p-optimal strategy.
If so, we get a p-optimal player-1 strategy for the
abstract game, from which a p-optimal player-1
strategy in the concrete game can be constructed.
If not, we get an abstract counterexample (AC) en-
coding a memoryless spoiling strategy for player 2.
Notice that solving the abstract game can be done
using the usual value or policy iteration methods
on the abstract game.

Step 3 (“Counterexample guided abstraction re-
finement”) If solving the abstract game re-
turns an AC fα, then we use the procedure
CEGAR(Gα, fα, valα

1
) to check if the spoiling strat-

egy represented by the AC fα is feasible (i.e., gen-
uine). If so, then player 2 has a spoiling strategy
in the concrete game, and there is no p-optimal
plan for player 1. If the AC is spurious, then
we use the procedure CEGAR(Gα, fα, valα

1
) to re-

fine the abstraction Gα, so that fα (and similar
counterexamples) cannot arise on subsequent in-
vocations of the game solver.

Goto Step 2. The process is iterated until we find
either a player-1 p-optimal strategy in step 2, or
a genuine counterexample in step 3.

The procedure is summarized in Algorithm 2. The
function InitialAbstraction(G,Γ ) returns a trivial ab-
straction for G that merges all player 1 states and all
player 2 states, but preserves initial states. The func-
tion GameSolve(Gα,Γ , p) returns a pair (1, fα, valα1 ) if
player 1 has a p-optimal strategy from the initial state
in the abstract game, where fα is a (memoryless) p-
optimal strategy for player 1, and otherwise it returns
(2, fα, valα1 ), where fα is an AC.

From the soundness of abstraction (Proposition 3),
the counter-example guided abstraction refinement



Algorithm 1 Algorithm CEGAR

Input: an abstraction Gα, a memoryless spoiling strategy fα
2 , the value function valα1 .

Output: if fα
2 is spurious, then Spurious and a refined abstraction; otherwise Genuine.

R := {[[vα]] : vα ∈ V α}.
choose nondeterministically

if there is some node vα such that vα 6= Focus(vα) then
R := (R \ [[vα]]) ∪ {([[vα]] \ Focus(vα, fα

2 , valα1 )),Focus(vα, fα
2 , valα1 )}.

return (Spurious, Abstraction (R)).
or

if there is some node vα such that vα 6= ValueFocus(vα) then
R := (R \ [[vα]]) ∪ {([[vα]] \ ValueFocus(vα)),ValueFocus(vα)}.
return (Spurious, Abstraction (R)).

return Genuine.

Algorithm 2 CounterExampleGuidedPlan(G, Γ, p)

Input: a game structure G, an objective Γ, a real p.
Output: either Feasible and a feasible plan for player 1,

or Infeasible and a player 2 spoiling strategy.
Gα := InitialAbstraction(G,Γ )
repeat

(winner , fα, valα1 ) := GameSolve(Gα,Γ , p)
if winner = 2 and CEGAR(Gα, fα) = (Spurious,Hα)

Gα := Hα; winner :=⊥ endif
until winner 6=⊥
if winner = 1

then return (Feasible, fα)
return (Infeasible, fα)

and the correctness of policy iteration algorithm to
obtain optimal strategies, we get the correctness of
the algorithm. For finite-state games, the procedure
CounterExampleGuidedPlan terminates, since every re-
finement step breaks at least one abstract state. In
the worst case by successive refinement the algorithm
may end up with the concrete game. This establishes
the following result.

Proposition 4 (Partial correctness). If the
procedure CounterExampleGuidedPlan(G, Γ, p) returns
(Feasible,f), then player 1 has a p-optimal strategy
in the game (G, Γ) and f is a feasible plan. If the
procedure returns Infeasible, then player 1 does not
have a p-optimal strategy in (G, Γ).

Example 2 Suppose that the planning procedure is
called with the input (G,Average , 0 .5 ), where G is the
game structure of Figure 1(a). That is, we wish to
find a plan that ensures player 1 gets at least 0.5 re-
ward in the average reward game. Notice that with
the initial abstraction of Figure 1(b), the memoryless

spoiling strategy of player 2 chooses at state v2 the
transition v2 → v0 ensures that in the initial abstrac-
tion player 1 only receives an average reward of 0.15.
So we check if this counterexample is spurious, and
refine the abstraction accordingly. Figure 2(a) shows
the result of a value focus on the abstract game of
Figure 1(b). The state v0 of the initial abstraction is
refined to state v0 and v1. Notice that this value fo-
cus rules out the current counterexample. However,
consider the following memoryless spoiling strategy of
player 2 in this new game: choose at state v2 the tran-
sition v2 → v1. This gives player 1 an average reward
of 0.25. When we apply focus to this counterexample,
we obtain the new abstraction in Figure 2(b). The
state v2 is split into v2 and v3 as the counterexample
strategy for player 2 was spurious. On this abstraction,
the player 1 strategy that chooses v0 → v3 ensures an
average reward of 0.6. Hence there is a 0.5-optimal
strategy for player 1 in the present abstraction and we
conclude that player 1 has a 0.5-optimal plan in the
original game. The plan in the abstract game can be
used to synthesize a plan in the concrete game.



(a)

0.2 0.4

0.1 0.1 0.5

0 0

0.6 0.8 0.2

0.5

0.90.1
0.5

0.2 0.4

(b)

0.2 0.4

0.1 0.1 0.5

0 0

0.6 0.8 0.2

0.5

0.90.1
0.5

0.2 0.4

0.1 0.1
0.1

0.6 0.2 0.6 0.2

0.2 0.2v v
v1

v2

v0 v0

v1

v2

v3

PSfrag replacements

s0

s1

s2

s3

Figure 2: Two steps in the refinement process.

As special cases, we get a counterexample guided plan
synthesis algorithm for MDPs (V2 = ∅), deterministic
games (Vr = ∅), and transition systems (V2 = ∅ and
Vr = ∅).

Compact representation. In practice, systems are
represented using a compact feature-based represen-
tation, and an explicit graph representation (as we
have assumed in our exposition) is not available (there
is usually an exponential cost in transforming the
feature-based representation to the explicit representa-
tion). We show how our algorithm can be adapted to a
feature-based representation for the important special
case of deterministic transition systems.

A transition system is compactly represented by a log-
ical propositional language as follows. Let P be a set
of atomic propositions. A state is a valuation to all
propositions in P , an action is a binary relation on
states; these correspond to the vertices and edges of
our explicit representation. For a set of propositions
P , let S(P) denote the set of valuations over P . Sets of
states are compactly represented using a propositional
formula over P , and actions are compactly represented
as a propositional formula over P ∪P ′, where P ′ con-
sists of primed versions of each proposition in P . A
boolean system (P ,A) consists of a set of propositions
P and a set of compactly represented actions. Simi-
lar representations for stochastic actions are possible
[7, 6].

The boolean system planning problem asks, given a
boolean system G = (P ,A), an initial state ϕi and a
final set of states ϕf (both represented as propositional
formulas over P), whether there exists a sequence of
actions in A that takes the state ϕi to some state in
ϕf (a “feasible plan”), and to construct a feasible plan
in this case. We describe the counterexample-guided
planning algorithm for the boolean system planning

problem. Let Π ⊆ P . The set Π induces an abstract
boolean system (Π,A[Π]) of a boolean system (P ,A)
as follows. An abstract state s′ over Π is a valuation
to propositions in Π. The concretization [[s′]] of an ab-
stract state s′ ∈ S(Π) is the set of states s ∈ S(P)
that agree with s′ on all propositions in Π. The ab-
straction a[Π] of an action a ∈ A over Π is the pro-
jection of the action a on to propositions in Π, i.e.,
(s′1, s

′

2) ∈ aΠ iff there exist s1 ∈ [[s′1]] and s2 ∈ [[s′2]] such
that (s1, s2) ∈ a. Let A[Π] = {a[Π] : a ∈ A}. For a
state s ∈ S(P), let the abstraction s[Π] be the projec-
tion of s on to propositions in Π. The abstraction of
a set S′ ⊆ S(P) is the set S′[Π] = {s[Π] : s ∈ S′}.
The abstraction of a boolean system can be effectively
computed from the description of the boolean system
by existential quantification. Notice that an abstract
boolean system has more behaviors than the concrete
boolean system. Thus, if there is no feasible plan that
takes ϕi[Π] to some state in ϕf [Π] in the abstraction,
then there is no feasible plan that takes ϕi to some
state in ϕf in the concrete system. On the other hand,
an abstractly feasible path may not be concretely fea-
sible. The counterexample guided planning algorithm,
a variation of the algorithm in [5], proceeds as follows.

Step 1 (“Abstraction”) At each step, we maintain an
abstract boolean system (Π,A[Π]) induced by a
set of abstraction variables Π ⊆ P . The initial
abstraction is (∅,A[∅]).

Step 2 (“Abstract plan synthesis”) We solve a reach-
ability problem in the abstract boolean system
to find if there is a sequence of abstract actions
a1[Π]a2[Π] . . . an[Π] that takes ϕi[Π] to some state
in ϕf [Π]. If there is no such sequence, then we
stop and return Infeasible. We can implement
this reachability algorithm using symbolic data
structures such as BDDs [4].

Step 3 (“Counterexample refinement”) Given a se-
quence of abstract actions a1[Π]a2[Π] . . . an[Π], we
check if this sequence corresponds to a feasible
plan in the concrete system. This check is reduced
to a boolean satisfiability check as follows. First,
we construct the corresponding sequence of con-
crete actions a1a2 . . . an. Recall that each action
ai is a propositional formula over the set of propo-
sitions P ∪P ′, let us make this explicit by writing
ai(x,x′). We construct the boolean formula

ϕi(x1) ∧
n∧

i=1

ai(xi,xi+1) ∧ ϕf (xn+1)

which is satisfiable iff the plan a1 . . . an is feasi-
ble. Notice that we rename the propositional vari-
ables along the path. We check the satisfiability



of this formula using an efficient boolean satisfia-
bility procedure. If the formula is satisfiable, we
return Feasible, and the feasible plan a1 . . . an.
If the formula is not satisfiable, the SAT solver
constructs a resolution proof that shows why the
formula is not satisfiable [21]. The refined ab-
straction is obtained by adding all variables ap-
pearing in this resolution proof to the set of ab-
straction variables [5, 17]. This ensures that the
current infeasible plan is ruled out in subsequent
iterations.

Iterate The three steps are iterated with the refined
abstraction until we find either a feasible plan (in
Step 3), or show that no feasible plan is possible
(in Step 2). Since at least one variable is added in
each iteration, the iteration is bound to terminate.

With suitable algorithms for reachability (Step 2) and
satisfiability (Step 3), the same algorithm generalizes
to MDPs and games. Moreover, using data structures
for compact representations for MDPs [6], the algo-
rithm can be made completely symbolic.
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