
CSolve: Verifying C With Liquid Types?

Patrick Rondon, Alexander Bakst, Ming Kawaguchi, and Ranjit Jhala

University of California, San Diego
{prondon, abakst, mwookawa, jhala}@cs.ucsd.edu

Abstract. We present CSolve, an automated verifier for C programs
based on Liquid Type inference. We show how CSolve verifies memory
safety through an example and describe its architecture and interface.

1 Introduction

Verifying low-level programs is challenging due to the presence of mutable state,
pointer arithmetic, and unbounded heap-allocated data structures. In recent
years, dependent refinement types have emerged as a promising approach to
verification in general [1,7] and low-level software in particular [2]. In a refine-
ment type system, each program variable and expression is given a type of the
form {ν : τ | p} where τ is a conventional type such as int or bool and p
is a logical predicate over the program variables describing the values ν which
belong to the type, called the refinement predicate. To keep type checking de-
cidable, refinement predicates are typically drawn from a quantifier-free logic;
by combining SMT-based logical reasoning and type theory-based data structure
reasoning, refinement type systems are easily able to synthesize and reason using
facts about the contents of unbounded data structures.

While powerful, refinement types have typically been associated with a high
annotation burden on the programmer. We present CSolve, an automated ver-
ifier for C programs based on the Low-Level Liquid Types [6] technique for re-
finement type inference. We show how CSolve accommodates refinement type
checking with little necessary annotation.

2 Architecture, Use, and Availability

Type inference in CSolve is split into four phases. In the first phase, the input
C program is read by CIL [4], which generates an AST. This AST is then simpli-
fied in various ways, the most significant of which is that the code is transformed
to SSA so that local variables are never mutated. The second phase generates
physical types for each declared function and global variable and checks that
the program code respects these types. The third phase walks the CIL AST
and assigns each expression and variable in the program a refinement type with

? This work was supported by NSF grants CCF-0644361, CNS-0720802, CCF-0702603,
and a gift from Microsoft Research.



a distinct refinement variable representing its as-yet-unknown refinement pred-
icate. The same phase generates subtyping constraints over these refinement
types such that solving for the refinement variables within the constraints yields
a valid typing for the program. The fourth phase attempts to solve the sub-
typing constraints using a fixed-point procedure based on predicate abstraction,
using the Z3 SMT solver [3] to discharge the logical validity queries that arise
in constraint solving.
Input CSolve takes as input a C source code file and a file specifying the set
of logical predicates to use in refinement inference. Predicates are also read from
a standard library of predicates that have proven to be useful on a large variety
of programs, further easing the programmer’s annotation burden.
Output If the program is type-safe, CSolve outputs “Safe”. Otherwise, the
program may be type-unsafe, according to either the physical type system or the
refinement type system. In either case, for each error, CSolve prints the name
of the file and line number where the error occurs, as well as a description of
the error. In the case where the error is in refinement type inference, CSolve
prints the subtyping constraints which cannot be solved. Whether the program
typechecks or not, CSolve produces a mapping of program identifiers to their
inferred types which can be viewed using the tag browsing facilities provided by
common editors, e.g. Vim and Emacs.
Compatibility With C Infrastructure Thanks to the infrastructure pro-
vided by CIL, CSolve is able to work as a drop-in replacement for GCC. Hence,
to check a multi-file program one need only construct or slightly modify a make-
file which builds the program from source.
Availability The CSolve source code and an online demo are available at
http://goto.ucsd.edu/csolve.

3 Example

In the following, we demonstrate the use of CSolve through a series of functions
which manipulate text containing comma-separated values. We begin by showing
how CSolve typechecks library functions against their stated specifications. We
then show how CSolve infers function types to check an entire program.

We begin with a string library function, strntolower, shown in Figure 1,
which lowercases each letter in a string. Its type signature is a C type augmented
with annotations that are used by the CSolve typechecker. The CHECK TYPE

annotation tells CSolve to check strntolower against its type signature, rather
than attempting to infer its type from its uses.

Type checking strntolower proceeds in two phases. First, because C is un-
typed, a physical type checking pass recovers type information describing heap
layout and the targets of pointer-valued expressions. Next, a refinement type
checking pass computes refinement types for all local variables and expressions.
Physical Type Checking We begin by describing how the type annota-
tions in the example are used by CSolve to infer enriched physical types. The
char ∗ STRINGPTR portion of the type ascribed to strntolower’s parameter s

http://goto.ucsd.edu/csolve


void
strntolower (char * STRINGPTR SIZE_GE(n) s,
             int NONNEG n)
CHECK_TYPE {
  for (; n−− && *s != ’\0’; s++)
    *s = tolower (*s);
}

extern char * NNSTRINGPTR LOC(L)
       NNREF(&& [s <= V; V < s + n; InB(s)])
strnchr (char * STRINGPTR LOC(L) SIZE_GE(n) s,
         int NONNEG n,
         char c);
 
typedef struct _csval {
  int                 len;
  char * ARRAY LOC(L) str;
  struct _csval *     next;
} csval;

void lowercase_csvals (csval *v) {
  while (v) {
    strntolower (v−>str, v−>len);
    v = v−>next;
  }
}

csval INST(L, S) *
revstrncsvals (char * ARRAY LOC(S) s,
               int n)
{
  csval *last = NULL;
  while (n > 0) {
    csval *v =
      (csval *) malloc (sizeof (*v));
    v−>next  = last;
    v−>str   = s;
    char *c  = strnchr (s, n, ’,’);

    if (!c) c = s + n − 1;

    *c      = ’\0’;
    v−>len  = c − s;
    n      −= v−>len + 1;
    s       = c + 1;
    last    = v;
  }

  return last;
}

...
1. csval *vs =
     revstrncsvals (line, len);
2. lowercase_csvals (vs);
...

Fig. 1. Running example: splitting a string into comma-separated values

indicates to CSolve that s is a reference to a location l which contains an array
of characters, i.e., a string (and not a single char). Concretely, the type of s is
ref(l, {0 + 1∗}), which indicates that s points into a region of memory named
by l. The notation {0 + 1∗}, which is equivalent to {0, 1, 2, . . .}, indicates that s
may point to any nonnegative offset from the start of the region l, i.e., anywhere
in the array. Based on s’s type, CSolve describes the heap as

l 7→ {0 + 1∗} : int(1, {0± 1∗}).

The above heap contains a single location, l, whose elements are offsets from l in
the set {0 + 1∗}, defined as above. Each array element has the type int(1, {0± 1∗}),
which is the type of one-byte integers (chars) whose values are in the set
{. . . ,−1, 0, 1, . . .} (i.e., any char). Similarly, the physical type of n is int(4, {0± 1∗}).

CSolve then determines, through straightforward abstract interpretation in
a domain of approximate integer values and pointer offsets [6], that the phys-
ical types of s, n, and the heap are preserved by the loop within the body of
strntolower; we note only that the return type of tolower indicates that it
returns an arbitrary char, as above. Thus, physical typechecking succeeds, and
we proceed to refinement type checking.
Refinement Type Checking We next explain how CSolve typechecks the
body of strntolower—in particular, to verify that strntolower’s type signature
implies the safety of the array accesses in its body.

We begin by describing how the annotations ascribed to strntolower are
translated to a refinement type by CSolve. The type of s uses the convenience
macros STRINGPTR and SIZE GE, defined as:

STRINGPTR
·
= ARRAY REF(SAFE(ν))

SIZE GE(n)
·
= REF(BE (ν)− ν ≥ n).



In the above, ARRAY indicates that the refined type points to an array, used in
physical type checking. The REF macro is used to attach a refinement predicate
to a type. Refinement predicates can themselves be constructed using macros;
SAFE is a macro defined as the predicate

SAFE(p)
·
= 0 < p ∧ BS (p) ≤ p ∧ p < BE (p).

In this definition, the functions BS (p) and BE (p) indicate the beginning and
end of the memory region assigned to pointer p, respectively. Thus, the SAFE(p)
predicate states that p is a non-NULL pointer that points within the memory
region allocated to p, i.e., p is within bounds. The predicate SIZE GE(n) states
that the decorated pointer points to a region containing at least n bytes; note that
this expresses a dependency between the type of s and the value of the parameter
n. We decorate the type of n with NONNEG, which expands to REF(ν ≥ 0).

We now describe how CSolve uses the given types for s and n to verify the
safety of strntolower. To do so, CSolve infers liquid types [5] for the variables
s and i within the body of strntolower, as well as the contents of the heap. A
liquid type is a refinement type whose refinement predicate is a conjunction of
user-provided logical qualifiers. Logical qualifiers are logical predicates ranging
over the program variables, the wildcard ?, which CSolve instantiates with the
names of program variables, and the value variable ν, which stands for the value
being described by the refinement type. Below, we assume the logical qualifiers

Q0
·
= {0 ≤ ν, SAFE(ν), ? ≤ ν, ν + ? ≤ BE (ν), ν 6= 0⇒ InB(ν, ?)}

where InB(p, q)
·
= BS (p) = BS (q) ∧ BE (p) = BE (q)

where InB(p, q) means p and q point into the same region of memory.
From the form of the loop and the given type for the parameter n, CSolve

infers that, within the body of the loop, n has the liquid type

n ::{ν : int(4, {0± 1∗}) | 0 ≤ ν}.

Based on the type given for the parameter s and the form of the loop, CSolve
infers that, within the loop, s has the liquid type

s ::{ν : ref(l, {0 + 1∗}) | s ≤ ν ∧ ν + n ≤ BE (ν) ∧ ν 6= 0⇒ InB(ν, s)}.

The predicates s ≤ ν, ν + n ≤ BE (ν), and ν 6= 0⇒ InB(ν, s) are instantiations
of qualifiers ? ≤ ν, ν + ? ≤ BE (ν), and ν 6= 0⇒ InB(ν, ?) from Q0, respectively,
where the ? has been instantiated with s, n, and s, respectively. By using an
SMT solver to check implication, CSolve can then prove that s has the type

s ::{ν : ref(l, {0 + 1∗}) | SAFE(s)}

and thus that the accesses to ∗s within strntolower are within bounds.
External Definitions If the user specifies a type for a function with the extern
keyword, CSolve will use the provided type when checking the current source



file, allowing the user to omit the body of the external function. This allows for
modular type checking and, by abstracting away the details of other source files,
it permits the user to work around cases where a function may be too complex
for CSolve to typecheck.

In the sequel, we use the library function strnchr, which attempts to find
a character c within the first n bytes of string s, returning a pointer to the
character within s on success and NULL otherwise. Its type, declared in Figure 1,
illustrates two new features of CSolve’s type annotation language. First, macros
that begin with NN are analogous to the versions without the NN prefix, but the
refinement predicates they represent are guarded with the predicate (ν 6= 0).
Such macros are used to indicate properties that are only true of a pointer when
it is not NULL. Second, the annotation LOC(L) is used to provide may-aliasing
information to CSolve. The annotation LOC(L) on both the input and output
pointers of strnchr indicates that both point to locations in the same may-alias
set of locations, named L. This annotation is necessary because CSolve assumes
by default that all pointers passed into or out of a function refer to distinct heap
locations. This assumption that pointers do not alias is checked : if the annotation
were not given, CSolve would alert the user that locations that were assumed
distinct may become aliased within the body of strnchr.
Whole-Program Type Inference The remainder of Figure 1 shows a frag-
ment of a program which reads lines of comma-separated values from the user,
splits each line into individual values (revstrncsvals), and then transforms
each value to lowercase (lowercase csvals). In the following, we describe how
CSolve performs refinement type inference over the whole program to deter-
mine that all of its memory accesses are safe.

The remainder of the program manipulates linked lists of comma-separated
values, described by the structure type csval. Note that the field str is an-
notated with the ARRAY attribute, as before, as well as a may-alias set, L. By
declaring that the str field points to may-alias set L, we parameterize the csval

structure by the location set L that its str field points into. The programmer
can then instantiate the parameterized location set according to context to in-
dicate potential aliasing between the str field and other pointers. For example,
the annotation INST(L, S) in the type of revstrncsvals instantiates csval’s
may-alias set parameter L in that type to the location set S, indicating that the
input string s and the strings stored in the list of csvals reside in heap locations
in the same may-alias set, S.

In the following, we assume the set of qualifiers is

Q ·
= Q0 ∪ {ν 6= 0⇒ ? ≤ ν, ν 6= 0⇒ ν < ?+ ?, ν 6= 0⇒ ν = BS (ν),

ν 6= 0⇒ BE (ν)− BS (ν) = 12, ν = ?+ (?− ?)}.

At the line marked 1, we assume CSolve has inferred the types

line ::{ν : ref(l, {0 + 1∗}) | SAFE(ν) ∧ SIZE GE(len)}
len ::{ν : int(4, {0± 1∗}) | true}.



From line 1, CSolve infers that argument s of revstrncsvals of has type

s ::{ν : ref(l, {0 + 1∗}) | SAFE(ν) ∧ SIZE GE(n)}.

CSolve infers that this type is a loop invariant, and thus that the call to
strnchr is type-correct. CSolve infers from the type of malloc that v has type

v ::{ν : ref(lv, {0}) | VALPTR(ν)}

VALPTR(p)
·
= ν = BS (ν) ∧ BE (ν)− BS (ν) = 12 ∧ ν > 0,

indicating that v is a non-NULL pointer to a 12-byte allocated region; this allows
CSolve to verify the safety of the indirect field accesses.

Finally, CSolve infers that v and last refer to elements within a set of
run-time locations, collectively named lv. Each location in lv has type

lv 7→ 0 : {ν : int(4, {0± 1∗}) | 0 ≤ ν},
4 : {ν : ref(l, {0 + 1∗}) | SAFE(ν) ∧ SIZE GE(@0)},
8 : {ν : ref(lv, {0}) | ν 6= 0⇒ VALPTR(ν)}.

Offsets 0, 4, and 8 in the type of lv correspond to the fields len, str, and next,
respectively. The notation @n is used in refinement predicates to refer to the
value stored at offset n within the location; in this case, @0 is used to indicate
that the str field points to an allocated region of memory whose size is at least
the value given in the len field. The type of heap location l is as given earlier.
The type of the next field indicates that it contains a pointer to the location lv,
i.e., that the next field contains a pointer to the same kind of structure. Thus,
CSolve that lists constructed by revstrncsvals satisfy the above invariant.

Because the pointer last is returned from revstrncsvals and due to the
call on line 2, as well as the type of lv given above, CSolve is able to determine
that the array accesses and call to strntolower within lowercase csvals are
safe, and thus prove the program is memory safe.

References

1. J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis. Refinement
types for secure implementations. In CSF, 2008.

2. J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. Dependent types for
low-level programming. In ESOP, 2007.

3. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
4. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In CC 02: Compiler
Construction.

5. P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.
6. P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In POPL, pages

131–144, 2010.
7. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL, 1999.


	CSolve: Verifying C With Liquid Types 

