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Abstract
Shared memory multithreading is a popular approach to parallel
programming, but also fiendishly hard to get right. We present Liq-
uid Effects, a type-and-effect system based on refinement types
which allows for fine-grained, low-level, shared memory multi-
threading while statically guaranteeing that a program is determin-
istic. Liquid Effects records the effect of an expression as a for-
mula in first-order logic, making our type-and-effect system highly
expressive. Further, effects like Read and Write are recorded in
Liquid Effects as ordinary uninterpreted predicates, leaving the ef-
fect system open to extension by the user. By building our sys-
tem as an extension to an existing dependent refinement type sys-
tem, our system gains precise value- and branch-sensitive reason-
ing about effects. Finally, our system exploits the Liquid Types re-
finement type inference technique to automatically infer refinement
types and effects. We have implemented our type-and-effect check-
ing techniques in CSOLVE, a refinement type inference system for
C programs. We demonstrate how CSOLVE uses Liquid Effects to
prove the determinism of a variety of benchmarks.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Validation; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming – Parallel Pro-
gramming

General Terms Languages, Reliability, Verification

Keywords Liquid Types, Type Inference, Dependent Types, C,
Safe Parallel Programming, Determinism

1. Introduction
How do we program multi-core hardware? While many models
have been proposed, the model of multiple sequential threads con-
currently executing over a single shared memory remains popu-
lar due to its efficiency, its universal support in mainstream pro-
gramming languages and its conceptual simplicity. Unfortunately,
shared memory multithreading is fiendishly hard to get right, due to
the inherent non-determinism of thread scheduling. Unless the pro-
grammer is exceptionally vigilant, concurrent accesses to shared
data can result in non-deterministic behaviors in the program, po-
tentially yielding difficult-to-reproduce “heisenbugs” whose ap-
pearance depends on obscurities in the bowels of the operation sys-
tem’s scheduler and are hence notoriously hard to isolate and fix.
Determinism By Default. One way forward is to make parallel
programs “deterministic by default” [2] such that, no matter how
threads are scheduled, program behavior remains the same, elim-
inating unruly heisenbugs and allowing the programmer to reason
about their parallel programs as if they were sequential. In recent
years, many static and dynamic approaches have been proposed
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for ensuring determinism in parallel programs. While the former
approaches have allowed arbitrary data sharing patterns, they also
impose non-trivial run-time overheads and hence are best in situa-
tions where there is relatively little sharing [5]. In contrast, while
static approaches have nearly no run-time overhead, they have been
limited to high-level languages like Haskell [7] and Java [2] and
require that shared structures be refactored into specific types or
classes for which deterministic compilation strategies exist, thereby
restricting the scope of sharing patterns.

Liquid Effects. In this paper, we present Liquid Effects, a type-
and-effect system based on refinement type inference which uses
recent advances in SMT solvers to provide the best of both worlds:
it allows for fine-grained shared memory multithreading in low
level languages with program-specific data access patterns, and yet
statically guarantees that programs are deterministic.

Any system that meets these goals must satisfy several criteria.
First, the system must support precise and expressive effect specifi-
cations. To precisely characterize the effect of program statements,
it must precisely reason about complex heap access patterns, in-
cluding those not foreseen by the system’s designers, and it must
be able to reason about relations between program values like loop
bounds and array segment sizes. Second, the system must be exten-
sible with user-defined effects to track effects which are domain-
specific and thus could not be foreseen by the system’s designers.
Finally, the system must support effect inference, so that the pro-
grammer is not overwhelmed by the burden of providing effect an-
notations.

1. Precise and Expressive Effect Specifications. Our Liquid Ef-
fects type-and-effect system expresses the effect of a statement on
the heap as a formula in first-order logic which classifies which
addresses in the heap are accessed and with what effect they were
accessed — for example, whether the data was read or written. Ex-
pressing effects as first-order formulas makes our type-and-effect
system highly expressive: for example, using the decidable theory
of linear arithmetic, it is simple to express heap access patterns like
processing chunks of an array in parallel or performing strided ac-
cesses in a number of separate threads. Using first-order formulas
for effects ensures that our system can express complex access pat-
terns not foreseen by the system’s designers, and allows us to incor-
porate powerful off-the-shelf SMT solvers in our system for reason-
ing about effects. Further, by building our type-and-effect system as
an extension to an existing dependent refinement type system and
allowing effect formulas to reference program variables, our system
gains precise value and branch-sensitive reasoning about effects.

2. Extensibility. Our effect formulas specify how locations on the
heap are affected using effect labeling predicates like Read and
Write. These effect labeling predicates are ordinary uninterpreted
predicates in first-order logic; our system does not treat effect la-
beling predicates specially. Thus, we are able to provide extensibil-
ity by parameterizing our system over a set of user-defined effect
labeling predicates. Further, we allow the user to give commuta-



void sumBlock (char *a, int i, int len) {
if (len <= 1) return;

int hl = len / 2;
cobegin {

sumBlock (a, i, hl);
sumBlock (a, i + hl, len - hl);

}

a[i] += a[i + hl];
}

int sum1 (char *a, int len) {
sumBlock (a, 0, len);

return a[0];
}

Figure 1. Parallel Array Summation With Contiguous Partitions

tivity declarations specifying which pairs of effects have benign
interactions when they simultaneously occur in separate threads of
execution. This enables users to track domain-specific effects not
envisioned by the designers of the type-and-effect system.
3. Effect Inference. Our type rules can be easily recast as an al-
gorithm for generating constraints over unknown refinement types
and effect formulas; these constraints can then be solved using
the Liquid Types technique for invariant inference, thus yielding
a highly-automatic type-based method for proving determinism.

To illustrate the utility of Liquid Effects, we have implemented
our type-and-effect checking techniques in CSOLVE, a refinement
type inference system for C programs based on Liquid Types. We
demonstrate how CSOLVE uses Liquid Effects to prove the deter-
minism of a variety of benchmarks from the literature requiring
precise, value-aware tracking of both built-in and user-defined heap
effects while imposing a low annotation burden on the user. As a
result, CSOLVE opens the door to efficient, deterministic program-
ming in mainstream languages like C.

2. Overview
We start with a high-level overview of our approach. Figures 1
and 2 show two functions, sum1 and sum2 respectively, which add
up the elements of an array of size 2k in-place by dividing the
work up into independent sub-computations that can be executed
in parallel. At the end of both procedures, the first element of the
array contains the final sum. In this section, we demonstrate how
our system seamlessly combines path-sensitive reasoning using
refinement types, heap effect tracking, and SMT-based reasoning
to prove that sum1 and sum2 are deterministic.

2.1 Contiguous Partitions
The function sum1 sums array a of length len using the auxiliary
function sumBlock, which sums the elements of the contiguous
segment of array a consisting of len-many elements and begin-
ning at index i. Given an array segment of length len, sumBlock
computes the sum of the segment’s elements by dividing it into
two contiguous subsegments which are recursively summed using
sumBlock. The recursive calls place the sum of each subsegment
in the first element of the segment; sumBlock computes its final
result by summing the first element of each subsegment and stores
it in the first element of the entire array segment.
Cobegin-Blocks. To improve performance, we can perform the two
recursive calls inside sumBlock in parallel. This is accomplished
using the cobegin construct, which evaluates each statement in a
block in parallel. Note that the recursive calls both read and write

to the array passed to sumBlock; thus, to prove that the program
is deterministic, we have to show that the part of the array that is
written by each call does not overlap with the portion of the array
that is read by the other. In the following, we demonstrate how our
system is able to show that the recursive calls access disjoint parts
of the array and thus that the function sumBlock is deterministic.

Effect Formulas. We compute the region of the array accessed by
sumBlock as an effect formula that describes which pointers into
the array are accessed by a call to sumBlock with parameters i and
len. We note that the final line of sumBlock writes element i of a.
We state the effect of this write as the formula 1

Σa[i]
·
= ν = a + i.

We interpret the above formula as “the pointer ν accessed by the
expression a[i] is equal to the pointer obtained by incrementing
pointer a by i.” The final line of sumBlock also reads element
i + hl of a. The effect of this read is stated as a similar formula:

Σa[i+hl]
·
= ν = a + i + hl

The total effect of the final line of sumBlock stating which portion
of the heap it accesses is then given by the disjunction of the two
effect formulas:

Σa[i] ⊕ Σa[i+hl]
·
= ν = a + i ∨ ν = a + i + hl

The above formula says that the heap locations accessed in the
final line of sumBlock are exactly the locations corresponding to
a[i] and a[i + hl]. Having determined the effect of the final line
of sumBlock as a formula over the local variables a, i, and hl,
we make two observations to determine the effect of the entire
sumBlock function as a formula over its arguments a, i, and len.
First, we observe that, in the case where len = 2,

a[i + hl] = a[i + len− 1].

From this, we can see inductively that a call to sumBlock with in-
dex i and length len will access elements a[i] to a[i + len− 1].
Thus, we can soundly ascribe sumBlock the effect

ΣsumBlock
·
= a + i ≤ ν ∧ ν < a + i + len.

That is, sumBlock will access all elements in the given array
segment.

Determinism via Effect Disjointness. We are now ready to prove
that the recursive calls within sumBlock access disjoint regions of
the heap and thus that sumBlock behaves deterministically when
the calls are executed in parallel. We determine the effect of the first
recursive call by instantiating sumBlock’s effect, i.e., by replacing
formals a, i, and len with actuals a, i, and hl, respectively:

ΣCall 1
·
= a + i ≤ ν ∧ ν < a + i + hl

The resulting effect states that the first recursive call only accesses
array elements a[i] through a[i + hl− 1]. We determine the ef-
fect of the second recursive call with a similar instantiation of
sumBlock’s effect:

ΣCall 2
·
= a + i + hl ≤ ν ∧ ν < a + i + len− hl

1 Here we associate effects with program expressions like a[i]. However,
in the technical development and our implementation, effects are associated
with heap locations in order to soundly account for aliasing (section 4).



declare effect Accumulate;
declare Accumulate commutes with Accumulate;

void accumLog (char *l, int j)
effect
(&l[j], Accumulate(v) && !Read(v) && !Write(v));

void sumStride (char *a, int stride, char *log) {
foreach (i, 0, THREADS) {

for (int j = i; j < stride; j += THREADS) {
a[j] += a[j + stride];
accumLog (log, j);

}
}

}

int sum2 (char *a, int len) {
log = (char *) malloc (len);

for (int stride = len/2; stride > 0; stride /= 2)
sumStride (a, stride, log);

return a[0];
}

Figure 2. Parallel Array Summation With Strided Partitions

All that remains is to show that the effects ΣCall 1 and ΣCall 2 are
disjoint. We do so by asking an SMT solver to prove the unsatisfi-
ability of the conjoined access intersection formula

ΣUnsafe = ΣCall 1 ∧ ΣCall 2,

whose inconsistency establishes that the intersection of the sets of
pointers ν accessed by both recursive calls is empty.

2.2 Complex Partitions
In the previous example, function sum1 computed the sum of an
array’s elements by recursively subdividing the array into halves
and operating on each half separately before combining the results.
We were able to demonstrate that sum1 is deterministic by showing
that the concurrent recursive calls to sumBlock operate on disjoint
contiguous segments of the array. We now show that our system
is capable of proving determinism even when the array access
patterns are significantly more complex.

Function sum2 uses the auxiliary function sumStride, which
sums an array’s elements using the following strategy: First, the
array is divided into two contiguous segments. Each element in
the first half is added to the corresponding element in the second
half, and the element in the first half is replaced with the result.
The problem is now reduced to summing only the first half of the
array, which proceeds in the same fashion, until we can reduce the
problem no further, at which point the sum of all the array elements
is contained in the first element of the array.
Foreach Blocks. To increase performance, the pairwise additions
between corresponding elements in the first and second halves of
the array are performed in parallel, with the level of parallelism de-
termined by a compile-time constant THREADS. The parallel threads
are spawned using the foreach construct. The statement

foreach (i, l, u) s;

executes statement s once with each possible binding of i in the
range [l, u) in parallel. The foreach loop within sumStride
spawns THREADS many threads. Thread i processes elements i,
i + THREADS, i + 2 ∗ THREADS, etc., of array a. While this strided
decomposition may appear contrived, it is commonly used in GPU
programming to maximize memory bandwidth by enabling “adja-
cent” threads to access adjacent array cells via memory coalescing

[1].
To prove that the foreach loop within sumStride is determin-

istic, we must show that no location that is written in one iteration
is either read from or written to in another iteration. (We ignore
the effect of the call to the function accumLog for now and return
to it later.) Note that this differs from the situation with sum1: in
order to demonstrate that sum1 is deterministic, it was not neces-
sary to consider read and write effects separately; it was enough
to know that recursive calls to sumBlock operated on disjoint por-
tions of the heap. However, the access pattern of a single iteration
of the foreach loop in sumStride is considerably more compli-
cated, and reasoning about noninterference between loop iterations
will require tracking not only which locations are affected but pre-
cisely how they are affected — that is, whether they are read from
or written to.
Labeled Effect Formulas. We begin by computing the effect of
each iteration of the loop on the heap, tracking which locations are
accessed as well as which effects are performed at each location.
We first compute the effect of each iteration of the inner for loop,
which adds the value of a[j + stride] to a[j]. We will use the
unary effect labeling predicates Read(ν) and Write(ν) to record
the fact that a location in the heap has or has not been read from
or written to, respectively. We capture the effect of the read of
a[j + stride] with the effect formula

Σ1
·
= Read(ν) ∧ ¬Write(ν) ∧ ν = a + j + stride.

Note that we have used the effect label predicates Read and Write
to record not only that we have accessed a[j + stride] but also
that this location was only read from, not written to. We record the
effect of the write to a[j] with a similar formula:

Σ2
·
= Write(ν) ∧ ¬Read(ν) ∧ ν = a + j

As before, the overall effect of these two operations performed
sequentially, and thus the effect of a single iteration of the inner
for, loop is the disjunction of the two effect formulas above:

Σj
·
= Σ1 ∨ Σ2

Iteration Effect Formulas. Having computed the effect of a single
iteration of sumStride’s inner for loop, the next step in proving
that sumStride is deterministic is to compute the effect of each
iteration of the outer foreach loop, with our goal being to show
that the effects of any two distinct iterations must be disjoint. We
begin by generalizing the effect formula we computed to describe
the effect of a single iteration of the inner for loop to an effect
formula describing the effect of the entire for loop. The effect
formula describing the effect of the entire for is an effect formula
that does not reference the loop induction variable j, but is implied
by the conjunction of the loop body’s single-iteration effect and any
loop invariants that apply to the loop induction variable j.

Note that the induction variable j enjoys the loop invariant

j < stride ∧ j ≡ i mod THREADS

Given this invariant for j, we can now summarize the effect of the
for loop as an effect formula which does not reference the loop
induction variable j but is implied by the conjunction of the above
invariant on j and the single-iteration effect formula Σj:

Σfor
·
= (Write(ν)⇒ (ν − a) ≡ i mod THREADS)

∧ (Write(ν)⇒ ν < a + stride)

∧ (Read(ν)⇒ ν ≥ a + stride) (1)

We have now computed the effect of sumStride’s inner for
loop, and thus the effect of a single iteration of sumStride’s outer



foreach loop.

Effect Projection. We define an effect projection operator π(Σ, E)
which returns the restriction of the effect formula Σ to the effect
label E. In essence, the effect projection is the formula implied
by the conjunction of Σ and E(ν). For example, the projection of
the Write effect of iteration i of the foreach loop represents the
addresses written by thread i.

Determinism via Iteration Effect Disjointness. To prove that the
foreach loop is deterministic, we must show that values that are
read and written in one iteration are not overwritten in another.
First, we show that no two foreach iterations (i.e., threads) write
to the same location, or, in other words, that distinct iterations
write through disjoint sets of pointers. We establish this fact by
asking the SMT solver to prove the unsatisfiability of the write-
write intersection formula:

ΣUnsafe = π(Σfor,Write) ∧ π(Σfor,Write)[i 7→ i
′] ∧ i 6= i

′

in an environment where

0 ≤ i, i′ < THREADS

The formula is indeed unsatisfiable as, from Equation 1,

π(Σfor,Write)
·
= (ν − a) ≡ i mod THREADS

∧ ν < a + stride (2)

and so, after substituting i′ the query formula is

(ν − a) ≡ i mod THREADS ∧ (ν − a) ≡ i
′ mod THREADS

which is unsatisfiable when i 6= i′.
Next, we prove that no heap location is read in one iteration

(i.e., thread) and written in another. As before, we verify that the
intersection of the pointers read in one iteration with those written
in another iteration is empty. Concretely, we ask the SMT solver to
prove the unsatisfiability of the write-read intersection formula

ΣUnsafe = π(Σfor,Write) ∧ π(Σfor,Read)[i 7→ i
′] ∧ i 6= i

′

where, from Equation 1, the locations read in a single iteration of
the foreach loop are described by the Read projection

π(Σfor,Read)
·
= ν ≥ a + stride

After substituting the the write effect from Equation 2, we can see
that the write-read-intersection formula is unsatisfiable as

ν < a + stride ∧ ν ≥ a + stride

is inconsistent. Thus, by proving the disjointness of the write-
write and write-read effects, we have proved that the foreach loop
inside sumStride is deterministic.

2.3 User-Defined Effects
By expressing our effect labeling predicates as ordinary uninter-
preted predicates in first-order logic, we open the door to allowing
the user to define their own effects. Such user-defined effects are
first-class: we reason about them using the same mechanisms as
the built-in predicates Read and Write, and effect formulas over
user-defined predicates are equally as expressive as those over the
built-in predicates.

We return to the sumStride function to demonstrate the use of
user-defined effects. The for loop in sumStride tracks how many
times the entry a[j] is written by incrementing the j-th value in the
counter array log using the externally-defined function accumLog.
We assume that the accumLog function is implemented so that its
operation is atomic. Thus, using accumLog to increment the count
of the same element in two distinct iterations of the foreach loop
does not cause non-determinism.

Specifying Effects. We create a new user-defined effect predicate
to track the effect of the accumLog function using the statement

declare effect Accumulate;

This extends the set of effect predicates that our system tracks to

E
·
= {Read,Write,Accumulate}

We then annotate the prototype of the accumLog function to specify
accumLog causes the Accumulate effect to occur on the j-th entry
of its parameter array l:

void accumLog (char *l, int j)
effect
(&l[j], Accumulate(v) && !Read(v) && !Write(v));

Specifying Commutativity. We specify that our user effect
Accumulate does not cause nondeterminism even when it occurs
on the same location in two separate threads using the commutativ-
ity annotation

declare Accumulate commutes with Accumulate;

This annotation extends the set of pairs of effects that commute
with each other — that is, which can occur in either order without
affecting the result of the computation. In particular, the commuta-
tivity annotation above extends the set of commutable pairs to

C
·
= {(Read,Read), (Accumulate,Accumulate)}

The extended set formally specifies that in addition to pairs of Read
effects (included by default), pairs of of Accumulate effects also
commute, and hence may be allowed to occur simultaneously.

Generalized Effect Disjointness. Finally, we generalize our
method for ensuring determinism. We check the disjointness of two
effect formulas Σ1 and Σ2 by asking the SMT solver to prove the
unsatisfiability of the effect intersection formula:

ΣUnsafe = ∃(E1, E2) ∈ (E×E \C).π(Σ1, E1) ∧ π(Σ2, E2)

That is, for each possible combination of effect predicates that have
not been explicitly declared to commute, we check that the two
effect sets are disjoint when projected on those effects.

Thus, by declaring an Accumulate effect which is commuta-
tive, we are able to verify the determinism of sum2.

Effect Inference. In the preceding, we gave explicit loop invariants
and heap effects where necessary. Later in this paper, we explain
how we use Liquid Type inference [28] to reduce the annotation
burden on the programmer by automatically inferring the loop
invariants and heap effects given above.

Outline. The remainder of this paper is organized as follows: In
section 3, we give the syntax of LCE programs, informally explain
their semantics, and give the syntax of LCE’s types. We define the
type system of LCE in section 4. In section 5, we give an overview
of the results of applying an implementation of a typechecker for
LCE to a series of examples from the literature. We review related
work in section 6.

3. Syntax and Semantics
In this section, we present the syntax of LCE programs, informally
discuss their semantics, and give the syntax of LCE types.

3.1 Programs
The syntax of LCE programs is shown in Figure 3. Most of the ex-
pression forms for expressing sequential computation are standard
or covered extensively in previous work [28]; the expression forms
for parallel computation are new to this work.



v ::= Values
| x variable
| n integer
| &n pointer

a ::= Pure Expressions
| v value
| a1 ◦ a2 arithmetic operation
| a1 +p a2 pointer arithmetic
| a1 ∼ a2 comparison

e ::= Expressions
| a pure expression
| ∗v heap read
| ∗v1 := v2 heap write
| if v then e1 else e2 if-then-else
| f(v) function call
| malloc(v) memory allocation
| let x = e1 in e2 let binding
| letu x = unfold v in e location unfold
| fold l location fold
| e1 ‖ e2 parallel composition
| for each x in v1 to v2 {e} parallel iteration

F ::= f (xi) { e } Function Declarations

P ::= F e Programs

Figure 3. Syntax of LCE programs

Values. The set of LCE values v includes program variables, in-
teger constants n, and constant pointer values &n representing ad-
dresses in the heap. With the exception of the null pointer value
&0, constant pointer values do not appear in source programs.
Expressions. The set of pure LCE expressions a includes values v,
integer arithmetic expressions a1◦a2, where ◦ is one of the standard
arithmetic operators +, −, ∗, etc., pointer arithmetic expressions
a1 +p a2, and comparisons a1 ∼ a2 where ∼ is one of the
comparison operators =, <, >, etc. Following standard practice,
zero and non-zero values represent falsity and truth, respectively.

The set of LCE expressions e includes the pure expressions
a as well as all side-effecting operations. The expression forms
for pointer read and write, if-then-else, function call, memory al-
location, and let binding are all standard. The location unfold and
fold expressions are used to support type-based reasoning about the
heap using strong updates As they have no effect on the dynamic
semantics of LCE programs, we defer discussion of location un-
fold and fold expressions to section 4.
Parallel Expressions. The set of LCE expressions includes two
forms for expressing parallel computations. The first, parallel com-
position e1 ‖ e2, evaluates expressions e1 and e2 in parallel and
returns when both subexpressions have evaluated to values.

The second parallel expression form is the parallel iteration ex-
pression form for each x in v1 to v2 {e}, where v1 and v2 are inte-
ger values. A parallel iteration expression is evaluated by evaluating
the body expression e once for each possible binding of variable x
to an integer in the range [v1, v2). All iterations are evaluated in
parallel, and the parallel iteration expression returns when all iter-
ations have finished evaluating. Both forms of parallel expressions
are evaluated solely for their side effects.
Functions and Programs. A function declaration f (xi) { e }
declares a function f with arguments xi whose body is the ex-
pression e. The return value of the function is the value of the
expression. A LCE program consists of a sequence of func-
tion declarations F followed by an expression e which is evalu-
ated in the environment containing the previously-declared func-

b ::= Base Types
| int(i) integer
| ref(l, i) pointer

p ::= φ(v) Refinement Formulas

τ ::= {ν : b | p} Refinement Types

i ::= Indices
| n constant
| n+m sequence

c ::= i : τ Blocks

l ::= Heap Locations
| l̃ abstract location
| lj concrete location

h ::= Heap Types
| ε empty heap
| h ∗ l 7→ c extended heap

Σ ::= Heap Effects
| ε empty effect
| Σ ∗ l̃ 7→ p extended effect

σ ::= (xi : τi)/h1 → τ/h2/Σ Function Schemes

Figure 4. Syntax of LCE types

tions.

3.2 Types
The syntax of LCE types is shown in Figure 4.
Base Types. The base types b of LCE include integer types int(i)
and pointer types ref(l, i). The integer type int(i) describes an
integer whose value is in the set described by the index i; the set
of indices is described below. The pointer type ref(l, i) describes a
pointer value to the heap location l whose offset from the beginning
of location l is an integer belonging to the set described by index i.
Indices. The language of LCE base types uses indices i to approx-
imate the values of integers and the offsets of pointers from the
starts of the heap locations where they point. There are two forms
of indices. The first, the singleton index n, describes the set of in-
tegers {n}. The second, the sequence index n+m, represents the
sequence of offsets {n+ lm}∞l=0.
Refinement Types. The LCE refinement types τ are formed by
joining a base type bwith a refinement formula p to form the refine-
ment type {ν : b | p}. The distinguished value variable ν refers
to the value described by this type. The refinement formula p is a
logical formula φ(ν, v) over LCE values v and the value variable
ν. The type {ν : b | p} describes all values v such that p[ν 7→ v]
is a valid formula. Our refinements are first-order formulas with
equality, uninterpreted functions, and linear arithmetic.

When it is unambiguous from the context, we use b to abbreviate
{ν : b | true}.
Blocks. A block c describes the contents of a heap location as a
sequence of bindings from indices i to refinement types τ . Each
binding i : τ states that a value of type τ is contained in the block
at each offset n from the start of the block which is described by
the index i. Bindings of the formm : τ , i.e., where types are bound
to singleton indices, refer to exactly one element within the block;
as such, we allow the refinement formulas within the same block to
refer to the value at offset m using the syntax @m. We require all
indices in a block to be disjoint.



Heap Types. Heap types h statically describe the contents of run-
time heaps as sets of bindings from heap locations l to blocks c. A
heap type is either the empty heap ε or a heap h extended with a
binding from location l to block c, written h ∗ l 7→ c. The location
l is either an abstract location l̃, which corresponds to arbitrarily
many run-time heap locations, or a concrete location lj , which cor-
responds to exactly one run-time heap location. The distinction be-
tween abstract and concrete locations is used to implement a form
of sound strong updates on heap types in the presence of aliasing,
unbounded collections, and concurrency; we defer detailed discus-
sion to section 4. Locations may be bound at most once in a heap.
Heap Effects. A heap effect Σ describes the effect of an expression
on a set of heap locations as a set of bindings from heap locations
l to effect formulas p. A heap effect is either the empty effect
ε or an effect Σ extended with a binding from location l̃ to an
effect formula p over the in-scope program variables and the value
variable ν, written Σ ∗ l̃ 7→ p. Intuitively, an effect binding l̃ 7→ p
describes the effect of an expression on location l̃ as the set of
pointers v such that the formula p[ν 7→ v] is valid. Note that we
only bind abstract locations in heap effects.
Effect Formulas. The formula portion of an effect binding can de-
scribe the effect of an expression with varying degrees of precision,
from simply describing whether the expression accesses the loca-
tion at all, to describing which offsets into a location are accessed,
to describing which offsets into a location are accessed and how
they are accessed (e.g. whether they are read or written).

For example, if we use the function BB(ν) to refer to the
beginning of the block where ν points, we can record the fact that
expression e accesses the first ten items in location l̃ (for either
reading or writing) with the effect binding

l̃ 7→ BB(ν) ≤ ν ∧ ν < BB(ν) + 10,

i.e., by stating that all pointers used by e to accesses location l̃
satisfy the above formula. To record that an expression does not
access location l̃ at all, we ascribe it the effect formula false.

We add further expressiveness to our language of effect formu-
las by enriching it with effect-specific predicates used to describe
the particular effects that occurred within a location. We use the
unary predicates Read(v) and Write(v) to indicate that pointer v
was read from or written to, respectively. Using these predicates,
we can precisely state how an expression depends upon or affects
the contents of a heap location.

For example, we can specify that an expression does not write
to a location l̃ using the effect binding

l̃ 7→ ¬Write(ν).

On the other hand, we may specify precisely which offsets into l̃
are written by using Write to guard a predicate describing a set of
pointers into l̃. For example, the effect binding

l̃ 7→Write(ν)⇒ (BB(ν) ≤ ν ∧ ν < BB(ν) + 10)

describes an expression which writes to the first ten elements of l̃.
Effect predicates like Read and Write may only appear in heap

effect bindings; they may not appear in type refinements.
Function Schemes. A LCE function scheme

(xi :τi)/h1 → τ/h2/Σ

is the type of functions which take arguments xi of corresponding
types τi in a heap of type h1, return values of type τ in a heap
of type h2, and incur side-effects described by the heap effect Σ.
The types of function parameters may depend on the other function
parameters, and the type of the input heap may depend on the pa-
rameters. The types of the return value, output heap, and heap effect

may depend on the types of the parameters. We implicitly quantify
over all the location names appearing in a function scheme.

4. Type System
In this section, we present the typing rules of LCE . We begin with
a discussion of LCE’s type environments. We then discuss LCE’s
expression typing rules, paying particular attention to how the rules
carefully track side effects. Finally, we describe how we use tracked
effects to ensure determinism.
Type Environments. Our typing rules make use of three types
of environments. A local environment, Γ, is a sequence of type
bindings of the form x :τ recording the types of in-scope variables
and guard formulas of the form p recording any branch conditions
under which an expression is evaluated. A global environment, Φ,
is a sequence of function type bindings of the form f :S which
maps functions to their refined type signatures. Finally, an effect
environment Π is a pair (E,C). The first component in the pair,
E, is a set of effect label predicates. The second component in
the pair, C, is a set of pairs of effect label predicates such that
(E1, E2) ∈ C states that effect E1 commutes with E2. By default,
E includes the built-in effects, Read and Write, andC includes the
pair (Read,Read), which states that competing reads to the same
address in different threads produce a result that is independent of
their ordering. In our typing rules, we implicitly assume a single
global effect environment Π.

Local environments are well-formed if each bound type or guard
formula is well-formed in the environment that precedes it. An ef-
fect environment (E,C) is well-formed as long asC is symmetric
and only references effects in the set E, i.e., C ⊆ E × E, and
(E1, E2) ∈ C iff (E2, E1) ∈ C.

Γ ::=ε | x :τ ; Γ | a; Γ (Local Environment)
Φ ::=ε | f :S; Φ (Global Environment)
E ::={Read,Write} | E;E

C ::=(Read,Read) | (E,E);C

Π ::=(E,C) (Effect Environment)

4.1 Typing Judgments
We now discuss the rules for ensuring type well-formedness, sub-
typing, and typing expressions. Due to space constraints, we only
present the formal definitions of the most pertinent rules, and defer
the remainder to the accompanying technical report [16].
Subtyping Judgments. The rules for subtyping refinement types
are straightforward: type τ1 is a subtype of τ2 in environment Γ,
written Γ ` τ1 <: τ2, if 1) τ1’s refinement implies τ2 under the
assumptions recorded as refinement types and guard predicates in
Γ and 2) τ1’s index is included in τ2’s when both are interpreted as
sets. Rule [<:-ABSTRACT] allows us to cast pointers to concrete
locations to pointers to their corresponding abstract locations.

Heap type h1 is a subtype of h2 in environment Γ, written
Γ ` h1 <: h2, if both heaps share the same domain and, for each
location l, the block bound to l in h1 is a subtype of the block bound
to l in h2. Subtyping between blocks is pairwise subtyping between
the types bound to each index in each block; we use substitutions
to place bindings to offsets @i in the environment.

Because effect formulas are first-order formulas, subtyping be-
tween effects is simply subtyping between refinement types: an ef-
fect Σ1 is a subtype of Σ2 in environment Γ, written Γ ` Σ1 <:
Σ2, if each effect formula bound to a location in Σ1 implies the for-
mula bound to the same location in Σ2 using the assumptions in Γ.
Type Well-Formedness. The type well-formedness rules of LCE

ensure that all refinement and effect formulas are well-scoped and



that heap types and heap effects are well-defined maps over loca-
tions. These rules are straightforward; we briefly discuss them be-
low, deferring their formal definitions [16].

A heap effect Σ is well-formed with respect to environment Γ
and heap h, written Γ, h ` Σ, if it binds only abstract locations
which are bound in h, binds a location at most once, and binds
locations to effect formulas which are well-scoped in Γ. Further, an
effect formula p is well-formed in an effect environment (E, ) if
all effect names in p are present in E.

A refinement type τ is well-formed with respect to Γ, written
Γ ` τ , if its refinement predicate references only variables con-
tained in Γ.A heap type h is well-formed in environment Γ, written
Γ ` h, if it binds any location at most once, binds a corresponding
abstract location for each concrete location it binds, and contains
only well-formed refinement types.

A “world” consisting of a refinement type, heap type, and heap
effect is well-formed with respect to environment Γ, written Γ `
τ/h/Σ, if, with respect to the environment Γ, the type and heap
type are well-formed and the heap effect Σ is well-formed with
respect to the heap h.

The rule for determining the well-formedness of function type
schemes is standard.
Pure Expression Typing. The rules for typing a pure expression
a in an environment Γ, written Γ ` a : τ , are straightforward,
and are deferred to [16]. These rules assign each pure expression a
refinement type that records the exact value of the expression.
Expression Typing and Effect Tracking. Figure 5 shows the rules
for typing expressions which explicitly manipulate heap effects to
track or compose side-effects. Each expression is typed with a re-
finement type, a refinement heap assigning types to the heap’s con-
tents after evaluating the expression, and an effect which records
how the expression accesses each heap location as a mapping from
locations to effect formulas. We use the abbreviation void to indi-
cate the type {ν : int(0) | true}.

Pointer dereference expressions ∗v are typed by the rule [T-
READ]. The value v is typed to find the location and index into
which it points in the heap; the type of the expression is the type
at this location and index. The rule records the read’s effect in the
heap by creating a new binding to v’s abstract location, l̃, and uses
the auxiliary function logEffect to create an effect formula which
states that the only location that is accessed by this dereference
is exactly that pointed to by v (ν = v), that the location is read
(Read(ν)), and that no other effect occurs.

The rules for typing heap-mutating expressions of the form
∗v1 := v2, [T-SUPD] and [T-WUPD], are similar to [T-READ].
The two rules for mutation differ only in whether they perform a
strong update on the type of the heap, i.e., writing through a pointer
with a singleton index strongly updates the type of the heap, while
writing through a pointer with a sequence index does not.

Expressions are sequenced using the let construct, typed by rule
[T-LET]. The majority of the rule is standard; we discuss only the
portion concerning effects. The rule types expressions e1 and e2 to
yield their respective effects Σ1 and Σ2. The effect of the entire
let expression is the composition of the two effects, Σ1 ⊕ Σ2,
defined in Figure 5. We check that Σ2 is well-formed in the initial
environment to ensure that the variable x does not escape its scope.

Rule [T-PAR] types the parallel composition expression e1 ‖
e2. Expressions e1 and e2 are typed to obtain their effects Σ1

and Σ2. We then use the OK judgment, defined in Figure 5, to
verify that effects Σ1 and Σ2 commute, i.e., that the program
remains deterministic regardless of the interleaving of the two
concurrently-executing expressions.We give e1 ‖ e2 the effect
Σ1 ⊕Σ2. We require that the input heap for a parallel composition
expression must be abstract, that is, contain only bindings for
parallel compositions; this forces the expressions which are run in

Typing Rules Φ,Γ, h ` e : τ/h2/Σ

Γ ` v : ref(lj , i) h = h1 ∗ lj 7→ . . . , i :τ , . . .

Φ,Γ, h ` ∗v : τ/h/l̃ 7→ logEffect(v,Read)
[T-READ]

h = h1 ∗ lj 7→ . . . , n :b, . . .
Γ ` v1 : ref(lj , n) Γ ` v2 : b

h′ = h1 ∗ lj 7→ . . . , n :{ν : b | ν = v2}, . . .
Φ,Γ, h ` ∗v1 := v2 : void/h′/l̃ 7→ logEffect(v1,Write)

[T-SUPD]

Γ ` v1 : ref(lj , n
+m)

Γ ` v2 : τ̂ h = h1 ∗ lj 7→ . . . , n+m : τ̂ , . . .

Φ,Γ, h ` ∗v1 := v2 : void/h/l̃ 7→ logEffect(v1,Write)
[T-WUPD]

Φ,Γ, h ` e1 : τ1/h1/Σ1

Φ,Γ;x :τ1, h1 ` e2 : τ̂2/ĥ2/Σ̂2 Γ ` τ̂2/ĥ2/Σ̂2

Φ,Γ, h ` let x = e1 in e2 : τ̂2/ĥ2/Σ1 ⊕ Σ̂2

[T-LET]

Φ,Γ, h ` e1 : τ1/ĥ
′/Σ̂1 Φ,Γ, h ` e2 : τ2/ĥ

′/Σ̂2

Φ,Γ, ĥ′ ` Σ̂{1,2} Φ,Γ ` OK(Σ̂1, Σ̂2) h abstract

Φ,Γ, h ` e1 ‖ e2 : void/ĥ′/Σ̂1 ⊕ Σ̂2

[T-PAR]

Γ1 = Γ;i :{ν : int(v1
+1) | v1 ≤ ν < v2}

Φ,Γ1, h ` e : τ/h/Σ j fresh
Γ2 = Γ1;j :{ν : int(v1

+1) | v1 ≤ ν < v2 ∧ ν 6= i}
Φ,Γ2 ` OK(Σ,Σ[i 7→ j])

Φ,Γ, h ` τ/h/Σ̂′ Γ1 ` Σ <: Σ̂′ h abstract

Φ,Γ, h ` for each i in v1 to v2 {e} : void/h/Σ̂′
[T-FOREACH]

Γ ` v : {ν : ref(l̃, iy) | ν 6= 0}
h = h0 ∗ l̃ 7→ nk :τk, i+ :τ+

θ = [@nk 7→ xk] xk fresh Γ1 = Γ;xk :θτk
lj fresh h1 = h ∗ lj 7→ nk :{ν = xk}, i+ :θτ+

Φ,Γ1;x :{ν : ref(lj , iy) | ν = v}, h1 ` e : τ̂2/ĥ2/Σ̂

Γ1 ` h1 Γ ` τ̂2/ĥ2/Σ̂
Σ = Σ̂⊕ {(l̃ 7→ logEffect(BB(ν) + nk,Read))}nk

Φ,Γ, h ` letu x = unfold v in e : τ̂2/ĥ2/Σ
[T-UNFOLD]

h = h0 ∗ l̃ 7→ ĉ1 ∗ lj 7→ c2 Γ ` c2 <: ĉ1

Φ,Γ, h ` fold L : void/h0 ∗ l̃ 7→ ĉ1/ε
[T-FOLD]

Effects Checking Γ ` OK(Σ1,Σ2)

Ψ(E1, E2) = π(p1, E1) ∧ π(p2, E2)
∀(E1, E2) ∈ (E×E) \C.Unsat([[Γ]] ∧Ψ(E1, E2))

Γ ` OK(p1, p2)

∀l ∈ Dom(Σ1 ⊕ Σ2).Γ ` OK(LU(Σ1, l),LU(Σ2, l))

Γ ` OK(Σ1,Σ2)

Effects Operations

Σ1 ⊕ Σ2
·
= {L 7→ LU(Σ1,L) ∨ LU(Σ2,L)}

LU(Σ,L)
·
=

{
Σ(L) L ∈ Dom(Σ)

⊥ o.w.

π(p,E)
·
= p[E 7→ Check] ∧ Check(ν)

logEffect(v,E)
·
= E(ν) ∧ ν = v ∧E′∈E\{E} ¬E′(ν)

Figure 5. Typing Rules

parallel to unfold any locations they access, which in turn enforces
several invariants that will prevent the type system from unsoundly
assuming invariants in one thread which may be broken by the heap
writes performed in another. We elaborate on this below.

Rule [T-FOREACH] types the foreach parallel loop expression.
The loop induction variable i ranges over values between v1 and



v2, exclusive; we type the body expression e in the environment
enriched with an appropriate binding for i and compute the re-
sulting heap and per-iteration effect Σ. We require that the heap
is loop-invariant. To ensure that the behavior of the foreach loop is
deterministic, we must check that the effects of distinct iterations
do not interfere. Hence, we check non-interference at two arbitrary,
distinct iterations by adding a binding for a fresh name j to the en-
vironment with the invariant that i 6= j, and verifying with OK
that the effect at an iteration i, Σ, commutes with the effect at a
distinct iteration j, Σ[i 7→ j]. We return Σ′, which subsumes Σ but
is well-formed in the original environment, ensuring that the loop
induction variable i does not escape its scope. As with [T-PAR], we
require that the input heap is abstract, for the same reasons.

Strong Updates and Concurrency. The rules for location unfold
and fold, [T-UNFOLD] and [T-FOLD], are used to implement a lo-
cal non-aliasing discipline that allows us to perform strong updates
on the types of heap locations if we know that only one pointer
to the location is accessed at a time. This mechanism is similar to
freeze/thaw or adopt/focus [34, 10]. These rules have been treated
in previous work [28]; we now discuss how these rules handle effect
tracking and give a brief recap of their handling of strong updates.

Rule [T-UNFOLD] types the letu construct for unfolding a
pointer to an abstract location, l̃, to obtain a pointer to a corre-
sponding concrete location, lj , bound to the variable x. The block
corresponding to the concrete location lj is constructed by creating
a skolem variable xj for each binding of a singleton index nj to a
type τj ; because the binding is a singleton index in a concrete lo-
cation, it corresponds to exactly one datum on the heap. We apply
an appropriate substitution to the elements within the block, then
typecheck the body expression e with respect to the extended heap
and enriched environment. Well-formedness constraints ensure that
an abstract location is never unfolded twice in the same scope and
that x does not escape its scope.

We allow two concurrently-executing expressions to unfold, and
thus simultaneously access, the same abstract location. When a lo-
cation is unfolded, our type system records the refinement types
bound to each of its singleton indices in the environment. If we do
not take care, the refinement types bound to singleton indices and
recorded in the environment may be invalidated by an effect (e.g. a
write) occurring in a simultaneously-executing expression.Thus, an
expression which unfolds a location implicitly depends on the data
whose invariants are recorded in its environment at the time of un-
folding. To capture these implicit dependencies, when a pointer v
is unfolded, we conservatively record a pseudo-read [33] at each
singleton offset nk within the block into which v points by record-
ing in the heap effect that the pointer BB(v) + nk is read, where
BB(v) is the beginning of the memory block where v points. This
ensures that the invariant recorded in the environment at the time
of unfolding is preserved, as any violating writes would get caught
by the determinism check.

Rule [T-FOLD] removes a concrete location from the heap so
that a different pointer to the same abstract location may be un-
folded. The rule ensures that the currently-unfolded concrete loca-
tion’s block is a subtype of the corresponding abstract location’s so
that we can be sure that the abstract location’s invariant holds when
it is unfolded later. The fold expression has no heap effect.

Program Typing. The remaining expression forms do not manipu-
late heap effects; as their typing judgments are straightforward and
covered in previous work [28], we defer their definition [16]. We
note that the rule for typing if expressions records the value of the
branch condition in the environment when typing each branch. The
judgments for typing function declarations and programs programs
in LCE are straightforward and are deferred to [16].

Program LOC Quals Annot Changes T (s)
Reduce 39 7 7 N/A 8.8
SumReduce 39 1 3 0 1.8
QuickSort 73 3 4 N/A 5.9
MergeSort 95 6 7 0 32.4
K-Means-Core 135 3 5 4 22.9
IDEA 222 7 5 3 59.7

Table 1. (LOC) is the number of source code lines as reported
by sloccount, (Quals) is the number of logical qualifiers required
to prove memory safety and determinism, (Annot) is the number
of annotated function signatures plus the number of effect and
commutativity declarations. (Changes) is the number of program
modifications, (T) is the time in seconds taken for verification.

4.2 Handling Effects
We now describe the auxiliary definitions used by the typing rules
of subsection 4.1 for checking effect noninterference.
Combining Effects. In Figure 5, we define the ⊕ operator for
combining effects. Our decision to encode effects as formulas in
first-order logic makes the definition of this operator especially
simple: for each location l, the combined effect of Σ1 and Σ2 on
location l is the disjunction of of the effects on l recorded in Σ1 and
Σ2. We use the auxiliary function LU(Σ, l) to look up the effect
formula for location l in Σ; if there is no binding for l in Σ, the
false formula, indicating no effect, is returned instead.
Effects Checking. We check the noninterference of heap effects
Σ1, Σ2 using theOK judgment, defined in Figure 5. The effects are
noninterfering if the formulas bound to locations in both heap ef-
fects are pairwise noninterfering. Two effect formulas p1 and p2 are
noninterfering as follows. For each pair of non-commuting effects
E1 and E2 in the set E, we project the set of pointers in p1 (resp.,
p2) which are accessed with effect E1 (resp., E2) using the effect
projection operator π. Now, if the conjunction of the projected for-
mulas is unsatisfiable, the effect formulas are noninterfering.
User-Defined Effects and Commutativity. We allow our set of
effects E to be extended with additional effect label predicates
by the user. To specify how these effects interact, commutativity
annotations can be provided that indicate which effects do not
result in nondeterministic behavior when run simultaneously. Then,
the user may override the effect of any function by providing an
effect Σ as an annotation, allowing additional flexibility to specify
domain-specific effects or override the effect system if needed.

5. Evaluation
We have implemented the techniques in this paper as an extension
to CSOLVE, a refinement type-based verifier for C. CSOLVE takes
as input a C program and a set of logical qualifiers, or formulas
over the value variable ν, to use in refinement and effect infer-
ence. CSOLVE then checks the program both for memory safety er-
rors (e.g. out-of-bounds array accesses, null pointer dereferences)
and non-determinism. If CSOLVE determines that the program is
free from such errors, it outputs an annotation file containing the
types of program variables, heaps, functions, and heap effects. If
CSOLVE cannot determine that the program is safe, it outputs an
error message with the line number of the potential error and the
inferred types of the program variables in scope at that location.
Type and Effect Inference. CSOLVE infers refinement types and
effect formulas using the predicate abstraction-based Liquid Types
[28] technique; we give a high-level overview here. We note that
there are expressions whose refinement types and heap effects can-
not be constructed from the types and heap effects of subexpres-
sions or from bindings in the heap and environment but instead



<region r1,r2,r3 | r1:* # r3:*, r2:* # r3:*> void
merge(DPJArrayInt<r1> a, DPJArrayInt<r2> b, DPJArrayInt<r3> c)

reads r1:*, r2:* writes r3:* {
if (a.length <= merge_size)

seq_merge(a, b, c);
else {

int ha=a.length/2, sb=split(a.get(ha),b);
final DPJPartitionInt<r1> a_split=new DPJPartitionInt<r1>(a,hd);
final DPJPartitionInt<r2> a_split=new DPJPartitionInt<r2>(b,sb);
final DPJPartitionInt<r3> c_split=new DPJPartitionInt<r3>(c,ha+sb);
cobegin { merge(a_split.get(0),b_split.get(0),c_split.get(0));

merge(a_split.get(1),b_split.get(1),c_split.get(1)); }}}

Figure 6. DPJ merge function

qualif Q(V: ptr) : &&[_ <= V; V {<, >=} (_ + _ + _)]

void merge(int* ARRAY LOC(L) a,
int* ARRAY LOC(L) b,
int la, int lb, int* ARRAY c) {

if (la <= merge_size){
seq_merge(a, b, la, lb, c);

} else {
int ha = la / 2, sb = split(a[ha],b,lb);
cobegin {

merge(a,b,ha,sb,c);
merge(a+ha,b+sb,la-ha,lb-sb,c+ha+sb); }}}

Figure 7. CSOLVE merge function

must be synthesized. For example, the function typing rule requires
us to synthesize types, heaps, and heap effects for functions. This is
comparable to inferring pre- and post-conditions for functions (and
similarly, loop invariants), which reduces to determining appropri-
ate formulas for refinement types and effects. To make inference
tractable, we require that formulas contained in synthesized types,
heaps, and heap effects are liquid, i.e., conjunctions of logical qual-
ifier formulas provided by the user. These qualifiers are templates
for predicates that may appear in types or effects. We read our in-
ference rules as an algorithm for constructing subtyping constraints
which, when solved, yield a refinement typing for the program.

Methodology. To evaluate our approach, we drew from the set
of Deterministic Parallel Java (DPJ) benchmarks reported in [2].
For those which were parallelized using the methods we support,
namely heap effects and commutativity annotations, we verified
determinism and memory safety using our system. Our goals for the
evaluation were to show that our system was as expressive as DPJ’s
for these benchmarks while requiring less program restructuring.

Results. The results of running CSOLVE on the following bench-
marks are presented in Table 1. Reduce is the program given in
section 2. SumReduce initializes an array using parallel iteration,
then sums the results using a parallel divide-and-conquer strategy.
MergeSort divides the input array into quarters, recursively sorting
each in parallel. It then merges the two pairs of sorted quarters in
parallel, and finally merges the two sorted halves to yield a single
sorted array. Each of the final merges is performed recursively in
parallel. QuickSort is a standard in-place quicksort adapted from
a sequential version included with DPJ. We parallelized the algo-
rithm by partitioning the input array around its median, then re-
cursively sorting each partition in parallel. K-Means-Core was
adapted from the STAMP benchmarks [23], the C implementa-
tion that was ported for DPJ; we omitted the nearest neighbor
computation, as it contained no parallelism. IDEA is an encryp-
tion/decryption kernel ported to C from DPJ.

Changes. Some benchmarks required modifications in order to
conform to the current implementation of CSOLVE; this does not
indicate inherent limitations in the technique. These include: multi-
dimensionalizing flattened arrays, writing stubs for matrix malloc,
expanding structure fields (K-Means-Core), and soundly abstract-
ing non-linear operations and #define-ing configuration parame-
ters to constants to get around a bug in the SMT solver (IDEA).

Annotations. CSOLVE requires two classes of annotations to com-
pute base types for the program. First, the annotation ARRAY is re-
quired to distinguish pointers to arrays from singleton references.
Second, as base type inference is intraprocedural, we must addi-
tionally specify which pointer parameters may be aliased by anno-
tating them with a location parameter of the form LOC(L).

Qualitative Comparison. Since the kinds of annotations are very
different, a quantitative comparison between CSOLVE and DPJ is
not meaningful. Instead, we illustrate the kinds of annotations and

qualitatively compare them. Figure 6 contains DPJ code imple-
menting the recursive Merge routine from MergeSort, including
region annotations and required wrapper classes; Figure 7 contains
CSOLVE code implementing the same. In this code, Merge takes
two arrays a and b and recursively splits them, sequentially merg-
ing them into array c at a target size. In particular, each statement
in the cobegin writes to a different contiguous interval of c.

In DPJ, verifying this invariant requires: First, wrapping all
arrays with an API class DPJArrayInt, and then wrapping each
contiguous subarray with another class DPJArrayPartitionInt.
This must be done because DPJ does not support precise effects
over partitions of native Java arrays. Second, the method must
be explicitly declared to be polymorphic over named regions r1,
r2, and r3, corresponding to the memory locations in which the
formals reside. Finally, Merge must be explicitly annotated with
the appropriate effects, i.e., it reads r1 and r2 and writes r3.

In CSOLVE, verifying this invariant requires: First, specify-
ing that a and b are potentially aliased arrays (the annotation
LOC(L) ARRAY). Second, we specify the qualifiers used to synthe-
size refinement types and heap effects via the line starting with
qualif. This specification says that a predicate of the given form
may appear in a type or effect, with the wildcard replaced by any
program identifier in scope for that type or effect. Using the given
qualifier, CSOLVE infers that a and b’s location is only read, and
that c’s location is only written at indices described by the formula
c ≤ ν < c+ la+ lb, which suffices to prove determinism.

Unlike DPJ, CSOLVE does not require invasive changes to code
(e.g. explicit array partitioning), and hence supports domain- and
program-specific sharing patterns (e.g. memory coalescing from
Figure 2). However, this comes at the cost of providing qualifiers.
In future work, abstract interpretation may help lessen this burden.

6. Related Work
We limit our discussion to static mechanisms for checking and en-
forcing determinism, in particular the literature that pertains to rea-
soning about heap disjointness: type-and-effect systems, semantic
determinism checking, and other closely related techniques.

Named Regions. Region-based approaches assign references (or
objects) to distinct segments of the heap, which are explicitly
named and manipulated by the programmer. This approach was
introduced in the context of adding impure computations to a
functional language, and developed as a means of controlling
the side-effects incurred by segments of code in sequential pro-
grams [20, 21]. Effects were also investigated in the context of
safe, programmer-controlled memory management [31, 15, 19].
Ideas from this work led to the notion of abstract heap locations
[34, 13, 10] and our notion of fold and unfold.

Ownership Types. In the OO setting, regions are closely related to
ownership types which use the class hierarchy of the program to
separate the heap into disjoint, nested regions [9, 29]. In addition



to isolation, ownership types can be used to track effects [8], and to
reason about data races and deadlocks [6, 4, 22].

Such techniques can be used to enforce determinism [30], but
regions and ownership relations are not enough to enforce fine-
grained separation. Instead, we must precisely track relations be-
tween program variables. We are inspired by DPJ [2], which shows
how some sharing patterns can be captured in a dependent region
system. However, we show the full expressiveness of refinement
type inference and SMT solvers can be brought to bear to enable
complex, low-level sharing with static determinism guarantees.
Checking Properties of Multithreaded Programs. Several authors
have looked into type-and-effect systems for checking other prop-
erties of multithreaded programs. For example, [11, 24] show how
types can be used to prevent races, [12] describes an effect disci-
pline that encodes Lipton’s Reduction method for proving atom-
icity. Our work focuses on the higher-level semantic property of
determinism. Nevertheless, it would be useful to understand how
race-freedom and atomicity could be used to establish determin-
ism. Others [27, 3] have looked at proving that different blocks of
operations commute. In future work, we could use these to auto-
matically generate effect labels and commutativity constraints.
Program Logics and Abstract Interpretation. There is a vast lit-
erature on the use of logic (and abstract interpretation) to reason
about sets of addresses (i.e., the heap). The literature on logically
reasoning about the heap includes the pioneering work in TVLA
[35], separation logic [26], and the direct encoding of heaps in first-
order logic [17, 18], or with explicit sets of addresses called dy-
namic frames [14]. These logics have also been applied to reason
about concurrency and parallelism: [25] looks at using separation
logic to obtain (deterministic) parallel programs, and [35] uses ab-
stract interpretation to find loop invariants for multithreaded, heap-
manipulating Java programs. The above look at analyzing disjoint-
ness for linked data structures. The most closely related to our work
is [32], which uses intra-procedural numeric abstract interpretation
to determine the set of array indices used by different threads, and
then checks disjointness over the domains.

Our work differs in that we show how to consolidate all the
above lines of work into a uniform location-based heap abstraction
(for separation logic-style disjoint structures) with type refinements
that track finer-grained invariants. Unlike [25], we can verify access
patterns that require sophisticated arithmetic reasoning, and unlike
[32] we can check separation between disjoint structures, and even
indices drawn from compound structures like arrays, lists and so on.
Our type system allows “context-sensitive” reasoning about (recur-
sive) procedures. Further, first-order refinements allow us to verify
domain-specific sharing patterns via first class effect labels [21].
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