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Abstract. One of the central axioms of extreme programming is the
disciplined use of regression testing during stepwise software develop-
ment. Due to recent progress in software model checking, it has become
possible to supplement this process with automatic checks for behavioral
safety properties of programs, such as conformance with locking idioms
and other programming protocols and patterns. For efficiency reasons,
all checks must be incremental, i.e., they must reuse partial results from
previous checks in order to avoid all unnecessary repetition of expen-
sive verification tasks. We show that the lazy-abstraction algorithm, and
its implementation in Blast, can be extended to support the fully au-
tomatic and incremental checking of temporal safety properties during
software development.

1 From Extreme Programming to Extreme Verification

Program verification has been a central problem of computer science for many
years [39, 40]. The importance of the verification problem has, despite its in-
herent intractability, led to the development of several research areas —such as
type systems, programming logics, formal semantics, static analysis, and model
checking— which approach the problem from many different angles. Unfortu-
nately, most of these methods rely heavily on user expertise, which has so
far prevented their routine application in the software industry. While many
general-purpose verification tools (e.g., [1, 20, 35, 47]) require sophisticated pro-
gram annotations such as loop invariants and pre- and postconditions for func-
tions, more restrictive domain-specific tools (e.g., [16, 19, 21, 45]) typically de-
mand more modest hints, say, in the form of type annotations. Model checking
is an ostensibly fully automatic method for proving systems correct. Yet also
in model checking, user intervention is typically required in two places. First,
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the user must supply a temporal specification, often in the form of a temporal-
logic formula or Büchi automaton. Second, and more importantly, the user must
supply an abstract model of the system to be checked. The model must be fine
enough to satisfy the specification, yet coarse enough not to choke the model
checker. Traditional model checking requires that the model be supplied as a
finite state-transition graph. Finite-state graphs are a natural model for hard-
ware systems, which, in addition, often exhibit regularities (such as symmetries
in the data path) that permit model compression. Software, however, is usually
infinite-state and irregular. Typically a human expert must guide the translation
of the program under consideration from a high-level programming language to
a finite-state graph. This may be done by having the user provide variables and
predicates on these variables that are relevant to the program property that is
being checked (e.g., [9, 13, 26, 33, 34, 38]1). While some of these tools offer consid-
erable assistance, the ultimate burden of defining a suitable program abstraction
remains on the user.

Both of these shortcomings of model checking have been addressed recently
in promising ways. First, the specification question can be avoided when checking
for universally desirable program properties —such as memory safety and race
freedom— which are a prerequisite for most functional correctness properties.
Richer safety specifications of the kind that we consider in this paper —such
as whether a program follows a particular device-access protocol, or driver tem-
plate, or locking idiom— can be specified using simple monitor automata. In fact,
even with the availability of expressive specification languages such as monitor
automata, it is more rewarding to look at low-level properties of program in-
tegrity than at high-level properties of functional correctness. The reason is that
the less data-dependent a property, the more likely can we find a program ab-
straction that is both sufficiently precise and sufficiently compact for automatic
analysis.

This brings us to the second area of human intervention, namely, the defini-
tion of a suitable abstraction. Recently, a class of techniques have been developed
which construct program abstractions fully automatically by counterexample-
guided abstraction refinement [3, 5, 12, 36, 52]. These methods extract progres-
sively finer finite-state models from programs. The program abstractions are
sound: if the desired property holds on an abstract program, then it holds also
on the concrete program. If, however, the property fails on the abstract program,
then the model checker produces an abstract counterexample which, if it cannot
be realized in the concrete program, is used to produce a finer abstraction that
rules out the counterexample. This iterative abstract–check–refine process con-
tinues until either a concrete counterexample is found, or a program abstraction
is found that satisfies the property, thus proving the program correct. Starting
from a coarse seed abstraction, the whole iteration —in particular the discov-
ery of new predicates for refining an abstraction— can be fully automated. The

1 We limit ourselves to static model checkers. Other approaches perform symbolic
execution (e.g., [10, 23], run-time checks (e.g., [27]), and dataflow analysis (e.g., [15,
18]).



approach has been introduced in program verification by [7] and applied suc-
cessfully in device-driver verification. In [31], the three phases of the abstract–
check–refine loop are tightly integrated to achieve performance gains. In partic-
ular, whenever an abstract counterexample cannot be concretized, the program
abstraction is refined only locally, and the model checking is not repeated for
the parts of the abstract state space that are not refined. The algorithm is called
lazy abstraction, as it builds a program abstraction on-the-fly, and refines it on-
demand, during the model-checking process. It has been used successfully for
checking software conformance with driver templates, locking disciplines, and
race freedom [29, 30].

Despite this recent progress in software model checking, the emerging tools
are still relatively immature. In particular, they need to be integrated into the
professional software development process. In industry, the standard way of en-
suring the quality of software is through testing. Recently, extreme programming
(XP) [8] has been advocated as a new software-engineering paradigm with a
strong emphasis on testing. In XP, the stepwise (incremental) implementation
of a program is alternated with extensive regression tests. XP demands that
the programmer attach to every functional unit of the program a comprehen-
sive suite of unit tests, which are run every time the program is modified. The
motivation for this methodology is that the essential way in which software is
created from its conception to its final implementation has not changed radi-
cally over the last few decades. While new languages and tools have simplified
the process, software is still developed by stepwise refinement [55]. XP ensures
that testing is carried out in an incremental, modular, and systematic way, and
thus makes it easier for large teams of programmers to build and manage soft-
ware systems. This programming discipline has gained considerable momentum
in both academia and industry. Unit tests, however, provide only partial checks
for the functional correctness of the program under development. It is there-
fore natural to supplement the XP approach with automatic checks for low-level
temporal properties, e.g., if the program conforms with safety disciplines such as
device-access protocols or locking idioms or design patterns. Such checks can be
performed by software model checkers, which —unlike testing— guarantee a full
coverage of all program paths. We call the software development process where
regression testing is supplemented with model checking for ensuring temporal
safety properties, extreme verification (XV).

XP assumes that software changes frequently during development and main-
tenance. Regression testing requires that all unit tests be run (and succeed)
every time a change is committed, no matter how small. This is required even if
the change made to the program is local and does not affect the success or fail-
ure of some tests. Research in regression testing has addressed this issue (e.g.,
[2, 6, 25, 50, 51]): regression-test selection attempts to determine automatically
if a modified program, when run on some test t, would have the same observ-
able behavior as the original program when run on t, without actually running
the test t. Such incrementality is even more important in model checking, as it
takes far more computation to prove a property than to run a test. If for every



small modification of the program the model-checking process would have to be
restarted from scratch, on the whole program, then the overall time taken for
verification would likely be unacceptable to the software engineer. Hence, in any
practical implementation of XV, the model-checking process must be incremen-
tal : the model checker must be able to check whether a program modification
invalidates a proof of correctness obtained from a previous check, and if so, then
the model checker must be able to start the abstraction refinement and state-
space exploration from the points of the previous model at which either the
old abstraction or the old proof fails. This requires the model checker to pro-
duce and maintain program abstractions which can serve as efficiently verifiable
proofs that the program satisfies the desired properties. To this aim, we adapt
the control-flow-based algorithms for regression-test selection: the incremental
model-checking algorithm takes as input a modified program, together with an
abstract model that serves as proof of correctness for a previous version of the
program, and checks if the old proof still applies; if not, it generates predicates
for program abstraction and initial states for state-space exploration wherever
the old proof breaks. The lazy-abstraction algorithm is particularly suited for
this purpose, as it maintains a nonuniform program abstraction, which uses dif-
ferent degrees of detail in different regions of the state space, and thus can serve
as compact proof of program correctness [29]. The lazy-abstraction algorithm
has been implemented in Blast, the Berkeley Lazy Abstraction Software verifi-
cation Tool [32]. In order to support the XV paradigm, we have extended Blast

to maintain all necessary data structures not only during the abstract–check–
refine loop of a single verification pass, but from one verification pass to the next
during the software development process.

The paper is organized as follows. In Section 2, we give an introduction
to software model checking and proof generation using Blast. In Section 3, we
present the XV design flow and the extension of Blast that permits incremental
software verification. In Section 4, we illustrate the methodology and tool by
applying it to the stepwise development of a simple Microsoft Windows device
driver.

2 Software Verification with Blast

2.1 The lazy-abstraction algorithm

Blast, the Berkeley Lazy Abstraction Software verification Tool, is a model
checker for C programs which builds and verifies program abstractions against a
temporal safety property. At a high level, the Blast algorithm implements the
following loop for counterexample-guided abstraction refinement [7]:

Step 1 (abstraction) A finite set of predicates over the program variables is
chosen, and an abstract model of the program is built automatically as a
finite or push-down automaton whose states represent truth assignments for
the chosen predicates.



Step 2 (verification) The abstract model is checked automatically against the
specified property. If the abstract model is error-free, then so is the original
program (return “program correct”); otherwise, an abstract counterexample
is produced automatically, which demonstrates how the model violates the
property.

Step 3 (refinement) It is checked automatically if the abstract counterexam-
ple corresponds to a concrete counterexample in the original program. If so,
then a program error has been found (return “program incorrect”); other-
wise, the chosen set of predicates does not contain enough information for
proving program correctness and new predicates must be added. The selec-
tion of such predicates is automatic, guided by the failure to concretize the
abstract counterexample.

Goto step 1.

Blast short-circuits the loop from abstraction to verification to refinement, and
integrates the three steps tightly through “lazy abstraction” [31]. The integra-
tion offers significant advantages in performance by avoiding the repetition of
abstraction and verification work (steps 1 and 2) from one iteration of the loop
to the next.

Intuitively, lazy abstraction proceeds as follows. In step 3, we call the abstract
state in which the abstract counterexample fails to have a concrete counterpart,
the pivot state. The pivot state suggests which predicates should be used to refine
the abstract model. However, instead of building an entire new abstract model,
we refine the current abstract model “from the pivot state on.” Since the abstract
model may contain loops, such refinement on-demand may, of course, refine parts
of the abstract model that have already been constructed, but it will do so only
if necessary; that is, if the desired property can be verified without revisiting
some parts of the abstract model, then our algorithm succeeds in doing so. The
algorithm integrates all three steps by constructing and verifying and refining
on-the-fly an abstract model of the program, until either the desired property is
established or a concrete counterexample is found. The abstract model is not on
a global set of predicates but one whose predicates change from state to state.
Moreover, from the abstract reachability tree constructed by Blast, invariants
that are sufficient to prove the verified property can be mined, and a formal,
deductive proof can be constructed [29]. A beta version of Blast is available at
www.eecs.berkeley.edu/˜tah/blast.

2.2 A device-handler example

Consider the program in Figure 1(a) and the device-access protocol specified by
the monitor automaton of Figure 2. The monitor uses a global variable status,
which has the value WORK when the device is ready for I/O operations, WAIT

when it is waiting to be stopped, and STOP when it is stopped. Initially, the
driver is in stopped mode. The call to startDevice() initializes the driver and
puts it into work mode. While in work mode, the driver can process I/O requests
from the program (through the function call ioOperation()), or take a request



1: startDevice();

b = false;

do {
2: if (*) {
3: ioOperation();

} else {
4: b = requestStop();

}
5: } while (!b);

6: stopDevice();

[true]

ioOperation()

stopDevice()

b = false
startDevice()

b = requestStop()

1

2

3

exit

4

 6

 5

[b]
[!b]

[true]

Fig. 1. (a) The program Example and (b) its CFA.
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Fig. 2. The device-access specification.

to stop (through the function call requestStop()). The call to requestStop()

may or may not succeed. If the call succeeds (in this case, requestStop() returns
true), the driver goes into waiting mode, from which it can be stopped safely
by a call to stopDevice(). If the call to requestStop() does not succeed (in
this case, requestStop() returns false), the driver remains in work mode.
An error occurs if the I/O function ioOperation() is called when the driver
is in stopped or waiting mode, or if stopDevice() is called when the driver
is in work or stopped mode, or if startDevice() is called when the driver is
in work or waiting mode. The monitor checks that whenever an I/O operation
is performed, status = WORK , whenever stopDevice() is called, status =
WAIT , and whenever startDevice() is called, status = STOP . If any of these
conditions is violated, then the monitor enters an error state. The C code of the
program and the monitor (written in Blast’s specification language) are given



stopDevice()

b = false
startDevice()
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Fig. 3. Forward search.

status=STOP {status=WORK & true=false}  

b = false
startDevice()

stopDevice()

1

2

3

[true]

5

6

ioOperation()

[b]

ERR

status=WORK  {status=WORK & b=true} 

status=WORK  {status=WORK & b=true}

status=WORK  {status=WORK & b=true}

status=WORK  {status=WORK}  

status=WORK  {true}

Fig. 4. Backward counterexample analysis.

as input to Blast. They are then combined, by Blast, into a single C program
with a special error label. Safety checking is so reduced to checking whether the
error label of a program is reachable.

Internally, Blast represents programs as control flow automata (CFA). A
CFA is a directed graph whose vertices correspond to control points of the pro-
gram (begins and ends of basic blocks), and whose edges correspond to program
operations. An edge is labeled either by a basic block of instructions, which are
executed along that edge, or by an assume predicate, which represents a condi-
tion that must hold for the edge to be taken. For ease of exposition, we also allow
atomic function calls on the CFA edges. In the actual implementation, these func-
tion calls are inlined automatically during model checking.2 Figure 1(b) shows
the CFA for the program Example. The edges labeled with boxes represent basic
blocks; those labeled with [·] represent assume predicates. We model the call
to requestStop() as nondeterministically returning either true or false in an
atomic step. The condition of the if (*) statement is not modeled. We assume
that either branch can be taken; hence both outgoing edges are labeled with the
assume predicate [true].

Lazy abstraction The lazy-abstraction algorithm is composed of two phases.
In the forward-search phase, Blast builds an abstract reachability tree, which
represents a portion of the reachable, abstract state space of the program. Each
node of the tree is labeled by a vertex of the CFA and a formula, called the reach-
able region, constructed as a boolean combination of a finite set of abstraction
predicates. The edges of the tree correspond to edges of the CFA and are labeled
by the corresponding basic blocks and assume predicates. Each path in the tree

2 The current implementation of Blast does not handle recursive function calls, but
this is being remedied.



corresponds to a path in the CFA. The reachable region of a node describes the
reachable states of the program in terms of the abstraction predicates, assum-
ing execution follows the sequence of instructions labeling the edges from the
root of the tree to the node. If we find that an error node is reachable in the
tree, then we proceed to the second phase, which checks if the error is real or
results from the abstraction being too coarse (i.e., if we lost too much informa-
tion by restricting ourselves to a particular set of abstraction predicates). In the
latter case, Blast asks a theorem prover to suggest additional abstraction pred-
icates, which rule out that particular spurious counterexample. By iterating the
two phases of forward search and backward counterexample analysis, different
portions of the abstract reachability tree will use different sets of abstraction
predicates.

We now illustrate how the lazy-abstraction algorithm performs on the
program Example. We start by considering the three abstraction predicates
status = WORK , status = STOP , and status = WAIT derived from the speci-
fication.

Forward search Consider Figure 1. We construct an abstract reachability tree in
depth-first order. The root corresponds to the entry vertex of the program (loca-
tion 1), and is labeled by its precondition status = STOP . The reachable region
of each node in the tree is obtained from that of the parent by an overapprox-
imate successor computation with respect to the set of abstraction predicates.
The computed successor is a Cartesian abstraction of the predicate abstraction
of the successor [24, 31]. More precisely, for a reachable region r in disjunctive
normal form, and an edge label op, we do the following. For every disjunct d
of r we construct a corresponding disjunct post(d, op). To do this we check, for
every abstraction predicate p that is currently being tracked, if d ⇒ wp(p, op)
and if d ⇒ wp(¬p, op), where wp(p, op) is the weakest precondition of p with
respect to op [17]. If the first is true, we add p as a conjunct to post(d, op); if
the second is true, we add ¬p as a conjunct to post(d, op). If neither is true, we
do not add a literal corresponding to p to post(d, op) (note that both queries
can never be true). For instance, we compute the successor of the reachable re-
gion status = STOP with respect to the block startDevice(); b = false as
(status = WORK ) ∧ ¬(status = STOP) ∧ ¬(status = WAIT ). In the example,
the forward search finds a path to an error node, namely, 1→ 2→ 3→ 5→ 6.

Backward counterexample analysis We check if the path from the root to the
error node is a genuine counterexample or results from the abstraction being
too coarse. To do this, we symbolically simulate the error path backward in the
original program. As we go backward from the error node, we try to find the
first node in the abstract reachability tree where the abstract path fails to have
a concrete counterpart. If we find such a pivot node, then we conclude that the
counterexample is spurious and refine the abstraction from the pivot node on
by adding new abstraction predicates that rule out the counterexample. If the
analysis goes back to the root without finding a pivot node, then we have found
a real error in the program.



Figure 4 shows the result of this phase. In the figure, for each node, the
formula within curly braces, called the bad region, represents the set of states in
the reachable region that can go from the corresponding control location to an
error. Formally, the bad region of a node is the intersection of the reachable region
of the node with the weakest precondition of true with respect to the sequence
of instructions that label the path in the abstract reachability tree from the
node to the error node. It is computed inductively, starting backward from the
error node, which has the bad region true. Note that unlike the forward-search
phase, the backward-counterexample analysis is precise: we track all predicates
obtained along the abstract error path. In Figure 4, we find that the bad region at
location 1 is false, which implies that the counterexample is spurious. Location 1
becomes the pivot node.

We use the result of the counterexample analysis to refine the abstraction:
we add a minimal set of new abstraction predicates that are enough to show
infeasibility of the abstract error path. The predicates that appear in the proof
of infeasibility are produced by a proof-generating theorem. In the example, the
reachable region at the pivot node is status = STOP , and the abstract error path
is σ = startDevice(); b = false · [true] · ioOperation() · [b] · stopDevice().
Infeasibility of this path is equivalent to the unsatisfiability of the formula
wp(true, σ)∧(status = STOP), where wp(true, σ) is the syntactic predecessor of
true along the path σ. To maintain the syntactic form of the predicates obtained
along the path, all substitutions in weakest preconditions must be maintained ex-
plicitly. In particular, to compute wp(p, x = e), instead of returning the classical
p[e/x], we introduce a fresh primed variable x′ and return (x′ = e)∧p[x′/x] (note
that the variable x′ acts as a Skolem constant). In the example, the precondition
of the abstract error path is:

b′ = false ∧ status ′ = WORK ∧ b′ = true ∧ status ′ = WORK .

To this, we conjoin the region status = STOP from the pivot node and submit
the resulting formula to the proof-generating theorem prover. The prover says
that the proof of unsatisfiability of the conjunction involves the two predicates
b′ = true and b ′ = false.

Search with new predicates We proceed with another forward-search phase, start-
ing from the pivot node, but this time we track the abstraction predicate b = true

in addition to status = STOP , status = WORK , and status = WAIT . The re-
sulting abstract reachability tree is shown in Figure 5. Notice that we can stop
the search at the leaf labeled 2: as the states satisfying the reachable region
(status = WORK ) ∧ (b = false) are a subset of those satisfying the reachable
region at node 2, the subtree constructed from the leaf would be included in the
subtree of node 2. In the new abstract reachability tree, no error node is reach-
able. Hence we conclude that the program Example satisfies the device-access
specification.

Proof generation While the lazy-abstraction algorithm verifies the temporal
safety property specified by a monitor automaton, it does not provide a deductive
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Fig. 5. An abstract reachability tree.

proof. In particular, there is no apparent way to distinguish a correct analysis of
the system from a buggy implementation of the algorithm. Therefore, we would
like to provide an easily checkable and compact certificate that the program
meets its specification.

Lazy abstraction can be used naturally and efficiently to construct deductive
correctness proofs for temporal safety properties. This is because the data struc-
tures produced by lazy abstraction supply the program annotations required for
proof construction and provide a decomposition of the proof leading to a small
correctness certificate. In particular, using abstraction predicates only where
necessary keeps the proof small, and using the model checker to guide the proof
generation eliminates the need for backtracking, e.g., in the proof of disjunctions.
To certify that a program satisfies its specification, we use a standard temporal

safety rule from deductive verification [41]: given a transition system, if we can
find a set I of states such that (1) I contains all initial states, (2) I contains no
error states, and (3) I is closed under successor states, then the system cannot
reach an error state from an initial state. If (1)–(3) are satisfied, then I is called
an invariant set. In our example, the temporal safety rule reduces to supplying
for each vertex q of the CFA an invariant formula I(q) such that

1. (status = STOP)⇒ I(1);

2. I(ERR) = false;

3. for each pair q and q′ of CFA vertices with an edge labeled op between them,
sp(I(q), op)⇒ I(q′), where sp is the strongest-postcondition operator [17].

Thus, to provide a proof of correctness, it suffices to supply a location invariant
I(q) for each vertex q of the CFA, and proofs that the supplied formulas meet
the above three requirements.



The location invariants can be mined from the abstract reachability tree
produced by the lazy-abstraction algorithm. In particular, the invariant for q is
the disjunction of all reachable regions that label the nodes in the tree which
correspond to q. For instance, I(5) is (status = WORK ∧ b = false) ∨ (status =
WAIT ∧ b = true). It is easy to check that (status = STOP) ⇒ I(1), because
the root of the abstract reachability tree is labeled by the precondition of the
program (status = STOP). Also, as there is no node labeled ERR in the tree, we
get the second requirement by definition. The interesting part is checking the
third requirement, that for each edge q

op
−→q′ of the CFA, sp(I(q), op) ⇒ I(q′).

Consider the edge 5
[b]
−→6. We need to show that

sp((status = WORK ∧ ¬b) ∨ (status =WAIT ∧ b), [b])

⇒ (status = WAIT ∧ b).

By distributing sp over ∨, we are left with the proof obligation ((status =
WAIT∧b)∨false)⇒ (status = WAIT∧b). To prove this, notice that the disjuncts
on the left can be broken down into subformulas obtained from the reachable
regions of individual nodes. Hence we can show the implication by matching
each subformula with the appropriate successor on the right. In this way we
obtain the two proof obligations (status = WAIT ∧ b)⇒ (status = WORK ∧ b)
and false ⇒ (status = WAIT ∧ b). Exactly these obligations were generated in
the forward-search phase when computing abstract successors. Each obligation
is discharged, and the whole proof assembled, using a proof-generating theorem
prover. The above process generates, completely automatically, a deductive proof
of correctness for the temporal safety property [29]. Such a proof can then be
used as proof certificate in proof-carrying code [43].

3 Incremental Verification with Blast

3.1 The extreme model-checking paradigm

At an abstract level, the extreme-programming (XP) methodology can be viewed
as a sequence of programs and test suites (P i, T i), where each program P i+1 is
a modified version of P i, and each T i+1 contains the previous test suite T i, that
is, T i ⊆ T i+1. After the implementation of P i all tests in T i are performed on
the program. If P i complies to all tests, then the program is “committed”; this
represents a stable version in the development. Any modifications or additions
will be implemented in the new, refined version P i+1, and the corresponding test
suite T i+1 will be expanded from the test suite T i. In traditional applications
of XP, the unit tests are simple functional tests, checking desired input-output
behaviors of functions, often written in stylized languages such as JML [11, 37].

In extreme verification (XV), we generalize the XP methodology as follows.
In addition to the program P i and functional test suite T i, we have at each
stage a set Φi of temporal safety property specifications that must be satisfied
by the program P i. The behavioral requirements and protocol specifications in
Φi complement the functional tests in T i. Like the functional test suites, the set



Φi of property specifications never decreases —that is, Φi ⊆ Φi+1— but usu-
ally increases as more properties are added as the program is being developed.
After each step in the development, all specifications in Φi are checked by a
model checker on the program P i. If all tests in T i as well as all properties in
Φi pass, then the program is committed. To support the XV paradigm, we en-
vision a software model checker to be added to popular unit testing frameworks
such as JUnit [22]. Alternatively, the temporal safety properties in Φi can also
be used as test cases, and like functional unit tests, be checked by simulation
or run-time monitoring [28]. For example, [53] propose FAUSEL, a language
that allows specifying linear temporal logic (LTL) and metrical temporal logic
(MTL) expressions that are monitored during program execution. Similarly, [27]
describes JavaExplorer, a tool that monitors running Java programs for LTL
specifications. However, to obtain complete coverage, it is often desirable to ver-
ify temporal properties using a model checker. Also, motivated by functional
test-case generation (e.g., [54]), there have been some recent attempts to auto-
matically generate temporal specifications [4].

The XP methodology can be very expensive for testing as every (local) change
in the program requires every test to be rerun. To reduce the cost of testing,
incremental regression test techniques (also called regression test selection) have
been proposed. These techniques essentially check the control flow graph of a
modified program against the control flow graph of the original program, and
compute path coverage information for each test, to decide which tests need to
be rerun on the modified program. By applying such techniques, the number of
test cases in T i that are repeated on P i+1 is reduced. Even more so, XV can be
extremely expensive if the model checker has to reverify each property every time
a small change is made in the program. We now show that a model checker which
can produce proofs, together with an analysis similar to incremental regression
testing, can be used to make the verification process incremental as well. In
particular, it is possible to completely skip the model checking of a property
ϕ ∈ Φi on the modified program P i+1 if the proof that P i satisfies ϕ can be
reused. Moreover, even if this is not possible, the state-space exploration for
checking ϕ on P i+1 can sometimes be limited to those parts of the state space
that have changed from P i to P i+1.

3.2 Conformance of a program with an abstract reachability tree

Suppose that we are given a program P , a safety property ϕ, and an abstract
reachability tree for P which has been constructed by Blast in order to verify
that P satisfies ϕ. Further suppose that P is modified to P ′. We wish to check if
the abstract reachability tree for P can be reused to prove that also P ′ satisfies ϕ,
in order to avoid repeating the model-checking process if possible. As a simple
example, when writing concurrent programs, programmers often write the syn-
chronization skeleton first, and check that it conforms to the locking protocol,
and then add the data manipulation. However, the data manipulation does not
affect the correctness of the locking protocol, because the variables touched by



the control (synchronization code) and the data manipulation are usually dis-
joint. Thus, a proof of correctness for the locking protocol should still be valid
after the data manipulation statements have been added, and an incremental
model checker should be able to verify this quickly. In this case, we say that the
refined program conforms to the previously constructed abstract reachability
tree.

We have implemented in Blast an algorithm for conformance checking,
which constructs the CFA for the new program P ′ and compares it top-down
with the abstract reachability tree constructed for the old program P with re-
spect to the safety property ϕ . As long as no discrepancy is found, Blast

reuses the same tree to generate a proof of correctness. If, however, an edge in
the abstract reachability tree cannot be replicated in the new program, or an
edge is missing, then Blast restarts the lazy-abstraction algorithm from the
corresponding node. In the following, we describe this algorithm more precisely.
We start with a few definitions in order to specify our notion of conformance
formally.

A control flow automaton (CFA) C is a tuple 〈Q, q0, X, Ops,→〉, where Q
is a finite set of control locations, q0 is the initial control location, X is a set
of typed variables, Ops is a set of operations on X, and →⊆ (Q × Ops × Q) is
a finite set of edges labeled with operations. An edge (q, op, q′) is also denoted
q
op
−→q′. The set Ops of operations contains (1) basic blocks of instructions, that
is, finite sequences of assignments lval = exp, where lval is an lvalue from X
(i.e., a variable, structure field, or pointer dereference), and exp is an arithmetic
expression over X; and (2) assume predicates [p], where p is a boolean expression
overX (arithmetic comparison or pointer equality), representing a condition that
must be true for the edge to be taken. For ease of exposition we describe our
method only for CFAs without function calls; the method can be extended to
handle function calls in a standard way (and function calls are handled by the
Blast implementation).

The set VX of (data) valuations over the variables X contains the type-
preserving functions from X to values. A region is a set of data valuations; let R
be the set of regions. We use quantifier-free first-order formulas over some fixed
set of relation and function symbols to represent regions. The semantics of op-
erations is given in terms of the strongest-postcondition operator [17]: sp(r, op)
of a formula r with respect to an operation op is the strongest formula whose
truth holds after op terminates when executed in a valuation that satisfies r.
For a formula r ∈ R and operation op ∈ Ops, the formula sp(r, op) ∈ R is
syntactically computable; in particular, after skolemization, the strongest post-
condition is again a quantifier-free formula. A location q ∈ Q is reachable from
a precondition Pre ∈ R if there is a finite path q0

op1−−→ q1
op2−−→ · · ·

opn−−→ qn in the
CFA and a sequence of formulas ri ∈ R, for 0 ≤ i ≤ n, such that qn = q,
r0 = Pre, rn 6⇔ false, and sp(ri, opi+1) = ri+1 for all 0 ≤ i < n. The witnessing
path is called a feasible path from (q0,Pre) to q. We write sp(r, op1op2 . . . opn)
to denote sp(. . . sp(sp(r, op1), op2) . . .).



Let T = (V,E, n0) be a (finite) rooted tree, where each node n ∈ V is labeled
by a pair (q, r) ∈ Q ×R, each edge e ∈ E is labeled by an operation op ∈ Ops,
and n0 ∈ V is the root node. We write n : (q, r) if node n is labeled by control
location q and region r; in that case, we say that r is the reachable region of n
and write reg(n) = r. If there is an edge from n : (q, r) to n′ : (q′, r′) labeled by
op, then node n′ is an (op, q′)-child of node n. The labeled tree T is an abstract

reachability tree for the CFA C if (1) the root n0 : (q0, r0) is labeled by the
initial location q0 of the CFA; (2) each internal node n : (q, r) has an (op, q′)-
child n′ : (q′, r′) for each edge q

op
−→ q′ of C ; (3) if n′ : (q′, r′) is an (op, q′)-child

of n : (q, r), then sp(r, op) ⇒ r′; and (4) for each leaf node n : (q, r), either q
has no successors in C , or there are internal nodes n1 : (q, r1), . . . , nk : (q, rk)
such that r ⇒ (r1 ∨ . . . ∨ rk). In the latter case, we say that n is covered by
n1, . . . , nk. Intuitively, an abstract reachability tree is a finite unfolding of the
CFA whose nodes annotated with regions, and whose edges are annotated with
corresponding operations from the CFA. For a set F ⊆ V of leaf nodes of T , the
pair (T, F ) is a partial reachability tree for C if conditions (1), (2), and (3) hold,
and (4′) for each leaf node n : (q, r), either n ∈ F , or q has no successors in C , or
there are internal nodes n1 : (q, r1), . . . , nk : (q, rk) such that r ⇒ (r1 ∨ . . . ∨ rk).
Intuitively, a partial reachability tree is a prefix of an abstract reachability tree,
where the nodes in F have not yet been explored. Of course, if F = ∅, then
(T, F ) is an abstract reachability tree.

An error function E : Q→ {0, 1} identifies a set E−1(1) ⊆ Q of error locations
of the CFA C . Every safety property ϕ of a program P can be compiled into an
error function on the CFA C that results from composing the CFA of P with
a monitor automaton for ϕ [29]. The automaton C is safe with respect to the
precondition Pre ∈ R and error function E if no location q with E(q) = 1 is
reachable from Pre. An abstract reachability tree T for C is safe with respect
to the precondition Pre ∈ R and error function E if (1) the root has the form
n : (q0,Pre) and (2) for all nodes of the form n : (q, r) with E(q) = 1, we have r ⇔
false. A partial reachability tree (T, F ) is safe with respect to the precondition
Pre and error function E if condition (1) holds, and (2′) for all nodes of the form
n : (q, r) with E(q) = 1, either n ∈ F or r ⇔ false. A safe abstract reachability tree
witnesses the correctness of the CFA for the precondition Pre and error function
E , and the reachable regions that label its nodes provide program invariants.
The following theorem makes this precise.

Theorem 1. [31] Let C be a CFA, Pre a precondition, and E an error function

for C . If there exists an abstract reachability tree for C which is safe with respect

to Pre and E, then C is safe with respect to the precondition Pre and error

function E

Figure 5 shows a safe abstract reachability tree that witnesses the correctness
of the program Example for the precondition status = STOP and the device-
access specification from Figure 2. From a safe abstract reachability tree we can
construct a proof of correctness. For this purpose, it is convenient to augment
abstract reachability trees with additional bookkeeping information: (1) for each



1: startDevice();

b = false;

numIo = 0;

do {
2: if (*) {
3: ioOperation();

numIo ++;

} else {
4: b = requestStop();

dataBuf = 0;

}
5: } while (!b);

6: stopDevice();

numIo++

1

2

3

exit

4

 6

 5

[b]
[!b]

[true] [true]

startDevice()
b = false

ioOperation()

stopDevice()

dataBuf = 0
b = requestStop()

numIo = 0

Fig. 6. (a) The modified program Example1 and (b) its CFA.

node of the tree, Blast provides the set of abstraction predicates that define the
abstract state at this node (these are the predicates from which the reachable
region is formed), and (2) for each leaf node, Blast provides the set of internal
nodes that cover this node.

We now define the conformance relation between a given abstract reacha-
bility tree and a new program. Informally, the conformance relation specifies
a sufficient condition under which a proof of a particular safety specification
for a program continues to hold for a modified version of the program. Similar
ideas have been used in translation validation [14, 44, 48, 49] to prove that cer-
tain optimization transformations behave correctly. Let T ′ = (V ′, E′, n′0) and
T = (V,E, n0) be two abstract reachability trees. A relation ¹⊆ V ′ × V be-
tween the nodes of T ′ and T is a simulation relation [42] if n′ ¹ n implies
(1) reg(n′) ⇒ reg(n) and (2) for each child n̄′ of n′, there is a child n̄ of n
such that n̄′ ¹ n̄. We write T ′ ¹ T if if there is a simulation relation ¹ such
that n′0 ¹ n0. A CFA C with the precondition Pre ∈ R and error function E
safely conforms with the abstract reachability tree T if there exists an abstract
reachability tree T ′ for C such that (1) T ′ is safe with respect to Pre and E , and
(2) T ′ ¹ T . The following is a stronger version of Theorem 1.

Theorem 2. If a CFA C with precondition Pre and error function E safely

conforms with some abstract reachability tree T , then C is safe with respect to

Pre and E.

Figure 6 shows a refinement Example1 of the program Example, which keeps
track of the number of I/O requests served and resets a data buffer after calling
requestStop(). Since the instructions that have been added do not affect the
abstraction predicates, the CFA for Example1 safely conforms with the abstract
reachability tree of Figure 5 with respect to the precondition status = STOP

and the device-access specification.



Algorithm 1 Function checkConformance(C ,Pre, E , T )

Require: a CFA C = 〈Q, q′

0, X, Ops,→〉 with precondition Pre and error function E ,
and an abstract reachability tree T = (V, E, n0).

1: create the root n′

0 : (q
′

0,Pre) for the reachability tree T ′

2: add (n0, n
′

0) to WorkList
3: initialize Frontier to ∅, and Map to ∅
4: while there are pairs in WorkList do

5: choose a pair (n : (q, r), n′ : (q′, r′)) from WorkList , and remove it from WorkList
6: if E(q′) = 1 then

7: add n′ to Frontier
8: end if

9: if r′ 6⇒ r then

10: add n′ to Frontier
11: end if

12: if n is a leaf node in T then

13: if q′ has no successors in C then break

14: let n1 : (q, r1), . . . , nk : (q, rk) be nodes in T such that r ⇒
∨

i=1...k ri

15: if Map(ni) is undefined for some i = 1, . . . , k then

16: add n′ to Frontier
17: else

18: let n′

i : (q
′

i, r
′

i) = Map(ni) for each i = 1, . . . , k
19: if r 6⇒

∨
i=1...k {si | si = r′

i if q′

i = q′, and si = false otherwise} then

20: add n′ to Frontier
21: end if

22: end if

23: else

24: if number of edges out of n and q′ are the same then

25: let f = matchEdges(n, n′)
26: if f 6= ∅ then

27: for each pair 〈(n : (q, r), op, n̄ : (q̄, r̄)), (q′, op′, q̄′)〉 ∈ f do

28: add a child n̄′ : (q̄′, r̄) to n′ in T ′

29: add (n̄, n̄′) to WorkList
30: add (n̄, n̄′) to Map
31: end for

32: else

33: add n′ to Frontier
34: end if

35: else

36: add n′ to Frontier
37: end if

38: end if

39: end while

40: return (T ′,Frontier)



3.3 Checking conformance

We now describe an algorithm for checking conformance of a CFA C with an
abstract reachability tree T . In order to check conformance, we have to construct
a safe abstract reachability tree for C which is simulated by T . For efficiency
reasons, the algorithm is imprecise. If the algorithm declares that C safely con-
forms with T , then this is indeed the case, but it may happen that the algorithm
cannot prove that the CFA safely conforms with the abstract reachability tree
even when there is a conformance relation. If the algorithm does not succeed in
proving conformance, then it returns a set Frontier of nodes of T , which are the
nodes from which the lazy-abstraction algorithm can be restarted in order to
produce an abstract reachability tree for C from a prefix of T .

The input to checkConformance (Algorithm 1) is a CFA C , a precondition
Pre and an error function E for C , and an abstract reachability tree T . The
algorithm walks in lock-step through C and T and tries to construct an abstract
reachability tree T ′ for C such that T ′ is both safe with respect to Pre and E , and
T ′ ¹ T . The output of the algorithm is a partial reachability tree (T ′,Frontier)
for C which is safe with respect to Pre and E . Intuitively, the set Frontier denotes
the set of nodes at which the simulation of T ′ by T breaks. If Frontier is empty,
then T ′ is safe with respect to Pre and E , and simulated by T ; that is, C safely
conforms with T .

The algorithm maintains two lists: WorkList contains pairs (n, n′) of nodes,
n of T and n′ of T ′, for which it needs to be checked if n′ is simulated by n;
and Frontier contains the nodes of T ′ which are not found to be simulated by
corresponding nodes of T , and from which model checking must continue. For ef-
ficiency reasons, we sacrifice precision and do not implement an exact simulation
check. The function Map keeps track of the simulation relation we construct, by
mapping nodes of T to nodes of T ′ such that Map(n) is simulated by n. The fun-
damental step in our implementation is to establish a correspondence between
the edges coming out of the current node of T and the edges coming out of the
current CFA location. This is done by the function matchEdges, which takes as
input a node n : (q, r) of T and a node n′ : (q′, r′) of T ′, such that the number of
children of n in T is equal to the number of successors of q′ in C . It then tries to
match up the operations on the edges as follows: edge (n : (q, r), op, n̄ : (q̄, r̄)) of
T is matched to edge (q′, op′, q̄′) of C if sp(r′, op′)⇒ r̄. If such a pairing cannot
be found, then matchEdges returns the empty set.

Our implementation of matchEdges (Algorithm 2) again trades off precision
against efficiency. Since the CFA is obtained from a high-level language like C,
it has the following property: each CFA location either has one successor with
the corresponding edge labeled by a basic block, or it has exactly two succes-
sors, and the corresponding edges are labeled by assume predicates. Moreover,
in the latter case the two conditions in the assume predicates are complemen-
tary. For nodes with two successors (the assume-predicate case), we require that
the conditionals are syntactically identical. In other words, we expect the con-
trol flow structure of the original and revised programs to look identical. For
nodes with one successor (the basic-block case), we match edges in the following



Algorithm 2 Function matchEdges(n : (q, r), n′ : (q′, r′))

initialize f to ∅
case n and q′ have each two outgoing edges:
let (n : (q, r), [p], n1 : (q1, r1)) and (n : (q, r), [!p], n2 : (q2, r2)) be the edges out of n

if (q′, [p], q′

1) and (q′, [!p], q′

2) are the two edges out of q′ then

add 〈(n, [p], n1), (q
′, [p], q′

1)〉 and 〈(n, [!p], n2), (q
′, [!p], q′

2)〉 to f

end if

case n and q′ have each one outgoing edge:
let (n : (q, r), op, n̄ : (q̄, r̄)) be the edge out of n

let (q′, op′, q̄′) be the edge out of q′

if wp(p, op) = wp(p, op′) for each abstraction predicate p of n then

add 〈(n, op, n̄), (q′, op′, q̄′)〉 to f

end if

return f

way. Suppose that the two basic blocks are op and op′, respectively. For each
abstraction predicate p of the current node of the abstract reachability tree T ,
we compute the weakest preconditions wp(p, op) and wp(p, op′), and then check
that they are syntactically identical. (In fact, we can assume that the weak-
est preconditions for op are part of T , so these need not be recomputed.) The
benefit of using weakest preconditions is that the weakest-precondition operator
is robust with respect to syntactic details such as permutation of independent
instructions, renaming of auxiliary variables, and substitutions. For example,
consider the edge (4, b = requestStop();, 5) in the CFA of Figure 1(b), and the
edge (4, b = requestStop(); dataBuf = 0;, 5) of the refined program Example1

(discussed in the next section), where some data manipulation has been added.
In this example, op is b = requestStop(); and op′ is b = requestStop();

dataBuf = 0. Then the weakest preconditions wp(status = WAIT , op) and
wp(status = WAIT , op′) are identical, and similarly, wp(b, op) and wp(b, op′)
are identical. In other words, there is no effect of the new assignment on the
behavior of the program with respect to the predicates of interest.

Theorem 3. If checkConformance(C ,Pre, E , T ) = (T ′, ∅), then the CFA C with

the precondition Pre and error function E safely conforms with the abstract

reachability tree T . If checkConformance(C ,Pre, E , T ) = (T ′, F ), then (T ′, F )
is a partial reachability tree for C which is safe with respect to Pre and E.

In particular, in case a program modification does not interfere with the ab-
straction predicates, the old abstract reachability tree T still encodes a valid
proof for the modified program C . However, even if we cannot prove confor-
mance, we need only to model check the new program from the abstract states in
the set Frontier returned by the checkConformance algorithm. Thus, unlike trans-
lation validation, incremental model checking can “fall back” to model checking
from the points of disagreement. We have found that in practice this reduces the
model-checking time significantly.



Incremental model checking is implemented in Blast as follows. The algo-
rithm consists of two main parts: the checkConformance function, which checks a
modified program against an old proof, and the lazyModelChecker function, which
does the model checking. The lazyModelChecker algorithm tries to construct an
abstract reachability tree for a CFA which is safe with respect to a precondition
and an error function, as outlined in Section 2. More precisely, lazyModelChecker

takes as input a CFA C with initial location q0, a precondition Pre and an er-
ror function E for C , and a partial reachability tree (T, F ) for C which is safe
with respect to Pre and E . If the algorithm terminates, it returns either the pair
(“safe”, T ′), where T ′ is an abstract reachability tree for C which is safe with
respect to Pre and E , or the pair (“unsafe”, σ), where σ is an error path of C ,
that is, a path from (q0,Pre) to some node q with E(q) = 1. In the former case,
C is safe with respect to Pre and E , and a proof can be extracted from T ′ (see
Section 2).

In the nonincremental version of Blast, the partial reachability tree passed
to the function lazyModelChecker is (T ′0, {n

′
0 : (q0,Pre)}), where T ′0 is the tree

consisting of the single root node n′0 : (q0,Pre) (and no edges) [31]. In the in-
cremental version, Blast first calls the checkConformance algorithm, and then
passes the partial reachability tree (T ′,Frontier) returned by checkConformance

to the lazyModelChecker. The following makes this precise:

Algorithm Blast(C ,Pre, E , T ) {
Require: a CFA C with precondition Pre and error function E , and

an abstract reachability tree T .
(T ′,Frontier) = checkConformance(C ,Pre, E , T )
return LazyModelChecker(C ,Pre, E , (T ′,Frontier))

}

4 Example: Windows Driver Development

To give a better understanding of incremental software development using ex-
treme model checking, we will illustrate the development of KbFilter, a simple
Windows 2000 device driver.3 A device driver is a piece of code that provides
an interface between the operating system and hardware devices. The Windows
Driver Model [46] prescribes how device drivers are organized within the oper-
ating system.

For each hardware device, there are several device drivers (at different levels
of abstraction) organized in a driver stack. The I/O manager and device drivers
use a data structure called the I/O Request Packet (IRP) to manage the details of
I/O operations. The IRP is created by some kernel mode component to perform
an operation on a device, or to send a query or instruction to the driver. The
I/O manager sends this IRP to one or more of the subroutines that the driver
interface exports. Each subroutine performs some work on the IRP and returns
control to the I/O manager. Eventually, some subroutine completes the IRP,

3 Available with the Microsoft Windows DDK.



NTSTATUS KbFilter_PnP(PDEVICE_OBJECT DeviceObject, PIRP Irp)

{
PDEVICE_EXTENSION devExt;

PIO_STACK_LOCATION irpStack;

NTSTATUS status = STATUS_SUCCESS;

KIRQL oldIrql;

KEVENT event;

PAGED_CODE();

devExt = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;

irpStack = IoGetCurrentIrpStackLocation(Irp);

switch (irpStack->MinorFunction) {
case IRP_MN_START_DEVICE:

case IRP_MN_SURPRISE_REMOVAL:

case IRP_MN_REMOVE_DEVICE:

/* Other cases removed */

default :

IoSkipCurrentIrpStackLocation(Irp);

status = IoCallDriver(devExt->TopOfStack, Irp);

break ;

}

return status;

}

Fig. 7. First version of the KbFilter PnP function.

and then the I/O manager destroys the IRP and reports the ending status back
to the kernel component that originated the request. Usually the request is sent
to the topmost driver in the driver stack for the device, and can percolate down
the stack to lower drivers. At each level, the driver decides what to do with the
request. The driver can pass the request to lower drivers, or process the request,
or partially process the request and then pass it to a lower driver.

We concentrate on one particular property which each driver in the driver
stack has to satisfy with respect to the way I/O request packets are handled [46].
The property says that if an IRP is passed to a lower driver for processing, then
the return status of the driver must be the same as the return status of the lower
driver.

To simplify the exposition we focus on one core procedure of the device
driver, namely, the function KbFilter PnP. This procedure is called whenever a
plug-and-play operation on the device is required by the Plug-and-Play (PnP)
Manager of the operating system. The PnP requests instruct the driver when
and how to configure or deconfigure itself and the hardware. A PnP request can
designate about twenty minor functions; most of these are simply passed down



the stack by the KbFilter driver. For this driver, the three interesting requests
are:

– IRP MN START DEVICE, which configures and initializes the driver;
– IRP MN SURPRISE REMOVAL, which notes the fact that the physical hardware

has been unexpectedly removed; and
– IRP MN REMOVE DEVICE, which shuts down and removes the device.

The procedure KbFilter PnP has two parameters: DeviceObject is a pointer to
the device object, and IRP is a pointer to the I/O request packet. The return
status of each driver routine is a value of type NTSTATUS, which encodes the
operation status, such as STATUS SUCCES or STATUS PENDING.

The procedure KbFilter PnP might be implemented through stepwise refine-
ment in the following four steps.

First step In the first incarnation of KbFilter PnP (Figure 7), devExt points
to the DeviceExtension field of the device object which holds local variables
used by the KbFilter driver. The function IoGetCurrentIrpStackLocation

returns a pointer to the I/O stack location for the driver. The driver calls
IoGetCurrentIrpStackLocation with each IRP it receives in order to get the
parameters for the current request (in particular, the MinorFunction parameter,
which determines the particular request).

The case statement has a separate case for each possible PnP request. Notice
that we have not implemented any of the functionality in the case statements;
these will be written only in later refinements. In fact, the default implementation
simply passes the IRP down to the next driver on the stack and returns whatever
status the lower driver returns. For this first version of the program, Blast

checks successfully that the IRP completion property is satisfied.

Second step Now we are ready to continue the development of the device driver
by adding the implementation of one of the case statements. We begin with the
case IRP MN START DEVICE, which is needed to start the device (Figure 8). It
calls the following function KbFilter Complete:

NTSTATUS KbFilter_Complete(PDEVICE_OBJECT DeviceObject,

PIRP Irp, PVOID Context) {
PKEVENT event ;

event = (PKEVENT )Context;

/* Set the event on which KbFilter_PnP can be blocked */

KeSetEvent(event, 0, FALSE);

return (NTSTATUS )STATUS_MORE_PROCESSING_REQUIRED;

}

The refined program is handed again to Blast. The incremental al-
gorithm checkConformance starts with the abstract reachability tree from
the first step and checks if it is still valid. This effort fails at the case



case IRP_MN_START_DEVICE: {
IoCopyCurrentIrpStackLocationToNext(Irp);

KeInitializeEvent(&event, NotificationEvent, FALSE);

IoSetCompletionRoutine(Irp,

(PIO_COMPLETION_ROUTINE) KbFilter_Complete,

&event,

TRUE,

TRUE,

TRUE);

status = IoCallDriver(devExt->TopOfStack, Irp);

if (STATUS_PENDING == status) {
KeWaitForSingleObject(

&event,

Executive,

KernelMode,

FALSE,

NULL);

}

if (NT_SUCCESS(status) && NT_SUCCESS(Irp->IoStatus.Status)) {
devExt->Started = TRUE;

devExt->Removed = FALSE;

devExt->SurpriseRemoved = FALSE;

}

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = 0;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

break ;

}

Fig. 8. Second version: refining the case IRP MN START DEVICE.

IRP MN START DEVICE, which has been added, and the model checker starts
exploring the state space from this branch of the case statement (the other
branches still point to unchanged code, and checkConformance realizes that
these branches need not be checked again). At this point, Blast detects an
error in the program. The reason is that the status returned by the lower
driver is not overwritten by the subsequent call to KeWaitForSingleObject.
We fix this by changing the call KeWaitForSingleObject(&event, Executive,

KernelMode, FALSE, NULL) to status = KeWaitForSingleObject(&event,

Executive, KernelMode, FALSE, NULL). A new check by Blast of the previ-
ously buggy branch reports that there is no more error.



case IRP_MN_SURPRISE_REMOVAL:

devExt->SurpriseRemoved = TRUE;

/* Remove code here */

IoSkipCurrentIrpStackLocation(Irp);

status = IoCallDriver(devExt->TopOfStack, Irp);

break ;

Fig. 9. Third version: refining the case IRP MN SURPRISE REMOVAL.

Third step Now we proceed to refine another case statement, namely, the one
that implements the surprise removal of hardware (Figure 9). In response to
this request, a device driver must disable all registered interfaces, then release
I/O resources, and finally pass down the request to the lower driver. Our imple-
mentation is correct: Blast detects no error in the program. Again, the model
checker is run only on the case that has been added. Our driver is particularly
simple, in that no I/O resources need to be released. For a more complicated
driver, this step may be written in two stages. First, the programmer writes
the above skeleton and verifies that the IRP completion property holds. Second,
the programmer adds the routines that release resources where it says “Remove
code here,” and the resulting program is revalidated. Typically, the proof of
correctness from the first step will continue to hold after the second step.

Fourth step Finally we code the functionality of the routine that removes
the device (Figure 10). In this version of the program Blast finds again an
error. The reason is that the procedure returns always STATUS SUCCESS, inde-
pendently of the result of the function IofCallDriver. To correct the problem
we have to consider the status returned by the IofCallDriver as shown in Fig-
ure 11. This version of the driver again passes the check by Blast. Of course,
at this stage the programmer will write more tests for correct functionality.
For example, the removal code must call IoDetachDevice to balance the call
to IoAttachDeviceToDeviceStack from AddDevice, which added the device to
the device stack, and IoDeleteDevice to balance the call to IoCreateDevice

from AddDevice. These tests can be coded as additional safety monitors and
checked again with Blast.
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