
Liquid Types ∗

Patrick M. Rondon Ming Kawaguchi Ranjit Jhala
University of California, San Diego

{prondon,mwookawa,jhala}@cs.ucsd.edu

Abstract
We present Logically Qualified Data Types, abbreviated to Liquid
Types, a system that combines Hindley-Milner type inference with
Predicate Abstraction to automatically infer dependent types pre-
cise enough to prove a variety of safety properties. Liquid types
allow programmers to reap many of the benefits of dependent
types, namely static verification of critical properties and the elim-
ination of expensive run-time checks, without the heavy price of
manual annotation. We have implemented liquid type inference in
DSOLVE, which takes as input an OCAML program and a set of log-
ical qualifiers and infers dependent types for the expressions in the
OCAML program. To demonstrate the utility of our approach, we
describe experiments using DSOLVE to statically verify the safety
of array accesses on a set of OCAML benchmarks that were previ-
ously annotated with dependent types as part of the DML project.
We show that when used in conjunction with a fixed set of array
bounds checking qualifiers, DSOLVE reduces the amount of man-
ual annotation required for proving safety from 31% of program
text to under 1%.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification

Keywords Dependent Types, Hindley-Milner, Predicate Abstrac-
tion, Type Inference

1. Introduction
Modern functional programming languages, like ML and Haskell,
have many features that dramatically improve programmer produc-
tivity and software reliability. Two of the most significant are strong
static typing, which detects a host of errors at compile-time, and
type inference, which (almost) eliminates the burden of annotating
the program with type information, thus delivering the benefits of
strong static typing for free.

∗ This work was supported by NSF CAREER grant CCF-0644361, NSF
PDOS grant CNS-0720802, NSF Collaborative grant CCF-0702603, and a
gift from Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00.

The utility of these type systems stems from their ability to pre-
dict, at compile-time, invariants about the run-time values com-
puted by the program. Unfortunately, classical type systems only
capture relatively coarse invariants. For example, the system can
express the fact that a variable i is of the type int, meaning that
it is always an integer, but not that it is always an integer within a
certain range, say between 1 and 99. Thus, the type system is un-
able to statically ensure the safety of critical operations, such as a
division by i, or the accessing of an array a of size 100 at an index
i. Instead, the language can only provide a weaker dynamic safety
guarantee at the additional cost of high performance overhead.

In an exciting development, several authors have proposed the
use of dependent types [20] as a mechanism for enhancing the
expressivity of type systems [14, 27, 2, 22, 10]. Such a system can
express the fact

i :: {ν :int | 1 ≤ ν ∧ ν ≤ 99}

which is the usual type int together with a refinement stating that
the run-time value of i is an always an integer between 1 and 99.
Pfenning and Xi devised DML, a practical way to integrate such
types into ML, and demonstrated that they could be used to recover
static guarantees about the safety of array accesses, while simul-
taneously making the program significantly faster by eliminating
run-time checking overhead [27]. However, these benefits came at
the price of automatic inference. In the DML benchmarks, about
31% of the code (or 17% by number of lines) is manual annotations
that the typechecker needs to prove safety. We believe that this non-
trivial annotation burden has hampered the adoption of dependent
types despite their safety and performance benefits.

We present Logically Qualified Data Types, abbreviated to Liq-
uid Types, a system for automatically inferring dependent types pre-
cise enough to prove a variety of safety properties, thereby allow-
ing programmers to reap many of the benefits of dependent types
without paying the heavy price of manual annotation. The heart of
our inference algorithm is a technique for blending Hindley-Milner
type inference with predicate abstraction, a technique for synthe-
sizing loop invariants for imperative programs that forms the algo-
rithmic core of several software model checkers [3, 16, 4, 29, 17].
Our system takes as input a program and a set of logical qualifiers
which are simple boolean predicates over the program variables, a
special value variable ν, and a special placeholder variable ? that
can be instantiated with program variables. The system then infers
liquid types, which are dependent types where the refinement pred-
icates are conjunctions of the logical qualifiers.

In our system, type checking and inference are decidable for
three reasons (Section 3). First, we use a conservative but decidable
notion of subtyping, where we reduce the subtyping of arbitrary
dependent types to a set of implication checks over base types,
each of which is deemed to hold if and only if an embedding of
the implication into a decidable logic yields a valid formula in
the logic. Second, an expression has a valid liquid type derivation
only if it has a valid ML type derivation, and the dependent type

of every subexpression is a refinement of its ML type. Third, in
any valid type derivation, the types of certain expressions, such
as λ-abstractions, if-then-else expressions, and recursive functions
must be liquid. Thus, inference becomes decidable, as the space of
possible types is bounded. We use these features to design a three-
step algorithm for dependent type inference (Section 4).
Step 1: Hindley-Milner Type Inference: First, our algorithm in-
vokes Hindley-Milner [7] to infer types for each subexpression
and the necessary type generalization and instantiation annotations.
Next, our algorithm uses the computed ML types to assign to each
subexpression a template, a dependent type with the same struc-
ture as the inferred ML type, but which has liquid type variables
representing the unknown type refinements.
Step 2: Liquid Constraint Generation: Second, we use the syntax-
directed liquid typing rules to generate a system of constraints that
capture the subtyping relationships between the templates that must
be met for a liquid type derivation to exist.
Step 3: Liquid Constraint Solving: Third, our algorithm uses the
subtyping rules to split the complex template constraints into sim-
ple constraints over the liquid type variables, and then solves these
simple constraints using a fixpoint computation inspired by predi-
cate abstraction [1, 15].

Of course, there may be safe programs which cannot be well-
typed in our system due either to an inappropriate choice of quali-
fiers or the conservativeness of our notion of subtyping. In the for-
mer case, we can use the readable results of the inference to manu-
ally add more qualifiers, and in the latter case we can use the results
of the inference to insert a minimal set of run-time checks [22, 10].

To validate the utility of our technique, we have built DSOLVE,
which infers liquid types for OCAML programs. While liquid types
can be used to statically prove a variety of properties [24], in this
paper we focus on the canonical problem of proving the safety of
array accesses. We use a diverse set of challenging benchmarks
taken from the DML project to demonstrate that DSOLVE, together
with a simple set of array bounds checking qualifiers, can prove
safety completely automatically for many programs (Section 5).
For the few programs where these bounds checking qualifiers are
insufficient, the programmer typically only needs to specify one or
two extra qualifiers. Even in these rare cases, the dependent types
inferred by DSOLVE using only the bounds checking qualifiers help
the programmer to rapidly identify the relevant extra qualifiers. We
show that, over all the benchmarks, DSOLVE reduces the manual
annotation required to prove safety from 31% of program text (or
17% by number of lines) to under 1%. Finally, we describe a case
study where DSOLVE was able to pinpoint an error in an open-
source OCAML bit vector library implementation, in a function that
contained an explicit (but insufficient) safety check.

2. Overview
We begin with an overview of our algorithm for inferring dependent
types using a set of logical qualifiers Q. First, we describe depen-
dent types, logical qualifiers, and liquid types, and then, through
a series of examples, we show how our system infers dependent
types.
Dependent Types. Following [2, 10], our system allows base re-
finements of the form {ν :B | e}, where ν is a special value vari-
able not appearing in the program, B is a base type and e is a
boolean-valued expression constraining the value variable called
the refinement predicate. Intuitively, the base refinement predicate
specifies the set of values c of the base type B such that the predi-
cate [c/ν]e evaluates to true. For example, {ν :int | 0 < ν} spec-
ifies the set of positive integers, and {ν :int | ν ≤ n} specifies the
set of integers whose value is less than or equal to the value of the
variable n. Thus, B is an abbreviation for {ν :B | true}. We use

the base refinements to build up dependent function types, written
x :T1→T2 (following [2, 10]). Here, T1 is the domain type of the
function, and the formal parameter x may appear in the base refine-
ments of the range type T2.
Logical Qualifiers and Liquid Types. A logical qualifier is a
boolean-valued expression (i.e., predicate) over the program vari-
ables, the special value variable ν which is distinct from the
program variables, and the special placeholder variable ? that
can be instantiated with program variables. For the rest of this
section, let us assume that Q is the set of logical qualifiers
{0 ≤ ν, ? ≤ ν, ν < ?, ν < len ?}. In Section 5 we describe a
simple set of qualifiers for array bounds checking. We say that
a qualifier q matches the qualifier q′ if replacing some subset of
the free variables in q with ? yields q′. For example, the qualifier
x ≤ ν matches the qualifier ? ≤ ν. We write Q? for the set of all
qualifiers not containing ? that match some qualifier in Q. For ex-
ample, when Q is as defined as above, Q? includes the qualifiers
{0 ≤ ν, x ≤ ν, y ≤ ν, k ≤ ν, ν < n, ν < len a}. A liquid type
over Q is a dependent type where the refinement predicates are
conjunctions of qualifiers from Q?. We write liquid type when Q
is clear from the context. When checking or inferring dependent
types over the logical qualifiers, our system ensures that the types
are well-formed, i.e., for each subexpression, the free variables ap-
pearing in the inferred type are bound in the environment for that
subexpression.
Liquid Type Inference. Our liquid type inference algorithm pro-
ceeds in three steps. First, we perform Hindley-Milner (HM) type
inference and use the results to generate templates, which are de-
pendent types with unknown base refinements represented by liquid
type variables κ. Second, we generate constraints on the templates
that capture the subtyping relationships between the refinements.
Third, we solve the constraints by using predicate abstraction to
find, for each κ, the strongest conjunction of qualifiers from Q?

that satisfies all the constraints. Note that for the third step, we need
only consider the finite subset of Q? whose free variables belong to
the program. Next, through a series of examples, we show how our
type inference algorithm incorporates features essential for infer-
ring precise dependent types — namely path-sensitivity, recursion,
higher-order functions, and polymorphism — and thus can stati-
cally prove the safety of array accesses.
Notation: We write B as an abbreviation for {ν :B | true}. Ad-
ditionally, when the base type B is clear from the context, we
abbreviate {ν :B | κ} as κ when κ is a liquid type variable, and
{ν :B | e} as {e} when e is a refinement predicate. For example,
x :int→y :int→{x ≤ ν ∧ y ≤ ν} denotes the type of a function
that takes two (curried) integer arguments x, y and returns an inte-
ger no less than x and y.

Example 1: Path Sensitivity. Consider the max function shown in
Figure 1 as an OCAML program. We will show how we infer that
max returns a value no less than both arguments.
(Step 1) HM infers that max has the type x :int→y :int→int.
Using this type, we create a template for the liquid type of max,
x :κx→y :κy→κ1, where κx, κy, κ1 are liquid type variables repre-
senting the unknown refinements for the formals x, y and the body
of max, respectively.
(Step 2) As the body is an if expression, our algorithm generates
the following two constraints that stipulate that, under the appropri-
ate branch condition, the then and else expressions, respectively
x, y, have types that are subtypes of the entire body’s type:

x :κx; y :κy; (x > y) `{ν = x} <: κ1 (1.1)
x :κx; y :κy;¬(x > y) `{ν = y} <: κ1 (1.2)

Constraint (1.1) (resp. (1.2)) stipulates that when x and y have the
types κx and κy respectively and x > y (resp. ¬(x > y)), the type

of the expression x (resp. y), namely the set of all values equal to x
(resp. y), must be a subtype of the body κ1.
(Step 3) Since the program is “open”, i.e., there are no calls to max,
we assign κx, κy true , meaning that any integer arguments can be
passed, and use a theorem prover to find the strongest conjunction
of qualifiers in Q? that satisfies the subtyping constraints. The
theorem prover deduces that when x > y (resp. ¬(x > y)) if
ν = x (resp. ν = y) then x ≤ ν and y ≤ ν. Hence, our algorithm
infers that x ≤ ν ∧ y ≤ ν is the strongest solution for κ1 that
satisfies the two constraints. By substituting the solution for κ1 into
the template for max, our algorithm infers

max :: x :int→y :int→{ν :int | (x ≤ ν) ∧ (y ≤ ν)}
Example 2: Recursion. Next, we show how our algorithm infers
that the recursive function sum from Figure 1 always returns a non-
negative value greater than or equal to its argument k.
(Step 1) HM infers that sum has the type k :int→int. Using this
type, we create a template for the liquid type of sum, k :κk→κ2,
where κk and κ2 represent the unknown refinements for the formal
k and body, respectively. Due to the let rec, we use the created
template as the type of sum when generating constraints for the
body of sum.
(Step 2) Again, as the body is an if expression, we generate con-
straints that stipulate that under the appropriate branch conditions,
the “then” and “else” expressions have subtypes of the body κ2.
For the “then” branch, we get a constraint:

sum : . . .; k :κk; k < 0 `{ν = 0} <: κ2 (2.1)

The else branch is a let expression. First, considering the expres-
sion that is locally bound, we generate a constraint

sum : . . .; k :κk;¬(k < 0) `{ν = k− 1} <: κk (2.2)

from the call to sum that forces the actual passed in at the callsite
to be a subtype of the formal of sum. The locally bound variable
s gets assigned the template corresponding to the output of the
application, [k− 1/k]κ2, i.e., the output template of sum with the
formal replaced with the actual argument, and we get the next
constraint that ensures the “else” expression is a subtype of the
body κ2.

¬(k < 0); s : [k− 1/k]κ2 `{ν = s + k} <: κ2 (2.3)

(Step 3) Here, as sum is called, we try to find the strongest con-
junction of qualifiers for κk and κ2 that satisfies the constraints.
To satisfy (2.2), κk can only be assigned true (the empty conjunc-
tion), as when ¬(k < 0), the value of k− 1 can be either negative,
zero or positive. On the other hand, κ2 is assigned 0 ≤ ν ∧ k ≤ ν,
the strongest conjunction of qualifiers in Q? that satisfies (2.1) and
(2.3). Constraint (2.1) is trivially satisfied as the theorem prover de-
duces that when k < 0, if ν = 0 then 0 ≤ ν and k ≤ ν. When κ2

is assigned the above conjunction, the binding for s in the environ-
ment for constraint (2.3) becomes s :{0 ≤ ν ∧ k− 1 ≤ ν}. Thus,
constraint (2.3) is satisfied as the theorem prover deduces that when
¬(k < 0) and [s/ν](0 ≤ ν ∧ k− 1 ≤ ν), if ν = s+k then 0 ≤ ν
and k ≤ ν. The substitution simplifies to 0 ≤ s ∧ k− 1 ≤ s,
which effectively asserts to the solver the knowledge about the type
of s, and crucially allows the solver to use the fact that s is non-
negative when determining the type of s+ k, and hence, the output
of sum. Thus, recursion enters the picture, as the solution for the
output of the recursive call, which is bound to the type of s, is used
in conjunction with the branch information to prove that the output
expression is non-negative. Plugging the solutions for κk and κ2

into the template, our system infers

sum :: k :int→{ν :int | 0 ≤ ν ∧ k ≤ ν}

let max x y =
if x > y then x else y

let rec sum k =
if k < 0 then 0 else
let s = sum (k-1) in
s + k

let foldn n b f =
let rec loop i c =
if i < n then loop (i+1) (f i c) else c in

loop 0 b

let arraymax a =
let am l m = max (sub a l) m in
foldn (len a) 0 am

Figure 1. Example OCAML Program

Example 3: Higher-Order Functions. Next, consider a program
comprising only the higher-order accumulator foldn shown in
Figure 1. We show how our algorithm infers that f is only called
with arguments between 0 and n.
(Step 1) HM infers that foldn has the polymorphic type
∀α.n :int→b :α→f : (int→α→α)→α. From this ML type, we
create the new template ∀α.n :κn→b :α→f : (κ3→α→α)→α for
foldn, where κn and κ3 represent the unknown refinements for
the formal n and the first parameter for the accumulation function
f passed into foldn. This is a polymorphic template, as the occur-
rences of α are preserved. This will allow us to instantiate α with
an appropriate dependent type at places where foldn is called. HM
infers that the type of loop is i :int→c :α→α, from which we
generate a template i :κi→c :α→α for loop, which we will use
when analyzing the body of loop.
(Step 2) First, we generate constraints inside the body of loop.
As HM infers that the type of the body is α, we omit the trivial
subtyping constraints on the “then” and “else” expressions. Instead,
the two interesting constraints are:

. . . ; i :κi; i < n `{ν = i + 1} <: κi (3.1)

which stipulates that the actual passed into the recursive call to
loop is a subtype of the expected formal, and

. . . ; i :κi; i < n `{ν = i} <: κ3 (3.2)

which forces the actual i to be a subtype of the first parameter of the
higher-order function f, in the environment containing the critical
branch condition. Finally, the application loop 0 yields

. . . `{ν = 0} <: κi (3.3)

forcing the actual 0 to be a subtype of the formal i.
(Step 3) Here, as foldn is not called, we assign κn true and try
to find the strongest conjunction of qualifiers in Q? for κi and κ3.
We can assign to κi the predicate 0 ≤ ν, which trivially satisfies
(3.3), and also satisfies (3.1) as when [i/ν](0 ≤ ν), if ν = i + 1
then 0 ≤ ν. That is, the theorem prover can deduce that if i is
non-negative, then so is i+1. To κ3 we can assign the conjunction
0 ≤ ν ∧ ν < n which satisfies (3.2) as when [i/ν](0 ≤ ν) and
i < n, if ν = i then 0 ≤ ν and ν < n. By plugging the solutions
for κ3, κn into the template our algorithm infers

foldn :: ∀α.n :int→b :α→f : ({0 ≤ ν ∧ ν < n}→α→α)→α

Example 4: Polymorphism and Array Bounds Checking. Con-
sider the function arraymax that calls foldn with a helper that

calls max to compute the max of the elements of an array and 0.
Suppose there is a base type intarray representing arrays of inte-
gers. Arrays are accessed via a primitive function

sub :: a :intarray→j :{ν :int | 0 ≤ ν ∧ ν < len a}→int

where the primitive function len returns the number of elements
in the array. The sub function takes an array and an index that
is between 0 and the number of elements, and returns the integer
at that index in the array. We show how our algorithm combines
predicate abstraction, function subtyping, and polymorphism to
prove that (a) the array a is safely accessed at indices between 0
and len a, and (b) arraymax returns a non-negative integer.
(Step 1) HM infers that (1) arraymax has the type
a :intarray→int, (2) am has the type l :int→m :int→int, and
(3) foldn called in the body is a polymorphic instance where the
type variable α has been instantiated with int. Consequently, our
algorithm creates the following templates: (1) a :intarray→κ4

for arraymax, where κ4 represents the unknown refinement
for the output of arraymax, (2) l :κl→m :κm→κ5 for am,
where κl, κm and κ5 represent the unknown refinements for
the parameters and output type of am respectively, and (3) κ6

for the type that α is instantiated with, and so the template for
the instance of foldn inside arraymax is the type computed
in the previous example with κ6 substituted for α, namely,
n :int→b :κ6→f : ({0 ≤ ν ∧ ν < n}→κ6→κ6)→κ6

(Step 2) First, for the application sub a l, our algorithm generates

l :κl; m :κm `{ν = l} <: {0 ≤ ν ∧ ν < len a} (4.1)

which states that the argument passed into sub must be within the
array bounds. For the application max (sub a l) m, using the type
inferred for max in Example 1, we get

l :κl; m :κm `{sub a l ≤ ν ∧ m ≤ ν} <: κ5 (4.2)

which constrains the output of max (with the actuals (sub a l) and m
substituted for the parameters x and y respectively), to be a subtype
of the output type κ5 of am. The call foldn (len a) 0 generates

. . . `{ν = 0} <: κ6 (4.3)

which forces the actual passed in for b to be a subtype of κ6 the
type of the formal b in this polymorphic instance. Similarly, the
call foldn (len a) 0 am generates a constraint (4.4)

. . . ` l :κl→m :κm→κ5 <: {0 ≤ ν ∧ ν < len a}→κ6→κ6

forcing the type of the actual am to be a subtype of the formal f
inferred in Example 1, with the curried argument len a substituted
for the formal n of foldn, and

. . . `κ6 <: κ4 (4.5)

forcing the output of the foldn application to be a subtype of the
body of arraymax. Upon simplification using the standard rule for
subtyping function types, constraint (4.4) reduces to

. . . `{0 ≤ ν ∧ ν < len a} <: κl (4.6)

. . . `κ6 <: κm (4.7)

. . . `κ5 <: κ6 (4.8)

(Step 3) The strongest conjunction of qualifiers from Q? that we
can assign to: κm, κ4, κ5 and κ6 is the predicate 0 ≤ ν. In essence
the solution infers that we can “instantiate” the type variable α with
the dependent type {ν :int | 0 ≤ ν}. This is sound because the
base value 0 passed in is non-negative (constraint (4.3) is satisfied),
and the accumulation function passed in (am), is such that if its
second argument (m of type κm) is non-negative then the output (of

e ::= Expressions:
| x variable
| c constant
| λx.e abstraction
| e e application
| if e then e else e if-then-else
| let x = e in e let-binding
| let rec f = λx.e in e letrec-binding
| [Λα]e type-abstraction
| [τ]e type-instantiation

Q ::= Liquid Refinements
| true true
| q logical qualifier in Q?

| Q ∧Q conjunction of qualifiers
B ::= Base Types:

| int base type of integers
| bool base type of booleans

T(B) ::= Type Skeletons:
| {ν :B | B} base
| x :T(B)→T(B) function
| α type variable

S(B) ::= Type Schema Skeletons:
| T(B) monotype
| ∀α.S(B) polytype

τ, σ ::= T(true), S(true) Types, Schemas
T, S ::= T(E), S(E) Dep. Types, Schemas

T̂ , Ŝ ::= T(Q), S(Q) Liquid Types, Schemas

Figure 2. Syntax

type κ5) is non-negative (constraint (4.2) is satisfied). Plugging the
solution into the template, our algorithm infers

arraymax :: intarray→{ν :int | 0 ≤ ν}
The strongest conjunction over Q? we can assign to κl is
0 ≤ ν ∧ ν < len a, which trivially satisfies constraint (4.6). More-
over, with this assignment, we have satisfied the “bounds check”
constraint (4.1), i.e., we have inferred an assignment of dependent
types to all the program expressions that proves that all array ac-
cesses occur within bounds.

3. Liquid Type Checking
We first present the syntax and static semantics of our core lan-
guage λL, a variant of the λ-calculus with ML-style polymorphism
extended with liquid types. We begin by describing the elements of
λL, including expressions, types, and environments (Section 3.1).
Next, we present the type judgments and derivation rules and state
a soundness theorem which relates the static type system with the
operational semantics (Section 3.2). We conclude this section by
describing how the design of our type system enables automatic
dependent type inference (Section 3.3).

3.1 Elements of λL

The syntax of expressions and types for λL is summarized in Fig-
ure 2. λL expressions include variables, special constants which
include integers, arithmetic operators and other primitive opera-
tions described below, λ-abstractions, and function applications.
In addition, λL includes as expressions the common constructs
if-then-else and let, which the liquid type inference algorithm
exploits to generate precise types, as well as let rec which is syn-
tactic sugar for the standard fix operator.
Types and Schemas. We use B to denote base types such as bool
or int. λL has a system of refined base types, dependent function
types, and ML-style polymorphism via type variables that are uni-

versally quantified at the outermost level to yield polymorphic type
schemas. We write τ and σ for ML types and schemas, T and S
for dependent types and schemas, and T̂ and Ŝ for liquid types and
schemas.
Environments and Well-formedness. A type environment Γ is
a sequence of type bindings x :S and guard predicates e. The
former are standard; the latter capture constraints about the if-then-
else branches under which an expression is evaluated, which is
required to make the system “path-sensitive” (Section 3.3). A type
is considered well-formed with respect to an environment if all the
free variables appearing in the refinement predicates of the type
are bound in the environment. An environment is considered well-
formed if, in each type binding, the dependent type is well-formed
with respect to the preceding (prefix) environment.
Shapes. The shape of the dependent type (schema) S, denoted
by Shape(S), is the ML type (schema) obtained by replacing all
refinement predicates with true . We lift the function Shape to type
environments by applying it to each type binding and eliminating
the guard predicates.
Constants. As in [22, 10], the basic units of computation are the
constants c built into λL, each of which has a dependent type
ty(c) that precisely captures the semantics of the constants. These
include basic constants, corresponding to integers and boolean
values, and primitive functions, which encode various operations.
The set of constants of λL includes:

true :: {ν :bool | ν}
false :: {ν :bool | not ν}

⇔ :: x :bool→y :bool→{ν :bool | ν ⇔ (x ⇔ y)}
3 :: {ν :int | ν = 3}
= :: x :int→y :int→{ν :bool | ν ⇔ (x = y)}
+ :: x :int→y :int→{ν :int | ν = x + y}

fix :: ∀α.(α→α)→α
len :: intarray→{ν :int | 0 ≤ ν}
sub :: a :intarray→i :{ν :int | 0 ≤ ν ∧ ν < len a}→int

The types of some constants are defined in terms of themselves
(e.g., +). This does not cause problems, as the dynamic semantics
of refinement predicates is defined in terms of the operational se-
mantics (as in [10]), and the static semantics is defined via a sound
overapproximation of the dynamic semantics [24]. For clarity, we
will use infix notation for constants like +. To simplify the expo-
sition, we assume there is a special base type that encodes integer
arrays in λL. The length of an array value is obtained using len. To
access the elements of the array, we use sub, which takes as input
an array a and an index i that must be within the bounds of a, i.e.,
non-negative, and less than the length of the array.

3.2 Liquid Type Checking Rules
We now describe the key ingredients of the type system: the typing
judgments and derivation rules summarized in Figure 3. Our system
has three kinds of judgments relating environments, expressions,
and types.

Well-formedness Judgment Γ ` S: states that the dependent
type schema S is well-formed under the type environment Γ.
Intuitively, a type is well-formed if its base refinements are
boolean expressions which refer only to variables in the scope
of the corresponding expression.

Subtype Judgment Γ ` S1 <: S2: states that dependent type
schema S1 is a subtype of schema S2 in environment Γ.

Liquid Type Judgment Γ `Q e : S: states that, using the logical
qualifiers Q, the expression e has the type schema S under the
type environment Γ.

Soundness of Liquid Type Checking. Assume that variables are
bound at most once in any type environment; in other words,

assume that variables are α-renamed to ensure that substitutions
(such as in [LT-APP]) avoid capture. Let ↪→ describe the single
evaluation step relation for λL expressions and

∗
↪→ describe the

reflexive, transitive closure of ↪→.
As the conservative subtyping rule makes it hard to prove a sub-

stitution lemma, we prove soundness via two steps. First, we define
an “exact” version of the type system, with a judgment Γ ` e : S,
whose rules use an undecidable subtyping relation. We show the
standard weakening, narrowing, and substitution lemmas for this
system, and thereby obtain preservation and progress theorems.
Second, we show that our decidable system is conservative: i.e.,
if Γ `Q e : S then Γ ` e : S. Combining the results, we conclude
that if an expression is well-typed in our decidable system then we
are guaranteed that evaluation does not get “stuck”, i.e., at run-time,
every primitive operation receives valid inputs.

THEOREM 1. [Liquid Type Safety]

1. (Overapproximation) If Γ `Q e : S then Γ ` e : S.
2. (Preservation) If Γ ` e : S and e ↪→ e′ then Γ ` e′ : S.
3. (Progress) If ∅ ` e : S and e is not a value then there exists an

e′, e ↪→ e′.

We omit the details due to lack of space — the formalization
and proofs can be found in [24]. Thus, if a program typechecks we
are guaranteed that every call to sub gets an index that is within
the array’s bounds. Arbitrary safety properties (e.g., divide-by-zero
errors) can be expressed by using suitable types for the appropriate
primitive constant (e.g., requiring the second argument of (/) to be
non-zero).

3.3 Features of the Liquid Type System
Next, we describe some of the features unique to the design of
the Liquid type system and how they contribute to automatic type
inference and verification.

1. Path Sensitivity. Any analysis that aims to prove properties
like the safety of array accesses needs to be sensitive to branch
information; it must infer properties which hold for the entire if
expression as well as for the individual then and else expressions.
For example, without the branch information in the sum example
from Section 2, the system would not be able to infer that the
occurrence of k inside the else expression is non-negative, and
hence that sum returned a non-negative value. For array bounds
checking, programmers often compare the index to some other
expression — either the array length, or some other variable that is
known to be smaller than the array length (e.g., in arraymax from
Section 2), and only perform the array access under the appropriate
guard. To capture this kind of information, the environment Γ also
includes branch information, shown in rule [LT-IF] in Figure 3.

2. Decidable, Conservative Subtyping. As shown in Figure 3,
checking that one type is a subtype of another reduces to a set
of subtype checks on base refinement predicates, which further re-
duces to checking if the refinement predicate for the subtype im-
plies the predicate for the supertype. As the refinement predicates
contain arbitrary terms, exact implication checking is undecidable.
To get around this problem, our system uses a conservative but de-
cidable implication check, shown in rule [DEC-<:-BASE] of Fig-
ure 3. Let EUFA be the decidable logic of equality, uninterpreted
functions and linear arithmetic [21]. We write [[e]] for the embed-
ding of the expression e into terms of the logic EUFA by encoding
expressions corresponding to integers, addition, multiplication and
division by constant integers, equality, inequality, and disequality
with corresponding terms in the EUFA logic, and encoding all other
constructs, including λ-abstractions and applications, with uninter-

preted function terms. We write:

[[Γ]] ≡
^
{e | e ∈ Γ} ∧

^
{[[[x/ν]e]] | x :{ν :B | e} ∈ Γ}

as the embedding for the environment. Notice that we use the
guard predicates and base type bindings in the environment
to strengthen the antecedent of the implication. However, we
substitute all occurrences of the value variable ν in the refine-
ments from Γ with the actual variable being refined, thereby
asserting in the antecedent that the program variable satisfies the
base refinement predicate. Thus, in the embedded formula, all
occurrences of ν refer to the two types that are being checked
for subtyping. The embedding is conservative, i.e., the validity of
the embedded implication implies the the standard, weaker, exact
requirement for subtyping of refined types [10, 22]. For example,
for the then expression in max from Section 2, the subtyping re-
lation: x :int; y :int; x > y ` {ν = x} <: {x ≤ ν ∧ y ≤ ν}
holds as the following implication is valid in EUFA:
((true ∧ true ∧ x > y) ∧ (ν = x)) ⇒ (x ≤ ν ∧ y ≤ ν)

3. Recursion via Polymorphism. To handle polymorphism, our
type system incorporates type generalization and instantiation an-
notations, which are over ML type variables α and monomor-
phic ML types τ , respectively, and thus can be reconstructed via
a standard type inference algorithm. The rule [LT-INST] allows
a type schema to be instantiated with an arbitrary liquid type
T̂ of the same shape as τ , the monomorphic ML type used for
instantiation. We use polymorphism to encode recursion via the
polymorphic type given to fix. That is, let rec bindings are
syntactic sugar: let rec f = e in e’ is internally converted
to let f = fix (fun f -> e) in e’. The expression type-
checks if there is an appropriate liquid type that can be instantiated
for the α in the polymorphic type of fix; this liquid type corre-
sponds to the type of the recursive function f.

4. The Liquid Type Restriction. The most critical difference be-
tween the rules for liquid type checking and other dependent sys-
tems is that our rules stipulate that certain kinds of expressions have
liquid types. In essence, these expressions are the key points where
appropriate dependent types must be inferred. By forcing the types
to be liquid, we bound the space of possible solutions, thus making
inference efficiently decidable.

[LT-INST] For polymorphic instantiation, also the mechanism for
handling recursion, the liquid type restriction enables efficient in-
ference by making the set of candidate dependent types finite.

[LT-FUN] For λ-abstractions, we impose the restriction that the
input and output be liquid to ensure the types remain small, thereby
making algorithmic checking and inference efficient. This is anal-
ogous to procedure “summarization” for first-order programs.

[LT-IF] For conditional expressions we impose the liquid restric-
tion and implicitly force the then and else expressions to be sub-
types of a fresh liquid type, instead of an explicit “join” operator as
in dataflow analysis. We do so as the expression may have a func-
tion type and with a join operator, input type contravariance would
introduce disjunctions into the dependent type which would have
unpleasant algorithmic consequences.

[LT-LET] For let-in expressions we impose the liquid restriction
as a means of eliminating the locally bound variable from the de-
pendent type of the whole expression (as the local variable goes
out of scope). The antecedent Γ ` T̂ requires that the liquid type
be well-formed in the outer environment, which, together with the
condition, enforced via alpha renaming, that each variable is bound
only once in the environment, is essential for ensuring the sound-
ness of our system [24]. The alternative of existentially quantifying
the local variable [18] makes algorithmic checking hard.

Liquid Type Checking Γ `Q e : S

Γ `Q e : S1 Γ ` S1 <: S2 Γ ` S2

Γ `Q e : S2
[LT-SUB]

Γ(x) = {ν :B | e}
Γ `Q x : {ν :B | ν = x} [LT-VAR]

Γ(x) not a base type
Γ `Q x : Γ(x)

[LT-VAR]

Γ `Q c : ty(c)
[LT-CONST]

Γ; x : T̂x `Q e : T̂ Γ ` x : T̂x→T̂

Γ `Q λx.e : (x : T̂x→T̂)
[LT-FUN]

Γ `Q e1 : (x :Tx→T) Γ `Q e2 : Tx

Γ `Q e1 e2 : [e2/x]T
[LT-APP]

Γ `Q e1 : bool Γ; e1 `Q e2 : T̂ Γ;¬e1 `Q e3 : T̂ Γ ` T̂

Γ `Q if e1 then e2 else e3 : T̂
[LT-IF]

Γ `Q e1 : S1 Γ; x :S1 `Q e2 : T̂ Γ ` T̂

Γ `Q let x = e1 in e2 : T̂
[LT-LET]

Γ `Q e : S α not free in Γ

Γ `Q [Λα]e : ∀α.S
[LT-GEN]

Γ `Q e : ∀α.S Γ ` T̂ Shape(T̂) = τ

Γ `Q [τ]e : [T̂ /α]S
[LT-INST]

Decidable Subtyping Γ ` S1 <: S2

Valid([[Γ]] ∧ [[e1]] ⇒ [[e2]])

Γ ` {ν :B | e1} <: {ν :B | e2}
[DEC-<:-BASE]

Γ ` T ′
x <: Tx Γ; x :T ′

x ` T <: T ′

Γ ` x :Tx→T <: x :T ′
x→T ′ [DEC-<:-FUN]

Γ ` α <: α
[<:-VAR]

Γ ` S1 <: S2

Γ ` ∀α.S1 <: ∀α.S2
[<:-POLY]

Well-Formed Types Γ ` S

Γ; ν :B ` e : bool

Γ ` {ν :B | e} [WT-BASE]
Γ ` α

[WT-VAR]

Γ; x :Tx ` T

Γ ` x :Tx→T
[WT-FUN]

Γ ` S

Γ ` ∀α.S
[WT-POLY]

Figure 3. Rules for Liquid Type Checking

5. Placeholder Variables and α-Renaming. We use the place-
holder variables ? instead of “hard-coded” program variables to
make our type system robust to α-renaming. If Q is {x < ν},
then ∅ `Q (λx.x + 1) : x :int→{x < ν} is a valid judgment, but
∅ `Q (λy.y + 1) : y :int→{y < ν} is not, as y < ν is not in Q?.
If instead Q is {? < ν}, then Q? includes {x < ν, y < ν} and so
both of the above are valid judgments. In general, our type system
is robust to renaming in the following sense: if Γ `Q e1 : S1 and e1

is α-equivalent to e2 and the free variables of Q are bound1 in Γ,
then for some S2 that is α-equivalent to S1, we have Γ `Q e2 : S2.

1 Recall that variables are bound at most once in any environment

4. Liquid Type Inference
We now turn to the heart of our system: the algorithm Infer (shown
in Figure 4) that takes as input a type environment Γ, an expression
e, and a finite set of logical qualifiers Q and determines whether
e is well-typed over Q, i.e., whether there exists some S such that
Γ `Q e : S. Our algorithm proceeds in three steps. First, we ob-
serve that the dependent type for any expression must be a refine-
ment of its ML type, and so we invoke Hindley-Milner (HM) to
infer the types of subexpressions, and use the ML types to gen-
erate templates representing the unknown dependent types for the
subexpressions (Section 4.1). Second, we use the syntax-directed
liquid typing rules from Figure 3 to build a system of constraints
that capture the subtyping relationships between the templates that
must hold for a liquid type derivation to exist (Section 4.2). Third,
we use Q to solve the constraints using a technique inspired by
predicate abstraction (Section 4.3).

4.1 ML Types and Templates
Our type inference algorithm is based on the observation that the
liquid type derivations are refinements of the ML type derivations,
and hence the dependent types for all subexpressions are refine-
ments of their ML types.
ML Type Inference Oracle. Let HM be an ML type inference
oracle, which takes an ML type environment Γ and an expres-
sion e and returns the ML type (schema) σ if and only if, us-
ing the classical ML type derivation rules [7], there exists a
derivation Γ ` e : σ. The liquid type derivation rules are refine-
ments of the ML type derivation rules. That is, if Γ `Q e : S
then HM(Shape(Γ), e) = Shape(S). Moreover, we assume that
the ML type derivation oracle has “inserted” suitable type gen-
eralization ([Λα]e) and instantiation ([τ]e) annotations. Thus, the
problem of dependent type inference reduces to inferring appropri-
ate refinements of the ML types.
Templates. Let K be a set of liquid type variables used to represent
unknown type refinement predicates. A template F is a dependent
type schema described via the grammar shown below, where some
of the refinement predicates are replaced with liquid type variables
with pending substitutions. A template environment is a map Γ
from variables to templates.

θ ::= ε | [e/x]; θ (Pending Substitutions)
F ::= S(E ∪ θ ·K) (Templates)

Variables with Pending Substitutions. A sequence of pending
substitutions θ is defined using the grammar above. To understand
the need for θ, consider rule [LT-APP] from Figure 3 which speci-
fies that the dependent type of a function application is obtained by
substituting all occurrences of the formal argument x in the output
type of e1 with the actual expression e2 passed in at the application.
When generating the constraints, the output type of e1 is unknown
and is represented by a template containing liquid type variables.
Suppose that the type of e1 is x :B→{ν :B | κ}, where κ is a liq-
uid type variable. In this case, we will assign the application e1 e2

the type {ν :B | [e2/x] · κ}, where [e2/x] · κ is a variable with a
pending substitution [18]. Note that substitution can be “pushed in-
side” type constructors, e.g., θ · ({κ1} → {κ2}) is the same as
{θ · κ1} → {θ · κ2} and so it suffices to apply the pending substi-
tutions only to the root of the template.

4.2 Constraint Generation
We now describe how our algorithm generates constraints over tem-
plates by traversing the expression in the syntax-directed manner of
a type checker, generating fresh templates for unknown types, con-
straints that capture the relationships between the types of various
subexpressions, and well-formedness requirements. The generated

constraints are such that they have a solution if and only if the ex-
pression has a valid liquid type derivation. Our inference algorithm
uses two kinds of constraints over templates. Well-formedness
constraints of the form Γ ` F , where Γ is template environment,
and F is a template, ensure that the types inferred for each subex-
pression are over program variables that are in scope at that subex-
pression. Subtyping constraints of the form Γ ` F1 <: F2 where
Γ is a template environment and F1 and F2 are two templates of
the same shape, ensure that the types inferred for each subexpres-
sion can be combined using appropriate subsumption relationships
to yield a valid type derivation.

Our constraint generation algorithm, Cons, shown in Figure 4,
takes as input a template environment Γ and an expression e that
we wish to infer the type of and returns as output a pair of a type
template F , which corresponds to the unknown type of e, and a set
of constraints C. Intuitively, Cons mirrors the type derivation rules
and generates constraints C which capture exactly the relationships
that must hold between the templates of the subexpressions in order
for e to have a valid type derivation over Q. To understand how
Cons works, notice that the expressions of λL can be split into two
classes: those whose types are constructable from the environment
and the types of subexpressions, and those whose types are not.
1. Expressions with Constructable Types. The first class of ex-
pressions are variables, constants, function applications and poly-
morphic generalizations, whose types can be immediately con-
structed from the types of subexpressions or the environment. For
such expressions, Cons recursively computes templates and con-
straints for the subexpressions and appropriately combines them to
form the template and constraints for the expression.

As an example, consider Cons(Γ, e1 e2). First, Cons is called to
obtain the templates and constraints for the subexpressions e1 and
e2. If a valid ML type derivation exists, then e1 must be a function
type with some formal x. The returned template is the result of
pushing the pending substitution of x with the actual argument e2

into the “leaves” of the template corresponding to the return type of
e1. The returned constraints are the union of the constraints for the
subexpressions and a subtyping constraint ensuring that the type of
the argument e2 is a subtype of the input type of e1.
2. Expressions with Liquid Types. The second class are expres-
sions whose types cannot be derived as above, as the subsumption
rule is required to perform some kind of “over-approximation” of
their concrete semantics. These include λ-abstractions, if-then-else
expressions, let-bindings, and polymorphic instantiations (which
includes recursive functions). We use two observations to infer the
types of these expressions. First, the shape of the dependent type
is the same as the ML type of the expression. Second, from the
liquid type restriction, we know that the refinement predicates for
these expressions are conjunctions of logical qualifiers from Q? (cf.
rules [LT-LET], [LT-FUN], [LT-IF], [LT-INST] of Figure 3). Thus,
to infer the types of these expressions, we invoke HM to determine
the ML type of the expression and then use Fresh to generate a
template with the same shape as the ML type but with fresh liquid
type variables representing the unknown refinements.

As an example, consider Cons(Γ, if e1 then e2 else e3).
First, a fresh template is generated using the ML type of the expres-
sion. Next, Cons recursively generates templates and constraints for
the then and else subexpressions. Note that for the then (resp.
else) subexpression, the environment is extended with e1 (resp.
¬e1) as in the type derivation rule ([LT-IF] from Figure 3). The
fresh template is returned as the template for the whole expression.
The constraints returned are the union of those for the subexpres-
sions, a well-formedness constraint for the whole expression’s tem-
plate, and subtyping constraints forcing the templates for the then
and else subexpressions to be subtypes of the whole expression’s
template

Example: Constraints. The well-formedness constraint
∅ ` x :κx→y :κy→κ1 is generated for the fresh template for max
(from Figure 1). The constraint ensures that the inferred type
for max only contains program variables that are in scope at the
point where max is bound. The if expression that is the body of
max is an expression with liquid type. For this expression, a fresh
template κ1′ is generated, and the subtyping constraints:

x :κx; y :κy; (x > y) ` {ν = x} <: κ1′

x :κx; y :κy;¬(x > y) ` {ν = y} <: κ1′

x :κx; y :κy ` κ1′ <: κ1

are generated, capturing the relationships between the then and
the if expression, the else and the if expression, and the if and
the output expression, respectively. The constraints (1.1) and (1.2)
are the above constraints simplified for exposition. The recursive
application sum (k-1) from Figure 1 is an expression with a
constructable type. For this expression the subtyping constraint
(2.2) is generated, forcing the actual to be a subtype of the formal.
The output of the application, i.e., the output type κ2 of sum, with
the pending substitution of the formal k with the actual (k − 1) is
shown bound to s in (2.3).

4.3 Constraint Solving
Next, we describe our two-step algorithm for solving the con-
straints, i.e., assigning liquid types to all variables κ such that
all constraints are satisfied. In the first step, we use the well-
formedness and subtyping rules to split the complex constraints,
which may contain function types, into simple constraints over
variables with pending substitutions. In the second step, we iter-
atively weaken a trivial assignment, in which each liquid type vari-
able is assigned the conjunction of all logical qualifiers, until we
find the least fixpoint solution for all the simplified constraints or
determine that the constraints have no solution. We first formalize
the notion of a solution and then describe the two-step algorithm
that computes solutions.

Satisfying Liquid Assignments. A Liquid Assignment over Q is
a map A from liquid type variables to sets of qualifiers from Q?.
Assignments can be lifted to maps from templates F to dependent
types A(F) and template environments Γ to environments A(Γ),
by substituting each liquid type variable κ with

V
A(κ) and then

applying the pending substitutions. A satisfies a constraint c if
A(c) is valid. That is, A satisfies a well-formedness constraint
Γ ` F if A(Γ) ` A(F), and a subtyping constraint Γ ` F1 <: F2

if A(Γ) ` A(F1) <: A(F2). A is a solution for a set of constraints
C if it satisfies each constraint in C.

Step 1: Splitting into Simple Constraints. First, we call Split,
which uses the rules for well-formedness and subtyping (Figure 3)
to convert all the constraints over complex types (i.e., function
types) into simple constraints over base types. An assignment is
a solution for C if and only if it is a solution for Split(C).

Example: Splitting. The well-formedness constraint
∅ ` x :κx→y :κy→κ1 splits into the three simple constraints:
∅ ` κx, x :κx ` κy and x :κx; y :κy ` κ1, which ensure that: the
parameter x must have a refinement over only constants and
the value variable ν as the environment is empty; the parameter
y must have a refinement over only x and ν; and the output
type’s refinement can refer to both parameters x, y and the value
variable. The function subtyping constraint generated by the
call foldn (len a) 0 am shown in (4.4) splits into the simple
subtyping constraints (4.6),(4.7),(4.8). Notice how substitution
and contravariance combine to cause the flow of the bounds
information into input parameter κl (4.6) thus allowing the system
to statically check the array access.

Step 2: Iterative Weakening. Due to the well-formedness con-
straints, any solution over Q must map the liquid type variables to
sets of qualifiers whose free variables are either the value variable
ν or the variables in the input environment Γ (written Var(Γ)), or
the variables in the input expression e (written Var(e)). That is, any
solution maps the liquid variables to a set of qualifiers contained in
Inst(Γ, e, Q) which is defined as

{q | q ∈ Q? and FreeVar(q) ⊆ {ν} ∪ Var(Γ) ∪ Var(e)}
where Var(Γ) and Var(e) are the set of variables in Γ and e
respectively. Notice that if Q is finite, then Inst(Γ, e, Q) is also
finite as the placeholder variables can only be instantiated with
finitely many variables from Γ and e. Thus, to solve the constraints,
we call the procedure Solve, shown in Figure 4, with the split
constraints and a trivial initial assignment that maps each liquid
type variable to Inst(Γ, e, Q).

Solve repeatedly picks a constraint that is not satisfied by the
current assignment and calls Weaken to remove the qualifiers that
prevent the constraint from being satisfied. For unsatisfied con-
straints of the form: (1) Γ ` {ν :B | θ · κ}, Weaken removes from
the assignment for κ all the qualifiers q such that the ML type
of θ · q (the result of applying the pending substitutions θ to q)
cannot be derived to be bool in the environment Shape(Γ); ν :B,
(2) Γ ` {ν :B | ρ} <: {ν :B | θ · κ}, where ρ is either a refine-
ment predicate or a liquid variable with pending substitutions,
Weaken removes from the assignment for κ all the logical qual-
ifiers q such that the implication ([[A(Γ)]] ∧ [[A(ρ)]]) ⇒ θ · q is not
valid in EUFA, (3) Γ ` {ν :B | ρ} <: {ν :B | e}, Weaken, and
therefore Solve, returns Failure.
Correctness of Solve. For two assignments A and A′, we say that
A ≤ A′ if for all κ, the set of logical qualifiers A(κ) contains the
set of logical qualifiers A′(κ). We can prove that if a set of con-
straints has a solution over Q then it has a unique minimum solution
w.r.t.≤. Intuitively, we invoke Solve with the least possible assign-
ment that maps each liquid variable to all the possible qualifiers.
Solve then uses Weaken to iteratively weaken the assignment until
the unique minimum solution is found. The correctness of Solve
follows from the following invariant about the iterative weakening:
if A∗ is the minimum solution for the constraints, then in each itera-
tion, the assignment A ≤ A∗. Thus, if Solve returns a solution then
it must be the minimum solution for C over Q. If at some point a
constraint Γ ` {ν :B | ρ} <: {ν :B | e} is unsatisfied, subsequent
weakening cannot make it satisfied. Thus, if Solve returns Failure
then C has no solution over Q.

By combining the steps of constraint generation, splitting and
solving, we obtain our dependent type inference algorithm Infer
shown in Figure 4. The algorithm takes as input an environment
Γ, an expression e and a finite set of logical qualifiers Q, and
determines whether there exists a valid liquid type derivation over
Q for e in the environment Γ. The correctness properties of Infer
are stated in the theorem below, whose proof is in [24]. From
Theorems 1, 2, we conclude that if Infer(∅, e, Q) = S then every
primitive operation invoked during the evaluation of e succeeds.

THEOREM 2. [Liquid Type Inference]

1. Infer(Γ, e, Q) terminates,
2. If Infer(Γ, e, Q) = S then Γ `Q e : S, and,
3. If Infer(Γ, e, Q) = Failure then there is no S s.t. Γ `Q e : S.

Running Time. Most of the time taken by Infer goes inside proce-
dure Solve which asymptotically dominates the time taken to gen-
erate constraints. Solve returns the same output regardless of the
order in which the constraints are processed. For efficiency, we im-
plement Solve in two phases. First, Solve makes a (linear) pass that
solves the well-formedness constraints, thus rapidly pruning away

irrelevant qualifiers. Second, Solve uses a standard worklist-based
algorithm that solves the subtyping constraints. The time taken in
the first phase is asymptotically dominated by the time taken in the
second. Let Q be the maximum number of qualifiers that any liq-
uid variable is mapped to after the first well-formedness pass, V be
the number of variables in the program e that have a base type, and
D be the size of the ML type derivation for e in the environment
Γ. A constraint is sent to Weaken only when the antecedent of its
implication changes, i.e., at most V × Q times. There are at most
O(D) constraints and so Weaken is called at most O(D×V ×Q)
times. Each call to Weaken makes at most Q calls to the theorem
prover. Thus, in all the running time of Infer is O(D × V × Q2)
assuming each theorem prover call takes unit time. Of course, D
can be exponential in the program size (but tends to be linear in
practice), and the size of each (embedded) theorem prover query is
O(V ×Q). Though validity checking in EUFA is NP-Hard, several
solvers for this theory exist which are very efficient for the simple
queries that arise in our context [9].

4.4 Features of Liquid Type Inference
We now discuss some features of the inference algorithm.
1. Type Variables and Polymorphism. There are two kinds of
type variables used during inference: ML type variables α obtained
from the ML types returned by HM, and liquid type variables κ in-
troduced during liquid constraint generation to stand for unknown
liquid types. Our system is monomorphic in the liquid type vari-
ables. Polymorphism only enters via the ML type variables as fresh
liquid type variables are created at each point where an ML type
variable α is instantiated with a monomorphic ML type.
2. Whole Program Analysis and Non-General Types. Due
to the above, the types we obtain for function inputs are the
strongest liquid supertype of all the arguments passed into the
function. This is in contrast with ML type inference which
infers the most general type of the function independent of
how the function is used. For example, consider the func-
tion neg defined as fun x -> (-x), and suppose that Q =
{0 ≤ ν, 0 ≥ ν}. In a program comprising only the above func-
tion i.e., where the function is never passed arguments, our al-
gorithm infers neg :: {0 ≤ ν ∧ 0 ≥ ν}→{0 ≤ ν ∧ 0 ≥ ν} which
is useless but sound. If neg is only called with (provably)
non-negative (resp. non-positive) arguments, the algorithm in-
fers neg :: {0 ≤ ν}→{0 ≥ ν} (resp. neg :: {0 ≥ ν}→{0 ≤ ν})
If neg is called with arbitrary arguments, the algorithm infers
neg :: int→int and not a more general intersection of function
types. We found this design choice greatly simplified the inference
procedure by avoiding the expensive “case splits” on all possible in-
puts [14] while still allowing us to prove the safety of challenging
benchmarks. Moreover, we can represent the intersection type in
our system as: x :int→{(0 ≤ x⇒ 0 ≥ ν) ∧ (0 ≥ x⇒ 0 ≤ ν)},
and so, if needed, we can recover the precision of intersection types
by using qualifiers containing implications.
3. A-Normalization. Recall the sum example from Section 2. Our
system as described would fail to infer that the output type of:
let rec sum k = if k < 0 then 0 else (s + sum (k-1))
was non-negative, as it cannot use the fact that sum (k-1) is
non-negative when inferring the type of the else expression. This
is solved by A-Normalizing[12] the program so that intermediate
subexpressions are bound to temporary variables, thus allowing us
to use information about types of intermediate expressions, as in
the original sum implementation.

5. Experimental Results
We now describe our implementation of liquid type inference in
the tool DSOLVE which does liquid type inference for OCAML. We

Cons(Γ, e) =
match e with
| x −→

if HM(Shape(Γ), e) = B
then ({ν :B | ν = x}, ∅)
else (Γ(x), ∅)

| c −→
(ty(c), ∅)

| e1 e2 −→
let (x :Fx → F, C1) = Cons(Γ, e1) in
let (F ′

x, C2) = Cons(Γ, e2) in
([e2/x]F, C1 ∪ C2 ∪ {Γ ` F ′

x <: Fx})
| λx.e −→

let (x :Fx → F) = Fresh(HM(Shape(Γ), λx.e)) in
let (F ′, C) = Cons(Γ; x :Fx, e) in
(x :Fx → F, C ∪ {Γ ` x :Fx → F} ∪ {Γ; x :Fx ` F ′ <: F})

| if e1 then e2 else e3 −→
let F = Fresh(HM(Shape(Γ), e)) in
let (, C1) = Cons(Γ, e1) in
let (F2, C2) = Cons(Γ; e1, e2) in
let (F3, C3) = Cons(Γ;¬e1, e3) in
(F, C1 ∪ C2 ∪ C3 ∪ {Γ ` F}∪

{Γ; e1 ` F2 <: F} ∪ {Γ;¬e1 ` F3 <: F})
| let x = e1 in e2 −→

let F = Fresh(HM(Shape(Γ), e)) in
let (F1, C1) = Cons(Γ, e1) in
let (F2, C2) = Cons(Γ; x :F1, e2) in
(F, C1 ∪ C2 ∪ {Γ ` F} ∪ {Γ; x :F1 ` F2 <: F})

| [Λα]e −→
let (F, C) = Cons(Γ, e) in
(∀α.F, C)

| [τ]e −→
let F = Fresh(τ) in
let (∀α.F ′, C) = Cons(Γ, e) in
([F/α]F ′, C ∪ {Γ ` F})

Weaken(c, A) =
match c with
| Γ ` {ν :B | θ · κ} −→

A[κ 7→ {q | q ∈ A(κ) and Shape(Γ); ν :B ` θ · q : bool}]
| Γ ` {ν :B | ρ} <: {ν :B | θ · κ} −→

A[κ 7→ {q | q ∈ A(κ) and [[A(Γ)]] ∧ [[A(ρ)]] ⇒ [[θ · q]]}]
| −→ Failure

Solve(C, A) =
if exists c ∈ C such that A(c) is not valid
then Solve(C, Weaken(c, A)) else A

Infer(Γ, e, Q) =
let (F, C) = Cons(Γ, e) in
let A = Solve(Split(C), λκ.Inst(Γ, e, Q)) in
A(F)

Figure 4. Liquid Type Inference Algorithm

describe experiments which demonstrate, over a set of benchmarks
that were previously annotated in the DML project [27], that liquid
types greatly reduce the burden of manual dependent type annota-
tion required to prove the safety of array accesses.

DSOLVE takes as input a closed OCAML program and a set of
qualifiers Q, and outputs the dependent types inferred for the pro-
gram expressions and the set of applications of primitive operations
that could not statically be proven safe (ideally empty). DSOLVE is
built on top of OCAML: DSOLVE uses the OCAML parser and type
inference engine (to implement the oracle HM), and outputs the
inferred dependent types in .annot files as documentation.

Array Bounds Checking Qualifiers. To automate array bounds
checking, we observe that the safety of array accesses typically de-

pends on the relative ordering of integer expressions. Thus, to stat-
ically prove the safety of array accesses, we use the mechanically-
generated set of array bounds checking qualifiers QBC defined as

{ν ./ X | ./∈ {<,≤, =, 6=, >,≥} and X ∈ {0, ?, len ?}}
Next, we show experimental results demonstrating that liquid type
inference over QBC suffices to prove the safety of most array ac-
cesses. Even when DSOLVE needs extra qualifiers, the types in-
ferred using QBC help the programmer quickly identify the rele-
vant extra qualifiers.
Benchmarks. We use benchmarks from the DML project [26]
(ported to OCAML) that were previously annotated with dependent
types with the goal of statically proving the safety of array accesses
[27]. The benchmarks are listed in the first column of Table 1.
The second column indicates the size of the benchmark (ignoring
comments and whitespace). The benchmarks include OCAML im-
plementations of: the Simplex algorithm for Linear Programming
(simplex), the Fast Fourier Transform (fft), Gaussian Elimina-
tion (gauss), Matrix Multiplication (matmult), Binary Search in a
sorted array (bsearch), computing the Dot Product of two vectors
(dotprod), Insertion sort (isort), the n-Queens problem (queen),
the Towers of Hanoi problem (tower), a fast byte copy routine
(bcopy), and Heap sort (heapsort). The above include all DML
array benchmarks except quicksort, whose invariants remain un-
clear to us. In addition, we ran DSOLVE on a simplified Quicksort
routine from OCAML’s Sort module (qsort-o), a version ported
from the DML benchmark (qsort-d) where one optimization is
removed, and BITV, an open source bit vector library (bitv).
Array Bounds Checking Results. As shown in column DSOLVE
of Table 1, DSOLVE needs no manual annotations for most pro-
grams: that is, the qualifiers QBC suffice to automatically prove
the safety of all array accesses. For some of the examples, e.g.,
tower, we do need to provide extra qualifiers. However, even in
this case, the annotation burden is typically just a few qualifiers.
For example, in tower, we require a qualifier which is analogous
to ν = n−h1−h2, which describes the height of the “third” tower,
capturing the invariant that the height is the total number of rings
n minus the rings in the first two towers. Similarly, in bitv, one
qualifier states the key invariant relating a bit vector’s length to the
length of its underlying data structure. The time for inference is ro-
bust to the number of qualifiers as most qualifiers are pruned away
by the well-formedness constraints. In our prototype implementa-
tion, the time taken for inference is reasonable even for non-trivial
benchmarks like simplex, fft and gauss.
Case Study: Bit Vectors. We applied DSOLVE to verify the open
source BITV bit vector library (version 0.6). A bit vector in
BITV consists of a record with two fields: length, the num-
ber of bits stored, and bits, the actual data. If b is the number
of bits stored per array element, length and bits are related
by (len bits− 1) · b < length ≤ (len bits) · b. The executed
code, and hence, dependent types are different for 32- and 64-bit
machines. Thus, to verify the code using our conjunctive types, we
fixed the word size to 32. We were able to verify the array safety
of 58 of BITV’s 65 bit vector creation, manipulation, and iteration
functions, which contain a total of 30 array access operations.

There are three kinds of manual annotation needed for verifica-
tion: extra qualifiers (14 lines, 605 characters), trusted assumptions
(8 lines, 143 characters), and interface specifications (43 lines,
2390 characters). The trusted assumptions (which are akin to dy-
namic checks) are needed due to current limitations of our system.
These include the conservative way in which modular arithmetic is
embedded into EUFA, the lack of refinements for type variables and
recursive datatypes, and the conservative handling of control-flow.
The interface specifications are needed because BITV is a library,
i.e., an open program. Thus, for verification, we need to specify that

Size DML DSOLVE
Program Line Char Line Char Line Char Time (s)
dotprod 7 158 3 (30%) 110 (41%) 0 (0%) 0 (0%) 0.31
bcopy 8 199 3 (27%) 172 (46%) 0 (0%) 0 (0%) 0.15
bsearch 24 486 3 (11%) 157 (24%) 0 (0%) 0 (0%) 0.46
queen 30 886 7 (19%) 309 (26%) 0 (0%) 0 (0%) 0.70
isort 33 899 12 (27%) 702 (44%) 0 (0%) 0 (0%) 0.88
tower 36 927 8 (18%) 348 (27%) 1 (2%) 26 (2%) 3.33
matmult 43 797 10 (19%) 454 (36%) 0 (0%) 0 (0%) 1.79
heapsort 84 1414 11 (12%) 433 (23%) 0 (0%) 0 (0%) 0.53
fft 107 3279 13 (11%) 790 (19%) 1 (1%) 25 (1%) 9.13
simplex 118 2712 33 (22%) 1913 (41%) 0 (0%) 0 (0%) 7.73
gauss 142 2431 22 (13%) 999 (29%) 1 (1%) 67 (2%) 3.17
TOTAL 633 14188 125 (17%) 6387 (31%) 3(1%) 93(1%)
qsort-o 62 1585 0 (0%) 0 (0%) 1.89
qsort-d 112 2735 5 (5%) 63 (2%) 18.28
bitv 426 10757 65 (15%) 3138 (29%) 63.11

Table 1. Experimental Results: Size is the amount of program
text (without annotation) after removing whitespace and comments
from the code. DML is the amount of manual annotation required
in the DML versions of the benchmarks. DSOLVE is the amount
of manual annotation required by DSOLVE, i.e., qualifiers not in
QBC . Time is the time taken by DSOLVE to infer dependent types.

the API functions are called with valid input vectors that satisfy in-
variants like the one described above. The interface specifications,
by far the largest category of annotations, are unavoidable. The ex-
tra qualifiers and expressiveness limitations are directions for future
work.

DSOLVE was able to locate a serious bounds checking error in
BITV. The error occurs in BITV’s blit function, which copies c
bits from v1, starting at bit offset1, to v2, starting at bit offset2.
This function first checks that the arguments passed are safe, and
then calls a fast but unsafe internal function unsafe blit.

let blit v1 offset1 v2 offset2 c =
if c < 0 || offset1 < 0 || offset1 + c > v1.length

offset2 < 0 || offset2 + c > v2.length
then invalid_arg "Bitv.blit";
unsafe_blit v1.bits offset1 v2.bits offset2 c

unsafe blit immediately accesses the bit at offset1 in v1, re-
gardless of the value of c. When the parameters are such that:
offset1 = v1.length and v1.length mod b = 0 and c = 0,
the unsafe blit attempts to access the bit at index v1.length,
which must be located in v1.bits[v1.length / b]; but this is
v1.bits[len v1.bits], which is out of bounds and can cause a
crash, as we verified with a simple input. The problem is that blit
does not verify that the starting offset is within the bounds of the bit
vectors. This is fixed by adding the test offset1 >= v1.length
(and offset2 >= v2.length for similar reasons). DSOLVE suc-
cessfully typechecks the fixed version.

6. Related Work
The first component of our approach is predicate abstraction,
[1, 15] which has its roots in early work on axiomatic semantics
[8]. Predicate abstraction has proven effective for path-sensitive
verification of control-dominated properties of first-order impera-
tive programs [3, 16, 11, 4, 29, 17].

The second component of our approach is constraint-based pro-
gram analysis, an example of which is the ML type inference
algorithm. Unlike other investigations of type inference for HM
with subtyping, e.g., [19, 23, 25], our goal is algorithmic depen-
dent type inference, which requires incorporating path-sensitivity
and decision procedures for EUFA. We also draw inspiration from
type qualifiers [13] that refine types with a lattice of built-in and
programmer-specified annotations. Our Shape and Fresh functions

are similar to strip and embed from [13]. Liquid types extend qual-
ifiers by assigning them semantics via logical predicates, and our
inference algorithm combines value flow (via the subtyping con-
straints) with information drawn from guards and assignments. The
idea of assigning semantics to qualifiers has been proposed recently
[5], but with the intention of checking and inferring rules for qual-
ifier derivations. Our approach is complementary in that the rules
themselves are fixed, but allow for the use of guard and value bind-
ing information in type derivations, thereby yielding a more pow-
erful analysis. For example, it is unclear whether the approach of
[5] would be able to prove the safety of any of our benchmark
programs, due to the inexpressivity of the qualifiers and inference
rules. On the other hand, our technique is more computationally ex-
pensive as the decision procedure is integrated with type inference.

The notion of type refinements was introduced in [14] with
refinements limited to restrictions on the structure of algebraic
datatypes, for which inference is decidable. DML(C) [28] extends
ML with dependent types over a constraint domain C; type check-
ing is shown to be decidable modulo the decidability of the domain,
but inference is still undecidable. Liquid types can be viewed as a
controlled way to extend the language of types using simple pred-
icates over a decidable logic, such that both checking and infer-
ence remain decidable. Our notion of variables with pending sub-
stitutions is inspired by a construct from [18], which presents a
technique to reconstruct the dependent type of an expression that
captures its exact semantics (analogous to strongest postconditions
for imperative languages). The technique works in a restricted set-
ting without polymorphism and the reconstructed types are terms
containing existentially quantified variables (due to variables that
are not in scope), and the fix operator (used to handle recursion),
which make static reasoning impossible.

7. Conclusions and Future Work
In this paper, we have presented a dependent type system called liq-
uid types, a tool DSOLVE that infers liquid types, and experiments
showing that DSOLVE can significantly reduce the amount manual
annotation required to statically prove the safety of array accesses.
Even in very complex benchmarks like BITV, DSOLVE needs 22
lines of manual hints, which is only 5% of the entire code size. The
other annotations, namely, types specifying correct usage of inter-
face functions, are unavoidable. Thus, we believe that liquid types
will prove useful even for modular verification. If the modules are
designed well, their interfaces should have far fewer functions than
their implementations and so the gains from not having to manually
specify the types of all top-level bindings will be significant.

Several challenges need to be addressed in order to realize the
full potential of liquid types. First, we would like to make the
system more expressive, for example, by extending the system to
allow refinements for type variables and recursive datatypes. This
will allow us to apply liquid types to a larger class of programs
and properties. Second, for the cases when typechecking fails,
we require error reporting techniques that help the programmer
determine whether there is either an error in her program, the set
of qualifiers is insufficient, or, the conservativeness of the system
is to blame. One approach would be to devise a notion of type
counterexample and adapt proof-based methods to check if the
counterexample is feasible (i.e., there is an error) or if not, to lazily
extract new qualifiers from the counterexample [6, 3, 16]. Third,
we would like to extend the system to include reasoning about
imperative features. With such an extension, liquid types could be
profitably applied to verify C++, Java and C# programs which use
generic datatypes.

Acknowledgments. We thank Adam Chlipala, Cormac Flana-
gan, Radha Jagadeesan, Suresh Jagannathan, Kenn Knowles, Sorin

Lerner, Bill McLoskey, Todd Millstein, Corneliu Popea, Philip
Wadler, Westley Weimer, and the anonymous referees for their
helpful comments and suggestions for improving this paper.

References
[1] Tilak Agerwala and Jayadev Misra. Assertion graphs for verifying

and synthesizing programs. Technical Report 83, University of Texas,
Austin, 1978.

[2] L. Augustsson. Cayenne - a language with dependent types. In ICFP,
1998.

[3] T. Ball and S.K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL, pages 1–3. ACM, 2002.

[4] S. Chaki, E. M. Clarke, A. Groce, J. Ouaknine, O. Strichman,
and K. Yorav. Efficient verification of sequential and concurrent
c programs. FMSD, 25(2-3):129–166, 2004.

[5] B. Chin, S. Markstrum, T. D. Millstein, and J. Palsberg. Inference
of user-defined type qualifiers and qualifier rules. In ESOP, pages
264–278, 2006.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV, LNCS 1855,
pages 154–169. Springer, 2000.

[7] L. Damas and R. Milner. Principal type-schemes for functional
programs. In POPL, 1982.

[8] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[9] B. Dutertre and L. De Moura. Yices SMT solver.

http://yices.csl.sri.com/.
[10] C. Flanagan. Hybrid type checking. In POPL. ACM, 2006.
[11] C. Flanagan and S. Qadeer. Predicate abstraction for software

verification. In POPL. ACM, 2002.
[12] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of

compiling with continuations. In PLDI, 1993.
[13] J.S. Foster. Type Qualifiers: Lightweight Specifications to Improve

Software Quality. PhD thesis, U.C. Berkeley, 2002.
[14] T. Freeman and F. Pfenning. Refinement types for ML. In PLDI,

1991.
[15] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.

In CAV, LNCS 1254, pages 72–83. Springer, 1997.
[16] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan.

Abstractions from proofs. In POPL 04. ACM, 2004.
[17] F. Ivancic, I. Shlyakhter, A. Gupta, and M. K. Ganai. Model checking

c programs using f-soft. In ICCD, pages 297–308, 2005.
[18] K. Knowles and C. Flanagan. Type reconstruction for general

refinement types. In ESOP, 2007.
[19] P. Lincoln and J. C. Mitchell. Algorithmic aspects of type inference

with subtypes. In POPL, Albequerque, New Mexico, 1992.
[20] P. Martin-Lof. Constructive mathematics and computer programming.

Royal Society of London Philosophical Transactions Series A,
312:501–518, October 1984.

[21] G. Nelson. Techniques for program verification. Technical Report
CSL81-10, Xerox Palo Alto Research Center, 1981.

[22] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In IFIP TCS, pages 437–450, 2004.

[23] F. Pottier. Simplifying subtyping constraints. In ICFP, New York,
NY, USA, 1996. ACM Press.

[24] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. Technical
Report CSE Tech Report, UCSD, 2008.

[25] M. Sulzmann, M. Odersky, and M. Wehr. Type inference with
constrained types. In FOOL, 1997.

[26] H. Xi. DML code examples. http://www.cs.bu.edu/fac/hwxi/DML/.
[27] H. Xi and F. Pfenning. Eliminating array bound checking through

dependent types. In PLDI, 1998.
[28] H. Xi and F. Pfenning. Dependent types in practical programming. In

POPL, pages 214–227, 1999.
[29] Y. Xie and A. Aiken. Scalable error detection using boolean

satisfiability. In POPL, pages 351–363, 2005.

	Introduction
	Overview
	Liquid Type Checking
	Elements of L
	Liquid Type Checking Rules
	Features of the Liquid Type System

	Liquid Type Inference
	ML Types and Templates
	Constraint Generation
	Constraint Solving
	Features of Liquid Type Inference

	Experimental Results
	Related Work
	Conclusions and Future Work

