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Abstract
We introduce lock allocation, an automatic technique that takes a
multi-threaded program annotated with atomic sections (that must
be executed atomically), and infers a lock assignment from global
variables to locks and a lock instrumentation that determines where
each lock should be acquired and released such that the result-
ing instrumented program is guaranteed to preserve atomicity and
deadlock freedom (provided all shared state is accessed only within
atomic sections). Our algorithm works in the presence of pointers
and procedures, and sets up the lock allocation problem as a 0-1 ILP
which minimizes the conflict cost between atomic sections while
simultaneously minimizing the number of locks. We have imple-
mented our algorithm for both C with pthreads and Java, and have
applied it to infer locks in 15K lines of AOLserver code. Our auto-
matic allocation produces the same results as hand annotations for
most of this code, while solving the optimization instances within
a second for most programs.
Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features.
General Terms: Languages, Algorithms.
Keywords: atomicity, lock inference, ILP.

1. Introduction
Shared memory concurrency, where multiple threads access shared
data structures, is a pervasive programming model for multiple in-
teracting computational tasks. Accessing shared data concurrently
introduces the possibility of synchronization errors, which occur
when the interleaved execution of multiple threads causes the as-
sumptions by a thread on the shared state to be modified unpre-
dictably. Correct programs must therefore ensure non-interference
at program points that access shared state. The non-interference as-
sumptions are formalized through the notion of atomicity [8, 7]. If
a piece of code is atomic, then any interaction between that code
and the steps of all other threads is guaranteed not to change the
observable behavior of the program: for every possibly interleaved
execution, there is an equivalent execution where the atomic code
executes sequentially.
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Atomicity is an application-level specification. In practice, the
programmer intent of atomicity is often ensured through the mech-
anism of mutual exclusion monitors or locks. The programmer ex-
plicitly acquires and releases locks to synchronize access to shared
structures while trying to maintain maximum parallelism between
tasks. When correctly employed, locks ensure shared data accesses
occur atomically. However, locking is notoriously difficult to get
right—mistakes can lead to data races and non-atomic executions,
or result in over conservative lock placement, which may signifi-
cantly diminish the benefits of concurrency or even cause deadlock.

We present lock allocation, an automatic algorithm that takes a
program annotated with atomicity specifications, and infers a suit-
able set of locks together with their placement in the code such that
with this lock placement, the resulting code is guaranteed to pre-
serve atomicity and prevent deadlock (under the assumption that
all global variables accessed within atomic sections are only ac-
cessed within atomic sections). The lock allocation algorithm must
balance the tension between ensuring atomicity (for example by
maintaining one global lock that is acquired before each atomic
section and released at the end) and maximal concurrency (for ex-
ample by maintaining a different lock for each global variable and
acquiring locks for all variables accessed in an atomic section) and
low cost (each lock variable, acquire, and release operation assumes
a certain cost). We set up the problem as a constraint optimization
problem. In particular, we designate a boolean variable aij to be
true if the ith global variable is assigned the jth lock, and set up
constraints to ensure each global variable is assigned some lock.
We then attempt to minimize the conflict cost (a measure of the
loss of concurrency incurred if an atomic section is waiting on a
lock currently held by another atomic section) between atomic sec-
tions, and the number of locks used, simultaneously. The result-
ing optimization problem is a 0-1 ILP, for which extremely effi-
cient solvers (through reduction to boolean SAT) are available [4].
The solution is a lock assignment that assigns a lock to each global
variable. As we demonstrate, the lock allocation decision problem
is NP-complete, hence the reduction to 0-1 ILP is asymptotically
optimal, and as our experiments demonstrate, practically efficient.
Given a lock assignment, our placement algorithm is similar to Au-
tolocker [14], a system that takes both atomic section annotations
and lock assignments, and places locks to ensure atomicity and
deadlock freedom. Our optimization scheme can be seen as infer-
ring the Autolocker lock assignment annotations.

We extend the basic lock allocation algorithm to deal with point-
ers and functions. In the presence of pointers, we use a statically
computed points-to relation, and add additional constraints to en-
sure that whenever two program lvalues are aliased at run time,
their assigned locks must also alias at that point in the execution.
Further, we add constraints that ensure that for every lvalue, its as-
signed lock is in scope when the lvalue is accessed. Additionally,
we use a statically computed dependency relation that places an
edge between two abstract locations l1 and l2 if there is an atomic
section that accesses l1 before l2 along some program execution.



The dependency relation is then used to put in additional constraints
that remove cyclic dependencies between locks (that can lead to
deadlocks).

We have implemented the lock allocation scheme both for C
programs using the pthreads thread library and for Java programs.
For our experiments, we have used about 16K lines of code from
the AOLserver web server, that was annotated with atomic sections
by the developers of Autolocker, and inferred lock assignments for
the variables. Our inferred lock assignments are (almost always)
identical to the manual locking inserted by Autolocker. In some of
these examples, one can obtain better locking manually by realizing
certain lvalues cannot be aliased at run time. Since we use a static
flow insensitive points-to and dependency relation, our algorithm is
conservative. Increasing the precision of the analysis is an interest-
ing orthogonal problem. However, as our experiments demonstrate,
for many useful programs, programmers use simple locking disci-
plines that can be automatically inferred.
Related Work. In the programming languages context, [7] intro-
duced type and effect systems to check atomicity in Java programs.
While we use pessimistic or synchronization based schemes to en-
sure atomicity, there is a lot of work on ensuring atomicity through
optimistic concurrency control that uses a combination of logging
and rollback [8, 9, 12, 18]. The problem of race and deadlock de-
tection has received a lot of attention from static/dynamic analysis
[5, 19, 20] and model checking [11] communities.

Recent work has focused on either inferring atomic sections
given lock assignments [6], or given atomic sections and lock as-
signments, instrumenting the program with locks to ensure atomic
and deadlock free execution [14]. Our work is dual to [6]: given
atomicity specifications, we infer locking mechanisms to ensure
atomicity. Independently, [10] also considers the lock allocation
problem. Unlike our optimization-based algorithm, their algorithm
considers the points-to graph, assigning locks to abstract locations
and unifying lock names based on a dependency relation on abstract
locations. It is difficult to incorporate quantitative cost measures
(measuring the cost to acquire/release a lock as well as conflict
costs) in their scheme. Further, their scheme only produces global
locks, whereas (as we illustrate later), our optimization framework
can actually infer locks local to structures (that are instantiated with
a different lock per instance of the structure) in some cases. Thus,
our algorithm can be more precise.

2. Lock Optimization
We introduce the lock allocation scheme on multi-threaded pro-
grams with global integer variables. In the next section, we addi-
tionally handle references and aliasing.
Multi-threaded Programs and Atomicity. For the remainder of
this section, we fix a set X = {x1, . . . , xk} of global integer vari-
ables in a multi-threaded program P . We assume that a set of code
blocks A = {A1, . . . , An} of P are annotated as atomic sections
by the programmer. For each i ∈ {1, . . . , n}, let access(Ai) ⊆ X
be the set of global variables accessed in block Ai.

The intent is that each atomic section executes atomically in P .
Intuitively, when a block b executes atomically in P its interaction
with other threads does not change the overall program behavior:
for every interleaved execution of P in which b is executed, there
is an equivalent execution where b executes uninterrupted by the
other threads [7, 8].
Lock Allocation. Atomicity is typically ensured by protecting ac-
cesses to shared variables with locks. Given a set of locks L, a lock
assignment is a mapping, λ : X → L, assigning a lock to each
shared variable. For an atomic section Ai ∈ A, the set locksλ(Ai)
of locks required by Ai is the set of locks assigned to all variables

accessed in Ai:

locksλ(Ai) =
[

x∈access(Ai)

{λ(x)}. (1)

To ensure atomicity of Ai, P acquires each lock ` ∈ locksλ(Ai)
before the first variable protected by ` is accessed, and only releases
` upon exiting Ai.

The use of locks to protect shared variables may induce conflicts
between atomic sections acquiring the same lock: the execution of
an atomic section will be delayed until the locks it requires are
released by the atomic sections of other threads. For each pair Ai,
Aj of atomic sections, let cost(i, j) be a penalty incurred when Ai

and Aj conflict (e.g., an approximation to the time one procedure
must wait for the other to release a lock). The conflict cost of the
lock assignment λ is the sum of the conflicts over pairs of atomic
sections sharing some lock:

conflictλ(A) =
X

1≤i≤j≤n

cost(i, j)·δ(locksλ(Ai)∩locksλ(Aj)) (2)

where δ(S) = 1 if S 6= ∅, and δ(S) = 0 otherwise.
The lock allocation optimization problem asks to find a lock

assignment λ : X → L for a minimal set of locks L such that
the conflict cost is minimized. These are conflicting requirements:
a singleton lock set and the lock assignment mapping each variable
the only lock clearly minimizes the number of locks, but sacrifices
a high conflict cost, while a one-to-one map from variables to
locks always achieves the optimal conflict cost, but results in the
maximum number of locks.

Formally we model the optimization problem as a multi-
objective minimization problem. First we notice that the num-
ber of locks to can be bounded by |X|; we fix a set of locks
L = {`1, . . . , `k}. For each pair i, j ∈ {1, . . . , k}, we introduce a
0-1 variable aij which takes the value 1 if and only if global vari-
able xi is assigned lock `j . We then represent the number of locks
and conflict cost by terms over these variables. The total number of
locks used by an assignment is

|L| =
k

X

j=1

(
k

_

i=1

aij), (3)

while the conflict cost conflict(a) for an assignment is

X

1≤i≤j≤n

cost(i, j) ·
n

_

k=1

2

4

_

xl∈Ai

alk ·
_

xm∈Aj

amk

3

5 (4)

(where ∨ denotes boolean disjunction). The lock allocation opti-
mization problem is then

min conflict(a)
min |L|

s.t.
Pk

j=1 aij = 1 for each i ∈ {1, . . . , k}.
(5)

The constraints maintain that each variable is assigned exactly one
lock. A solution of the optimization problem (5) induces a lock
assignment; if aij = 1 appears in the solution, then variable xi

is assigned lock lj . Since each variable is assigned one lock, the
induced assignment is a total function. For a program P , we use
Opt(P ) to denote a lock assignment induced by an optimal solution
to the lock allocation optimization problem 5.

As might be expected, the corresponding decision problem,
which attempts to find a lock allocation with less than or equal to k
locks, with a conflict cost less than k, is NP-complete.

PROPOSITION 1. Lock allocation is NP-complete.

Proof: A nondeterministic polynomial-time algorithm guesses a
lock allocation and checks the conflict cost and the number of locks



global balance, name;
atomic b1 { access(balance); }
atomic b2 { access(name); }

min cost(b1, b2) ·

2

4

a(balance, 1) ∧ a(name, 1)
∨

a(balance, 2) ∧ a(name, 2)

3

5

s.t.
a(balance, 1) + a(balance, 2) = 1
a(name, 1) + a(name, 2) = 1
(a(balance, 1) ∨ a(name, 1))+
(a(balance, 2) ∨ a(name, 2)) ≤ m

Figure 1. (a) Source program, (b) Constraints for i locks

are less than the input bounds. We show NP-hardness by reduction
from graph coloring. Given a graph G = (V, E) with n nodes
and a number of colors k, we produce a program with n global
variables {xv | v ∈ V } and n atomic sections {Av | v ∈ V } such
that access(Av) = {xv} for all v ∈ V . For each edge (u, v) ∈ E,
there is a conflict cost k + 1 between Au and Av , and for each
pair (u, v) 6∈ E, there is a conflict cost 0 between Au and Av. If
the graph can be k-colored, then there is a lock allocation with less
than or equal to k locks, such that the conflict cost is less than k.
On the other hand, if the graph cannot be k-colored, then there are
two atomic sections receiving the same lock and the conflict cost is
at least k + 1. 2

Although the optimization problem (5) is multi-objective and
non-linear, a 0-1 integer linear programming (ILP) is achievable
with some manipulation. Since the number of locks is bounded by
the number of variables, one instead poses k optimization problems
{p1, . . . , pk} in which only conflict(a) is minimized, and each pm

has the additional constraint
k

X

j=1

(

k
_

i=1

aij) ≤ m, (6)

stating that the number of locks is less than or equal to m. Second,
given the nonlinear objective function and the nonlinear constraint
(6), we perform the following general transformation. For each
expression of the form ∨a∈Aa we introduce a new variable a∨A

to replace it, and add the constraints
P

a∈A a ≥ a∨A and
P

a∈A a ≤ |A| · a∨A. (7)

Finally, we replace each monomial
Q

a∈A
a with the new variable

aQ

A, adding the constraints
P

a∈A a ≥ |A| · aQ

A and
P

a∈A a − aQ

A ≤ (|A| − 1).
(8)

EXAMPLE 1: Figure 1(a) shows a program layout with two global
variables balance and name, and two atomic sections accessing
balance and name respectively—we assume that each atomic sec-
tion can be executed by concurrently running threads. Intuitively, if
a single lock is used, both variables must share it; on the other hand
when using two locks it is advantageous to assign each variable its
own lock. Figure 1(b) shows problem instance pm ∈ {p1, p2} of
the ILP corresponding to the source program in (a). The first two
constraints ensure the variables balance and name each receive
exactly one lock, while the third limits the total number of locks
to m (where, again, m can be 1 or 2). The boolean disjunctions in
the third constraint are removed by adding two variables y1 and y2,
replacing the third constraint with y1 + y2 ≤ m, and adding the
constraints (as required by Equation 7):

y1 ≤ a(balance, 1) + a(name, 1) ≤ 2y1

y2 ≤ a(balance, 2) + a(name, 2) ≤ 2y2.

2

Locking Instrumentation. Let λ be a lock assignment to the vari-
ables X of the program P . We instrument the program P with
acquire and release statements that take and release locks. We
use a two-phase locking scheme [13] that acquires all locks before
releasing any lock. We use the notation Pλ to refer to the program
P instrumented with the acquisitions and releases of locks accord-
ing to λ. In particular, immediately before each access to a variable
x ∈ X is placed the statement acquire(λ(x)), and upon exit of
an atomic section are placed the statements release(λ(x)), for
each x ∈ X . The semantics of these statements are respectively
to obtain the lock λ(x) if it is not yet held by the current thread,
and to release λ(x) if it is held by the current thread, and the cur-
rently executing atomic section is the only one on the call stack.
This instrumentation ensures the following.

THEOREM 1. [Soundness] Let P be a multi-threaded program
over global integer variables X with atomic sections A, and
Opt(P ), an optimal solution to the lock allocation problem for P .
For each A ∈ A, the block A executes atomically in POpt(P ).

3. Lock Allocation with Pointers
We now extend the basic technique to programs with pointers.

3.1 Lvalues and Aliasing

Lvalues. A record type is a set of pairs 〈f, τ 〉 where f is a field
name, and τ is the (integer or record) type of f . Records are
represented in the standard way: a record value is a reference to a
heap structure that stores the values of its fields. An lvalue is a term
of the form x for some integer or record-valued variable declared in
the program, or a field access of the form v.f where v is an lvalue
whose record-type contains the field name f . The set of all lvalues
which appear in a program’s text is denoted Lvals.

Our analysis generates lock assignments to protect accesses
to records, individual fields of records, and global variables. The
back-end of our analysis augments each record with a system lock
resource which is acquired and released with the associated locking
primitives; the acquisition and releasing of locks is also inserted
into the target program as described in Section 2. A lock is called
local if it is a field of a record type, and globally-scoped static
locks are called global. Local locks protect individual instances
of a record or field. On the other hand, if a record or field lvalue
is assigned to a global lock, all instances of that record/field are
protected by the same lock.

May- and Must-Aliases. For every pair of lvalues v1 and v2 of a
program P , we say that v1 and v2 are may aliased if there exists
some execution of P such that v1 and v2 point to the same heap
location at some point along the execution. We say that v1 and v2

are must aliased if along every execution of P , v1 and v2 point
to the same heap location, whenever both the lvalues are defined.
There are several techniques for statically computing conservative
approximations of the may and must alias relations from the text of
the program [1].
EXAMPLE 2: Dynamic Names In figure 2(a) we have a simple
class Sum computing a series of additions with the expected values
th1.s1.sum = 300 and th1.s1.num = 100 upon the exit of
main. This condition is only guaranteed when the method add
is executed atomically, as there are otherwise race conditions on
the increments of this.num and this.sum: an interleaving where
thread th1 reads the value of this.sum, then thread th2 reads and
updates the value, and finally th1 updates the value, results in the
“lost update” symptom observed from th1. 2



class Sum {
int num = 0, sum = 0;

void add(Sum s) atomic {
this.num += s.num;
this.sum += s.sum;
return;

}
static class SThread extends Thread {

Sum s1, s2;
public void run() {
int count = 50;
while (count > 0) {

s1.add(s2);
count--;

} } }
static void main(String[] args) {

SThread th1 = new SThread();
SThread th2 = new SThread();
th1.s1 = th2.s1 = new Sum();
th1.s2 = th2.s2 = new Sum();
th1.s2.num = 1; th1.s2.sum = 3;
th1.start(); th2.start();

} }

this@SThread.run().s1

this@Sum.add()

must

this@SThread.run().s2

s@Sum.add()

must

class Sum {
int num = 0, sum = 0;

final Lock lock = new ReentrantLock();

void add(Sum s) {
this.lock.lock();
this.num += s.num;
this.sum += s.sum;
this.lock.unlock();
return;

}
...

}

class Sum’ {
...
static void main(String[] args) {
SThread th1 = new SThread();
SThread th2 = new SThread();
th1.s1 = th2.s2 = new Sum();
th1.s2 = th2.s1 = new Sum();
th1.s1.num = th1.s1.sum = 1;
th1.start(); th2.start();

} }

Figure 2. (a) Concurrently executing threads in the Sum module (b) Must-aliases of Sum (c) The rewritten Sum program, protected by locks
(d) A similar program, Sum’, in danger of deadlock

3.2 Constraints

Let Lvals = {v1, . . . , vk} be the set of lvalues of a multi-threaded
program P . In our framework, each lvalue vi has an associated
local lock resource `i associated with the runtime object referred
to by vi. In addition, a set {g1, . . . , gk} of globally-scoped, static,
global lock resources are available for allocation, making the en-
tire set of locks Locks = {`1, . . . , `k} ] {g1, . . . , gk}. Let # :
Locks → {1, . . . , 2k} be a one-to-one lock-numbering function.
In the same spirit as section 2, we introduce a 0-1 variable ai#`

which takes the value 1 if and only if vi is assigned lock `.
As before, each lvalue must be assigned a lock, thus demands

the constraint for each vi ∈ Lvals:
X

j

aij ≥ 1 (9)

In the face of reference based lock allocation, we maintain the
invariant that whenever two lvalues are aliased at run time, their
protecting locks are also aliased. We approximate this invariant
with the following constraints. For every pair of lvalues vi1 and
vi2 which must be aliased during program execution (i.e. they are
aliases, and are always aliased when accessed), and each lock `, we
have the constraint

ai1#` = ai2#`. (10)
In the case that may-aliases vi1 and vi2 may not be aliases at some
point of access, we have the constraints

ai1#g = ai2#g (11)

for each global lock g, and

ai1#` = ai2#` = 0 (12)

for each local lock `. Constraint (12) conservatively ensures the
invariant holds by prohibiting local locks to protect lvalues with
indefinite aliases.
EXAMPLE 3: [Local Locks] Since the lvalues this@add and
s@add of figure 2(a) have only must-aliases (see figure 2(b)) they
can be safely protected by local locks (the application of con-

straint 12 is avoided). The ILP constraints due to aliasing are thus:
athis@add,` = as1,`, as@add,` = as2,` for all ` ∈ Locks.

In figure 2(c) we show the program generated due to the locking as-
signment where this@add and s@add (and thus th1.s1, th2.s1
and th1.s2, th2.s2, respectively) are both assigned the instance
lock of this@add. 2

Since locks can be associated with runtime references, we must
also ensure that any assigned lock is accessible from every scope
in which the respective lvalue is accessed. For each lvalue vi and
each local lock ` which is inaccessible from some atomic section
A in which vi ∈ access(A) we have the constraint

ai#` = 0. (13)
Preferring the assignment of a local lock to a global lock cor-

responds to reducing the possibility of atomic sections conflicting
during program execution. For example, the parallel execution of
the same atomic section is possible if only local locks are acquired,
and the accessed instance data are not aliased. This preferential
treatment can be achieved by giving a higher cost to global locks
than local locks, or by making use of specialized features of solvers,
such as special ordered sets [3].

THEOREM 2. [Soundness] Let P be a multi-threaded program
with atomic sections A, and Opt(P ) an optimal solution to the lock
allocation problem for P . For each A ∈ A, the block A executes
atomically in POpt(P ).

3.3 Avoiding Deadlock

When the set of variables and locks can be statically determined,
as was the case in Section 2, we can avoid deadlock by imposing
a linear ordering on the set of locks. In the presence of references
and aliasing, the set of locks is determined dynamically. Because
locks can be associated with instances of program variables (as
opposed to a single lock governing every instance of a variable),
the target program has the possibility of deadlock, as Example 3.3
demonstrates. We say a program P is deadlock-free if every multi-
threaded execution of P avoids deadlock.



int[] g = { 0, 0 };
void inc(boolean b) atomic {
if (b) g[0]++; else g[1]++;

}

Figure 3. Where alias-precision can make a difference

EXAMPLE 4: Deadlocks Figure 2(d) shows another program con-
currently performing additions. In this example, the threads th1
and th2 are accessing the two Sum objects in reversed roles. The
lvalues th1.s1 and th1.s2 are aliased to this@add and s@add,
respectively, while th2.s1 and th2.s2 are aliased to s@add and
this@add. If the competing threads were to each take one lock
(the lock of s@add, for example) before either took a second lock,
the program would deadlock as neither thread can acquire its sec-
ond lock. Any sound lock assignment must assign the same lock to
s@add and this@add to prevent this possibility. 2

To deal with lock ordering in this situation, we analyze the
temporal relationships between protected accesses of lvalues.
Accessed-Before Relation. The ordering on locks is obtained via
an accessed before relation specifying data dependencies on lvalues
in the atomic sections. Formally, for two lvalues v1, v2 ∈ Lvals, we
say v1 is accessed before v2 if there exists an atomic section A and
a control-flow path in A such that (1) v1 is accessed on the path,
(2) v1 is then possibly modified (e.g., by a write to an lvalue that
may alias v1), and finally (3) v2 is accessed after the modification.
We can combine the aliasing information with a traversal of the
control-flow graph to obtain a conservative overapproximation of
the accessed before relation. If the access graph is acyclic we can
order the lvalues of the program linearly by a topological sort of
the access graph. If not, we can order the SCC dag of the graph
linearly.
Ordering constraints We can enforce a linear ordering (and hence
the absence of deadlock) by adding ordering constraints to the ILP.
Let Deps be an access graph of the program P . We take a linear
ordering determined by the scc dag of the dependency graph, and
add constraints that state that an lvalue i in a non-trivial scc cannot
be assigned local locks for any lvalue in its own scc or in an scc
succeeding it in the linear order.

THEOREM 3. Let P be a multi-threaded program with atomic sec-
tions A, and Opt(P ) an optimal solution to the lock allocation
problem for P . POpt(P ) is deadlock-free.

3.4 Precision

The imprecision of the underlying alias (and dependency) analyses
can cause our lock allocation scheme to infer sub-optimal, but still
sound, locking assignments. Example 5 illustrates one way this can
happen.
EXAMPLE 5: The procedure inc of figure 3 simply increments
one of two counters, depending the value of its argument b. An
alias analysis which considers every cell of an array aliased would
force our lock allocation scheme to assign the same lock to both
cells, despite that it’s sound in this case to assign separate locks
to each. This allocation causes an unnecessary conflict between
callers invoking inc(true) and inc(false). 2

We have also assumed that any two atomic sections can execute
concurrently. Further static analysis to discover which atomic sec-
tions may actually execute in parallel [15] would improve the gen-
erated locking assignments, since any constraints arising from sec-
tions which cannot execute in parallel may be safely pruned away.

4. Experiments
Implementation. We have two implementations of the lock allo-
cation algorithm: jla for Java programs and cla for C programs.
The Java version, jla, is coded in Java, using the Polyglot compiler
framework [17]. The C version, cla, is coded in Ocaml and uses
the CIL [16] infrastructure for C programs. Both tools use Min-
isat+ [4], a pseudo-boolean optimization solver, that converts the
0-1 ILP to a boolean SAT instance. In our experiments, we assigned
the following costs to locks and conflicts. Each conflict was given
a cost 1. Each global lock was given a cost 2 and each local lock
a cost 1. Instead of solving a sequence of optimization problems,
we minimized the sum of the conflicts and the sum of the total lock
costs. We experimented with a set of different cost heuristics, but
the above simple heuristics provided lock assignments that were
similar to manually coded locks in most examples.
Nested Atomic Sections. Atomic sections may transitively call
methods containing other atomic sections. A lock obtained in a
nested atomic section cannot always be safely released at the end of
that section—the same lock may be re-obtained by another nested
section under the same parent, potentially violating atomicity. To
avoid this issue, we use a two-phase locking discipline [13]. Locks
are obtained when the associated lvalue is first accessed, but are not
released until the outermost atomic section finishes. This approach
guarantees atomicity and has been used by other locking tools, such
as Autolocker [14].
Microbenchmarks. We ran both the C lock allocator and the Java
lock allocator on simple string buffer and hash table examples. The
string buffer example was a simplification of Java’s StringBuffer
class. We found local locking assignments that, together with our
use of two-phase locking, removed the atomicity violation present
in Java’s StringBuffer class and reported in [7].

The hash table example, like the Hashtable class provided
by Java’s collection framework, uses an array of linked-list buck-
ets. However, due to methods like resize that copy the array,
our allocator assigns a single global lock for the hash buckets
of Hashtable. The resize method changes the number of hash
buckets by allocating a new bucket array and re-hashing all entries
to the new set of buckets, resulting in a cyclic dependency graph.
A hand-implemented lock assignment would be better, assigning a
lock for each array element. This is left as future work.
AOLServer. We also ran the C lock allocation on a larger
program—the nsd module of AOLserver [2], an open source web-
server in production use at AOL and other companies. The devel-
opers of Autolocker had annotated the program with atomic blocks,
as well as assigned, to each global variable, a unique lock that pro-
tected it. In our experiments, we ignored the lock assignments, and
used the atomic annotations to infer a lock mapping and corre-
sponding placement. We ran each file in the nsd module separately.
This was sound because the global variables were within the scope
of the individual files. We test two hypotheses about lock alloca-
tion: first, many real programs use very simple locking disciplines
that should be automatically inferable; and second, our algorithm
performs efficiently in practice.

The results of the AOLserver experiment are summarized in
Table 1. The experiments are more a validation of the scalability
of the approach rather than to demonstrate particularly intricate
locking behavior. In the AOLserver module considered, most files
had very simple lock assignments, all of which were equivalent to
the assignments synthesized by our lock allocation algorithm. This
supports our claim that in many cases, a simple locking scheme is
enough to ensure atomicity and this can be automatically inferred.

In most cases, the lock allocation algorithm runs in a few sec-
onds. The constraint generation phase is slow: we have a naive
loop that runs in time O(a2L3) where a is the number of atomic



File LOC Lvals Atomic Variables Constraints Generate Solve Total Locks Autolocker
cache 1571 71 10 171551 671068 82.64 0.44 95.93 1 1
callbacks 580 29 7 10883 40860 1.19 0.07 2.56 1 1
dns 522 10 2 388 1189 0.02 0.001 0.53 1 1
driver 1640 26 7 5099 18145 0.390 0.130 15.8 2 2
encoding 835 15 1 241 327 0.01 0.001 1.02 1 1
fd 311 7 2 218 674 0.010 0.001 0.44 1 1
info 734 6 2 157 449 0.001 0.001 0.65 1 1
listen 318 22 3 3915 14152 0.36 0.02 1.07 1 1
log 914 10 1 111 146 0.01 0.01 1.04 1 1
tclenv 296 6 1 43 57 0.001 0.001 0.6 1 1
tclfile 1292 21 5 7338 28142 1.64 0.06 11.63 1 1
tclhttp 578 12 4 749 2528 0.05 0.06 1.71 1 1
tclinit 1434 6 1 43 53 0.001 0.001 2.62 1 1
tclvar 1052 144 11 1350007 5337645 2294.46 23.73 2399.0 4 2
sockcallback 559 13 5 1328 4668 0.09 0.02 1.02 1 1
urlspace 2153 15 6 1291 4589 0.19 0.01 3.96 2 1
unix 568 20 4 3830 14053 0.32 0.02 1.08 1 1

Table 1. Experiments on aolserver. File gives the name of the file in the nsd module. LOC is lines of code. Lvals is the number of lvalue
names considered by the lock allocation. Atomic is the number of atomic blocks in the code. Variables and constraints give the total number
of 0-1 variables and the total number of constraints in the ILP. Generate is time in seconds to generate the ILP from the code. Solve is time
in seconds taken by Minisat+ to solve the ILP instance. Total is the wallclock time in seconds for the analysis. Locks is the number of locks
inferred by the analysis and Autolocker gives the number of locks provided as Autolocker instrumentation.

blocks and L the number of lvalues. Notice, for example, that the
largest example (tclvar) takes almost 40 minutes. However, even
though the generated ILP is very large, the constraint solver is ex-
tremely fast, taking 24s on this largest example, and usually taking
less than 1s. This is because many of the accessibility and aliasing
constraints severely restrict the possible assignments (setting many
variables to 0) so that boolean constraint propagation in the SAT
solver is very effective in pruning the search space.

The lock assignments were similar to those manually specified
in the original program except for two cases, tclvar and urlspace. In
tclvar, there are two functions with static variables that are changed
to global variables by CIL. These variables are assigned locks by
our algorithm, but Autolocker did not associate locks with these
variables, probably because these would not be modified in parallel.
Further, the lock allocation for tclvar finds an instance-specific
lock: it associates a lock with each structure of type Bucket (which
contains a hash table that is protected by this lock). The Autolocker
annotations do the same.

In urlspace, there are two global variables urlspace and
nextid that are assigned the same lock by the annotations in Au-
tolocker. As these variables are accessed in separate atomic blocks,
our algorithm assigns distinct locks to them. However, our algo-
rithm found an optimal solution that assigned the local lock nom-
inally associated with urlspace to nextid and vice versa. Thus,
the lock assignments found by the solver can be counter-intuitive
(though sound).

Acknowledgments. We thank Bill McCloskey for forwarding the
Autolocker annotated files to us.
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