Microarchitecture Verification by
Compositional Model Checking

Ranjit Jhala Kenneth L. McMillan

In the Proceedings of CAV '01 : 13th Intl. Conference on Computer-Aided Verification

Microarchitecture verification by Compositional
Model Checking

Ranjit Jhala'* and Kenneth L. McMillan?

! University of California at Berkeley
2 Cadence Berkeley Labs

Abstract. Compositional model checking is used to verify a processor
microarchitecture containing most of the features of a modern micropro-
cessor, including branch prediction, speculative execution, out-of-order
execution and a load-store buffer supporting re-ordering and load for-
warding. We observe that the proof methodology scales well, in that the
incremental proof cost of each feature is low. The proof is also quite
concise with respect to proofs of similar microarchitecture models using
other methods.

1 Introduction

Compositional model checking methods reduce the proof of a complex system,
through decomposition and abstraction, to a set of lemmas that can be ver-
ified by a model checker. It has been shown that the proof of systems with
unbounded or infinite state can be reduced to tractable model checking prob-
lems on finite state abstractions. For example, an instruction processing unit
using Tomasulo’s algorithm [Tom67] was proved using the method [McMO00] for
unbounded resources. The proof was substantially simpler than that of a similar
model using a general purpose theorem prover [AP99]. The safety proof involved
just three simple lemmas verified by a model checker. The relative simplicity of
the proof using compositional model checking owed principally to the lack of user
generated inductive invariants and the lesser need for manual proof guidance.
Nonetheless, the important question of the scalability of the method remains
open. That is, does the manual proof effort increase in reasonable proportion to
the size and complexity of a system?

We approach this question by considering the verification of a complete pro-
cessor microarchitecture, containing most of the important features of a modern
microprocessor. These include branch prediction, speculative execution, out-of-
order execution (with in-order retirement and clean exceptions) and a load-store
buffer supporting re-ordering and load forwarding. The question is whether the
complexity of the proof increases by some reasonable increment with each new
architectural feature, or whether it increases intractably, making proofs of com-
plex systems impractical. We find that the incremental proof cost of each archi-
tectural feature is small (just a few additional lemmas) and that the interaction
of these features, though complex, does not make the proof expand intractably.

* Supported by SRC contract 99-TJ-683.003, AFOSR MURI grant F49620-00-1-0327,
NSF Theory grant CCR-9988172

The microarchitecture model that we verify is similar in its feature set to
models that have been verified using theorem proving methods [HGS00,SH98].
We compare our proof to the proofs obtained by these methods, with emphasis
on the use of inductive invariants and its effect on proof complexity.

Section 2 provides a brief overview of the proof method. Then section 3 de-
scribes the microarchitecture model that we verified, and its specification. In
section 4 we discuss the proof, and consider the question of scalability. Sec-
tion 5 compares the proof with proofs obtained previously for similar microar-
chitectures. In section 6 we conclude with some remarks on the strengths and
weaknesses of the method, and how the weaknesses might be addressed.

2 Background

To verify the microarchitecture, we use the SMV proof assistant [McMO00]. This
tool supports the reduction of correctness conditions for unbounded or infinite-
state systems to lemmas that can be verified by model checking. Here, we briefly
sketch the proof methodology.

The general approach is to divide the intended computation into “units of
work” that use only finite resources in the implementation, such as instructions
in a processor, or packets in a packet router. Correctness of a given unit of work
is then reduced to a finite state problem using a built-in collection of abstract
interpretations. In effect, we disregard those components of the system state not
involved in the given unit of work. Because specifications can be temporal, we
avoid the need to write and verify an inductive invariant of the system. Instead,
we exploit the model checker’s ability to compute the reachable states (strongest
invariant) of the abstract models. This greatly simplifies the proofs.

The proof methodology A system is specified with respect to a reference
model. For a processor, this is an “instruction set architecture” (ISA) model that
executes one instruction at a time in program order. The correctness condition is
a temporal property relating executions of the implementation to executions of
the reference model. We decompose correctness into “units of work” by specifying
refinement relations. These are temporal properties specifying the data values
at internal points in the implementation in terms of the reference model. For
example, in a processor we may specify the operands read from the register file
and the results computed by the ALU. To make such specifications possible, we
may add auxiliary state variables that record the correct data values as they
are computed by the reference model. A definitional mechanism in the proof
assistant allows us to add auxiliary variables in a sound manner.

Mutually inductive temporal proofs The refinement relations are then
proved by mutual induction over time. Each refinement relation is a tempo-
ral property of the form G¢, meaning that ¢ is true at all times ¢. To prove
that ¢ is true at time ¢, we may assume by induction that the other refinement
relations hold for all times less than ¢. This is useful in a methodology based on
model checking, because the notion that ¢ up to time ¢ — 1 implies p at time
t can be expressed in temporal logic as (g U —p). Hence, this proposition can
be checked by a model checker.! This mutually inductive approach is important

! In some cases we can also assume that another refinement relation holds for all times
less than or equal to t, provided we do not do this in a circular way.

to the proof decomposition. It allows us to assume, for example, when proving
correctness of an instruction’s source operand, that the results of all earlier in-
structions have been correct. Note that this is quite different from the method
of proof by invariant, in which we show that some state property at time ¢ — 1
implies itself at ¢. Here the properties are temporal, and the inductive hypothe-
ses are assumed for all times less than ¢, and not just at ¢ — 1. This is important,
since it allows us to avoid writing auxiliary invariants.

Temporal case splitting Next we specialize the properties we wish to prove, so
that they depend on only a finite part of the overall state. For example, suppose
there is a state variable v, which is read and written by processes p; ...p,. We
wish to prove a property G¢ of v. We add an auxiliary state variable w which
points to the most recent writer of variable v. Now, suppose we can prove for all
process indices i that G((w = i) = ¢). That is, ¢ holds whenever the most recent
writer is p;. Then G¢ must hold, since at all times w must have some value. We
call this “splitting cases” on the variable w, since it generates a parameterized
property with one instance for each value of w. For a given value of ¢, we may now
be able to abstract away all processes except p;, since the case w = i depends
directly only on process p;.

Abstract interpretation Finally, we wish to reduce the verification of each
parameterized property to a set of tractable model checking problems. The diffi-
culty is that there may be variables in the model with large or unbounded ranges
(such as memory addresses) and arrays with a large or unbounded number of
elements (such as memory arrays). We solve this problem by using abstract in-
terpretation to reduce each data type to a small number of abstract values. For
example, suppose we have a property with a parameter i ranging over memory
addresses. We reduce the type A of memory addresses to a set containing two
values: the parameter value i, and a symbol A \ i representing all values other
than ¢. In the abstract interpretation, accessing an array at location 4 will pro-
duce the value of that location, whereas accessing the array at A\ ¢ produces L,
a symbol representing an unknown value.

In effect, for each time the user “splits cases” on a variable of a given type,
there is one value in the abstract type and one element in each abstracted array
indexed by that type. If there are two parameters ¢ and j of type A, the proof
assistant may split the problem into two cases: one where ¢ = j and one where
i # j. Alternatively, it may consider separately the cases i < j, ¢ = j and 7 > j,
if information about the order of these values is important to the property.

The abstractions used by the proof assistant are sound, in the sense that
validity of a formula in the abstract interpretation implies validity in the concrete
model for all valuations of the parameters. Of course, the abstraction may be too
coarse to verify the given property (i.e., the truth value in the abstract model
may be L) even though the property is true. Note, however that the user does
not need to verify the correctness of the abstraction, since this is drawn from a
fixed set built into the proof assistant.

The proof process proceeds as followings. First, the user specifies refinement
relations (and other lemmas, as necessary), which are proved by mutual temporal

induction. These properties are parameterized by “splitting cases” on appropri-
ate variables, so that any particular case depends on only a finite part of the
system state. Finally, the proof assistant abstracts the model relative to the
parameter values, reducing the types with large or unbounded ranges to small
finite sets. The resulting proof obligations are discharged by a model checker.

We now consider how this methodology can be applied to processor microar-
chitectures with features such as speculative execution, out-of-order execution
and load-store buffers.

3 The Processor Model

The processor microarchitecture that we model has out-of-order, speculative
execution using a variant of Tomasulo’s algorithm with a reorder buffer. It
implements branch prediction and precise exceptions, and has an out-of-order
load-store buffer with load forwarding. For simplicity, we separate program and
data memories. The model is generic, in that many functions, such as the ALU
(arithmetic-logic unit) and the instruction decoder have been replaced by unin-
terpreted function symbols. A specific ISA may be implemented by defining these
functions appropriately. Our proof, however, is independent of these functions.
3.1 The Specification

The microarchitecture is specified with respect to a reference model, which exe-
cutes one instruction per step in program order. The ISA consists of the following
instruction classes. A load (LD) takes two register operands, source address and
destination. It reads data memory at the source address, and loads the value into
the destination register. A store (ST) takes two register operands, the source and
the destination address. It stores the source value at the destination address in
data memory. An ALU operation (ALU) takes two register operands and a des-
tination register. This generic instruction models all the instructions using the
ALU by a single uninterpreted function. Although we do not explicitly model im-
mediate operands, these can be folded into the generic ALU function. A branch
(BC) performs a test on its two register operands. If true, it sets the program
counter to the branch target value. Both the test and the branch target compu-
tation are modeled by uninterpreted functions. A jump (JMP) sets the program
counter to the address in the source register. This is to implement non-local
jumps such as returns from exception handlers. Finally, an output operation
(OUT) sends its register operand to the processor’s output port. The LD, ST
and ALU operations can cause an exception to be raised, in which case control
is transferred to the exception handler address. Asynchronous interrupts are not
modeled.

3.2 The Implementation Model

The microarchitecture is depicted in figure 1. It is out-of-order, in that instruc-
tions are executed when their operands are available, not necessarily in program
order. Instruction execution begins by fetching the instruction from program
memory at the program counter address (PC). The instruction is then decoded
to determine the operation type, the operand registers, the branch target, etc.
The program counter is updated by incrementing its current value. Since the
increment depends on the instruction width, we model incrementation by an

Register retired results

Fil
decode e ‘J
Program 5 D 4
Memory sractions > | RS RB
PC |* branch results
¢ | |
branch ﬂ
predictor Data
LSQ ==—"| Memory

Fig. 1. Microarchitecture

uninterpreted function. In case of a conditional branch, however, the branch
predictor guesses the value of the branch condition. Thus we continue fetching
instructions even though the actual branch condition is not yet known, at the
risk of having to cancel the ensuing instructions if the guess is incorrect. If the
predicted branch condition is true, the PC is loaded from the branch target.
Since branch predictions do not affect correctness, the branch predictor is mod-
eled as a non-deterministic choice, though this can be replaced by any desired
function.

The instruction then reads its source operands from the register file, and
is loaded into the next available reservation station (RS) to await execution. A
source register may contain an actual data value, or it may contain a tag, pointing
to the RS that will produce the data value when it completes. In the case of a tag,
the RS must wait until the corresponding data value returns on the result bus
(RES). When both operand values are available, the instruction may be issued
to an execution unit. When the result of the operation is computed, it returns on
the result bus, with its tag, and may be forwarded to any instructions holding
that tag. The result is stored in the reorder buffer (RB) until the instruction
retires. At retirement, the result is written to the register file. Instructions are
retired in program order, so that the state of the register file is always consistent.
This allows clean recovery from exceptions or mispredicted branches.

When a branch instruction retires, we compare the computed value of the
branch condition to the predicted value. If these are not the same, subsequent
instructions may have been fetched from an incorrect program counter. Thus,
they must be flushed. When this happens, the program counter is set to the
alternative that was not chosen at fetch time.

Load and store operations are recorded in a load-store buffer (LSQ) in pro-
gram order. In our model, this buffer is unbounded, however it could be refined
by any fixed size buffer. Loads and stores are not necessarily executed in program
order. A load operation may execute after it has issued (i.e., its operands have
been obtained) and after all earlier stores to the same address have executed.
Alternatively, a load instruction may execute by forwarding the data value from

the most recent store to that address, even if that store has not yet executed. A
store instruction can execute after it has issued, and after all previous loads and
stores to the same address have executed.?

The above conditions avoid the classic hazard conditions (RAW, WAR and
WAW), guaranteeing correct operation even when operations occur out of pro-
gram order. In addition, we must ensure that a store cannot execute until the
instruction has actually retired, since the store cannot be undone if the instruc-
tion were to be flushed. When a store instruction retires, it is marked committed
in the load-store buffer, and cannot subsequently be flushed. The choice of which
available operation to execute is non-deterministic, though this could be replaced
by any desired scheduling policy.

4 Verification

Our correctness criterion is that the sequence of output values produced by
the reference model and the microarchitecture model should be the same, for
corresponding initial states. The reference model chooses non-deterministically
at each time whether to take a step. By witnessing this choice, we align the
reference model’s operation temporally with that of the implementation.

The two most interesting aspects of the proof deal with speculative execution
and with partially ordered operations, such as register reads/writes or memory
loads/stores. We introduce proof decompositions to handle these situations, us-
ing compositional model checking.?

4.1 Specifying refinement relations

Our basic approach is to decompose the proof into “units of work”, in this case
instructions. We prove correctness of a single instruction, relative to the refer-
ence model, given that all earlier instructions execute correctly. To reduce the
verification complexity, we may further decompose the instruction into smaller
steps, such as operand read, result computation, memory load, etc. We then
write refinement relations, specifying the data values at various points in the
implementation, in terms of the reference model.

Of course, to specify data items in the implementation, we must determine
their correct values. This is done by defining auziliary variables that record the
correct data values as computed by the reference model. For example, when an
instruction is fetched, the reference model executes it atomically, computing the
correct operand and result values. The instruction is then stored in an RS. We
record the correct operands and result for that RS. For example, here is the
SMYV code that does this:

if(—stallout A iopin in {ALU,LD,ST,BC}){
next(auist_choice].opra) := opra;
next(auist_choice].oprb) := oprb;
next(auast_choice].res) := res;}
% Note this implies that the actual address operands of all earlier stores (and loads)

must be known before a load (store) can execute.
3 Proof and prover may be found at http://www-cad.eecs.berkeley.edu/ kenmcmil

Here, st_choice is the index of the reservation station, and opra, oprb and res
are values from the reference model. We now specify that, when the reservation
station holds an operand value, it is equal to the stored correct value in the auzx
structure (and similarly for result values).

To do this, we must take into account speculative execution. That is, if an
instruction occurs after an exception or a mispredicted branch, we say it is shad-
owed. A shadowed instruction does not correspond to any instruction executed
by the reference model. Thus we cannot specify its correct operand and result
values. In fact, these values are spurious, and must never affect the register file
or memory. To write refinement relations, we must know whether an instruction
in the implementation is shadowed. Fortunately, this is easy to determine. We
set an auxiliary state bit shadow when the predicted branch condition differs
from the correct branch condition, or when an exception occurs. The shadow bit
is cleared when a flush occurs. Here is the SMV description:

init(shadow) := 0;

next(shadow) := —flush A (shadow V

—stallarch A (exn_raised V (opin = BC A taken # itaken)));
Here, taken is the correct branch condition (from the reference model) and itaken
is the predicted branch condition. Now, any instruction fetched while shadow is
true is marked shadowed, by setting the auxiliary bit auz[st-choice].shadow.
While shadow is set, we stall the reference model, since no valid instructions are
being executed.

Now we write the refinement relation for operands. We specify that if a non-
shadowed RS holds an operand value, it must be the correct value. Here is the
specification for the a operand:

forall(k in TAG) layer lemmal :

if(st[k].valid A st[k].opra.valid A —aualk].shadow)
st[k].opra.val ;== aualk].opra;
This specifies the a operand value for RS &, when it is valid (holding and instruc-
tion), and when the a operand is valid, and when it is not shadowed. Otherwise
the value is unspecified. We can write a similar specification for the result value,
and for other data values in the machine as necessary.
4.2 Verifying operand correctness

Now we must verify the above lemma. To verify data, we split cases on the
possible sources of the data. Here, an operand value we read is generated by
the most recent instruction to write the source register. We can identify this
instruction’s RS by recording the tag of the most recent RS to write each register.
We then assume, by induction, that results computed at earlier times are correct.
We need one additional fact, however: that the most recent writer in execution
order is in fact the most recent writer in program order. If this is the case, then
we must read the same value read by the reference model.

One way to establish this is to split cases on both the most recent writer in
the implementation and the most recent writer in program order. Since the im-
plementation retires instructions in program order, these two must be the same,
hence correct values are always read. However, there is a complexity problem:

the abstraction in this case will involve three distinct tag values, and hence the
states of three distinct RS’s. In practice, we found the time and space required
to verify this model prohibitive. Instead, we used an intermediate lemma to sim-
plify the problem. We observed that a register value is only read when no writes
to the register pending, in which case its value is up-to-date with respect to the
reference model. Thus, we specified the register contents as follows:

forall (i in REG) layer uptodateReyg :
if (—ir{d].resvd) irfi].val := r{i];
That is, if no write is pending to register ir[i], its value matches reference model

register r[i]. This is verified using the case split described above, which is given
to SMV as follows:

subcase uptodateReg[i][k][c] of ir[j].val/ [uptodateReg
for auzLastIssuedRS[j]=i A auxzLastWriterRS[j]=k A rjl=¢;

That is, we let ¢ be the last writer to register j in program order, k the last
writer in the implementation, and c the correct data value. In this case there are
only two distinguished tag values, ¢ and k, so the abstraction contains only two
RS’s.

In fact, the first attempt to check this property produced a counterexample
in which some abstracted instruction causes a flush, cancelling the instruction
that should write register j. The abstract model allows this because the states
of RS’s other than ¢ and k are unknown. To deal with this, we introduce a
non-interference lemma, stating that no unshadowed instruction is flushed:

forall(i in TAG) lemma5[i] : assert G
(flush = shadow N (complete_st#i = —(st[i].valid A —aua|i].shadow)));

Here, complete_st is the tag of the RS causing the flush. We prove this by split-
ting cases on the flushing instruction. This eliminates the above counterexample
to the up-to-date register property, leaving another counterexample in which
a shadowed instruction writes register j and corrupts its value. This calls for
another lemma stating that no shadowed instruction retires:

lemma6 : assert G (retiring = —aua{complete_st].shadow);

This can be proved by splitting cases on the currently retiring instruction and
the instruction that set the shadow bit (e.g. a mispredicted branch). That is, the
latter must retire and cause a flush before the shadowed instruction can retire.
With this additional lemma, the up-to-date register property is verified. Now
operand correctness is easily proved by splitting cases on the source register and
the operand’s tag, which indicates the data source when forwarding from the
result bus:

subcase lemmal[i[j][c] of st[k].opra.val//lemmal
for st[k].opra.tag = i A aualk].srca = j A auxlk].opra = ¢;
The specification for results returning from execution units can be verified us-
ing operand correctness. This requires a non-interference lemma stating that
unexpected results are never returned.

4.3 Verifying memory data correctness
We also specify the the results returning from the data memory, as follows:

lemma4 : assert G (~“mgauz|mq_head].shadow A mem_ld A mem_enable
A load_from_mem = mem_rd_data = mqauz]mg_head].data);

Here, mg_head points to the currently executing operation in the load-store
queue. That is, if the current operation is an unshadowed load, then the data
from memory are the correct data stored in the auxiliary array mgauz. We break
this into two cases — when data are read from memory and when data are for-
warded from the load-store queue. Here we consider only the former case, al-
though the latter is similar.

This property is similar to the one specifying values read from the register
file. Here, we must prove that, for any load, the most recently executed store to
the same address (call it Sg) is also the most recent in program order (call it
Sp). As before, we use auxiliary variables to identify Sg and Sp in the queue.
Splitting cases on these two stores and the current load, we should be able to
prove that Sg and Sp are the same, hence read data are correct.

Unfortunately, the abstract model with two stores and one load is too large to
model check. We cannot solve this problem as before by writing an “up-to-date”
lemma for the memory, since we may read the memory when it is not up-to-date.
Instead, we split cases only on the current load L and on Sg. This produces a
counterexample in which Sg < Sp < L in program order. That is, at the time L
occurs, Sg has executed but Sp has not. This cannot really happen, because the
unexecuted store Sp would block load L. However, since Sp is abstracted, this
information is lost. To avoid splitting cases on Sp, we simply state as a lemma
that Sp < Sg. In SMV, we say:

lemmaja : assert G (~mqauz[mq_head].shadow A mem_ld A mem_enable
A load_from_mem = (imtag[mem_addr] > mgqaua{mq_head].lastWrite));

Here imtag[mem_addr] is Sg, while mgauz[mq_head).lastWrite is Sp. This can
be proved using another lemma, stating that stores always occur in program or-
der. All three properties can be proved using just two memory queue elements.
We reduce the problem further by writing a refinement relation for the data in
the load-store queue. This allows us to abstract out the RS’s when proving mem-
ory properties. This required a lemma stating that unshadowed queue elements
are never flushed, which follows directly from the fact that unshadowed RS’s
are never flushed. The resulting abstract models can be handled easily by the
model checker. At the cost of additional lemmas, we have reduced an intractable
problem to a tractable one.

4.4 Remaining steps

For the program counter (PC), we write a refinement relation stating that, when

the shadow bit is not set, the implementation PC equals the reference model PC:
layer opok : if(-shadow) ipc := pc;

Since the PC can be loaded from an RS (in case of a flush) or from a register

(for a JMP), we split cases on the most recent reservation station to and on the
source register of the previous instruction. We also use the two lemmas about

Model Proof size

A (baseline) 5700 bytes

B = A + out-of-order |7000 bytes

C = B + speculation |13K bytes

D = C + load-store buffer| 18K bytes
Table 1. Proof size vs. feature set.

speculation. Further refinement relations specify the decoded instruction and
branch target. This isolates the uninterpreted functions computing these values.

Finally, we must prove our overall correctness criterion, correctness of out-
puts. The OUT instruction reads a register and sends its value to the output
port. Thus, the up-to-date register property suffices to prove output correctness.
Overall, the proof* consists of the following elements: (1) refinement maps for the
program counter, instruction decoder, register file, RS’s and load-store queue,
(2) two non-interference lemmas for speculative execution, two for the result bus,
and four for the load-store queue (3) case splitting instructions for the above and
hints for adjusting the abstractions, and (4) auxiliary variable declarations. All
told, this information comprises less than 18K bytes, somewhat less than the
size of the microarchitecture model and its specification.

To summarize, our strategy is to reduce the verification problem “units of
work”, in this case instructions. Since each instruction uses only finite resources,
we can verify its correctness using a finite abstraction of the system. We identify
the resources used by the instruction (e.g. RS’s, registers, etc.), by introducing
auxiliary variables. Once we “split cases” on these resources, the pointer types
and arrays are automatically reduced, yielding a finite abstract model.

The novel aspects of this proof are in the treatment of speculation, and of
read /write hazards. We handled speculation by introducing an auxiliary shadow
bit for each instruction in the machine. We then show two key facts about the
system: that unshadowed instructions are never canceled, and that shadowed
instructions never retire. To handle read/write hazards, we use an abstraction
strong enough to prove that the most recent writes to an address in execution
and program order are the same.

Finally, to address the question of scalability, we consider four designs of
increasing complexity: design A is a simple in-order processor, design B adds
Tomasulo’s algorithm for out-of-order execution, design C adds speculative exe-
cution and design D adds a load-store buffer. Table 1 shows the textual size of the
proofs we obtained for these four designs. Adding Tomasulo’s algorithm is the
simplest step, involving only a few additional case splits and two non-interference
lemmas. Adding speculation and the load-store buffer is more complex, because
of the register and memory ordering properties we must prove. Nonetheless, we
find that the complexity of the interactions between these features does not
make the proof intractable. Rather, the proof increment associated with adding
a feature remains moderate, at least for this example.

4 By “proof”, we mean all the input used to guide a mechanical prover, and not a
proof in the mathematical sense.

5 Comparison with Other Approaches

We now compare our proof with proofs of similar microarchitecture models us-
ing other methods. We consider proofs by Sawada and Hunt [SH98], Velev and
Bryant [VB00] and Hosabettu et al. [HGS00]. All of these proofs are variations
in some form on the method of Burch and Dill [BD94], in which an abstraction
function is constructed by “flushing” the implementation, i.e., inserting null op-
erations until all pending instructions are completed. This yields a “clean” state
which can be compared to the reference model state. One then proves a commu-
tative diagram, that is, that taking one implementation step and then applying
the abstraction function yields the same state as applying the abstraction func-
tion followed by zero or more reference model steps. This can be done in an
almost fully automated way for simple pipelines, and has the advantage that the
abstraction function is mechanically constructed.

However, the method has two distinct disadvantages. First, for complex archi-
tectures, the abstraction function is generally not strong enough to be inductively
invariant. It must be manually strengthened with information about reachabil-
ity of control states. In our method, no such information is required. Second,
the the abstraction function depends on the entire machine state, including all
the instructions that are currently in the machine. For complex architectures,
it becomes intractable to deal with it automatically. In our method, we reason
about only one or two instructions. Thus, the proof obligations are local, and can
be handled by model checking. By contrast, most recent work using abstraction
functions manually decomposes the flushing function into smaller, more tractable
parts. Thus the Burch and Dill method’s advantage of full automation is lost. To
see this, we consider the extant proofs in more detail. A comparison of textual
sizes of models and proofs is given in table 2.

Sawada and Hunt The work of Sawada and Hunt [SH98] is perhaps the
first formal proof a “modern” microprocessor architecture. Their processor model
uses Tomasulo’s algorithm, branch prediction, precise exceptions and a load store
buffer with forwarding. The model is qualitatively similar to ours, with a few
differences. They model asynchronous interrupts, while we do not. They use a
fixed set of execution units (one per instruction type) while we do not. Thus,
they associate RS’s statically with execution units, while we choose the execution
unit at issue time, to maximize use of the execution units. Also, their load-store
buffer holds two loads and one store, while we model an arbitrary number of
entries.

The model is defined by a collection of Common LISP functions in the the-
orem prover ACL2 [KM96]. We report in table 2 the approximate textual size
of the functions describing the processor architecture, excluding theorems and
generic functions not related to processor modeling. This is roughly three times
the textual size of our model in the SMV language. In our estimation, this differ-
ence is largely accounted for by the greater conciseness of the SMV language as a
hardware description language. However, some details present in the Sawada and
Hunt model, such as an explicit instruction decoding function, are not present in
our model, since we model them generically using uninterpreted functions. Defin-

ing these functions explicitly would increase the description size, but would not
affect the proof.

Sawada and Hunt use an intermediate abstraction called a MAETT, a table
tracking of the status of all instructions being executed in the machine. They
then relate the MAETT to the implementation and the reference model using
invariants, which are proved by induction. We do not use an intermediate ab-
straction, although our auxiliary variables do contain information similar to that
in the MAETT. The chief difficulty reported by Sawada and Hunt is that the
invariant must be strengthened by auxiliary invariants of the implementation
state. No such invariants occur in our proof (although we do need a few lemmas
concerning which events may occur in certain states). This leads to a stark dif-
ference in the textual size of the proofs: their proof (for the FM9801 processor)
is roughly 1909K bytes, of which nearly a megabyte is the inductive invariant.
Our proof is less that 20K bytes, smaller than the model description itself. This
difference of two orders of magnitude is more than enough to account for differ-
ences in models, the succinctness of representation, whitespace, etc. By another
measure, the Sawada and Hunt proof has roughly 4000 lemmas, whereas ours
has approximately 18 (depending on how one counts).

Velev and Bryant The approach of Velev and Bryant [VBO0O] is closely
based on the Burch-Dill technique. They focus on efficiently checking the com-
mutativity condition for complex microarchitectures by reducing the problem
to checking equivalence of two terms in a logic with equality, and uninterpreted
function symbols. Under certain conditions, their decision algorithm is able to
check equivalence of the massive formulas obtained from flushing complex mod-
els. Some manual work is required, however, to put the problem in a form suit-
able for the tool. They handle architectures with deep and multiple pipelines,
multiple-issue, multi-cycle execution units, exceptions and branch prediction, for
fixed finite models (note, we treat models with unbounded resources). Notably,
they do not treat out-of-order execution, or load-store buffers. We conjecture
that this is due to the complexity of the flushing functions, and the need for
complex auxiliary invariants in these cases.

Hosabettu et al. Hosabettu et al. have published a series of papers on
microprocessor verification, based on the “completion functions” approach. The
microarchitecture they model in [HGS00] is similar to ours in that it has out-of-
order execution, branch prediction, precise exceptions and it buffers stores (but
not loads, which are atomic). Stores are executed in program order, while in our
model they can be out-of-order. Also, they model a processor status word, while
we do not.

Hosabettu et al. prove a commutative diagram, but decompose the abstrac-
tion function into completion functions for each instruction in the machine. A
completion function specifies the future effect of an unfinished instruction on the
observable state. They define completion functions for each instruction type, in
terms of the present status of the instruction in the machine, and also whether
that instruction will squash subsequent instructions, ensuring they do not affect
the program state. The abstraction function is the composition of the comple-

| Technique Used [Proof Assistant|Size of Machine Spec|Size of Proof|

Sawada & Hunt [SH98] ACL2 "60K bytes 1909K bytes
Hosabettu et al. [HGS00] PVS “70K bytes “2300K bytes
Compositional Model Checking SMV 20K bytes 18K bytes
Table 2. Textual sizes of the Models and Proofs

tion functions. A commutative diagram is proved using PVS [ORSvH95] for the
decomposed abstraction function.

This approach has the advantage of avoiding applying a decision procedure
to the entire flushing function. However, proofs of the commutativity obligations
require auxiliary invariants that characterize the reachable states of the model.
To reason about the composite abstraction function, one must enumerate man-
ually the various instructions in a particular state, the exact transitions they
might make, the position of the “squashing” instruction, and so on. While de-
composing the abstraction function makes reasoning about each case simpler,
considerable manual effort is still required in stating invariants and guiding the
prover.

The authors report that the proof took much less time than that of Sawada
and Hunt. However, the textual size is comparable. The proof uses approxi-
mately 300K bytes of PVS specifications, and 2000K bytes of proof script (man-
ual prover guidance). The latter, while generated manually, contains considerable
redundancy. Thus its large size may not accurately reflect the effort needed to
create it. We conjecture the large proof size results from the need for auxiliary
invariants, and the theorem prover’s greater need for manual guidance vis-d-vis
model checkers.

6 Conclusion

We have shown that compositional model checking methods can verify a pro-
cessor microarchitecture with most of the architectural features of a modern
microprocessor. We introduced proof strategies to handle speculative execution
(using shadow bits) and to handle read/write hazards (case splitting on the
most recent writes in program and execution order). The proof methodology
scales well in that the incremental proof cost associated with each processor fea-
ture is low. Moreover, the proof is concise relative to proofs using other methods
(and is smaller than the model description itself). Although proof size is not
necessarily an indication of the human effort required, we consider the difference
of two orders of magnitude to reflect a qualitative difference in proof complexity.
We ascribe this difference to several factors.

First, as reported both by Sawada and Hunt and by Hosabettu et al., one
of the most time consuming aspects of their methods is specifying auxiliary
invariants. We exploit the model checker’s ability to compute reachable states to
avoid writing such invariants. Second, by stating refinement relations as temporal
properties we can decompose the proof into “units of work”, such as instructions,
that are temporally and spatially distributed but use finite resources. This avoids
reasoning about the entire state of the machine, and allows us to use small, finite-
state abstractions. Finally, we exploit the fact that model checkers require less
manual guidance than theorem provers do.

Nonetheless, there remains much room for improvement. For example, some
lemmas in our proof could be eliminated if the model checker were able to handle
three instructions in the abstraction instead of two. We have found that the
symbolic model checker can handle abstract models with only about half the
number of state bits that can be handled with concrete models. The reason for
this is unclear, though it may be that the abstract state spaces are less sparse,
or that there is greater nondeterminism in the transition relation. This does not
affect the scalability of the proof methodology, but the “constant factor” would
be improved if the model checker could handle larger abstract models.

To handle asynchronous interrupts, it would be useful to implement “prophecy
variables”, so that the witness function that stalls the reference model could de-
pend on the future of the implementation. Also, to implement a specific instruc-
tion set architecture, we must substitute concrete functions for the uninterpreted
functions in our model. Support for this is currently lacking in the prover, though
it would be straightforward to implement.

On the whole, although proofs of this sort are considerably more laborious
than model checking finite state machines, we feel that the methodology scales
well, and that additional processor features, such as a first-level cache, an address
translation unit, or multiple-issue could be handled in a straightforward manner,
with the addition of a few lemmas for each feature.

References

[AP99] T. Arons and A. Pnueli. Verifying tomasulo’s algorithm by refinement. In
12th Int. Conf. on VLSI Design (VLSI’99), pages 306-9. IEEE Comput.
Soc., June 1999.

[BD94] J. R. Burch and D. L. Dill. Automated verification of pipelined micropro-
cessor control. In D. L. Dill, editor, Computer-Aided Verification (CAV94),
LNCS 818, pages 68-80. Springer-Verlag, 1994.

[HGS00] R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Verifying advanced mi-
croarchitectures that support speculation and exceptions. In E. A. Emerson
and A. P. Sistla, editors, Computer-Aided Verification (CAV2000), LNCS
1855, pages 521-37. Springer-Verlag, 2000.

[KM96] M. Kaufmann and J. S. Moore. ACL2: An industrial strength version of
Ngthm. In Conf. on Computer Assurance (COMPASS-96), pages 23-34.
IEEE Comp. Soc. Press, 1996.

[McM00] K. L. McMillan. A methodology for hardware verification using composi-
tional model checking. Sci. of Comp. Prog., 37(1-3):279-309, May 2000.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault tolerant architectures: Prolegomena to the design of PVS. IEEE
Trans. on Software Eng., 21(2):17-125, Feb 1995.

[SH98] J. Sawada and W. D. Hunt. Processor verification with precise exceptions
and speculative execution. In A. J. Hu and M. Y. Vardi, editors, Computer-
Aided Verification (CAV98), LNCS 1427, pages 135-146. Springer, 1998.

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM J. of Research and Development, 11(1):25-33, Jan. 1967.

[VBO00] M. Velev and R. E. Bryant. Formal verification of superscalar micropro-
cessors with multicycle functional units, exceptions and branch prediction.
In 87th Design Automation Conference (DAC 2000). IEEE, June 2000.

