
OPIUM: Optimal Package Install/Uninstall Manager

Chris Tucker
UC San Diego

cjtucker@cs.ucsd.edu

David Shuffelton
UC San Diego

dshuffel@cs.ucsd.edu

Ranjit Jhala
UC San Diego

jhala@cs.ucsd.edu

Sorin Lerner
UC San Diego

lerner@cs.ucsd.edu

Abstract
Common Linux distributions often include package man-
agement tools such asapt-get in Debian oryum in Red-
Hat. Using information about package dependencies and
conflicts, such tools can determine how to install a new
package (and its dependencies) on a system of already in-
stalled packages. Using off-the-shelf SAT solvers, pseudo-
boolean solvers, and Integer Linear Programming solvers,
we have developed a new package-management tool, called
Opium, that improves on current tools in two ways: (1)
Opium is complete, in that if there is a solution,Opium is
guaranteed to find it, and (2)Opium can optimize a user-
provided objective function, which could for example state
that smaller packages should be preferred over larger ones.
We performed a comparative study of our tool against De-
bian’sapt-get on 600 traces of real-world package in-
stallations. We show thatOpium runs fast enough to be
usable, and that its completeness and optimality guarantees
provides concrete benefits to end users.

1 Introduction

Dynamic software linking is pervasive, ranging from dy-
namic linking of libraries at runtime to inter-process invo-
cation. Dynamic linking has numerous benefits, including
saving memory both on disk and in RAM (since one copy
of a library/package can be shared across many different
applications), and allowing installed applications to easily
benefit from updated libraries/packages. With these bene-
fits, however, comes a configuration management problem
that is difficult to solve. Libraries and software packages
have dependencies that must be satisfied, and conflicts that
must be avoided, otherwise the entire system, not just a sin-
gle application, may become unstable.

In the context of Windows, this configuration manage-
ment problem has lead to what is called “DLL hell”: an
application is installed with a variety of dynamically linked
libraries, some of which override older versions of those
libraries. Previously installed applications then break,be-
cause they were not meant to work with the new libraries.
Users must typically intervene manually in order to bring

the system back to a stable state.

In the context of Linux- and Unix-based systems, a
variety of automated tools have been developed to ad-
dress this configuration management problem, for exam-
ple apt-get [14] on Debian,yum [4] on RedHat, and
fink [1] on Mac OS. Using information about package
dependencies and conflicts, such tools can determine how
to install a new package, along with all its dependencies,
on a system of already installed packages. However, be-
cause of the complexity in the dependencies and conflicts,
such tools typically use heuristics and are therefore incom-
plete, in that even if a package is installable, the tool may
fail to find a solution. Furthermore, if there are multiple
ways of installing a given package, current tools arbitrar-
ily pick between them without taking any user preferences
into account. Such preferences could for example include
picking smaller packages if the user has limited download
bandwidth, or newer packages if the user wants the newest
possible system.

Our goal in this work was to develop a uniform and
complete solution to the configuration management prob-
lem that arises from having various inter-depending pack-
ages installed on the same system. In particular, using off-
the-shelf SAT solvers, pseudo-boolean solvers, and Integer
Linear Programming solvers we have designed a tool called
Opium that solves the configuration management problem,
and addresses the above limitations of existing package in-
stallers: it is complete (in that if there is a solution, it will
find it) and it also allows one to optimize a given objective
function. In addressing these limitations,Opium provides
the following benefits:

• It improves the reliability ofapt-get. Our measure-
ments on 600 traces of real-world install attempts will
show that about 23.3% of Debian users will be affected
by apt-get’s incompleteness at some point in the
lifetime of their system. This is especially concerning
for companies like Linspire (where two of the authors
worked) and distributions like Ubuntu, which are trying
to make Linux usable by non-experts who don’t have the
sophistication to manually install packages ifapt-get
fails. TheOpium tool entirely removes these incom-

1

pleteness failures.

• Opium allows users to state their preferences through
an objective function, and guarantees that this objective
function will be minimized. This can in turn have real
economic impact for Linux distributors. For example,
the Linspire company provides a Linux distribution that
is a low-cost alternative to commercial platforms like
Microsoft’s Windows and Apple’s OS X. Their Linux
distribution is therefore popular in many environments
where bandwidth is at a premium (and often charged
for per-byte). In order to provide the best experience
at the lowest cost for the end user it becomes essen-
tial that bandwidth not be wasted. In this context, min-
imizing the size of packages delivered has the poten-
tial to offer a real economic benefit, while simultane-
ously reducing wait times for users. In our measure-
ments, for example, we found a real-world install at-
tempt whereapt-get’s solution required download-
ing 129MB more thanOpium’s optimal solution.

• There are cases where some packages need to be re-
moved from the system before a new package is in-
stalled. BecauseOpiumminimizes the number of pack-
ages being removed, it can find solutions that remove far
fewer packages than existing package managers. In our
experiments, we discovered a real user trace where an
install attempt for OCaml usingapt-get caused 61
packages to removed, including the Linux kernel. This
poor user would not be able to reboot their machine af-
ter installing OCaml. BecauseOpium minimizes the
number of packages being removed, it was able to find a
solution that removed only 22 packages, none of which
were the kernel.

• By providing a completeness guarantee,Opium allows
Linux providers like Linspire to make quality of service
claims regarding the predictability of user systems. In
particular, if Linspire uses a tool likedebcheck[10] to
check the consistency of a given distribution (which es-
sentially involves making sure that all possible packages
in the distribution are installable), then they can provide
the guarantee that all install attempts usingOpium from
that distribution will succeed on any user system.

Concretely, we have investigated three problems in the
context of package management. In particular, given a set
of installed packages, and information about package de-
pendencies and conflicts, the three problems are:

Install Problem : Determine if a new package can be
installed, and if so, determine how.

Minimum Install Problem : Determine the optimal
way to install a new package, where optimality is de-
termined by an objective function whose value is to
be minimized.

Uninstall Problem : Given a new package to install,
determine the minimal number of packages (possibly
none) that must beremovedfrom the system in order
to make the package installable.

The main contribution of this paper is solutions to the
above three problems. We solve theInstall Problemby
running a SAT solver on a propositional encoding of the
distribution (Section 3.1). This encoding is similar to, but
independently developed from, the one presented in a forth-
coming paper [10]. Further, we show how the SAT problem
can be extended with an objective function, thus becoming a
so-calledpseudo-booleanproblem that solves theMinimum
Install Problem(Section 3.2). We also show how a well-
known translation can be used to generate an Integer Lin-
ear Programming (ILP) problem from the pseudo-boolean
problem. Highly tuned solvers exist for both pseudo-
boolean problems and ILP problems.

We show how a SAT solver that produces a proof of
unsatisfiability can be used to solve theUninstall Prob-
lem (Section 3.3). Intuitively, if a package is not instal-
lable, from the proof of unsatisfiability of the SAT problem,
we can determine what packages caused the conflicts, and
therefore need to be removed.

We have implemented all of the above techniques in a
tool calledOpium (Optimal Package Install/Uninstall Man-
ager) for installing packages on the Debian system.Opium
uses Pueblo [13] for the pseudo-boolean solver, the GNU
Linear Programming Kit (GLPK) [3] for the ILP solver, and
thefoci [11] theorem prover for producing unsatisfiability
proofs. To evaluate the practicality and benefits of our algo-
rithms, we performed a comparative study ofOpium versus
Debian’s installer,apt-get, using 600 traces of real world
installations (Section 4). Gathering information about the
runtime and results ofapt-get versus various configura-
tions ofOpium, we were able to quantify the benefits that
Opium’s completeness and optimality provide, as well as
show that it runs well within the limits of usability.

2 Overview

We begin with an overview of the install and uninstall prob-
lems and our solutions. A typical Linux distribution com-
prises a set of packages, each of which has a name and a ver-
sion, distributed either on disk, or typically stored on online
repositories. Each user has a subset of packages installed on
their machine. Many packages depend on other packages to
provide some functionality. For example theapache web-
server may require the system to also have aperl inter-
preter. Thus, each distribution contains a meta-data file that
explicates the requirements of each package of the distribu-
tion. For example, the meta-data for theapache package
in the Debian distributionsid is shown in Figure 1:

2

Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Rule forapache Figure 2: Distribution Graph.

Distribution Rules Constraints
Package: a
Depends: b, (¬xa ∨ xb)

c, (¬xa ∨ xc)
z (¬xa ∨ xz)

Package: b
Depends: d (¬xb ∨ xd)

Package: c
Depends: d | e, (¬xc ∨ xd ∨ xe)

f | g (¬xc ∨ xf ∨ xg)

Package: d
Conflicts: e (¬xd ∨ ¬xe)

Figure 3: Fragment of Distribution Meta-
Data and Corresponding Constraints

The meta-data contains details like the name, version,
size, a description of the functionality provided by the pack-
age,etc. More importantly, it containsdependsandconflicts
clauses that stipulate which other packages should be on the
system. Thedependsclauses stipulate which other pack-
agesmustbe present. Thus, in order to installapache,
several other packages includingperl, libc6, libdb
andapache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates thateitherdebconf (with
a version greater than0.5) or debconf-2.0 must be
present. Theconflictsclauses stipulate which other pack-
agesmust notbe present. Thus, theapache package
should only be installed on a system that does not also
have theapache-modules package, any instance of the
jserv package with version less then1.1.3 and so on.
Thus, to installapache, the package manager must find
out which other packages must be installed such that at the
end, the system contains a set of packages that meet all the
requirements specified in the distribution meta-data file.

We now illustrate our approach using a small distribution
with the 9 packagesa,b,c,d,e,f, g, y, andz. A distilled
version of the meta-data rules for this distribution is shown
on the left in Figure 3. In order for the packagea to be
installed on the system, packagesb, c andz must also be
installed, while for packagec to be installed, one ofd, e
must be installed and one off, g must be installed. The
conflicts clause ford says thate must not be present on the
same system asd.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-
tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,

there is a dotted edge between pairs of conflicting packages.

Installation Profiles. We call the set of packages installed
on a machine theinstallation profileof that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files{}, {y, z} and{a, b, c, d, f, z} are all valid installation
profiles, as each package’s depends and conflict clauses are
met. On the other hand,{a, b, c, d, z} is not a valid profile,
asc requires one off or g to be present, but both are absent
from the profile. Similarly, the profile{a, b, c, d, e, f, z} is
not a valid profile as it contains bothd as well as a conflict-
ing packagee.

2.1 The Install Problem

Consider a user with the installation profile{z} who wishes
to install the packagea. Theinstall problemis to determine
whether there is some set of new packagesincludinga that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph, and building up the set of other packages that
must be installed beforea. To be efficient it restricts the
number of backtracks performed due to conflicts, and thus
loses completeness, in the sense thatapt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.

Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.
Every satisfying assignment to the constraints is such that
the variables that get assigned TRUE form a valid installa-
tion profile for the distribution.

3

We create a variablexp for each packagep in the distri-
bution. Next, we create constraints for each clause of the
distribution. For instance, the first depends clause fora gets
encoded as(¬xa ∨ xb) which stipulates that eitherxa is
false, i.e., a is not in the profile or if it is, thenxb is true,
i.e., b is in the profile. The first disjunctive depends clause
for c gets translated to:(¬xc ∨ xd ∨ xe) which ensures that
eitherxc is false,i.e., c is not in the profile, or if it is, then
one ofxd or xe must be true,i.e., one of the packagesd
or e must also be in the profile. The conflicts clause ford

gets translated to:(¬xd ∨ ¬xe) which ensures that bothxd

andxe are not true,i.e., that both are not in the profile. In
Figure 3, each row has a distribution rule in the left column
and its propositional encoding in the right column.

SAT-based Installation Checking. To determine whether
there is some set of new packages includinga that the user
can install that results in a valid installation profile, we use
a SAT solver to find a satisfying assignment to the follow-
ing install formula: (Distrib(R) ∧ xz ∧ xa) which is the
conjunction ofDistrib(R), i.e., the conjunction of all the
constraints generated by the distribution (the right column
in Figure 3), with the literals corresponding to the currently
installed packages and the package to be installed.

For every satisfying assignment to the above formula, the
set of packages corresponding to variables assigned TRUE

is a set of packages includinga that is a valid installation
profile. It is easy to check that the assignment that sets all
the variables other thanxg andxy to TRUE satisfies the for-
mula, and from it, we obtain a set of new packages including
a that the user can download and safely install.

2.2 The Minimum Install Problem

In our example, there are actually two distinct satisfying
assignments for the formula, and thus, two ways to safely
install a. In the first one, described above, we add all the
packages exceptg andy. Alternatively, we may installg
instead off as either one satisfies the depends clause forc.
There are many situations where we would like to bias the
package manager towards a particular choice – for example,
towards the fewest number of new packages or the packages
with the smallest total size. Theminimum install problemis
to find, given acostfor each package of the distribution, the
set of new packages that must be installed with the smallest
total cost.

The incompleteness of previous techniques makes it im-
possible to exhaustively search the solution space to find
the set of packages with the minimum total cost. We extend
our technique to the minimizing problem, by usingpseudo-
boolean(or equivalently, integer linear) constraints to en-
code the problem, and then using an appropriate solver to
find the best solution.

Suppose that packagesf and g have sizes of5 and 2

Figure 4: Resolution Proof of Contradiction ofDistrib(R)∧
(xz ∧ e)∧ xa. Each leaf is a clause of the formula: the blue
literal is froma, the package to be installed, the green literal
is from the pre-existing (conflicting) packagee, the white
boxes are clauses from the distribution constraints. Each
internal clause is generated by a resolution deduction of the
form: (A ∨ x) ∧ (¬x ∨ B) implies(A ∨ B)

MB respectively and all the other packages have size1 MB.
Consider a user with the profile{z} who wishes to down-
load the fewest total number of bytes required to install
the packagea. To find the set of packages that the user
should install, we generate and solve the pseudo-boolean
constraint:

min xa + xb + xc + xd + xe + 5xf + 2xg + xy + xz

s. t. Distrib(R) ∧ xz ∧ xa

which specifies the satisfying assignment to the install for-
mula, with the minimum total sizes (where we interpret
TRUE as1 and FALSE as0). It is easy to check that the
minimum assignment is the one that assigns TRUE to all
variables exceptf andy, thereby resulting in the installa-
tion of all the other packages.

2.3 The Uninstall Problem

Suppose that another user, with the installation profile
{z, e}wishes to install the packagea. To do so, we must in-
stallb, and therefored. Unfortunately,d is in conflict with a
packagee that is already installed. So, to installa we must
first uninstall the previously installed packagee that transi-
tively conflicts witha. Theuninstall problemis to find the
set of packages currently installed on the system that must
be removed in order to install some new package.

Using our technique, in order to determine ifa could be
installed, we would query a SAT solver with the install for-
mula: (Distrib(R) ∧ xz ∧ xe ∧ xa) The solver would report
that the install formula was unsatisfiable, and would in addi-
tion return aresolution proof tree, such as that in Figure 4,
which explained why the formula implied a contradiction
and thus had no satisfying assignment.

The leaves of the proof tree correspond to clauses from
the install formula. The leaf clauses that are the single vari-
ables obtained from previously installed packages yield the
transitively conflicting packages that must be removed from

4

the system to install the new package. Thus, in our example,
the only leaf in the proof tree corresponding to a previously
installed package is thexe which reveals thate must be re-
moved in order to installa. As with installation, there may
be multiple sets of transitively conflicting packages, and so
we show how to extend our technique to find the set that
minimizes a given cost function.

3 Details

This section describes the details of our technique for
solving package management problems using SAT solvers,
pseudo-boolean solvers and ILP solvers. After first formal-
izing distributions and valid installation profiles, we formal-
ize and present solutions to the three package management
problems: theInstall Problem(Section 3.1), theMinimum
Install Problem(Section 3.2), and theUninstall Problem
(Section 3.3). Finally, we show how our solutions are com-
bined in the toolOpium (Section 3.4).

Distributions
A distributionR is a finite set ofpackage rules, where each
package rule is a tuple of the form(p,D ,C), wherep is a
packageand:
• D is a set ofdependency clausesfor p that stipulate

which packages must be present in order to install the
packagep. Each dependency clause is a disjunction of
packagesp1 | . . . | pk. Intuitively, a dependency clause
stipulates thatsomepackage from the setp1, . . . , pk

must be present in order for the packagep to work prop-
erly.

• C is a set ofconflict rulesfor p that stipulate which
packages must not be present on the same system asp.
Each conflict clause is a packagep′ whose presence on
the same system asp will cause problems.

For example, we formalize the distribution from Section 2
as the set of rules:
(a, {b, c, z}, ∅), (b, {d}, ∅), (c, {d | e, f | g}, ∅)
(d, ∅, {e}), (e, ∅, ∅), (f, ∅, ∅), (g, ∅, ∅), (y, {z}, ∅), (z, ∅, ∅).

Valid Installation Profiles
An installation profilefor a distribution is a subset of the
packages of the distribution, which could, for example, be
the set of packages from the distribution installed on a par-
ticular machine. To ensure the proper functioning of the
machine, we require the installation profile of the machine
to bevalid, meaning that it meets the requirements of each
package in the profile.

To formalize this notion of validity, we start by defin-
ing when dependency clauses and conflict clauses are sat-
isfied. An installation profile satisfies a dependency clause
p1 | . . . | pk for p iff either p is not present in the profile, or
somepackage in the set{p1, . . . , pk} is present in the pro-
file. An installation profile satisfies a conflict clausep′ for

p iff either p is not present in the profile, orp′ is not present
in the profile. Avalid installation profilefor a distribution
is one that satisfies the dependency and conflict clauses of
each package rule of the distribution.

Readers familiar with Debian may realize that we have
simplified the definition of a distribution in several ways.
First, areal Debian distribution is in fact the union of two
pieces – a repository residing on a central server, and the ac-
tual packages installed on the user’s machine, each of which
is a set of rules. To simplify the presentation, we assume
here that the repository includes the rules from the user’s
machine. Second, associated with each package is aver-
sion, and depends and conflicts clauses can refer to specific
versions of packages. We assume for simplicity that the
clauses have been expanded to include all the versions of a
particular package that are included in a distribution. Third,
the rules also have aprovidesclause stipulating the set of
virtual packages provided by a package. We make these
simplifications for brevity – our implementationOpium han-
dles all these features.

3.1 The Install Problem

We now turn our attention to the problem of determining
whether (and how) a new package can be installed on a ma-
chine upon which some set of packages from a particular
distribution is already installed. This problem is formalized
as follows:

Problem 1 (Install Problem) Given a distributionR, an
installation profileP and a new packagep, does there exist
a set of packagesP ′ containingp such thatP∪P ′ is a valid
installation profile forR.

If such aP ′ exists, we say thatp can be installed onP
– by adding the packages inP ′, we get a valid installation
profile containing the new packagep. If instead no suchP ′

exists, then it is impossible to safely installp on the machine
already containingP .

Recall that our algorithm for solving the install problem
is to reduce it to a system of propositional constraints whose
satisfying assignments correspond directly to valid instal-
lation profiles. We introduce one boolean variablexp for
each packagep to represent the presence ofp. Truth as-
signments for the variables then correspond to installation
profiles:xp is assigned true iffp is in the corresponding in-
stallation profile. Once the problem has been converted to
a system of propositional constraints, we use a SAT solver
to determine whether the constraints are satisfiable – if so,
we can directly extract theP ′ from the assignment returned
by the solver, if not, we conclude that the installation is not
possible.

The first step in our algorithm is to generate the proposi-
tional constraints for a distributionR. Our procedure for

5

Distrib(R) ≡
∧

r∈R Rule(r)

Rule(p,D ,C) ≡
∧

d∈D Depend(p, d) ∧
∧

c∈C Conflict(p, c)

Depend(p, p1 | . . . | pk) ≡ ¬xp ∨
∨

i=1...k
pi

Conflict(p, p′) ≡ ¬xp ∨ ¬p′

Figure 5: Propositional Distribution Constraints

Algorithm 1 Install(R,P , p)

f := Distrib(R) ∧
∧

p′∈P xp′ ∧ xp

match SatSolve(f) with
| UNSAT −→ return IMPOSSIBLE

| SAT (A) −→ return {p′ | A(xp′) = TRUE} \ P

doing so is shown in Figure 5. Given a distributionR,
Distrib(R) returns a boolean formula corresponding to valid
installation profiles for the distributionR, where:
• Rule(p,D ,C) returns a boolean formula correspond-

ing to installation profiles that satisfy the package rule
(p,D ,C). The first and second conjuncts respectively
ensure that each of the dependency and conflict rules are
satisfied by the installation profile.

• Depend(p, p1 | . . . | pk) returns a boolean formula that
ensures that if the packagep is in the profile, thensome
package from the setp1, . . . , pk is also in the profile.

• Conflict(p, p′) returns a boolean formula that ensures
that eitherp or p′ is not in the profile.

Our algorithmInstall for solving theInstall Problemis
shown in Figure 1. Making use of the aboveDistrib proce-
dure, it creates a boolean formula capturing valid installa-
tion profiles including packagesP andp, and then invokes
a SAT solver to find a satisfying assignment. If a satisfing
assignmentA mapping boolean variables to truth values is
found, we return the set of packages whose variables are
assigned to TRUE (minus those packages inP), and other-
wise, we conclude that it is not possible to safely install the
packagep.

3.2 The Minimum Install Problem

Owing to the disjunctions in the dependency rules, there
are often many ways to install a new package. In these sit-
uations, we would like a way to select the “best” possible
installation path. One may for example want to find the in-
stallation path in which the fewest number new packages
are added. Or, if the user is connected via a low-bandwidth
link, one may want to find the installation path with the least

Algorithm 2 MinInstall(R,P , p,Cost)

c :=
∑

Cost(p′) · xp′

f := Distrib(R) ∧
∧

p′∈P xp′ ∧ xp

match MinPBSolve(c, f) with
| UNSAT −→ return IMPOSSIBLE

| SAT (A) −→ return {p′ | A(xp′) = TRUE} \ P

number of downloaded bytes. We generalize these prob-
lems as follows.

Problem 2 (Minimum Install Problem) Given a distribu-
tion R, an installation profileP , a new packagep, and a
cost functionCost mapping packages to an integer cost,
find a set of packagesP ′ containingp with a minimum value
of

∑
p′∈P ′ Cost(p′), such thatP ∪P ′ is a valid installation

profile forR.

The cost function above encodes the requirements for
the “best” install. Once we find theP ′ with the minimum
cost, the user can install the additional packages inP ′, and
thereby obtain a valid installation profile containing the new
packagep.

Our technique of reducing the installation problem to
propositional constraints extends to theMinimum Install
Problem. In addition to the propositional constraints, we
create pseudo-boolean constraints representing the linear
cost function, and employ a pseudo-boolean solver to find a
minimizing assignment.

A pseudo-boolean constraintis a pair(
∑

x∈X
cx · x, f)

where X is a set of propositional variables, eachcx is
an integer, andf is a propositional formula overX .
The cost of a truth assignmentA for the variablesX is∑

{cx | A(x) = TRUE}. A minimum cost satisfying as-
signmentto a pseudo-boolean constraint is an assignment
A that satisfiesf , whose cost is less than or equal to the
cost of every other satisfying assignment off .

Our algorithmMinInstall for solving theMinimum In-
stall Problemis shown in Figure 2. Using the cost mea-
sure, it creates a pseudo-boolean constraint capturing valid
installation profiles includingP andp, and then invokes a
pseudo-boolean solver to find a minimum cost satisfying as-
signment. If one exists, it is returned by the solver, and from
it we extract and return the minimum cost valid installation
profile containingP andp. If no such assignment exists,
we conclude that it is not possible to safely installp.

An alternative approach to solving theMinimum Install
Problemis to reduce the pseudo-boolean constraints into an
ILP problem using a standard translation [6]. One can then
use an off-the-shelf ILP solver to find the minimumP ′.

3.3 The Uninstall Problem

In many configurations, a new package cannot be installed
because of conflicting dependencies with other packages al-

6

Algorithm 3 UnInstall(R,P , p,Cost)

P0 := P

f := Distrib(R)
X ′ := ∅
repeat

X := {xp} ∪ {xp′ | p′ ∈ P}
X ′ := ConflictSatSolve(X, f)
P := P \ {xp′ | xp′ ∈ X ′}

until X ′ := ∅
Pc := P0 \ P

Cost ′ := λp. if p ∈ Pc then − Cost(p) else0
P ′ := MinInstall(R,P , p,Cost ′)
return Pc \ P ′

ready installed on the system. In this case, we must first
uninstall the packages prohibiting the installation, before
attempting to install the new package. We would like to
find the smallest set of packages that must be removed in
order to make the new package installable.

Problem 3 (Uninstall Problem) Given a distributionR,
an installation profileP , a new packagep, and a cost func-
tion Cost , find a set of packagesP ′ with a minimum value
of

∑
p∈P ′ Cost(p), such thatp can be installed onP \ P ′.

Once a minimumP ′ is found, we can remove the pack-
ages inP ′ and then obtain an installation profile on whichp

can be installed. We can then apply the algorithmMinInstall

to determine the best way to install the new packagep on
the system.

There are several candidate cost functions for the unin-
stall problem. By assigning the all packages a constant non-
zero cost, we can ensure that theleastnumber of installed
packages is removed. Another function could assign higher
costs to more important or more popular packages, thereby
ensuring that these packages do not get uninstalled.

To solve theUninstall Problem, we will use an enhanced
SAT solver that tells us which of the currently installed
packages inP are prohibiting the installation ofp. This
enhanced SAT solver will compute anoverapproximation
of the packages that must be removed, and then we will use
the previously describedMinInstall procedure to prune the
overapproximation to obtain a minimal uninstall setP ′.

The enhanced SAT solver we make use of is imple-
mented by a procedure calledConflictSatSolve. Given a set
X of propositional variables and a propositional formulaf ,
the procedureConflictSatSolve(X, f) returns the empty set
∅ if the formula

∧
x∈X

x ∧ f is satisfiable, and otherwise
returns aminimalsetX ′ ⊆ X such that

∧
x∈X′ x∧f is also

unsatisfiable. TheConflictSatSolve procedure can be im-
plemented using well-known algorithms. In particular, one
can easily extend any DPLL-based SAT solver to produce
resolution proofs of unsatisfiability [8, 17]. The setX ′ can

then be computed from the resolution proof, by collecting
the set of leaves in the proof tree that correspond to literals
in X . In our setting, the literals correspond to packages –
the setX will be the set of installed packages together with
the new packagep that is to be installed. In this context,
the setX ′ returned byConflictSatSolve will be transitive
conflict packagesprohibiting the installation ofp.

Our algorithmUnInstall for solving theUninstall Prob-
lem is shown in Figure 3. First, we save the cur-
rently installed packages inP0. Second, we call the
ConflictSatSolve procedure with the constraints generated
by the current packagesP and the distribution. If the con-
straints are not satisfiable, we remove the transitive conflict
packages from the current setP , and repeat until the all
constraints are satisfiable (there are no transitive conflict
packages),i.e., until p can be installed on the remaining
packages. At this point, all potentially transitively conflict-
ing packages have been removed fromP , and the over-
approximated set of conflict packages isPc = P0 \ P .
Third, we callMinInstall starting with the installation pro-
file G to determine what packages can be “added back” to
P (and therefore were not absolutely necessary to remove).
For this step, we use a modified cost function where the
transitive conflict packagesPc have the negation of their
original cost, and all other packages have cost0. The nega-
tion causesMinInstall to in fact maximize the transitive con-
flict packages that are added back toP . Thus, the transitive
conflict packages not added back byMinInstall are the min-
imum set of packages that must be removed.

The astute reader would have observed that another way
to attack the uninstall problem is avoid the loop in Algo-
rithm 3 by settingPc to the set ofall packages inP0,
and then runningMinInstall. However, we choose to use
ConflictSatSolve to find the transitively conflicting pack-
ages for two reasons. First, the set is typically quite small,
and so the optimizing problem sent toMinInstall is rel-
atively simple – the alternative would require the pseudo
boolean solver to find a solution to a more complex prob-
lem, one that involved non-trivial costs for many more pack-
ages. Second, with our current formulation, it is easy to
make the algorithminteractive, where at each iteration of
the loop, the user can be asked which of the transitively con-
flicting packages inX ′ she would like to be removed. We
can then only remove those packages fromP in the next
line. This approach, which we leave for future work, al-
lows the user more control over which packages should be
removed, and has the flexibility of not requiring that a suit-
able cost function be designeda priori.

3.4 Putting it all together: Opium

Figure 4 shows how the above algorithms are combined in
our toolOpium, which takes as input a distributionR, an in-

7

Algorithm 4 Opium(R,P ,CostI ,CostU , p)

R := Slice(R,P ∪ {p}
P ′ := MinInstall(R,P , p,Cost I)
if P ′ 6= IMPOSSIBLEthen

Install the packagesP ′

else
Uninstall the packagesUnInstall(R,P , p,CostU)
Install the packagesMinInstall(R,P , p,CostI)

end if

stallation profileP , an install cost functionCostI , an unin-
stall cost functionCostU , and a new packagep that the user
wishes to install, and updates the user’s system so that it has
a valid installation profile containingp.

First, weslice the distribution rules with respect to the
given installation profile and the package to be installed.
Intuitively, the slicing procedure returns the subset of the
input distribution rules that are relevant to the input pack-
ages. This procedure includes the rules of the input pack-
ages and transitively includes the rules of the packages the
input package depends on or conflicts with. For example,
slicing the distribution shown in Figure 2 with respect to
the packagesa, yields the package rules for all the pack-
ages excepty. Without slicing, the times taken byOpium
are about 15 times greater, taking several minutes to solve
one problem, rather than several seconds.

Then, we callMinInstall to determine whether (with-
out removing any existing packages), the new package can
be installed. If there are no conflicts,i.e.MinInstall re-
turns a set of new packages with the minimum install cost,
and we download and install the new packages and re-
turn. If instead,MinInstall returns IMPOSSIBLE, then we
call UnInstall to find the set of packages with the minimum
uninstall cost, which are then removed from the system. Fi-
nally, we callMinInstall again, and this time it is guaran-
teed to find a set of new packages includingp, which we
download and install on the system. A simpler algorithm
is to first callUnInstall as it would return the empty set if
there were no conflicts. We choose to optimistically call
MinInstall first as the majority of install attempts do not re-
quire uninstalls.

4 Evaluation

To evaluate the practicality of our algorithms, we performed
a comparative study ofOpium versus Debian’s package
installer,apt-get. The goal of this study was to quan-
tify three measures: the running time ofOpium versus
apt-get, the amount of benefit provided by the complete-
ness ofOpium, and the amount of benefit provided by the
minimization capabilities ofOpium.

To perform our evaluation, we used 600 traces of real

0

1

2

3

4

5

6

7

Pop Size Pop Size Pop Size Pop Size

apt ILP ILP PB PB ILP ILP PB PB

NC NC NC NC C C C C

Second solve

Conflict resolution

IO

Initial solve

Slicing

Distribution read

world installation attempts collected by the servers at Lin-
spire corporation. Each one of the 600 trace corresponds
to a particular end user performing a series of installation
attempts, and each installation attempt is a request to in-
stall a given package, which may in turn install/remove a
variety of depending/conflicting packages. The 600 traces
correspond to a total of 52,668 installation attempts, which
amounts to an average of about 87 installation attempts per
user.

We ran each installation attempt in 5 different ways.
First, we used Debian’sapt-get, which was the baseline
for our comparison. Then we ran each installation attempt
usingOpium in four different configurations, varying the
back-end (either a pseudo-boolean solver or an ILP solver),
and the objective function (either minimize download size
or maximize the popularity of installed packages). These
experiments took about 24 hours to run using 100 nodes of
the FWGrid cluster [2].

4.1 Runtime

Figure 4.1 shows the runtime ofOpium normalized to the
runtime ofapt-get. To get a sense of the scale, the aver-
age runtime ofapt-get was 3.14 seconds, and this shows
up as a bar of height 1 in Figure 4.1. The rightmost eight
bars of Figure 4.1 show the runtimes forOpium. The labels

8

for these bars use the following abbreviations: (1) NC: no
conflicts occurredversus C: conflicts occurred (2) ILP: ILP
solver was usedversusPB: pseudo-boolean solver was used
(3) Pop: the objective function maximized popularityver-
susSize: the objective function minimized total download
size.

Each bar shows inside of it the various contributors to the
runtime: (1)Distribution read: time to read the distribution
from disk into memory (2)Slicing: time to perform the slic-
ing optimization described in Section 3.4 (3)Initial solve:
time to perform the first call toMinInstall in theOpium al-
gorithm from Section 3.4 (4)IO: time to write the pseudo-
boolean or ILP problems to disk for the solvers to read, and
time to read the results back from the solvers (5)Conflict
resolution: time to perform conflict resolution, which is the
call to UnInstall in theOpium algorithm (6)Second solve:
time to run the second call toMinInstall in theOpium al-
gorithm.

There are a variety of important points to get out of Fig-
ure 4.1:

• In the cases where there is no conflict resolution, which
account for 84.3% of the install attempts,Opium is
about 3.5 times slower thanapt-get. In the remaining
cases,Opium is about 6 times slower thanapt-get.
Although this may seem high, when taking into account
the total time to run the installerand to download the
required packages, on average,Opium is 34.0% slower
thanapt-get assuming a 300kBps cable modem con-
nection, 11.2% slower on a 100kBps DSL line, and
0.2% faster on a 10kkBps dial-up modem (Opium is
able to run faster on a modem because it optimizes for
number of bytes downloaded, and so it downloads less
bytes thanapt-get).

• The dominant components of theOpium runtime are
reading the distribution, performing the slicing opti-
mization, and performing conflict resolution. The ac-
tual time to run Pueblo or GLPK accounts for only a
very small proportion of the total runtime ofOpium.

• The Pueblo solver runs about twice as fast as the
GLPK solver, and it even runs slightly faster than the
apt-get backtracking solving algorithm.

• The runtimes of install attempts that optimize size are
very similar to the runtimes for attempts that optimize
popularity, which is an indicator that the runtimes are
unlikely to depend on the objective function.

There are further opportunities for optimizing the per-
formance ofOpium that we have not yet explored. One of
them is the runtime it takes to read a distribution. Because
our implementation of theOpium parser is naive,Opium
takes about 3 times longer thanapt-get to read and load
a distribution in memory, something that can be fixed with
further tuning. Another area where performance could be

improved is conflict resolution. TheConflictSatSolve oper-
ation is currently implemented in a separate theorem prover,
which incurs additional overhead. Furthermore, because
ConflictSatSolve is called repeatedly on very similar prob-
lems, using an incremental SAT solver for implementing
ConflictSatSolve would likely have a drastic impact on the
performance of conflict resolution.

4.2 Completeness

To quantify the benefit provided byOpium’s completeness,
we look at the number of times thatapt-get fails to find a
way of installing a package when in fact there is a solution
(whichOpium is guaranteed to find because it is complete).
Out of the 52,668 install attempts,apt-get was not able
to find a solution 357 times, and of these 357 cases,Opium
was able to find a solution 322 times. The remaining 35
cases, on which bothapt-get andOpium fail, are indica-
tions of bugs in the distribution (for example, one package
in the distribution depending on another one that is not in
the distribution).

These numbers show thatapt-get fails to find a solu-
tion when one exists in about 0.61% of install attempts. This
is not a large error rate, but one has to remember that users
perform many install attempts over the lifetime of their sys-
tem. Assuming an average of 87 install attempts over the
lifetime of a user system (computed from the average size
of our trace lengths), the chance that a user will hit an in-
completeness error in the lifetime of their system can be
computed to be 41.2%. The actual number collected in our
experiments is smaller than this, but in the same ballpark:
23.3% of the 600 traces encountered an incompleteness lim-
itation ofapt-get. These numbers indicate that the com-
pleteness ofOpium has the potential to improve the end-
user experience of a large fraction of Debian users.

4.3 Minimization

We first evaluate the impact ofOpium’s ability to mini-
mize the number of packages that are removed from the
system. On our traces,Opium removed less packages than
apt-get in 209 cases out of the 52,311 install attempts
whereapt-get succeeded. This is a small percentage
of all install attempts, but the impact in those cases can
be significant. In 9 casesapt-get removed 10 pack-
ages or more than what was necessary, and the worst of
these cases is the example mentioned in the introduction,
whereapt-get removed 61 packages, including the ker-
nel, whereasOpium only removed 21 packages, none of
which was the kernel.

We also evaluated the benefits ofOpium’s ability to min-
imize the number of downloaded bytes. In about 4.4%
out of the installation attempts whereapt-get succeeded,

9

Opium found a better solution thanapt-get. Although
this is only a small percentage of all install attempts, when
there is a difference between the optimal solution and the
apt-get solution, that difference on average is about
2MB, which is considerably large. There are also 7 in-
stall attempts in whichOpium beat apt-get by over
100MB, and one case in whichOpium beatapt-get
by 129MB. In about 0.2% of the installation attempts,
apt-get finds a better solution thanOpium by an aver-
age of about 1.6MB. This happens despiteOpium’s opti-
mality becauseapt-get sometimes removes more pack-
ages thanOpium, and once these additional packages have
been removed, it is possible thatapt-get can find a better
solution.

Another interesting measure to look at is how many
downloaded bytesOpium saves over entire user traces.
Summing the downloaded bytes over entire traces, we find
that Opium beatsapt-get on 95.9% of the traces by
an average of 7.7MB (with a maximum of 185MB), and
it matches or does better thanapt-get on 98.4% of all
traces. The mostapt-get beatsOpium by is 21MB, but
it does so by removing 12 more packages than necessary.

5 Related Work

One line of work that is related to ours is the research done
by the WP2 group inside the EDOS project. The broad goal
of this group is to address issues relating to dependency
managementon the repository side[10], whereas our fo-
cus has beenon the client side. In the context of helping
repository builders, the WP2 group has implemented a tool
calleddebcheck[10] that uses a SAT solver to check that
a repository does not contain broken packages (i.e.: pack-
ages that cannot be installed). As the authors ofdebcheck
write in [10], the problem of optimizing the installation of
packages on a user machine, whichOpium solves, “is a
task radically different, and in principle much more diffi-
cult than verifying that a repository does not contain broken
packages.” In particular, our paper contributes beyond the
work ondebcheckin three ways, all of which are motivated
by our focus on the client side of the problem: (1) our work
adds the extra dimension of findingoptimalsolutions with
respect to an objective function (2) in addition to solving
the Install Problem, we also optimally solve theUninstall
Problem(3) we perform a comparative study of our tool
againstapt-get on real-world installation attempts.

Another project that is related to ours is the Smart Pack-
age Manager [12], which attempts to be complete and to
find the best solution given a user policy. There is little
documentation about the techniques used in Smart, and our
investigation of the source code shows that it enumerates
all possible solutions, which, as pointed out in [10], is pro-
hibitively expensive.

More broadly, our work is also related to research
projects that process dependencies automatically. In the
context of static component-based software linking, tools
exists for checking that dependencies between a given set
of components are met, for example using typed inter-
faces [7, 5, 9]. Tools also exist for analyzing dependencies
to optimize, debug, and test programs [15, 16] In contrast
to these projects that check or analyze dependencies, our
goal is todiscoveran optimal set of components that meet
certain dependency requirements.

References
[1] fink. http://fink.sourceforge.net.
[2] FWGrid Project.http://fwgrid.ucsd.edu.
[3] GLPK (GNU Linear Programming Kit). http://www.

gnu.org/software/glpk.
[4] Yum: Yellow dog Updater, Modified.http://linux.

duke.edu/projects/yum.
[5] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connect-

ing software architecture to implementation. InICSE, pages
187–197, 2002.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduc-
tion to Algorithms. MIT Press, 1990.

[7] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. InPLDI 02:
Programming Language Design and Implementation, pages
234–245. ACM, 2002.

[8] A. V. Gelder. Extracting (easily) checkable proofs froma
satisfiability solver that employs both preorder and postorder
resolution. In7th International Symposium on Artificial In-
telligence and Mathematics(AMAI), 2002.

[9] D. B. MacQueen. Modules for standard ml. InLISP and
Functional Programming, pages 198–207, 1984.

[10] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Du-
rak, X. Leroy, and R. Treinen. Managing the complexity of
large free and open source package-based software distribu-
tions. InProceedings of the International Conference on Au-
tomated Software Engineering (ASE 06), 2006.

[11] K. L. McMillan. An interpolating theorem prover. InTACAS:
Tools and Algorithms for the Construction and Analysis of
Systems, pages 16–30, 2004.

[12] G. Niemeyer. Smart package manager.http://labix.
org/smart, 2006.

[13] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-
boolean sat solver.Journal on Satisfiability, Boolean Model-
ing and Computation, 2:61–96, 2006.

[14] G. N. Silva. APT Howto.http://www.debian.org/
doc/manuals/apt-howto, 2005.

[15] J. A. Stafford and A. L.Wolf. Architecture-level dependence
analysis in support of software maintenance. InProceedings
of the third international workshop on Software architecture
(ISAW 98), 1998.

[16] M. Vieira and D. Richardson. Analyzing dependencies in
large component-based systems. InProceedings of the In-
ternational Conference of Automated Software Engineering
(ASE 02), 2002.

[17] L. Zhang and S. Malik. Validating sat solvers using an inde-
pendent resolution-based checker: Practical implementations
and other applications. InDATE: Design Automation and
Test Europe, pages 10880–10885, 2003.

10

