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Abstract

A modular program analysis considers components independently
and provides succinct summaries for each component, which can
be used when checking the rest of the system. Consider a system
comprising of two components, a library and a client. A temporal
summary, or interface, of the library specifies legal sequences of
library calls. The interface is safe if no call sequence violates
the library’s internal invariants; the interface is permissive if it
contains every such sequence. Modular program analysis requires
full interfaces, which are both safe and permissive: the client
does not cause errors in the library if and only if it makes only
sequences of library calls that are allowed by the full interface of
the library.

Previous interface-based methods have focused on safe inter-
faces, which may be too restrictive and thus reject good clients.

We present an algorithm for automatically synthesizing software

interfaces that are both safe and permissive. The algorithm gen-
erates interfaces as graphs whose vertices are labeled with pred-

icates over the library’s internal state, and whose edges are la-

beled with library calls. The interface state is refined incremen-
tally until the full interface is constructed. In other words, the

algorithm automatically synthesizes a typestate system for the

library, against which any client can be checked for compatibility.
We present an implementation of the algorithm which is based on

the Blast model checker, and we evaluate some case studies.

1 Introduction

A modular program analysis considers components indepen-
dently and provides succinct summaries for each component,
which can be used when checking the rest of the system. We
present an algorithm that automatically summarizes the le-
gal uses of a library of functions. The library has a state,
and each function call changes that state. Some sequences
of function calls, however, may violate the library’s inter-
nal invariants, and thus lead to an error state. In full pro-
gram analysis, one puts the library together with a client
and checks whether the client causes the library to enter an
error state. In modular program analysis, the check is de-
composed into two independent parts. First, independent of
the client, we construct from the library source a summary
of the legal uses of the library, namely, an interface. Second,
independent of the library source, we check if a given client
uses the library in a way allowed by the interface.

Consider the example of a library that implements shared
memory by providing acq (acquire lock), read (read state),
and rel (release lock) functions. The library enters an error
state if read is called before acq, or after a call of rel and
before a subsequent call of acq. The library interface is a
language L over the alphabet {acq, read, rel}, where each
word represents a sequence of library calls. The interface L

is safe if no word in L can cause the library to enter an error
state. For example, the regular set (acq; read; rel)∗ is a safe
interface. However, for modular program analysis, we need
interfaces that are not only safe but also maximal (note, for
example, that the empty interface L = ∅ is always safe but
not useful). An interface is permissive if it contains all call
sequences that cannot lead to an error state. The safe and
permissive language is called the full interface of the library.
In our example, the full interface is (acq; read∗; rel)∗. Mod-
ular program analysis requires full interfaces; otherwise, a
perfectly safe client may fail to conform to an interface that
is not permissive.

Since interfaces are languages, they are finitely witnessed
by state machines (acceptors). For example, the interface
(acq; read∗; rel)∗ can be witnessed by an automaton with
two states. An interface witness is a finite automaton whose
transitions are labeled with library calls. We require the
automaton is complete, i.e., all calls are enabled in each
state, but some of the calls may lead to a rejecting sink
state. At the heart of our technique lies the observation that
each state of an interface witness can be given a typestate
interpretation [?]: a witness state q corresponds to a set of
internal library states, namely, those states that the library
can be in after a client has executed a call sequence leading
up to q. In the above example, the two accepting states
of the automaton witnessing (acq; read∗; rel)∗ correspond,
respectively, to library states where the lock is held, and to
library states where the lock is not held.

We define two abstract typestate interpretations for wit-
nesses, where each witness state corresponds to an abstract
state of the library. The existence of a safe interpretation
guarantees that the witnessed interface is safe, and the ex-
istence of a permissive interpretation guarantees that the
witnessed interface is permissive. Hence, the problem of
finding a safe and permissive interface reduces to the prob-
lem of finding a witness with both safe and permissive inter-
pretations. In the first step (S1) of our algorithm, we use a
given safety abstraction (initially a trivial seed abstraction)
to build an abstract interpretation of the library’s internal
states. We obtain a candidate witness by treating the li-
brary’s initial abstract state as the initial witness state, and
treating the abstract states that contain some error state
as rejecting witness states; all other abstract library states
correspond to accepting witness states. The soundness of
the abstraction guarantees that the witness accepts only
call sequences that do not lead to an error state. However,
overapproximation may cause the witness to prohibit some
sequences that cause no error. In other words, the construc-
tion guarantees that the witness has is safe, at the possible
expense of permissiveness.

The second insight is that given a particular witness, we



can verify its permissiveness by checking that, if the witness
itself is used as client, then it is not possible that the wit-
ness enters a rejecting state without the library entering an
error state. In this way, we turn the question of checking
permissiveness into a reachability question. This leads to
the second step (S2) of our algorithm, where we use a per-
missiveness abstraction to perform an abstract reachability
analysis to verify the permissiveness of the witness created
in step S1. If the check succeeds, then the automaton wit-
nesses indeed the full interface of the library, and the algo-
rithm returns with success. As a by-product, we obtain both
a safe and a permissive typestate interpretation of the wit-
ness which demonstrate the safety and the permissiveness of
the synthesized interface.

If the permissiveness check fails, then there is a permis-
siveness counterexample, i.e., a path of the abstract library
which follows a call sequence rejected by the witness but
does not lead to an error in the library. There are two cases:
either the permissiveness counterexample is spurious, mean-
ing that the given abstract path does not concretely lead to
a legal library state, but the analysis is misled into believing
otherwise due to the imprecision of the permissiveness ab-
straction; or the permissiveness counterexample is genuine,
meaning that it corresponds to a concrete library path that
leads to a legal library state, and thus the corresponding call
sequence must be contained in the full interface. The third
step (S3) of our algorithm considers both cases. In the first
case, we automatically refine the permissiveness abstraction
to eliminate the spurious counterexample. In the second
case, the legal call sequence was conservatively prohibited
owing to the imprecision of the safety abstraction, and we
automatically refine the safety abstraction so that it includes
this call sequence.

Our abstractions are predicate abstractions, and hence
in either case, the refinement procedure finds new predi-
cates about the internal library state. In the first case, the
new predicates show that certain call sequences lead to error
states and hence must be rejected; in the second case, the
new predicates show that certain call sequences do not lead
to error states and hence must be accepted. We now repeat
steps S1 and S2 until we have a safety and a permissiveness
abstraction which are precise enough to create a witness
that is both safe and permissive. For libraries with finite in-
ternal state, the algorithm is guaranteed to terminate with
success. We could use a single abstraction of the library for
both steps S1 and S2. However, the goals of the two steps
are orthogonal, namely proving safety and proving permis-
siveness, and therefore the use of different predicates often
allows more parsimonious abstractions. In other words, two
different typestate interpretations may be relevant to prove
the safety and the permissiveness of an automaton that wit-
nesses the full interface of the library.

We have implemented the synthesis of witnesses for safe
and permissive interfaces by extending the Blast model
checker, which is based on automatic predicate abstraction
refinement [13]. Our tool successfully synthesizes the full in-
terfaces for several classes from JDK1.4, including Socket,
Signature, ServerTableEntry, and ListItr. Once the in-
terface witness is constructed, typestate analyses such as
[9, 5] can be used to perform the task of checking that a
client conforms to the synthesized witness.

Interfaces, in the sense presented here, have been used
by many researchers [14, 9, 6, 15, 1, ?]. However, all these
approaches either assume that the interface is specified by
the programmer [14, 9, 6, ?]; or use a set of dynamic execu-

tions of the library to define its interface [2, 15, 11], with the
result that the constructed interface may be unsafe or not
permissive; or perform static analyses that are not precise
enough to create permissive interfaces [15, 1]. By focusing
on the automatic generation of interfaces that are both safe
and permissive, we enable modular program analysis.

2 Permissive Interfaces

2.1 Open Programs

An open program represents a set of library functions that
can be used by clients.

Syntax. For a set X of variables, Exp.X is the set of arith-
metic expressions over the variables X, the set Pred.X is the
set of boolean expressions (arithmetic comparisons) over X,
V.X is the set of valuations to X, and the set Op.X is the
set of operations containing: (1) assignments x := e, where
x ∈ X and e ∈ Exp.X, (2) assume predicates assume [p],
where p ∈ Pred.X, representing a condition that must be
true for the edge to be taken, and (3) function calls f(),
where x ∈ X and f is a function.

A control flow automaton (CFA) C =
(XL, XS , Q, q0, qe,→) comprises (1) two (disjoint) sets
of variables XL (local variables) and XS (static vari-
ables), (2) a set of control locations Q, with an initial
control location q0 ∈ Q and final control location qe ∈ Q,
(3) a finite set of directed edges labeled with operations
→⊆ Q× Op.(XL ∪XS)×Q. Let X = XL ∪XS .

An open program P = (X, F,Outs, s0, E , Σ) has (1) a
set X of typed static variables including a special output
variable out, (2) a set F of functions, where each function
f ∈ F is represented as a CFA f.C with static variables X
and every function call operation in f.C is a member of F ,
(3) a set of outputs Outs, (4) an initial state s0 ∈ V.X, (5) a
set of error states E ⊆ V.X given as a predicate in Pred.X,
and, (6) a signature Σ which is a subset of F×Outs. An open
program is finite-state if all variables range over booleans.
The signature Σ represents the externally visible function
names and output values.

Example 1: Figure 1(A) shows an open program P1 with
the two static variables P1.X = {a, e}. The latter is used
to define the error states P1.E = (e 6= 0). The functions are
acq, read, rel, m new, and m rd. There is only one output
(unit), which we omit for clarity. The signature functions
in P1.Σ are acq, read, and rel. The functions m new and
m rd are internal. Figure 1(A) shows the code for the three
signature functions, and CFAs for read and m new, which
returns a non-zero value. In the CFAs, edges are labeled
with function calls, basic blocks of assignments (indicated
by boxes), and assume predicates (indicated by brackets).
In the initial state, both a and e are 0. 2

Semantics. An X-state is an element of V.X. For disjoint
sets X and Y of variables, if s ∈ V.X and t ∈ V.Y , we write
s◦ t ∈ V.(X ]Y ) for the X ]Y state obtained by combining
s and t. For an X1, X2-states s1, s2, we say that s1 ≈ s2

if for all x ∈ X1 ∩ X2, the states agree: s1.x = s2.x. We
assume all variables are integer-valued. A set of X-states r
is called a data region. A predicate over X represents a data
region comprising all valuations that satisfy the predicate.

The transition relation for a CFA C written
C
; ⊆

(V.XS)2 is defined as follows: s
C
;s′ if there exists (q1, (s1 ◦

t1)) . . . , (qn, (sn ◦ tn)) such that (q0, s) = (q1, s1) and
(qe, s

′) = (qn, sn) and for each 1 ≤ i ≤ n − 1 we have



Figure 1: (A) P1 (B) safe W1 (C) P2 (D) safe,permissive W2

qi
opi−−→qi+1 in C .E and si ◦ ti

opi
;si+1 ◦ ti+1, and each

opi
; ⊆

(V.(C .X))2 is as defined below. We say that s
op
;s′ for

s, s′ ∈ V.X if: (1) if op is assume p then s |= p and s′.y = s.y
for all y ∈ X, and (2) if op is x := e then s′.x = s.e and for
all y ∈ X \ {x}, s′.y = s.y, and, (3) if op is f() then for all
y ∈ XL, s.y = s′.y and there exists t, t′ ∈ V.XS such that
(a) t

f.C
; t′, and (b) s ≈ t, s′ ≈ t′. Parameter passing and

return values can be mimicked with static variables.
We lift the transition relation to sets of states as follows.

For a set of X-states r, the strongest postcondition of r w.r.t.
op, written SP.r.op, is the set {s′ ∈ V.X | ∃s ∈ r : (s

op
;s′)}.

The weakest precondition of r w.r.t. op, written WP.r.op

is the set {s ∈ V.X | ∃s′ ∈ r : (s
op
; s′)}. We can generalize

SP, WP to sequences of operations in the standard way.
For assign and assume statements, and r represented using
predicates in Pred.X, the above can be defined as predicate
transformers [7].

An open program induces a state space V.X. Each
(f, o) ∈ Σ, has a transition relation

(f,o)
; ⊆ (V.X)2

defined as: s
(f,o)
; s′ if such that s

f.C
; s′ and s′.out =

o. We extend this operation to data regions by defin-
ing Post.r.(f, o) = {s′ | ∃s ∈ r : s

(f,o)
; s′}, and its dual,

Pre.r.(f, o) = {s | ∃s′ ∈ r : s
(f,o)
; s′}.

Example 2: In the open program P1 (Figure 1(A)), the
initial states are given by a = 0∧e = 0, and error states P1.E
by (e 6= 0). The strongest postcondition SP.r.(a := m new())
of the region r = (a = 0) is (a 6= 0), and Post.r.(acq(), o) is
also (a 6= 0) as only the “if” path is feasible. 2

2.2 Interfaces

A set of states r is safe w.r.t. E if r ⊆ ¬E . For an open
program P , sequence σ ∈ P.Σ∗ is E-safe from a set of states
r if either the sequence σ is the empty sequence, or σ ≡
(f, o) · σ′ and r′ = Post.r.(f, o) is such that (1) r′ is safe
w.r.t. E , and (2) σ′ is E-safe from r′. An open program
P is visibly deterministic if for all σ ∈ P.Σ∗, it is not the
case that σ is both (1) not P.E-safe from {P.s0}, and (2) not
¬P.E-safe from {P.s0}. In the sequel, we shall only consider
visibly deterministic open programs. A sequence is legal if it
is P.E-safe from {P.s0}, that is, by executing the sequence
of calls the open program does not get into an error state.
We write I.P to denote the set of all legal sequences. A
sequence σ ∈ P.Σ∗ is realizable from a set of states r if either
the sequence σ is the empty sequence, or, if σ ≡ (f, o) · σ′
then r′ = Post.r.(f, o) is such that: (1) r′ is not empty,
(2) σ′ is realizable from r′. A sequence is realizable if it is
realizeable from P.s0. We write R.P to denote the set of all

realizable sequences.

Definition 1 [Interfaces] An interface for the open pro-
gram P is a prefix-closed language over the signature P.Σ.
An interface I for P is:
(1) A safe interface if every sequence in it is legal, i.e.,
I ⊆ I.P ,
(2) A permissive interface if it contains every legal realizable
sequence, i.e., I.P ∩R.P ⊆ I, and,
(3) The full interface if it is the set of all legal sequences,
i.e., I = I.P .

Example 3: In the open program P1 from Figure 1(A),
when a client calls the function acq, the state changes, as
acq in turn calls m new and sets a to the (non-zero) value
returned by the latter. Since e remains 0, the call is legal.
Subsequently, a client may call read arbitrarily many times.
After each exit from read, the variable e remains 0, and
hence the sequence acq · read∗ of calls is legal. However,
if read is called from the initial state, then, as a is 0, the
function sets e to 1 and thus, P1 reaches an error state. Sim-
ilarly, rel can be called arbitrarily many times. However,
after a call to rel, acq must be called again before calling
read. Hence, the full interface for P1 is the regular language
L1 = ((acq · read∗ · rel)∗ · rel∗)∗.

Consider now the open program P2 obtained by aug-
menting P1 with the additional static variable x, and the
functions acq x, write, and rel x shown in Figure 1(C). The
new functions are added to the functions in P1.Σ to get the
signature P2.Σ (again, we omit the single output). Note that
though L is still a safe interface for P2, it is too constrained,
as it prohibits the (legal) sequence acq x · write · rel x! In-
deed, after calling acq x, the client may call read or write
arbitrarily often and the full interface for P2 is the regular
language ((acq · read∗ · rel∗) + (acq x · (read + write)∗ ·
rel x∗) + rel + rel x)∗. 2

2.3 Witnesses

Witness Graphs. We focus on interfaces corresponding to
regular languages, which are naturally witnessed by finite
state graphs. A witness graph W = (N, E, n0) comprises
(1) a set N of nodes, partitioned into two sets N+, the safe
nodes, and N− the unsafe nodes, (2) a set E ⊆ N×P.Σ×N
of directed edges labeled with elements of P.Σ, and (3) a
root node n0 ∈ N . We write n

(f,o)−−−→n′ if (n, (f, o), n′) ∈ E,
and call n′ a (f, o)-successor of n. Additionally, we require
that every n ∈ N has exactly one (f, o)-successor, for each
(f, o) ∈ Σ.



Intuitively, the interface corresponding to a witness
graph is the language accepted by the DFA obtained by
considering the safe nodes as accepting nodes and deleting
all the unsafe nodes. Formally, a sequence σ ∈ P.Σ∗ is ac-
cepted from a node n ∈ N+ if σ is the empty sequence, or
σ ≡ (f, o) ·σ′ and n has a (f, o)-successor n′ ∈ N+ such that
σ′ is accepted from n′. No sequence is accepted from any
node in N−. The language of a witness graph L.W is the
set of all σ accepted from n0.

Example 4: Figure 1(B) shows a witness graph W1 for
P1 (ignoring the "x" and write labels). The unshaded and
shaded nodes are respectively N+ and N−. Note that L.W1

is ((acq · read∗ · rel)∗ · rel∗)∗, the full interface of P1. 2

Region Labels. To reason about the properties of the
languages of the witness graphs, we relate the nodes of the
witness graphs with the states of the open program using
region labeling functions. A function ρ : N → Pred.(P.X)
mapping the nodes of a candidate graph G to predicates is
a region labeling if:
(P1) P.s0 ∈ ρ.n0, i.e., the root n0 label contains the initial
state, and
(P2) For every n

(f,o)−−−→n′ we have Post.(ρ.n).(f, o) ⊆ ρ.n′.
A region labeling represents an overapproximation of the
behavior of an open program: for any node n ∈ N+, and
any sequence of operations σ ∈ P.Σ∗ marking a path from
the root n0 to n in G, we have Post.(ρ.n0).σ ⊆ ρ.n.

Proposition 1 [Safe Labels] For an open program P and
witness graph W , if there exists a region labeling ρ such that:
(P3) for each n ∈ N+ the label ρ.n ⊆ ¬P.E, then L.W ⊆
I.P .

The existence of a safe labeling for W , namely one the
satisfies (P3), guarantees that the language of W is bounded
above by I.P , i.e., the witness contains only sequences that
are permitted by P .

Example 5: Consider the witness W1 for P1 shown in Fig-
ure 1(B), ignoring the acq x, rel x, write edge labels. The
label for each node is written in the box next to the node;
for the safe (unshaded) nodes there is an implicit conjunct
(e = 0 holds), and for the unsafe (shaded) nodes, the label
is e = 1. We can check that this is a region labeling: e.g.,
for the edge n0

acq−−→n1 we saw that Post.(a = 0).acq equals
a 6= 0, i.e., the successor states from the label of n0 are
contained in the label of n1. This labeling is safe, and thus
demonstrates that the language of W1 is a safe interface for
P1, and indeed this language is the full interface for P1, but
this is not always the case. Consider the same witness graph
W1 for P2, now with all the edge labels. The labeling de-
scribed above is a safe labeling, for this witness, and hence
the witness’ language is a safe interface for P2. However,
this interface is too restrictive: it prohibits the client from
ever calling write, as the write edge leads into an “unsafe”
(shaded) state. 2

Proposition 2 [Permissive Labels] For an open program
P and witness graph W , if there exists a region labeling ρ
such that: (P4) for each n ∈ N− the label ρ.n ⊆ P.E, then
I.P ∩R.P ⊆ L.W .

The existence of a permissive labeling for W , namely
one the satisfies (P4), guarantees that the language of W
is bounded below by I.P ∩ R.P , i.e., the witness contains
every realizable sequence that is permitted by P .

Example 6: The labeling described earlier for the witness
W1 shown in Figure 1(B) for P1 is also a permissive labeling,
and hence L.W1 contains all legal, realizable sequence, and
hence, its language is a permissive interface for P1. How-
ever, it can be shown, that for P2, the (augmented) ver-
sion of W1 shown in Figure 1(B) has no permissive labeling.
Consider the witness graph W2 in Figure 1(D). It has a safe
labeling:[n0 7→ (a = 0); n1 7→ a 6= 0; n2 7→ (a 6= 0 ∧ x 6= 0)],
again, e = 0 and e = 1 are implicit for the unshaded,
shaded nodes respectively. It also has a permissive labeling:
[n0 7→ (a = 0 ∧ x = 0); n1 7→ (a 6= 0 ∧ x = 0); n2 7→ a 6= 0],
Thus, the language of W2, is a permissive interface for P2.
The labels shown in Figure 1(D) are the conjunction of the
labels described above, and they are simultaneously safe and
permissive. 2

The above examples demonstrate that in order witness
graph’s language be a permissive interface, not only must
there exist a safe region labeling, which proves that the wit-
ness allows only safe legal sequences, but there must also
exist a permissive labeling, which guarantees that the wit-
ness allows every realizable behavior. Hence, our strategy
to construct permissive interfaces, is to compute a witness
graph that has a safe labeling as well as a permissive label-
ing. Further, as this example shows, the two region labelings
may be different, and in general may be shown using orthog-
onal overapproximations of the state space. Hence, we treat
the two labelings separately.

3 Constructing Permissive Interfaces

We now describe our technique for constructing witness
graphs that have safe and permissive labelings. The method
comprises three main ingredients.

1. Witness Checking. First, given a witness graph, and
two sufficiently precise abstractions, a safety abstrac-
tion and a permissiveness abstraction, we show how to
check whether there exists safe and permissive labelings
for the given witness graph.

2. Witness Reconstruction. Second, given a safety and a
permissiveness abstraction, we show how we can con-
struct a witness graph such that if the two abstractions
are sufficiently precise, the constructed witness is safe
and permissive.

3. Witness Inference. Finally, given just two arbitrarily
coarse abstractions, we show how we can iteratively
refine them to obtain abstractions precise enough to
construct a safe and permissive witness graph.

For witness checking, we convert the given witness into a wit-
ness client that exercises the open program in the manner
prescribed by the witness. The nodes of the witness graph
correspond to program locations of the witness client. The
witness client is at a safe (resp. unsafe) location, whenever
it has executed a sequence of calls allowed (resp. disallowed)
by the witness graph. The witness is safe, iff whenever the
witness client is in a safe location, the sequence of calls made
to reach that location is indeed legal,i.e., the open program
P is in a legal state (¬P.E). This is a standard safety ver-
ification question that can be answered via abstract reach-
ability using the safety abstraction. Dually, the witness is
permissive, iff whenever the witness client is at an unsafe
location, the call sequence made to reach that location is



indeed illegal, i.e., the open program is in an unsafe state
(P.E). Hence, we can also convert the permissiveness check
into a safety verification problem, which can be solved using
the permissiveness abstraction.

For witness reconstruction, we construct a maximal
client that generates all possible call sequences. We then
use the given safety abstraction, to compute an overapprox-
imation of the behaviors of P , as an abstract reachability
graph, from which we obtain a safe candidate witness by
treating nodes that intersect P.E as unsafe nodes, and the
rest as safe nodes. Next, we use the method outlined above,
together with the supplied permissiveness abstraction, to
verify that this reconstructed candidate is permissive, and
if so, we are done.

For witness inference, we obtain sufficient abstractions,
and through them a safe, permissive witness, via the follow-
ing loop. First, we construct a candidate witness with the
current abstraction using the algorithm for witness recon-
struction. Second, we check if this candidate is a safe and
permissive witness using the algorithm for witness checking.
Third, if witness checking fails, we use the failure to find new
predicates that refine the current abstractions, and repeat
the loop with the refined abstraction.

3.1 Witness Checking

Given an open program P and a witness graph W for P ,
the witness checking problem is to find whether or not the
witness’ language is a safe and permissive interface for P .
To do this check we shall employ a client that exercises the
open program in the manner prescribed by W .

Clients. A client for an open program P is a CFA Cl =
(X, ∅, Q, q0, qe,→) where the operations on the edges are as-
signments and assumes from before, as well as function calls
y := f(), where (f, ·) ∈ P.Σ, and y ∈ X. For convenience,
we introduce the operation y := (f(), o) as shorthand for the
sequence of operations y := f(); assume [y = o];, where y is
not subsequently read, we further compress this to (f, o).

Closed Programs. A closed program (Cl , P ) consists of
a client Cl and an open program P . A program (Cl , P )
induces a state space V.(Cl .X ] P.X). Let s, s′ ∈ V.(Cl .X)
and t, t′ ∈ V.(P.X). Then s ◦ t

op
;s′ ◦ t′ if (1) s

op
;s′ and

t = t′ if op is an assignment or assume, and (2) there exists
o ∈ P.O such that t

(f,o)
; t′ and s′ = s[o/y] if op is the function

call y := f(). For a subset L ⊆ Q of the client locations,
we say s ◦ t ∈ V.(Cl .X ∪ P.X) is L-reachable if there exist
(q0, (s0◦t0) . . . , (qn, (sn◦tn)) ∈ Cl .Q×V.(Cl .X∪P.X), such
that (1) t0 = P.s0, the initial state of the open program,
(2) for all 0 ≤ i ≤ n − 1, there is an edge qi

opi−−→qi+1 in Cl
such that si ◦ ti

opi
;si+1 ◦ ti+1, and (3) sn = s, tn = t, and

qn ∈ L.

Witness Clients. For every witness graph W = (V, E, v0)
for P , we can construct a witness client CFA Client.W =
({x}, ∅, V ∪ {pce}, v0, pce,→) as follows. The client has a
single variable x, which is used to capture the output from
function calls. For every edge v

(f,o)−−−→v′ in W , there is a
corresponding CFA edge v

op−→v′ in Client.W where op is x :=
(f(), o). For example, Figure 2(A) shows a witness client
corresponding to the witness graph W1 of Figure 1(B). The
witness client can call any sequence of library functions that
are allowed by the witness graph.

Interface Checking via Safety Verification. The lan-
guage of the witness W is:

Algorithm 1 BuildARG

Input: A Closed Program (Cl, P ), Set of Predicates Π
Output: Abstract Reachability Graph A of (Cl, P ) w.r.t Π.
1: L := {n : (Cl.pc0, Abs.Π.(P.s0))}
2: seen := ∅, A := ∅
3: while L 6= ∅ do
4: pick and remove state n : (pc, r) from L
5: if (n 6∈ seen) then
6: seen := seen ∪ {n}
7: for each (pc, op, pc′) of Cl do
8: r′ := SP.Π.op.r; n′ := Connect.A.((pc, r), op, (pc′, r′))
9: L := L ∪ {n′}
10: return A

(1) A safe interface for P iff the V +-reachable states of
(Client.W, P ) are P.E-safe, i.e., the client W never reaches
a state in P.E when it is at a “safe” node,
(2) A permissive interface for P iff the V −-reachable states
of (Client.W, P ) are ¬P.E-safe, i.e., the client W never
reaches a state in ¬P.E when it is at an “unsafe” wnode.

As the above reachability checks are undecidable in gen-
eral, we need abstractions of the open program, with which
to overapproximate the reachable states.

Predicate Abstraction. For a set of predicates Π ⊆
Pred.X and a formula r over X, let Abs.Π.r denote the
smallest (in the inclusion order) data region containing r ex-
pressible as a boolean formula over atomic predicates from
Π. For example, if Π = {a = 0, b = 0} and r = (a =
3 ∧ b = a + 1), then the predicate abstraction of r w.r.t.
Π is ¬(a = 0) ∧ ¬(b = 0). The abstract postcondition of
r and op w.r.t. Π, written SPΠ.r.op, is a boolean combina-
tion of predicates from Π which overapproximates SP.r.op.
The procedure SP computes the abstract postcondition. It
takes as input the set of predicates Π, an operation op, and
the current region r, and returns SPΠ.r.op. For assignments
and assumes it directly computes the abstract postcondi-
tion [10], but for calls into functions, which may contain
loops, the procedure implements a fixpoint computation via
a standard abstract reachability algorithm [10, 13].

Abstract Reachability Graphs. Given an open program
P , client Cl and set of predicates Π an abstract reachability
graph(ARG) for (Cl , P ) w.r.t. Π, is a rooted directed graph
where each node is labeled by pairs (pc, r) such that: (1)
The root node n0 is labeled (pc0, r0) where pc0 is the initial
location of Cl and r0 is the predicate abstraction of the ini-
tial state s0 of the system w.r.t. Π. (2) Each node n labeled
(pc, r) has an op-successor (pc′, r′) for every edge pc

op−→pc′ in
Cl , such that r′ = SPΠ.r.op. If Π is finite, then the ARG is
also finite. Procedure BuildARG shown in Algorithm 1 con-
structs ARGs using predicate abstraction. It takes as input
an open program P , a client Cl , and a set of predicates Π.
The algorithm incrementally builds the ARG, by construct-
ing successors of nodes, and merging nodes that have the
same abstract state.

Example 7: Consider again P1 from Figure 1(A), and the
witness W1 shown to its right. Algorithm BuildARG com-
putes the ARG in Figure 1(B) for (Client.W1, P1) w.r.t the
set of predicates Π1 = {e = 0, a = 0}. 2

The Witness Checking Algorithm. Notice that from
the ARG A constructed by BuildARG, we can construct a
region labeling for W by mapping node v of W to ∨n:(v,r)r,
the union of all regions r marking the nodes of the ARG A
where the client is at location v.

Proposition 3 [Abstract Region Labelings] Let W be



Algorithm 2 Check

Input: Open Program P , Witness W = (V, E, v0)
Input: Predicates Π, Vertices V ′ ⊆ V , Target Region E
Output: True or a counterexample CFD Ctrx(δ)
1: A := BuildARG.P.(Client.W ).Π
2: ρ := λv.(

∨
n:(v,r) r)

3: if exists v ∈ V ′ : ρ.v 6⊆ E) then
4: Find n : (v, r) s.t. r 6⊆ E
5: σ := path from n0 to n in A
6: return dagΠ.σ
7: else
8: return True

a witness graph for open program P . Let A be the Abstract
Reachability Graph for (Client.W, P ), w.r.t. any set of pred-
icates Π. The map ρG = λv.(

∨
n:(v,r) r), is a region labeling

for W , i.e., ρG has properties (P1),(P2).

Hence, given a set of predicates ΠS , we invoke procedure
BuildARG to compute an ARG AS for (Client.W, P ), w.r.t.
ΠS , and hence a region labeling ρS . This labeling is safe,
i.e., satisfies (P3), and so we are guaranteed that W is a
safe witness. This check is precisely stated by invoking Al-
gorithm Check.P.W.ΠS .V +.(¬P.E), shown in Algorithm 2,
which returns True if the region labeling constructed in
line 2 is a safe labeling for W .

More importantly, we can use the same technique to
check if W is permissive: given a set of predicates ΠP , we
can use BuildARG to compute an ARG AP for (Client.W, P ),
and if the corresponding region labeling ρP is a permissive
region labeling, i.e., satisfies (P4), then we are guaranteed
that W is a permissive witness. Once again, this check is
carried out by invoking Algorithm Check.P.W.ΠP .V −.(P.E),
shown in Algorithm 2, which returns Trueif the region la-
beling constructed is a permissive labeling for W . Notice,
that in doing so we have used an overapproximate analysis
(BuildARG), to obtain a lower bound on the language of W ,
i.e., instead of the traditional use of overapproximation –
namely to guarantee that the behaviors of a program are
contained in some (safe) set, we have used an overapproxi-
mation to ensure that the behaviors of the program contain
a desirable (permitted) set.

Proposition 4 [Witness Checking] For an open pro-
gram P , let W = (V + ∪ V −, E, v0) be a witness graph s
uch that for predicate sets ΠS , ΠP :
(1) Check.P.W.ΠS .V +.(¬P.E) returns True and,
(2) Check.P.W.ΠP .V −.(P.E) returns True.
Then I.P ∩R.P ⊆ L.W ⊆ I.P , i.e., W is a safe, permissive
witness for P .

Example 83.1 below shows that the abstractions required
to demonstrate the two requirements may be quite differ-
ent. As the running time of BuildARG is exponential in the
number of predicates, we keep two separate abstractions.
Also, while we use predicate abstraction, checking can be
performed with any abstract domain for which fixpoints are
computable.

Example 8: Consider an open program with variables x, y,
and e, all initially 0, and two methods f1 and f2 defined as:
f1 : if(x 6= 0) then e := 1; f2 : if(y = 0) then e := 1;.
The error states are e 6= 0, we omit the output. Consider the
witness graph W = ({n0, n1}, {(n0, f1, n0), (n0, f2, n1}, n0),
with N+ = {n0} and N− = {n1}. The labeling ρ.n0 =
(x = 0 ∧ e = 0) and ρ.n1 = true is safe. Since n1 ∈ N− is

Algorithm 3 ReconstructMax
Input: Open program P , set of predicates Π.
Output: A maximally safe witness graph W for P .
1: A := BuildARG.(mxc.P, P ).Π

2: V + := {v | v : (·, r) ∈ A.N s.t. r ⊆ ¬P.E}
3: V − := A.N \ V +

4: return witness graph (V + ∪ V −, A.E, A.n0)

unsafe, the call f2 is not allowed. The labeling ρ′.n0 = (y =
0∧ e = 0) and ρ′.n1 = (e 6= 0) is permissive. The safe (resp.
permissive) labeling does not track y = 0 (resp. x = 0). 2

3.2 Witness Reconstruction

In witness checking, we assumed that in addition to the
abstraction predicates ΠS , ΠP , we had a given candidate
witness W . In witness reconstruction, we show how to use
ΠS to reconstruct a candidate witness W with a safe region
labeling. As before, if we can then show (using ΠP ) that the
candidate W has a permissive labeling then we are done.

Maximal Clients. To obtain this candidate, we shall
“close” the open program P using a maximal client that
generates all possible sequences of function calls to the li-
brary. For an open program P , the maximal client mxc.P
of P is the CFA ({x}, ∅, {pc0}, pc0, pc0,−→), where for every
(f, o) ∈ Σ we have that (pc0, x := (f(), o), pc0) ∈→. We
then use the abstraction ΠS , to overapproximate the be-
haviors of P when exercised by this client. Our candidate
witness corresponds to the language of the “safe” sequences
generated by the maximal client.

Example 9: The maximal client of P2 from Figure 1(C), is
mxc.P2 shown on the top in Figure 2(A). 2

The Witness Reconstruction Algorithm. Consider the
ARG A for (mxc.P, P ) w.r.t. the predicates ΠS . We can con-
vert this ARG into a witness graph Witness.A = (V, E, v0)
by converting: (1) the nodes of the ARG into nodes of
Witness.G, (2) the edges of the ARG, which were labeled
by operations in P.Σ into the edges of Witness.G, (3) the
root node of the ARG as the root node of Witness.G, and
letting (4) V + be the set {n | n : (pc, r) and r ⊆ ¬P.E}, and
V − be the complement.

As the witness corresponds to an ARG, the ARG node
labels form a region labeling. The nodes were partitioned
so as to make the labeling just described a safe region label-
ing. In addition, it can be shown that the witness “recon-
structed” above is the biggest witness that can be shown to
be safe using the abstraction ΠS . The above algorithm is
formalized in Algorithm ReconstructMax in Algorithm 3.

Proposition 5 [Maximal Witness Reconstruction]
For every open program P and set of predicates Π,
ReconstructMax.P.Π terminates and returns a witness graph
W such that:
(1) W is a safe witness for P ,
(2) For every witness W ′, if Check.P.W ′.Π.(W.V +).(¬P.E)
then L.W ′ ⊆ L.W , i.e., W is the maximal safe witness for
P w.r.t. Π.

Example 10: Upon running Algorithm BuildARG on
(mxc.P2, P2) and the set Π = {e = 0, a = 0} of predicates,
we obtain the ARG A1 shown in Figure 2(B), which trans-
lates to the witness W1. The unshaded nodes are those
whose regions are contained in ¬P.E ,i.e., e 6= 1, i.e., are



Figure 2: (A) mxc.P2 (↑) Client.W1 (↓) (B) Witness Coun-
terexample (C) Ctrx. CF-Dag

safe w.r.t to P2.E . The label acq/x indicates two edges,
one labeled with acq and the other with acqx. This recon-
structed maximal witness W1 prohibits calling write and
hence, while being safe, is not permissive, as write can be
safely called after first calling acq x. When computing the
acq x-successor of n0, the abstract state is the same as that
of n1, namely ¬(a = 0) ∧ (e = 0), as there are no predicates
on x. Hence the algorithm sets n1 to be the acq x-successor
of n0, thus not permitting any calls to write. While it may
seem that this “merging” of nodes with the same abstract
state is premature, this is what guarantees the termination
of the abstract reachability loop. 2

3.3 Witness Inference

The above example highlights the importance of finding
the right abstractions. As for verification, coarse abstrac-
tions leads to false positives, for interface synthesis, coarse
abstractions lead to massively constrained interfaces. As
shown in the prequel, we it suffices to find abstractions ΠS

and ΠP such that the maximal (safe) witness for P w.r.t.
ΠS , can be shown to be permissive using ΠP . We now show
how to find such ΠS , ΠP by automatically refining coarse ab-
stractions, using witness counterexamples sequences of P.Σ
that are prohibited by the maximal witness but which may
be permitted by the open program P .

Witness Counterexamples. We use procedure BuildARG
(via the procedure Check) to see if the abstraction ΠP suf-
fices to show that a candidate witness W is a permissive
witness for P . This permissiveness check fails in line 3 of
Check if in the ARG G returned by BuildARG there exists a
node n : (v, r) such that:
(1) r 6⊆ P.E , i.e., the resulting state of the open program is
legal, and,
(2) v ∈ V −, i.e., v is an “unsafe” witness node. Consider
any path in the ARG G from the root node of G to n; the
ARG edge labels along this path, correspond to a sequence
of calls σ that:
(1’) may be legal as the resulting abstract region is not con-
tained in P.E states, i.e., contains legal states, but which is
(2’) prohibited by W , as the sequence ends in an “unsafe”
witness node. Such a call sequence is a witness counterex-
ample.

Control-flow Dag. A Control-flow Dag (CFD) for a func-
tion f is a Directed Acyclic Graph that represents a set of
paths through the CFA of f . The CFD has a single-source
(single-sink) corresponding to the entry (exit) location of f .
In procedure BuildARG (Algorithm 1), we compute SPΠ.r.op

Algorithm 4 Refine
Input: Open program P , Control-flow Dag δ.
Output: CxPerm(Π), or, CxSafeΠ), where Π is a set of predicates.
1: ϕ := SP.(P.s0).δ
2: if ϕ ∧ ¬(P.E) is satisfiable then
3: Π := GetNewPreds.δ.(P.s0).(¬P.E)
4: return CxPerm(Π)
5: else
6: Π := GetNewPreds.δ.(P.s0).(P.E) {Note: ϕ ∧ P.E is unsatisfi-

able}
7: return CxSafe(Π)

where op = (f, o), in the standard way [10, 13] by “un-
rolling” the CFA for f , compute the abstract state (over the
predicates Π) for each unrolled CFA location, and merge
nodes with the same abstract state. The returned region
r′ is the union of the region unrolled exit nodes. On delet-
ing back-edges from the unrolled CFA, and merging all exit
nodes, we get a CFD encoding the possible set of paths that
a state in r may take through the body of f to reach a state
in r′. We shall call this CFD dagΠ.op. Given a sequence of
edges labeled σ in the ARG built by BuildARG, we can chain
together the CFDs for the individual edges to obtain dagΠ.σ,
which represents a set of paths that the open program may
execute, if the sequence of calls σ is made. Whenever the
check in line 3 of procedure Check fails, it returns a CFD
dagΠ.σ, corresponding to a witness counterexample σ.

Example 11: Consider the restrictive candidate witness
W1 corresponding to the ARG A1, from the previous ex-
ample 3.2. The witness client Client.W1 is shown in Fig-
ure 2(A). An edge with multiple labels stands for several
edges, each with one of the labels. We invoke procedure
Check, using the predicates ΠP = {e = 0, a = 0}, and the
target states ¬(e = 1) to see if this witness is permissive.
To do this, Check builds an ARG for the (closed) program,
but then finds that the check in line 3 fails, and it finds a
node in the ARG with properties (1),(2). A path in the
resulting ARG, leading to this ARG node is shown in Fig-
ure 2(B). The node labels are the region labels in the ARG,
which are built using the predicates ΠP . The sequence of
calls labeling the edges acq x; write is a witness counterex-
ample, for which Figure 2(C) shows the CFD. 2

Predicate Refinement. The visible determinacy of the
open program P ensures that the set of feasible paths cor-
responding to any call sequence either always end in P.E , if
this call sequence is not permitted or always end in ¬P.E , if
this call sequence is permitted. In particular, if δ = dagΠ.σ,
then the feasible paths corresponding to δ either always end
in P.E or always end in ¬P.E . Hence, either:
(CxPerm) ¬P.E ∩SP.(P.s0).δ is unsatisfiable, meaning that
σ is not a permitted call sequence. In this case we use
a standard predicate discovery algorithm [12, ?] to ob-
tain new predicates Π such that ¬P.E ∩ SPΠ.(P.s0).σ be-
comes unsatisfiable, i.e., the resulting abstraction is pre-
cise enough to eliminate this witness counterexample, or,
(CxSafe) ¬P.E ∩ SP.(P.s0).δ is satisfiable, implying that
the witness counterexample σ is a permitted call sequence
that has been prohibited by the maximal safe witness re-
constructed from ΠS . In this case, the above shows that
P.E ∩ SP.(P.s0).δ must be unsatisfiable and so the predi-
cate discovery algorithm infers new predicates Π such that
P.E ∩ SPΠ.(P.s0).σ becomes unsatisfiable, i.e., the resulting
abstraction is precise enough that its maximal safe witness
contains the permitted call sequence σ.

The above is made precise in algorithm Refine shown in



Algorithm 5 BuildInterface
Input: Open program P , sets of predicates ΠS and ΠP .
Output: A safe, permissive witness graph W for P .
1: Step 1: W := ReconstructMax.P.ΠS

2: Step 2: p := Check.P.W.ΠP .(W.V −).(P.E)
3: if p =True then
4: return W
5: Step 3: {W not permissive, p is a witness ctrx. δ}
6: Ctrx(δ) := p
7: match Refine.P.δ with
8: | CxPerm(Π) → ΠP := ΠP ∪ Π; go to Step 2.
9: | CxSafe(Π) → ΠS := ΠS ∪ Π; go to Step 1.

Algorithm 4. Procedure GetNewPreds refers to the predicate
discovery algorithm, which takes as input a CFD δ, and a
set of intial states r, and set of states E s.t. SP.r.δ∩E is un-
satisfiable, and returns a set of predicates Π s.t. SPΠ.r.δ∩E
is unsatisfiable. Refinement in witness inference is different
from refinement in safety verification. In safety verification,
refinement is done using infeasible paths to error states, and
leads to the removal of such paths from the abstraction. In
witness inference, witness counterexamples may be feasible
or infeasible paths to “error” states. Even if the counterex-
ample is feasible path (case CxSafe), the refinement proce-
dure adds new predicates, that force the safety abstraction
ΠS to include this feasible, legal sequence. The role of the
refinement in this case is not to remove abstract behaviors,
but to introduce additional possible behaviors.

Example 12: Consider the CFD for the witness coun-
terexample of example 11,shown in Figure 2(D). The fea-
sible paths of this CFD end in safe states, i.e., (e = 0),
though owing to the imprecision of the abstraction, the max-
imally safe witness built from {a = 0, e = 0} prohibits this
sequence. Hence, this is case (CxSafe), and the predicate
discovery algorithm finds the new predicate x = 0; the re-
sulting abstraction is precise enough to permit the sequence
acq x; write. Note that our refinement does not add the
single witness counterexample sequence; such a process may
never terminate. Instead we infer new predicates such that
the refined abstraction will contain the earlier prohibited se-
quence and as a result we “add” all other sequences that can
be proved to be safe using the refined abstraction.

The predicate refinement method depends on visible de-
terminism. Consider a version P3 of P1 with a version of
acq shown in Figure 3(A) that can nondeterministically fail
to acquire the resource. If acq fails it outputs 0, otherwise
it outputs 1. Without the output bit out, P3 is not visibly
deterministic. In particular, the sequence acq · read may or
may not lead to error, and neither CxSafe nor CxPerm
holds. However, if we model the output out, then P3 is vis-
ibly deterministic. Figure 3(B) shows a safe and permissive
witness W3. 2

The Witness Inference Algorithm. We combine the
previous ideas together in our Witness Inference Algorithm
BuildInterface shown in Algorithm 5.
Step 1. We start with a (possibly trivial) abstraction
ΠS , ΠP , and use the witness reconstruction algorithm to
obtain a candidate witness W , largest interface that we can
show is safe using ΠS .
Step 2. Next, we use the witness checking algorithm to see
if the candidate W is permissive. If so, we are done, and we
output the safe, permissive witness W . If not, the witness
checking algorithm returns a witness counterexample in the
form of a CFD δ.
Step 3. In the procedure Refine we check if the witness

counterexample CFD δ corresponds to a permitted sequence
prohibited by W . If not, i.e., it is a CxPerm witness
counterexample, we infer new predicates Π′

P to refine the
permissiveness abstraction, and go to step 2. If it is a per-
mitted sequence that is prohibited by the witness W owing
to imprecision of ΠS , i.e., it is a CxSafe witness coun-
terexample, we infer new predicates Π′

S such that the re-
sulting maximal witness will permit the sequence σ, and go
to step 1.

Theorem 1 Let P be an open program and let Π1, Π2 be
two sets of predicates.
(1) If BuildInterface.P.Π1.Π2 terminates and returns W then
I.P ∩R.P ⊆ L.W ⊆ I.P .
(2) Procedure BuildInterface terminates if P is finite-state.

Example 13: Let us see show Algorithm BuildInterface
computes a safe and permissive interface for P2. We shall
begin with the seed abstraction ΠS = ΠP = {e = 0, a = 0}.
The second predicate would have been automatically found,
but we add it for brevity.
Iteration 1
Step 11 We invoke BuildARG on the maximal client mxc.P2

using predicates ΠS to reconstruct the maximal witness W1

described in Example 10.

Step 21 We now call Check to see if the interface defined by
W1 is permissive. The witness client Client.W1 is shown in
Figure 2(A). As noted in example 11,the permissive check
procedure returns the witness counterexample acq x; write,
Figure 2(B), in the form of its CFD Figure 2(C).

Step 31 We infer new predicates using the counterexample
witness CFD from the previous step. As discussed in ex-
ample 12, this is a CxSafe counterexample and so the new
predicate (x = 0) is added to ΠS , and we return to step 1.

Iteration 2
Step 12 We now reconstruct the maximal witness w.r.t. the
predicates {a = 0, x = 0, e = 0}. The result W2 is shown in
Figure 1(D).

Step 22 Upon calling Check to see if this witness is permis-
sive, we get the witness counterexample acq; write, in the
form of its CFD.

Step 32 This time, we have a CxPerm counterexample, as
the witness counterexample sequence is indeed not permit-
ted, the new predicate (x = 0) returned by Refine is added
to ΠP , and we return to step 1. The new ΠP suffices to show
W2 is permissive, as the test in line 3 of Check succeeds. The
safe, permissive witness W2 is returned. 2

4 Tightness and Full Interfaces

As we saw in Section 2, the presence of a safe and a per-
missive labeling ensures that the witness language L.W is
a safe, permissive interface, i.e., I.P ∩ R.P ⊆ L.W ⊆ I.P .
In general, as the next example shows, L.W is not the full
interface.

Example 14: Consider the modified version of the function
acq shown in the left of Figure 3(C), and the program P4 ob-
tained by using the modified function and adding the static
variable flag. This time, acq can nondeterministically fail,
but failure can occur at most once. Algorithm BuildInterface
produces exactly the same witness graph W3 (Figure 3(B))
for P4. However, there are correct clients, e.g., the client
shown on the right in Figure 3(C), which cause false alarms



Figure 3: (A) P3.acq (B) mxc.P3 (↑), Perm. W3 (↓) (C) P4.acq (←), Correct Client (→) (D) Perm. W4

when analyzed against this interface. The false alarms arise
from the fact that the witness graph is unaware that acq
can never “fail” twice. Once acq fails (i.e., returns 0), then
when called again, it will “succeed” (return 1), and thus
thereafter, read is permitted. The problem is not that the
client does not check the output of acq the second time, but
that the client generates the sequence (acq, 0); (acq, 0); read;
which, while permitted, is not accepted by W3. The se-
quence (acq, 0); (acq, 0); read; is not in R.P , and so triv-
ially, cannot lead to an error. Hence it is permitted, and
this sequence is in I.P . A permissive labeling on W , how-
ever, looks only for realzable sequences precluded by W . As
W3 permits all feasible sequences, it passes the check. 2

In order to ensure that the language of a witness graph
is the full interface I.P , we must constrain its region label-
ings further. A region labeling ρ is tight if: (P5) For every
n

(f,o)−−−→n′ we have either ρ.n′ = ∅ or ρ.n ⊆ Pre.(f, o).(ρ.n′).

Proposition 6 For an open program P and witness graph
W , if there exists a safe labeling ρ1, a permissive labeling ρ2

and a tight labeling ρ3 of W then L.W = I.P .

To generate a witness for the full interface, we add a
third phase to our algorithm that takes a witness graph and
a safe labeling, and tries to produce a tight labeling. If it
fails, the procedure generates new predicates that refine the
current abstractions. This is performed by the procedure
Tighten. Procedure Tighten takes a witness graph and a
safe region labeling, and tries to ensure that the labeling is
tight by iterating over each edge and checking if the labeling
is tight for that edge. It returns either that the labeling is
tight, or a set of new predicates. For an edge n

(f,o)→ n′, it
checks if the labeling ρ is tight, i.e., if ρ.n ⊆ Pre.(f, o).(ρ.n).
If not, it finds a set Π′ of predicates such that there is a
region r definable with predicates in Π′ for which ρ.n∧r 6= ∅
but ρ.n ∧ r ∧WP.(f, o).(ρ.n′) = ∅. Unfortunately, since f
may have infinitely many paths, we cannot directly compute
Pre.(f, o).(ρ.n′) by iterating the WP operator. Instead, we
modify the Algorithm BuildARG. We omit the details of this
algorithm for lack of space. Note tightness is not the same
as termination, which requires that a function will terminate
along all paths. Here, we only need to find if there is some
path to ρ.n′.

Example 15: For the program P4 (that uses the modified
acq in Figure 3(C)), the witness W3 in Figure 3(B) is not
tight. In particular, the edge n0

acq,0−−−→n0 is not tight. Proce-
dure Tighten finds the extra predicate f = 0; indeed, from
every state in (a = 0∧f = 0), there is a feasible path in acq
to a state in a = 0. When we track this additional predi-
cate, Algorithm BuildInterface returns the witness graph W4

(Figure 3(D). This witness graph admits a safe, permissive,
and tight labeling (as shown in Figure 3(D)). Thus it defines
the full interface for P4. 2

Procedure BuildInterface′ adds this tighten phase to
BuildInterface by checking algorithm Tighten and re-running
the BuildInterface loop with the additional predicates should
tighten fail.

Theorem 2 Let P be an open program and let Π1, Π2 be
two sets of predicates. (1) If BuildInterface′.P.Π1.Π2 ter-
minates and returns W then L.W = I.P . (2) Procedure
BuildInterface′ terminates if P is finite-state.

5 Experiences

Implementation. We have implemented the algorithm to
generate permissive interface witnesses in the Blast soft-
ware model checker. In order to be practical, we imple-
ment some optimizations over the described method. First,
while it is conceptually simpler to explain the counterexam-
ple analysis phase separately from the reachability phase,
in practice, we integrate counterexample guided refinement
within the reachability procedure (using lazy abstraction) to
rule out infeasible abstract counterexamples. Second, we im-
plement a value flow analysis, similar to field splitting [15] to
detect which global variables are read and written by which
library methods, and partition the set of all library methods
to those that are connected by sharing internal state. Third,
as suggested by Example 3.1, we keep the upper and lower
bound checks separate.

Experiences. We ran our implementation on
the examples from [1], on the code available from
http://www.cis.upenn.edu/jist/examples.html. We looked
at the classes Signature, ServerTableEntry, and ListItr
from this web page, and additionally classes Socket from
JDK1.4. Our algorithm, unlike the algorithm of [1], does
not require the user to provide a fixed predicate abstraction
for an open program.

For Signature, the exception SignatureException was
marked as the error condition. For ServerTableEntry we
considered the exception INTERNAL that is raised when the
state machine maintained by the class is in a “wrong” state.
For ListItr we consider IllegalStateException. In addi-
tion, we ran the tool on the class Socket of JDK1.4, where
we considered the exception SocketException. In each case,
the tool was able to construct a permissive and tight witness
within 30s (on a 3GHz machine with 512M RAM).

In all these examples, the class maintained the inter-
face internally using a set of private variables. For ex-
ample, Signature internally maintains a state variable



state that is in three states, uninitialized, sign, or ver-
ify. Upon initialization using initVerify (resp. initSign),
the state becomes verify (resp. sign). Calling the sign
(resp. verify) method on an uninitialized object, or one
initialized using initVerify (resp. initSign) raises a
SignatureException. Our algorithm infers a three state
witness graph that represents this interface, with the ex-
pected labeling state = initVerify, state = initSign,
and state = uninitialized. This conforms to the doc-
umentation in the JDK1.4 API specification that specifies
how this object should be used.

In Socket, we consider public methods connect, close,
bind, getInputStream, getOutputStream, shutdownInput,
shutdownOutput. The value flow finds out that we need
to define witnesses for the functions connect, close,
shutdownInput, and getInputStream together (and simi-
larly for the output streams). The algorithm finds the
state bits maintained by the class, and finds an interface
that enforces the requirement that getInputStream can be
called only after a call to connect, but when close or
shutdownInput has not been called. We require six pred-
icates that keep track of the internal state.

6 Applications: Modular Program Analysis

We now describe some applications of safe, permissive (and
full) interfaces in modular program analysis.

Compositional Verification. For an open program P ,
and any client Cl for P , instead of analyzing the P with
the client, we can use the (smaller) interface program con-
structed from a witness for I.P to verify the client. A state
s ◦ t of a closed program (Cl , P ) is safe if t 6∈ P.E . The
program (Cl , P ) is safe if all its reachable states are safe. A
client Cl is safe w.r.t. to P if (Cl , P ) is safe.

Given a witness graph W for P we construct an open
program IntfP.W as follows. There are three static variables
state (whose values range over the set of states W.N of W ),
out (whose values range over P.Outs), and a variable err.
The signature is P.Σ. For each (f, o) ∈ P.Σ, there is a
function (IntfP.W ).f ∈ (IntfP.W ).F that encodes the edge
relation of W as follows. There is a branch in (IntfP.W ).f
for each edge n

(f,o)−−−→n′ in W . On this branch, the CFA
checks that state = n (by assume [state = n]), then sets
state to n′, out to o, and e to 1 if n′ is unsafe. In the initial
state (IntfP.W ).s0 the variable state equals the root node
W.n0, and out, e are 0. The set of outputs (IntfP.W ).Outs
is P.Outs. The error region (IntfP.W ).E is e = 1. It is easy
to see that I.(IntfP.W ) = L.W . When verifying that the
client uses a the library correctly, we can verify the client
with this interface program instead of the entire library. The
following theorem states the correctness of this substitution.

Theorem 3 Let P be an open program, W be a witness
for P and IntfP.W be the interface program of W . For any
client Cl: (1) If L.W is a safe interface then (Cl , P ) is safe
if (Cl , IntfP.W ) is safe. (2) If L.W is the full interface for
P , then (Cl , P ) is safe iff (Cl , IntfP.W ) is safe.

Interface Decomposition. The internal invariants of an
open program may be violated in several different and in-
dependent ways. If we consider all possible error states to-
gether, the synthesized interface can be quite large and com-
plex. The following proposition lets us decompose the inter-
face construction by decomposing the sets of error states.

Proposition 7 Let P be an open program, and let E1 and
E2 be two subsets of V.(P.X). Let Ii be a full (resp. per-
missive, safe) interface for P when P.E = Ei for i ∈ {1, 2}.
Then I1 ∩ I2 is a full (resp. permissive, safe) interface for
P when P.E = E1 ∪ E2.

Given an open program P such that P.E = ∪iEi, we
can now find separate witnesses for each Ei, and then check
the client against each witness independently. The client
correctly uses P iff all the checks succeed. Checking against
each witness program separately is more efficient that check-
ing against a single (product) witness.

Proposition 8 Let P be an open program, Wi a witness for
P [E 7→ Ei], and IntfP.Wi the interface program of Wi. For
any client Cl: (1) (Cl , P [E 7→ ∪iEi]) is safe (Cl , IntfP.Wi)
is safe if for all i. (2) If each Wi is permissive and tight for
P [E 7→ Ei] then (Cl , P [E 7→ ∪iEi]) is safe iff (Cl , IntfP.Wi)
is safe for all i.
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