Race Checking by Context Inference

Thomas A. Henzinger

Ranjit Jhala

Rupak Majumdar

EECS Department, University of California at Berkeley, U.S.A.
{tah, jhala,rupak}@eecs.berkeley.edu

Abstract

Software model checking has been successful for sequential
programs, where predicate abstraction offers suitable mod-
els, and counterexample-guided abstraction refinement per-
mits the automatic inference of models. When checking con-
current programs, we need to abstract threads as well as
the contexts in which they execute. Stateless context mod-
els, such as predicates on global variables, prove insufficient
for showing the absence of race conditions in many exam-
ples. We therefore use richer context models, which com-
bine (1) predicates for abstracting data state, (2) control
flow quotients for abstracting control state, and (3) coun-
ters for abstracting an unbounded number of threads. We
infer suitable context models automatically by a combina-
tion of counterexample-guided abstraction refinement, min-
imization, circular assume-guarantee reasoning, and para-
metric reasoning. This algorithm, called CIRC, has been
implemented in BLAST and succeeds in checking many ex-
amples of NESC code for data races. In particular, BLAST
proves the absence of races in several cases where previous
race checkers give false positives.

1 Introduction

Data races are a major source of errors in concurrent pro-
grams. Race detection tools enable the construction of ro-
bust concurrent systems by finding, or confirming the ab-
sence of, races. They also allow more aggressive program-
ming by detecting redundant synchronizations (by verifying
the safety of the program without the synchronizations).
Existing race checkers fall into two major categories: dy-
namic, lockset-based tools [24, 5] and static, type-based
tools [3, 10]. Programmers, however, often use synchroniza-
tion idioms that cause false positives for these tools (i.e., the
tool reports a possible race when there is none). Consider,
for example, the “test-and-set” NESC program taken from
[12] in Figure 1. Lockset- and type-based approaches falsely
flag this program as potentially buggy, as it uses the value
of the variable state instead of explicitly declared locks to
guarantee race-freedom. In real programs, the problem is
harder as the accesses to the “protected” variable happen in
procedures other than the ones where the variable state is
toggled, and often happen only if the function that changes
the “state” variable returns a particular value (“conditional
locking”). Other synchronization mechanisms, such as the
enabling and disabling of certain interrupts, are also beyond
the scope of methods based on locks. A more precise path

and interleaving sensitive analysis that tracks the values of
variables is required to verify the absence of races.

Race detection is a safety verification problem for con-
current programs: a race occurs when two threads can access
(read or write) a data variable simultaneously, and at least
one of the two accesses is a write. The program is race-free
if no such state is reachable. Thus, in principle, races can
be detected (and their absence proved) using model check-
ing. Concurrency, however, is a major practical obstacle
to model checking: the interleaving of concurrent threads
causes an exponential explosion of the control state, and if
threads can be dynamically created, the number of control
states is unbounded.

One approach [22] is to consider the system as comprising
a “main” thread and a contert which is an abstraction of all
the other threads in the system, and then verifying (a) that
this composed system is safe (“assume”) and (b) that the
context is indeed a sound abstraction (“guarantee”). Once
the appropriate context has been divined, the above checks
can be discharged by existing methods [13, 7, 21, 15, 11]
and [2, 19, 4] which additionally automatically perform the
remaining data abstraction using counterexamples. Note
that either check may fail due to imprecision in the context,
leaving us with no information about whether the system is
safe or not.

Consequently, the main issues are: (a) what is a model
for the context that is simultaneously (i) abstract enough
to permit efficient checking and (ii) precise enough to pre-
clude false positives as well as yield real error traces when
the checks fail, and (b) how can we infer such a context
automatically.

In [18], we addressed these issues as follows: (a) We chose
as context model, a relation R on the global variables, which
represents the possible effects that the the other threads
may have on the global state between any two transitions
of the main thread, i.e., at any point, the context could
change the global variables from s to s’ so long as (s, s’') € R.
(b) We inferred such a context using counterexample-guided
abstraction refinement.

Experiments showed that this stateless context model
lacks the precision required to prove the safety of programs
such as the ones described earlier, and to produce error
traces for buggy programs. As context threads change the
global variables depending on their local states, stateless-
ness leads to false positives. Also, to generate error traces
(and to refine abstractions) we must be able to check if an
abstract trace corresponds to some concrete interleaving of
the program’s threads. This is difficult if the context has

no information about the other threads’ local states. For
these reasons, the context must track the local state of its
threads. Unfortunately, with statefulness comes the burden
of tracking the state of each of the arbitrarily many context
threads.

We present in this paper a richer model for contexts
that solves both the above problems, and a generalization of
the algorithm from [18] that constructs these richer context
models automatically.

Stateful Contexts. First, we represent each context
thread by an abstract control flow automaton (ACFA). Each
ACFA location corresponds to a set of control locations
of the thread, and we keep ACFAs minimal by computing
bisimilarity quotients. Each ACFA location is labeled by a
formula over the globals, which constrains the possible val-
ues of the global variables. Second, we track the state of
each of arbitrarily many context ACFAs by labeling each
ACFA location with an integer counter (possibly w), which
represents the number of threads at that location (“counter
ACFA”). Thus, our context models combine three forms
of abstraction: predicates for data abstraction, bisimilarity
quotients for control abstraction, and counters for abstract-
ing multiple threads.

Context Inference. Suppose, for simplicity, that all
threads run the same code as main. The inference of context
models proceeds in two nested loops. The outer loop sets the
context model to be the strongest model (which does not in-
terfere with main) and then executes the inner loop. Given a
predicate abstraction of main, and a counter ACFA that rep-
resents the multithreaded context, the inner loop iteratively
weakens the context model until either (i) an abstract error
is found, or (ii) the resulting counter ACFA overapproxi-
mates (simulates) the program. If (i) happens, we break
out of the inner-loop and analyze the abstract counterex-
ample. If it is real we report the bug and exit, if it is spuri-
ous we add new predicates or refine the counter, and repeat
the outer loop. If (ii) happens, we conclude (by assume-
guarantee reasoning) that the program is free of races and
exit. Otherwise (i.e., neither (i) or (ii)), we weaken the con-
text model by transforming the current reach set of main
into a new ACFA and repeat the inner loop with the new,
weaker context model. The whole process stops when either
a concrete race is found, or the absence of races is proved
using a context which overapproximates the program.
While our method applies to verifying any safety prop-
erty of concurrent programs, we have focused on race detec-
tion for two reasons. First, race checking requires no code
annotations or specifications from the user. Second, the ab-
sence of race conditions is a prerequisite for establishing a
variety of more complicated correctness requirements.

Experimental results. To demonstrate the practicality
of the method, we have implemented this algorithm, called
CIRC , in our C model checker BLAST [19]. The use of state-
ful contexts (ACFAs), their minimization, and the treatment
of an unbounded number of threads using counters are new
to BLAST. We ran the method on several networked embed-
ded systems applications [12] which use the synchronization
idioms mentioned above. We were able to find potential
races in some cases and prove the absence of races in others.

Related work. Type based race detectors [10, 3] provide
strong type systems that guarantee the absence of races, but
require code annotated with locking information. [25] addi-
tionally use control flow information for a more precise anal-
ysis. Dynamic race detectors [24, 5] use a lockset algorithm

int x, state;
Thread() {

int old;
1: while (1) {

atomic{

2: old = state;
3: if (state == 0){
4: state = 1;

}

if (old == 0){
X++;

7: state = 0;

}
}
}

o o

Figure 1: (a) Thread (b) CFA (c) ACFA

which is effective in finding bugs but cannot guarantee their
absence. None of the above can prove absence of races in
programs with complex state-based synchronization idioms.

Software model checkers like SLAM [2] and Blast [19]
check sequential programs. Verisoft [13], Bandera [7], Feaver
[21], and Java Pathfinder [15] check concurrent programs
with a fixed finite number of threads. Verisoft runs on the
concrete semantics of the program, the others require a user
supplied abstraction. Calvin [11] requires that a suitable ab-
stract context is provided. Magic [4] checks a finite number
of concurrent threads communicating by message-passing.
Since communication is explicit in the model, abstraction
and bisimulation minimization are done independently of
the other threads, i.e., reachability information is not re-
quired. Parametric verification [23, 8, 1, 9] consider arbi-
trarily many threads using counters, but assume a finite
state abstraction for each thread is given.

2 An Example

We begin with describing how our algorithm works on an
example. Consider the fragment of code shown in Figure 1,
taken from a NESC program [12]. This fragment describes
the behaviour of a single thread; x and state are global
variables and each thread has a local variable called old.
The multithreaded program P has an arbitrary number of
threads like Thread running concurrently and we wish to
verify that there are no races on x in P, i.e., that P never
reaches a state where two (or more) threads are about to
access x, and one of the accesses is a write.

2.1 Threads and Strands

Threads. We represent each thread as a Control Flow
Automaton (CFA). The CFA is essentially the control flow
graph of the thread, with instructions labeling the edges
instead of the vertices. A CFA consists of: (1) integer vari-
ables, local and global, that are accessed by the thread, (2)
control locations, some of which are atomic and one of which
is the distinguished start location, and (3) directed edges
that connect the vertices. Each edge is labelled by either an
assignment that is executed when the thread moves along
the edge or by an assume predicate which must be true for
control to move along the edge.

EXAMPLE 1: [Thread] Instead of a formal definition, con-
sider the CFA shown in the middle in Figure 1 for the thread

shown on the left in the same figure. The assignments are
in the boxes and the assume predicates are labeled with
[]- The vertices marked with * are atomic locations. The
atomic construct of NESC allows a sequence of operations to
occur without preemption; atomic locations model this. If
in a multithreaded program, a thread is at an atomic loca-
tion, only that thread is allowed to execute. O

Strands. An abstract thread or strand is represented by
an abstract control flow automaton (ACFA). An ACFA is a
directed graph, whose vertices are abstract control locations
labeled by predicates on the global variables of the program,
and optionally by atomic, and whose edges are labeled by
sets of global variables that are havoced i.e., written to with
arbitrary values when the automaton moves from one loca-
tion to the next, but the successor state is constrained to
satisfy the predicate labelling the successor location.

EXAMPLE 2: [Strand] Figure 1(c) shows an ACFA for the
thread of the example. Nodes labeled “*” are atomic, and
if there is an (abstract) thread at an atomic location, then
only that (abstract) thread is scheduled. Each node is also
labeled by a predicate inside a box, nodes not labeled im-
plicitly have the label true. Note this abstraction captures
the essence of the behavior of the thread: first, it enters the
atomic block, then if state is 0, it havocs state subject to
the constraint that state is not 0 in the next state. It then
proceeds to access x, as it will have set its o1d to 0, and then
havocs state to any arbitrary value. Alternately, if state
is not 0 when the thread entered the block, then it would
set its old to a non-zero value and thus loop back without
writing to x or state. O

Informal Semantics. A multithreaded program is a set
of threads where each thread is represented by a CFA. We
shall assume for clarity that all threads have the same CFA.
In the initial state, each thread is at the start location, and
all the variables have value 0. The system evolves as follows.
(1) A thread is scheduled: if some thread is at an atomic
location, it gets to run, otherwise some thread is chosen
non-deterministically. (2) The scheduled thread picks one
of the out-edges of the location it is at and executes it and
proceeds to the target of the edge. If the edge is an assume,
this happens only if the state satisfies the predicate and the
variables remain unchanged; if the edge is an assignment
x=e then the expression e is evaluated and written into x,
and then the program moves to its next state. It can be
checked that if the start location is not atomic, then in any
reachable state at most one thread is at an atomic location.
Data Races. We say that a write or read on x is enabled
at a state if in that state some thread is at a location one
of whose outedges assigns to or reads the value of x respec-
tively and either that location is atomic or no thread is at
an atomic location. There is a data race on the variable x if
the program can reach a state in which two or more threads
have enabled actions that read or write x, and at least one
of these accesses is a write.

When the programs are given as CFAs the above crite-
rion reduces to checking that the program never enters a
state where (1) no thread is at an atomic location, and (2)
one thread is at a location where x may be written and an-
other is at a location that may access x. In the program
comprising threads of Figure 1, there are no races on x if in
every reachable state, at most one thread is at location 6.

2.2 Verification by Abstraction

We analyze the program one thread at a time, as one main
thread executing together with a contezt made up of all the
other threads. A path-sensitive analysis of the reachable
states of a multithreaded program must abstract the state
space to counter the infinite data valuations as well as the ex-
ponential program location tuples. Accordingly, we present
three orthogonal abstractions.

Data Abstraction. First, instead of tracking variables
exactly, we use predicates [14], and track relationships be-
tween program variables captured by boolean formulae over
the predicates. Any local variable in a predicate refers to
the main thread’s copy of the local.

Control Abstraction. The number of configurations of
other “context” threads is exponential in the number of lo-
cations of each thread, so we represent each context thread
as an abstract thread which is a state machine much smaller
than the thread represented, but which overapproximates
the behaviour of the represented thread. The predicates
labelling the ACFA vertices are all over the globals; infor-
mation pertaining to the local state of context threads is
encoded in the abstract location.

Counters. To make our analysis sound in the presence of
arbitrarily many other threads, we must model the location
of an arbitrary number of strands. We track the number of
strands that are at each (of finitely many) strand control
location [23]. Since this representation is not finite, we use
a counter abstraction: we track the number precisely so long
as it is less than or equal to a parameter k, and any num-
ber greater than k is abstracted to w, meaning an arbitrary
number of threads is at that abstract control location.

Abstract Reachability. Given an abstraction which is a
set of predicates P, an ACFA A, and a k, an abstract state
is a triple (pc, ¢,T'), where pc is the main thread’s control
location, ¢ is a boolean formula over the predicates P (local
variables refer to the main thread’s copy of the local vari-
able), and I is a map from A’s vertices to {0,...,k,w}. The
operations enabled at an abstract state are the operations
enabled at pc and at each A node n s.t. I'.n > 0, so long
as none of the above mentioned locations is atomic, other-
wise, the enabled operations are the operations enabled at
the (single) atomic location.

Given an abstract state § = (pc, p,I") and an operation
op, the successor abstract state post.3.op = (pc’,¢’,I") is
computed as follows. If the operation is the main thread’s
operation, then pc’ is the target of the CFA edge taken,
¢ is the predicate abstraction (w.r.t. P) of the strongest
postcondition of ¢ w.r.t. the operation [14, 19], and IV =T.
If it is a context ACFA moving across an abstract edge n —
n', then pc’ = pe, ¢’ is the predicate abstraction (w.r.t. P)
of (Jy1 -+ yk-p) A r.n' where yi -y, are havoced on edge
n — n’ and n' is labeled with the predicate r.n’, and I"
maps n to ['\n — 1, n’ to I'.n’ + 1, and all other n” to I'.n".

Initially, the main thread is in the initial location, I is w
for the inital abstract location, and 0 elsewhere, and ¢ is the
abstraction of the state where all variables are 0. On iter-
ating post until a fixpoint, we can build the set of reachable
states and check if there are races by checking if any reach-
able state contains a race. If so, the reachability procedure
returns an abstract error trace.

INote: k+1=w,w+l=w,andw—1=w

Minimization. The abstract reachability procedure con-
structs a rooted tree whose nodes are labeled with abstract
states, and edges labeled with enabled operations. We con-
struct an ACFA from this tree in two steps. First, we con-
struct a directed graph by dropping the counter information
I from a region, and unifying nodes with the same region.
Second, we construct a bisimilarity quotient [6] of the di-
rected graph w.r.t. predicates on the global variables (by
quantifying out local variables from the regions first).

2.3 The Algorithm CIRC

The input is (a) a CFA C, the multithreaded program is
arbitrarily many copies of C running concurrently, (b) a
global variable x which we check for data races, (c) a (pos-
sibly empty) set of predicates P, and, (d) an initial counter
parameter k (the default is 1).

Initialization (“Initial context”) Set the initial ACFA A
to be the empty ACFA, i.e., the context does nothing.

Step 1 (“Reachability: Assume”) Assuming that the con-
text is made of threads behaving as A, compute the
set of abstract reachable states of C' using the present
set of predicates P. Simultaneously build a reacha-
bility graph (RG) which is an ACFA G overapproxi-
mating the behaviour of C in the current context (Al-
gorithm ReachAndBuild). This is done by connecting
the various reachable states by appropriate edges when
there are transitions between them.

Step 2 (“Counterexample analysis”) Check if the reach-
able states computed above contain states with races
on x. If there are no such states, go to step 3. Other-
wise, check whether this trace is real by first generating
a concrete sequence of interleaved thread operations
(from the sequence of thread/ACFA operations) and
then checking if the interleaved trace is feasible. The
concretization of the ACFA trace is done using the RG
of which the ACFA is the minimized version. This way
for every ACFA behaviour we have (a possibly infeasi-
ble) trace through the underlying CFA. I (a) it was not
possible to generate the concrete trace as the counter
was too low, increment k, (b) the concrete trace is in-
feasible, infer new predicates [17] and add them to the
set of predicates P, (c) the concrete trace is feasible
then return UNSAFE with the genuine error trace. Re-
set A to the empty context and go to step 1.

Step 3 (“Guarantee”) Check that the A assumed in step 1
was sound by checking that it overapproximates G com-
puted in step 1 (Algorithm CheckSim). If so, return
SAFE, else, set A to be the bisimulation minimization
of G (Algorithm Collapse), and go to step 1.

Running CIRC. We shall now run the algorithm on the
example of Figure 1. Before starting, we note that there is
no race on x as the first thread that goes inside the atomic
block sets state to 1 and subsequent threads always set
their old to 1 and so do not access state or x. Once the
original thread has set state back to 0 the other threads
can make another attempt, in which they set their o1d to 0,
set state to 1 and then access x.

Initialization The initial ACFA Ay is set to be the empty

ACFA. The initial set of predicates Py is empty, but control
flow is explicitly tracked.

Iteration 1

Step 11,21 The RG G: of ReachAndBuild is shown in Fig-
ure 2(a). All the control locations are reachable and the
state is just true, i.e., we know nothing about the values of
the variables of C. The reachability is trivially free of races
as there is no context.

Step 31 The result of minimizing G is the ACFA A; shown
in Figure 2(b). The dotted circles denote the sets of Gi
states that are merged into a single A; state. The minimized
ACFA starts at a non-atomic location, then moves into an
atomic location, in which it havocs state and moves to a
non-atomic location from which it again havocs {x, state}
and returns to the start location. The locations I,II are
not collapsed together as we wish to preserve atomicity, the
same holds for II,III. Locations I,III are not collapsed
as x can be written only in III. Since Ao was empty, Algo-
rithm CheckSim fails, and we rerun the loop.

Iteration 2

Step 1o On redoing reachability assuming the context
threads behave as A; we find a race where one of the con-
text threads moves twice to the abstract location 3’ (Fig-
ure 2(b)), following which the main thread moves to the
concrete location 6.

Step 22 We concretize the abstract trace described above
and find that the thread followed an infeasible path:
1—52—-53—5—6, iec., the trace is infeasible without
even considering the other thread. From this trace, we learn
the predicates old == state and old == 0 are required to
rule out this infeasible path. We add these to get the new
set of predicates P», set the context ACFA A, to be the
empty ACFA, and go back to step 1.

Iteration 3

Steps 13,23, 33 We repeat the reachability using A» and P»,
to get the RG G, shown in Figure 3. Notice that this time,
the only path to the location where the write is enabled
is a feasible path for each thread. Again, the reach set is
trivially error free. As G3 is not overapproximated by A,
the latter being the empty ACFA, we set A to be Az which
is the result of minimizing G's. This is shown in Figure 3(b).
Note that the path that leads to III where to the write to
x is enabled is feasible for the individual threads.

Iteration 4

Step 14 We recompute the reachability assuming the con-
text has threads behaving as A1, and the predicates P». The
same abstract race as in step 1o is possible again.

Step 24 We concretize the trace from the previous step.
This time, we get the feasible path1 -2 —+3 >4 5 —6
for the individual threads, but find that the composed trace,
where the context thread follows the above path and wasits
at 6 then the main thread follows the same path to 6 is
infeasible. This is because the first thread will set state to 1,
and so the second thread cannot take the assume edge 3 — 4.
The analysis reveals the predicates state == 0, state ==
rule out this behaviour and we add these to our set to get
Py, set A4 to be the empty ACFA and return to step 1.

Iteration 5

Steps 15,25,35 We repeat the reachability using A4 and
Py, to get the RG G5, shown in Figure 4. Notice that this
time, the vertices in G5 contain the values of state. The
reach set is error free, but G5 is not overapproximated by
Aus, the latter being the empty ACFA, so we set A to be As
which is the result of minimizing Gs. This is the same as
the ACFA shown in Figure 1(c). Notice that II,III are not

Figure 2: (a) RG (b) Min. RG

collapsed as they differ on the values of predicate state =
0. Notice also, that in As, the various nodes are labelled by
predicates describing the value of state when the abstract
thread is at that location. In particular, when a thread is
at IV, the value of state is non-zero, thus preventing other
threads from writing x.

Iteration 6

Step 16,26 We compute the RG with the new ACFA A;
with counter parameter still 1. We find a few more states,
e.g., after a thread sees in its atomic block that state is 1,
it may see that it has been havoced, but this is not essential
as the thread still just returns to the head of the loop (since
its old is still 0). There is no error possible as if a context
ACFA goes first, it keeps state at 1 till after it has written
x: so when the main thread takes the assume edge 3 — 4 (
[state = 0]) the abstract state is empty (state = 0 Astate =
1 is unsatisfiable) meaning that edge is not behaviour is not
possible. Similarly, if the main thread gets in first, when a
context thread attempts to take the abstract edge 2’ — 3/,
the abstract state is empty. The resulting RG is G, and we
proceed to step 3.

Step 3¢ We find that in fact Ge is overapproximated by As
and so the context approximation is sound. We conclude
the system is free of races.

3 Syntax, Semantics, Abstractions

In this section we shall define our model for multithreaded
programs. First we define abstractly the semantics of such
programs using transition systems. Then we define the syn-
tactic representations of threads and strands namely CFAs,
ACFAs and define their transition systems, and finally de-
scribe the semantics of multithreaded programs.

3.1 Shared Variable Transition Systems

Given a set X of variables, an X-state is a valuation of the
variables in X. Let Vx be the set of all X-states. An X-
transition relation is a subset of Vx x Vx. A multithreaded
program P is a set {(~»1, At1), (~2, At2),...} where ~»; is
an X; transition relation and At; C Vx; is an atomic predi-
cate. The set of variables of P is X = UX;. The set of global
variables of P is P.Xg ={z |Fi # j: (z € X; N X;)}. The
set of states of P is Vx, and the semantics of P are given
by an X —transition relation ~»p and an atomic predicate
At C Vx defined as follows: Define the predicate En.s.i
where s is an X —state and ¢ a thread as: En.s.i = ((3j :
(Atj.s)) = Ati.s). The atomic predicate At.s = 3i: (En.s.i).

Node Labels

3 [Dd=sae] (st} Y
©) 4: [Da=SHeE oa=0] {sae]

5.6,7: -
[Old=sStae & old =0

Figure 3: (a) RG (b) Min. RG

Node Labels
3
: 4; [old=state & 0ld=0 & state=0 |
i sem
5': [old=state & old!=0 & state!=()

{X}

Figure 4: RG

The transition relation is defined as: s ~p s’ iff (1) En.s.i
(2)t~; t B) Ve € X;: (sx =tz Asa=1ta) (4
Vr & X; : (s.x = s'.x). That is, if the thread i is enabled,
then it updates its variables according to its transtion re-
lation, and all the other variables remain unchanged. The
initial state of P is so which maps every variable to 0. Let
~2 be the reflexive transitive closure of ~p. We define
[P] = {s]| so ~p s} to be the set of reachable states of P.

3.2 Threads: Control Flow Automata

Given a set of variables X, the set Exp.X is the set of arith-
metic expressions over the variables X, the set Pred.X is the
set of boolean expressions (arithmetic comparisons) over X,
and the set 0p.X is the set of instructions containing: (1) as-
signments x = e, where x € X and e € Exp.X, and (2) as-
sume predicates asm [p], where p € Pred.X, representing a
condition that must be true for the edge to be taken.

A control flow automaton (CFA) is a tuple
(Q,q0,X,—,Q"), where (1) Q is a finite set of con-
trol locations, (2) go € @ is the initial control location,
(3) X is a set of variables, partitioned into X¢ and Xi,
disjoint sets of global and local variables, respectively,
(4) =2C (Q x 0p.X x Q) is a finite set of directed edges
labeled with operations. An edge (g,0p,q') €— is also
written as g—»¢’, and (5) Q* C Q is a set of “atomic”
locations.

For clarity we describe our method only for CFAs with-
out function calls; we implement function calls in our tool.

A CFA C =(Q, qo0, X, —, Q") induces a state space Vx.c
where X.C' = X U {pc} ? The atomic predicate At.C of the
CFA is {s | s.pc € Q"} that is, a state is atomic if the thread
is at an atomic location. The transition relation of a CFA is
~>¢ which is as follows: s ~¢ s if: (1) s.pe—s".pc and (2)
if op is asm p then s = p and if op is x = e then s'.xz = s.e
and for all y & {z, pc}, s'.y = s.y.

A set of states m is called a data region, a predi-
cate over the set of variables X represents a data re-
gion consisting of all valuations that satisfy the predicate.
We lift the transition relation to sets of states by defin-
ing the strongest postcondition operation sp.w.(g,0p,q') =
{sVx.c | 3s € m.s ~¢ '}

3.3 Strands: Abstract Control Flow Automata

An abstract CFA (ACFA) is a tuple (Q,qo, X, —, Q", 1),
where (1) Q is a finite set of abstract locations, (2) o € Q

2We abuse notation to identify @Q and Z and q¢ with 0.

is a start node, (3) X is a set of variables partitioned into
Xa and X, disjoint sets of global and local variables, re-
spectively,, (4) —C (Q x 2¥ x Q) is a finite set of directed
havoc edges labeled with subsets of X. An edge (¢,Y,q') is
also written as qi)q', (5) @* C Q is a set of atomic abstract
locations, and (6) a node labeling function 7 : V' — Pred.X
labeling each node with a an abstract data region.

An ACFA A =(Q,q0, X, —,Q",r) induces a state space
S.A C Vx.a where X.A = X U {pc} and s € S.A iff
s |= r.(s.pc). The atomic predicate At.A of the ACFA is
{s|s.pc € @*} that is, a state is atomic if the abstract thread
is at an atomic location. The transition relation of a ACFA
is ~4C S.A x S.A which is as follows: s ~4 s ift (1)
s.pc=2ss'.pc and (2) if op is Y then foreach z ¢ {pc} UY, we
have s'.x = s.x, and s’ |= 7.(s".pc) As before, we can define
the sp operator for sets of states and ACFA operations.

3.4 Multithreaded Programs

We can now describe multithreaded programs and their se-
mantics. For clarity we shall restrict ourselves to symmetric
multithreaded programs where each thread runs the same
code, i.e., has the same CFA C. Let C* (A*) denote
the symmetric multithreaded program running an arbitrary
number of copies of the CFA C (ACFA A). Formally, C*
(A¥) is the program {(~»1, At1), (~2, At2),...} where each
pair (~;, At;) is defined as follows: Let C; (A4;) be the CFA
C (ACFA A) with each local variable x € X1 U{pc} renamed
to z;. Then ~»;=~w¢; (~a;) and At; = At.C; (At.Ag).

3.5 Abstractions

As mentioned in Section 2, to make the analysis tractable,
we make the state space small and finite by abstracting the
system along several orthogonal dimensions.

1. Data Abstraction. First, we combat the infinite data
space by abstracting the state space of each thread using
predicates [14, 2, 19, 4]. For a set of predicates P C Pred. X
and a formula ¢ over X, let Abs.P.¢ denote the smallest
(in the inclusion order) set of data regions expressible as a
boolean formula over atomic predicates from P.

A thread abstraction is a pair (C,P) where C =
(@,90,X,—,Q*) a CFA and P C Pred.X is a set of predi-
cates. An abstract thread state is a pair (g, ¢) where ¢ € Q
and ¢ is a boolean formula over atomic predicates from P.
The set of abstract thread states is S.(C, P).

2. Control Abstraction. Second, we must track the local
states of each thread separately. Just the control states of
each thread suffice to overwhelm the analysis (since their
size exceeds the number of control locations of each thread).
Thus, we approximate the behaviour of each thread using a
strand.

Our algorithm incrementally builds strands until it has a
strand that overapproximates the behaviour of the thread in
the context. To know when the above happens, we require
a notion of when one strand overapproximates another. We
formalize this notion as strand simulation <, a variant of
simulation [6]. Given two ACFAs A = (Q,¢", X, —,Q*,r)
and A; = (Q1,q), X1,—,Q5,r1), = is the largest subset of
@1 x @Q such that: if ¢1 < g then Q) ri.q1 = r.q, and,
(2) For every q1—»q) there exists a g—q’ such that Y C Y’
and ¢ < ¢'. Wesay 41 < Aif ¢) < ¢°
3. Counter Abstraction. Third, for soundness, in many
situations we must assume that there are arbitrarily many

threads running concurrently. Thus, we have to track for an
infinite number of threads, the state for that thread, leading
to an infinite number of configurations. To surmount this
problem, instead of tracking the abstract control location of
each strand separately, we shall count the number of threads
at each strand location. This still leads to an infinite number
of possibilities so we shall use a counter abstraction, where
given a parameter k we shall abstract any number greater
than & to be w. An context abstraction is a pair (A, k) where
A =(Q,q,X,—,Q",r) an ACFA and k € N is a natural
number. The set of abstract context states of a context
abstraction is S.(4,k) = A.Q — {0...k,w}.

Abstract multithreaded programs. A thread abstrac-
tion and a context abstraction defines an abstract (multi-
threaded) program P = ((C, P), (A, k)) representing an ab-
straction of the program {C} U A“. We now describe the
transition system underlying this abstract program.

Abstract Semantics The set of abstract programs states
is S.(C,P) x S.(A,k). A particular abstract program state
is ((g,m),I") where ¢ is the control location of the thread,
7 is a boolean formula over P, and I' is an abstract con-
text state i.e., a map from A.Q to {0...k,w}. An ab-
stract program state represents a set of states of the mul-
tithreaded program {C} U A¥. The initial abstract state is
30 = ((C.qo, true),I'g) where I'g maps A.qo the initial state
of the ACFA to w and maps ¢q for g # A.qo to 0.

The operations of a location ¢ € C.Q (¢ € A.Q) are
the operations labelling the out-edges of the location. For
an abstract state § = ((q,7),I'), the set of locations is
Ls={q}U{qd € A.Q|T.¢' >0}, i.e., the set of (abstract)
locations containing threads, and the the set of atomic loca-
tions is theset AL.8 = {¢' € A.Q* |I'.¢' > 0}U({q}NC.Q*),
i.e., it is the set of (abstract) atomic locations containing
threads. The set of operations enabled in the abstract state
§ is defined as follows: (1) If |AL.§| = 0, then the enabled
operations are the operations of the locations in L.§5. (2) If
|AL.3| = 1, then the enabled operations are the operations
of the unique location in AL.3. (3) Otherwise, no operations
are enabled in 5.3

The abstract transition relation is defined by the op-
erator post that takes a abstract state and an opera-
tion o, and produces the successor abstract state. For
the operation o = (g,0p,q’) of C at the state ((g,7),T),
we compute the successor state post.((g,7),T).(q, op,q’) as
((¢,7"),T"), where ' = Abs.P.(sp.7.(q,0p,q')) and I'".q =
I'.q. For the operation o = (qi,Y,q5) of A, the suc-
cessor state post.((q,m),T).(¢1,Y,q5) = ((¢,7'),T’) where
7' = Abs.P.(A.rgy N (Jy € Y.7w)), and I'.qi = I'.q} — 1,
Mgy =T.¢h+1,and for all ¢ € 4.Q\{q1,¢2}, I".¢ =T.q.

We say §<»8" if there exists an operation o which is en-
abled in 3 such that post.3.0 = &'. The reachable states

[P] = {5 30~>*38}.
4 Safety Verification

4.1 The Race Detection Problem

Given a multithreaded program P = {T1,T5,...} with the
variables X, and a set of error states £ C Vx, the multi-
threaded safety verification problem is to check if [P]NE =
0. A multithreaded program P is safe w.r.t. £ if [P]NE = 0,
and unsafe otherwise.

3S0 long as the initial locations are not atomic, this will never arise

A specific instance of the above is the race detection prob-
lem. For each global variable x € P.Xg, let Write.i.x C Vx
(resp. Read.i.z C Vx) denote the set of states from which
thread ¢ has an enabled operation that writes (resp. reads) z.
An operation writes z if either it is a CFA edge, and the op-
eration is an assignment to z, or it is an ACFA edge, and
the variable z is in the set of havocs of the edge. An oper-
ation reads x if it is a CFA edge, and the operation is an
assignment y = e and z is a variable of e, or an assume
asm p and z is a variable of p. The race-states &, for a
variable £ € P.X¢g are X-states where two distinct threads
have accesses to x enabled, and one of the accesses is a write,
i.e., Ex = Ujz; (Write.i.x U Read.i.x) N Write.j.z. The race-
detection problem for a program P and a global variable x
is to check [P] N &, = 0. We say a program P has no races
on variable x iff the program P is safe w.r.t. &.

4.2 Checking

Suppose that we are given the CFA C, and a global variable
x of the CFA, we would like to check if there are races on
x in C¥. In addition, suppose we have a set of predicates
P, and strand A that purportedly describes succintly the
behavior of C, as well as a number k with which to abstract
the context. We now describe how these various objects can
be used to check that [C*] N E = 0. There are two main
steps in the checking algorithm (Algorithm Check):

1. Assume that A is a sound approximation of the behav-
ior of C when C is composed with infinitely many copies
of itself. Compute the set of abstract states reachable
when C is composed with a context generated by A and
check that this set does not contain any races. If an er-
ror is reached, return “possibly UNSAFE”. This step is
implemented by procedure ReachAndBuild, which does
a reachability analysis and also builds a strand G de-
scribing the behaviour of C when its context is an ar-
bitrary number of strands A running concurrently.

2. Guarantee that the strand A is indeed a sound ap-
proximation of the behavior of C in this context, by
checking that strand G computed in the previous step is
overapproximated by A, or more precisely, that G < A.
If the check succeeds, return SAFE, else return “possibly
UNSAFE.” This is implemented by procedure CheckSim.

The soundness of the above follows via inductive “assume-
guarantee” reasoning [22]. We now describe ReachAndBuild
and CheckSim in greater detail.

Procedure ReachAndBuild is shown in Algorithm 4.2. It is
a standard worklist based reachability algorithm [6], but ad-
ditionally builds an ACFA G summarizing the reachability
information. The main loop of lines 3—14 runs the reacha-
bility construction, using the worklist L. At each step, the
next element is chosen from the worklist, and if it has not
been seen before (line 5), it is added to the set of explored
states (line 6), and the current region is checked for possi-
ble errors.We check if the abstract state ((¢,7),I") contains
any race states, by finding the set of enabled operations of
the abstract state (described earlier) and checking whether
there exist in that set two operations belonging to different
threads that access x (one being a write), 4.e., the opera-
tions have different source locations, or they have the same
abstract source location, but there is more than one thread
at that abstract location. If an error region has been hit
(line 7) the procedure finds an (abstract) interleaved error

Algorithm 1 Algorithm ReachAndBuild

Require: A thread abstraction (C, P), Global variable x
Require: A context abstraction (A4, k)

1: Output: An ACFA A’ or raises exception Exception(T)
2: L:= {(C.qo,true),To)}, Seen:=0, G :=10

3: while L # 0 do

4: pick and remove region ((g,w),I') from L
5: if not (((¢,7),T) € Seen) then

6: Seen := Seen U {((¢q, w), ')}

7 if ((g,7),I')NE; # 0 then

8: 7 := FindPath.Seen.((C.qq, true),I'o).((g, 7),T)
9: raise Exception(7)

10: else

11: for each enabled operation o do
12: ((qli"rl)7rl) := post.((g,7),I').0
13: Connect.G.((g,), 0, (¢, 7"))

14; Li=Lu{((d,"),T)}

15: return G

trace to the error region, and raises an exception containing
the error trace. Otherwise, the current region is expanded.
For this, we construct the successor of the current region for
each operation enabled from the current region (line 12), and
connect the current region and its successor as an edge in
the ACFA G, using the procedure Connect described shortly.
Finally, it adds the successor region to the worklist. Note
that the nodes of the ACFA are abstract thread states, that
is, we drop the context state information.

Procedure Connect adds the edges between the regions.
It takes as argument the augmented ACFA G that is being
constructed, abstract thread regions r, r’ (the successor of
r), and an operation o. The ACFA G is augmented with a
map S: each node corresponds to a set of abstract thread
states and the thread states of a node n given by G.S.n. It
first finds nodes n, n’' corresponding to 7 and r’ respectively
by invoking the procedure Find. When find is called with ab-
stract thread state r it checks if a there exists a node n with
r € G.S.n; If so, it returns that node and if not, it returns
a new node n where G.S.n = {r}. The node is atomic, if
r = (g, m) where ¢ € C.Q". An invariant maintained is that
G.R.n = UG.S.n. The edges of the graph G are added de-
pending on the type of the operation o. There are two cases:
o is either a thread operation, or a context operation. If the
thr{el.:a}d move is an assignment x = e, then we add the edge
(n—=>n') (the {z} reflecting the fact that x is updated along
the edge); however if an Y‘Eﬂ%? (nSn') is already present in
G, we replace it with (n——n'). If the thread move is an
assume asm p then we add the edge (n—n'), (in this case,
no variable is added to the havoc edge), unless there is al-
ready an edge (n—n'). Finally, if the operation is a context
edge, then the two nodes n and n' are unified by proce-
dure Union which creates a single node n" which is obtained
by “merging” the two nodes: G.S.n"” = G.S.m U G.Sn/,
G.R.n" = G.RnUG.R.n' and the edges of n" are the union
of the edges of n,n’.

Procedure CheckSim The guarantee part checks that the
ACFA G returned by the procedure ReachAndBuild is strand
simulated by the ACFA A. The procedure CheckSim imple-
ments a variation of the standard simulation checking algo-
rithm [6, 16]. This check ensures soundness.

Theorem 1 [Soundness] If Algorithm Check with input
thread abstraction (C,P), context abstraction (A,k), and
global variable x terminates and returns “safe” then [C*“]N

& =0.

Algorithm 2 The inference algorithm CIRC

Require: CFA C, global variable x
1: P:=0,k:=0
2: while true do

3: try

4: G=10

5: repeat

6: (A, p) := Collapse.G

7 G := ReachAndBuild.(C, P).(A,k).x
8: until (G < A)

9: return SAFE

10: with (Exception(7)) —

11: if Refine.C.A.G.u.7 = REAL(S) then
12: return UNSAFE(S)

13: else

14: (P', k') = Refine.C.A.G.p.7

15: P:=PUP

16 k:=Fk

17: done

4.3 Inference

In general, the strand A that succinctly summarizes the
behavior of a thread, and is simultaneously precise enough
to show the absence of concurrency errors is not available.
Therefore, we must construct this abstraction automatically
via an inference algorithm. Algorithm 4.3 shows our infer-
ence algorithm CIRC . We start off by assuming the that
each thread in the context does nothing, i.e., G is set to
the empty strand (line 4). We then minimize the strand G
with the procedure Collapse (line 6). Collapse takes ACFA G
and returns its bisimulation quotient ACFA A [6], together
with a map p that maps each state of G to its equivalence
class (state) in A. In the first round, this is still empty. At
each round A will be the “current” approximation of the
context threads, and will be used to make the context of C.
We then call ReachAndBuild to see how C behaves in this
context, the result being the new strand G (line 7). If the
present approximation A simulates the new strand G then
it means that A was a sound approximation, (i.e., meets
the “guarantee”) and we break out of the loop and return
SAFE(lines 8,9). This check is performed using the proce-
dure CheckSim. If on the other hand, we find that A was not
a good approximation (fails to meet the guarantee) then we
repeat the loop with the new G, which now gives us a better
approximation of each context thread (the repeat...until
loop of lines 5-8).

At any point, the procedure ReachAndBuild may raise an
exception claiming it has an abstract error trace to a race
state. We trap this exception and analyze the counterexam-
ple to see if it is genuine, and if not, obtain a more precise set
of predicates or increment the counter parameter (lines 10—
16). The exception Exception(7) is caught in line 10, and
checked in procedure Refine. Procedure Refine takes as in-
put a CFA C, an ACFA A, the ACFA G such that A is the
bisimilarity quotient of G, the map p mapping states of G
to those of A, and an abstract error trace 7 of {C'} U A%,
and returns either a real error REAL together with a con-
crete interleaved trace § in C* that reaches the error state,
or a refinement of the abstraction (if the current error path
7 does not have a concrete realization in C*). Accordingly,
the algorithm returns UNSAFE if a real error is found, or
updates the thread and context abstractions by adding new
predicates and updating the maximum value of a counter in
the context abstraction respectively (lines 14-16). If the ab-
straction is updated, we reset the current approximation of
the context G back to the empty context, and repeat start-

ing with the new abstraction parameters (P, k). In the next
section, we describe in detail the remaining subroutines of
the algorithm, Collapse, and Refine, and optimizations.

Theorem 2 If Algorithm CIRC on input CFA C and global
variable x terminates and returns “safe” them C* is safe
w.r.t. Ey; if it returns “unsafe” then C* is unsafe w.r.t. &;.

5 Details

Procedure Collapse The procedure Collapse takes an
ACFA G and constructs a bisimulation quotient A of G with
respect to the global predicates. It returns the bisimulation
quotient A, along with a mapping from G.Q to A.Q mapping
each state of G to its equivalence class in A. We do this in
two steps. First, we replace, for each location ¢ € G.Q, the
region G.r.q with the region obtained by quantifying out all
local variables from A.r.q as follows: in the formula G.r.q,
which is a boolean combination of predicates in P, we re-
place with “unknown” each atomic predicate containing a
local variable. We remove all local variables from the havoc
sets labeling the edges. We then run a standard bisimi-
larity algorithm [6] with the resulting predicates (now over
global variables) labeling states of G as observables. The
bisimilarity procedure also constructs the required mapping.
Whenever in G we have n—n’, and the bisimilarity collapses
n,n’' to the same node n” in A, we ensure that A has a self
loop edge n”’n”. The result is an ACFA with only global
variables in its node predicates and on the edges. This is
important as we want that any local variable appearing in
the analysis refers to the local of the main thread.

Procedure Refine The procedure Refine analyzes abstract
counterexamples, to either extract genuine error traces or
to refine the abstraction to eliminate the false positive. It
works in two steps:

Computing an Interleaving. An abstract trace is a se-
quence of operations of the main thread and the context
ACFAs. A scan over the entire trace suffices to check if the
k parameter is large enough. If not, the only refinement is
that k is incremented, and if so, we compute the number
of context threads that participate in the counterexample.
Each operation in the abstract trace is a either a main thread
operation, or an abstract operation by a specific abstract
context thread. To generate the concrete interleaving, we
get a concrete sequence of thread operations from the ab-
stract context operation, by using the underlying RG of the
ACFA.

Analyzing an Interleaving. Given an interleaved trace,
we must check if it is feasible. We first compute a trace
formula (TF) which is a version of the strongest postcondi-
tion of the trace. Each operation of the trace yields a clause
and the TF is the conjunction of all the clauses. The trace is
feasible, (and hence, the counterexample genuine) iff the TF
is satisfiable, which can be checked by querying a decision
procedure. If it is not satisfiable, the proof of unsatisfiability
of the TF can be mined for predicates using an extension of
the technique described in [17].

EXAMPLE 3: Refinement In Figure 5 the left, middle and
right columns show respectively, the abstract trace, concrete
trace, and the unsatisfiable TF for the error trace from iter-
ation 4 of the example from Section 2. The proof of unsat-
isfiability yields the predicates state = 0, state = 1. O

T1: I — II skip true

T1: IT — III old = state oldy = statey
asm (state == 0) | state; =0
state = 1 states = 1
asm (old == 0) oldi =0

TO: skip skip true

TO: old = state old = state oldo = states

TO: asm (state == Q) asm (state == Q) states =0

TO: state = 1 state = 1 stateg = 1

TO: asm (old == 0) asm (old == 0) olda =0

Figure 5: Abstract Trace, Concrete Interleaving, TF

w-check The procedure ReachAndBuild.(C, P).(A, k) is ex-
pensive, so we implement the following optimization of
the algorithm CIRC . Let ReachAndBuild® be an instance
of the rea.chablllty algorlthm that uses the initial state
((C.qo, true),I'F) where T'f.q = k if ¢ = go and 0 if ¢ # qo.
In our modified algorithm, we run ReachAndBuild* with
the current value of variable %k in line 7. This has the ef-
fect of running a multithreaded program where there are
exactly k threads in the context. If the loop terminates
with £k = ko, we have an ACFA A that succinctly repre-
sents a context with ko threads. At this point, we check
if the CFA A is also a succinct description for a con-
text with arbitrarily many threads. One way is to check
if ReachAndBuild*.(C, P).(A,ko) < A. While sound, this
reachability is also very expensive. Instead we perform the
following check.

Suppose at termination, the values of A, G, p and k
in the algorithm are A, é, i1, and ko respectively, so that
(A,) = Collapse. G. We first compute the set of reachable
states R C S.(A, ko) by running the reachability algorithm

on A“. For each state q € A. @), we construct the set of
enabled transitions at ¢ given that the main thread is at
location ¢q. A transition ¢'—¢q” is enabled at g if there is
a ' € R with I'.q > 0, and either I'.¢’ >0andq;£q
orT.¢g >1and q=q. AnogenEGlegoodfora
transition e = ¢/ —""2y¢" of A if (1) e is enabled at ji.n,
and (2) the result of executing the context action e from
G.r.n is contained in G.r.n, that is, (3x;...x%,.(G. rn))
(Ar.g") C (G.r.n). We check that all nodes n € G.Q are
good for all context transitions in A that are enabled in fi.n.
This check is sound: if the check succeeds then A strand
simulates a context with arbitrarily many threads. If the
check fails, we increment ko and rerun the main loop. The
check avoids analyzing C together with A“, since this takes
time proportional to the product of the size of C (T1) and
the size of the reachable states of A“ (T2). Instead, we
analyze A“ alone, and use that analysis, together with C
to give the soundness check. The procedure outlined above
takes time T1 + T2, which is substantially less than the
product.

Memory Model So far we have described our algorithms
assuming all variables are of type integer. In our implemen-
tation, we extend the basic algorithm to deal with pointer
variables and aliasing. The problem is that we cannot in-
fer the global memory address being accessed syntactically
by looking at the name of the lvalue. Thus, for the error
check, we ask for every pair of lvalues [1,[l> at a region, if
the addresses of I; and l» can be the same, and in addition
if there is a race between l; and l>. As an optimization, we
use a flow insensitive alias and escape analysis to curtail the

[Name [Variable [§ Preds [ACFA size [Time |
secureTosBase gTxState 11 23 7m38s
(9539 lines) gTxByteCnt 4 13 1m41

gTxRunningCRC 4 13 1m50s
gTxProto 0 9 12s
gRxHeadIndex 8 64 20m50s
gRxTaillndex 0 5 2s
surge rec_ptr 4 23 1m18s
(9697 lines) gTxByteCnt 4 15 1m34
gTxRunningCRC 4 15 1m45s
gTxState 11 35 9mb4s
sense (3019 lines) | tosPort 6 26 16m25s

Table 1: Experimental results with CIRC on a 2GHz IBM
T30 with 512M RAM. Lines = Size of compiled C source

possible aliasing relationships to be explored. We omit the
details for lack of space.

6 Experiences

NESC [12] is a programming language for networked embed-
ded systems. It is used to implement event driven applica-
tions in the TinyOS operating system [20]. TinyOS has two
sources of concurrency: tasks and events. When an inter-
rupt occurs an event is fired, which may in turn fire other
events. As other interrupts can occur while this is happen-
ing, events can preempt each other. Events may also post
tasks, which are run when nothing else is happening. A
task may be preempted by events, but is never preempted
by another task. The presence of concurrent execution leads
to potential data races on the shared state. Since tasks are
nonpreemptible, there is no data race on variables accessed
only in tasks, but there may be be races between events and
tasks, or between two events.

As it is essential to avoid data races, NESC provides
atomic sections in the language with an atomic keyword;
code in an atomic section is executed atomically. The
NESC compiler implements a flow based static analysis to
catch race conditions on shared data variables. It runs an
alias analysis to detect which global variables are accessed
(transitively) by interrupt handlers, and then checks that
each such access occurs within an atomic section. However,
this analysis precludes the use of some common program-
ming idioms (e.g., the example from Section 2) which cause
the analysis to return false positives. For this, NESC pro-
vides a norace annotation that the programmer must pro-
vide if she believes that there is no race condition on a data
variable. In practice, almost all shared accesses are put in
atomic sections to prevent compiler warnings, even though
there may be no actual race condition. Since atomic sec-
tions are implemented by interrupt disabling, this may make
the system less responsive. Thus, NESC programs gave us
a unique application for a precise race checker like CIRC :
first, they critically require the absence of data races, and
second, they use several non-trivial synchronization idioms.

Running CIRC on NESC Programs. We focused on
the variables that had raised false alarms with the flow-
based analysis, and which subsequently were flagged with
the norace qualifier. NESC programs are compiled into C
and event fires translate to function calls. We modelled the
NESC applications as an arbitrary number of threads each
executing a big while-loop that triggered hardware inter-
rupts non-deterministically (as long as interrupts were en-

abled, modelled by a special global that we added) or called
tasks non-deterministically, as long as nothing else was run-
ning. Our results on some of the largest NESC applications
are summarized in (Table 1). The examples requiring no
predicates are ones that were trivially safe as they were ac-
cessed in atomic sections or only by tasks and our tool finds
this quickly. Preds is the number of predicates discovered to
prove safety, ACFA is the size of the final ACFA, the counter
parameter was always 1.

State Variable based synchronization. Many of the
variables gTxByteCnt, gTxRunningCRC were protected by a
state variable much like the example in section 2, and CIRC is
able to show there are no races, by finding the appropriate
abstraction. gTxState is protected in a similar manner but
is accessed in a more complicated pattern: CIRC first re-
ported a violation on it in secureTosBase. On inspection we
found that the variable was accessed at several places in-
side a function, in most places before a call that changed the
state variable, but at the point of conflict, it was accessed
after changing the state variable. As far as we know this
is a race though there may be some external circumstance
that we cannot glean from the program that prevents this
happening. On moving the access to before the call, CIRC
reported the system was safe. There was another “unpro-
tected” access, that occurred when a certain function call
returned failure, but CIRC verified that in that context, the
function always succeeded. gRxHeadIndex uses a compli-
cated synchronization on multiple values of a state variable
along with “conditional” accesses.

Split-phase based synchronization. The variable
rec_ptr in surge was accessed by an interrupt handler
(event) (I) and by a task (T) in the following manner: the
handler fired only when I was enabled. It then disabled the
interrupt I, posted the task T and then wrote to rec_ptr.
The task, when it got to run, wrote to the variable, and then
re-enabled the interrupt. This is an instance of a split-phase
operation, used to break up long tasks. When we modeled
this interrupt precisely by tracking its status in a global flag,
CIRC was able to report the absence of races after inferring
the appropriate ACFA. (Since the C code does not match
up interrupt bits with handlers, we had to refer to the un-
derlying hardware model.) A more complicated form of this
was in sense where the variable tosPort was protected by
a combination of this and a state variable. We discovered
this as CIRC found a race where an interrupt fired which
reset the state after one thread had already set it and was
about to write to tosPort thus letting another thread come
in and access tosPort. The programmer pointed out that
the malicious middle interrupt was only enabled after the
first thread had finished writing to tosPort. On modelling
this interrupt, the tool was able to prove safety.

Acknowledgments. We are indebted to David Gay for
patiently educating us about nesC.

References

[1] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized ver-
ification of multithreaded software libraries. In TACAS 01,
LNCS 2031, pp. 158-173. Springer, 2001.

[2] T. Ball and S.K. Rajamani. The SLAM project: debugging
system software via static analysis. In POPL 02, pp. 1-3.
ACM, 2002.

[3] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA 02, pp. 211-230, 2002.

[4] S. Chaki, J. Ouaknine, K. Yorav, and E.M. Clarke. Auto-
mated compositional abstraction refinement for concurrent
C programs: A two-level approach. In SoftMC 03, 2003.

[5] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise datarace detection
for multithreaded object-oriented programs. In PLDI 2002,
pp- 258-269. ACM, 2002.

[6] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking.
Mit Press, 1999.

[7] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera : Extracting finite-state
models from Java source code. In ICSE 00, pp. 439-448,
2000.

[8] G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the
automated verification of multithreaded java programs. In
TACAS 02, pp. 173-187. Springer, 2002.

[9] J. Esparza, A. Finkel, and R. Mayr. On the verification of
broadcast protocols. In LICS 99, pp. 352-359. IEEE Press,
1999.

[10] C. Flanagan and S.N. Freund. Detecting race conditions in
large programs. In PASTE 01, pp. 90-96. ACM, 2001.

[11] C.Flanagan, S. Qadeer, and S.A. Seshia. A modular checker
for multithreaded programs. In CAV 02, LNCS 2404, pp.
180-194. Springer, 2002.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In PLDI 03, pp. 1-11. ACM,
2003.

[13] P. Godefroid. Model checking for programming languages
using Verisoft. In POPL 97, pp. 174-186. ACM, 1997.

[14] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In CAV 97, LNCS 1254, pp. 72-83. Springer,
1997.

[15] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java Pathfinder. Software Tools for Technology
Transfer (STTT), 2(4):72-84, 2000.

[16] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Com-
puting simulations on finite and infinite graphs. In FOCS
95, pp- 453-462. IEEE Press, 1995.

[17] T.A.Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan.
Abstractions from proofs. In POPL 04, ACM, 2004.

[18] T.A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. In CAV 03, LNCS
2725, pp. 262-274. Springer, 2003.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL 02, pp. 58-70. ACM, 2002.

[20] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. In ASPLOS 00, pp. 93-104. ACM, 2000.

[21] G.J. Holzmann. Logic verification of ANSI-C code with
SPIN. In SPIN 00, LNCS 1885, pp. 131-147. Springer, 2000.

[22] C.B. Jones. Tentative steps toward a development method
for interfering programs. ACM TOPLAS 5(4):596-619, 1983.

[23] B.D. Lubachevsky. An approach to automating the verifi-
cation of compact parallel coordination programs i. Acta
Informatica, 21:125-169, 1984.

[24] S. Savage, M. Burrows, C.G. Nelson, P. Sobalvarro, and T.A.
Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM ToCS, 15(4):391-411, 1997.

[25] C.von Praun and T. Gross. Static conflict analysis for multi-

threaded object-oriented programs. In PLDI 03, pp. 115-
128. ACM, 2003.

