
Rewriting-based Dynamic Information Flow for JavaScript ∗

Dongseok Jang
UC San Diego

d1jang@cs.ucsd.edu

Ranjit Jhala
UC San Diego

jhala@cs.ucsd.edu

Sorin Lerner
UC San Diego

lerner@cs.ucsd.edu

Abstract
JavaScript web applications often dynamically load third-party
code, which in some cases can steal or corrupt important client
information. In this paper, we present a rewriting-based approach
for enforcing confidentiality and integrity policies that respectively
specify what information can flow into and from untrusted third-
party code. We have implemented our approach in the Chrome
browser, and we present experiments that evaluate the efficiency
and precision of our technique on real-world websites.

1. Introduction
JavaScript is a dynamically typed language that can be embedded in
web pages and executed by the web browser. JavaScript is becom-
ing the lingua franca of modern Web 2.0 applications. Almost every
popular web site uses some amount JavaScript, and many interac-
tive web sites, like search engines, email sites and mapping appli-
cations are almost entirely implemented in client-side JavaScript.

Although JavaScript has enabled web developers to provide a
richer web experience, JavaScript has also opened up the possi-
bility for a variety of security vulnerabilities. In particular, typical
JavaScript applications are made up from code originating from
many different sites. Unfortunately, JavaScript does not provide
strong protection mechanisms, so that code included from a partic-
ular site, say for displaying an ad, essentially runs in the context of
the hosting page. Thus, the ad code has access to all the information
on the hosting web page, including the cookie, the location bar, and
any other information stored on the page. The lack of strong pro-
tection mechanisms in JavaScript has lead to a variety of attacks
like cross-site scripting and cross-site request forgery.

To make JavaScript more secure, ideally we would like to spec-
ify and enforce confidentiality policies stating what parts of the web
page can be read by what JavaScript code and integrity policies
stating what JavaScript code can affect what parts of the page. One
formalism that is well suited for expressing these kinds of poli-
cies is information flow policies which specify where in the code a
given value can flow to. Thus, for example, a web user could state
using an information flow policy that sensitive information stored
in a cookie should not flow to any code loaded from third party ad
servers.

Although there has been work on static enforcement of informa-
tion flow for a variety of languages, performing static information
flow on a language like JavaScript is extremely hard. JavaScript has
many features that make precise static analysis all but impossible.
These features include dynamic loading of code from the network,
dynamic code construction and evaluation, prototypes and dynamic
dispatch, dynamically added and removed fields, and dynamic field
assignments (where the field name is constructed at runtime).

∗ This work was supported by NSF CAREER grants CCF-0644306, CCF-
0644361, NSF PDOS grant CNS-0720802, NSF Collaborative grant CCF-
0702603.

Rather than try to analyze the JavaScript code statically, in
this paper we present a framework that tracks information flow
for JavaScript dynamically. Our framework inserts and propagates
taints through the program as it runs to enforce confidentiality and
integrity policies. The dynamic nature of our analysis allows it to
precisely track flow even through the many features of JavaScript
that make static analysis hard.

One approach to implementing dynamic information flow for
JavaScript is to modify the JavaScript runtime inside the browser
so that it inserts and propagates taints. Such an approach, how-
ever, would require understanding all of the details of how the
JavaScript runtime works, which is a daunting task in modern web
browsers that use sophisticated JIT-based runtimes. Instead, our
framework works by rewriting the JavaScript code so that it prop-
agates taints by itself. Although the rewriting is performed inside
the browser, implementing our approach only requires understand-
ing the browser’s AST data structure, and none of the complexity
of the JavaScript run-time.

Tracking information flow using rewriting poses several chal-
lenges. First, the rewriting must be performed in such a way that
all JavaScript code, even code that is dynamically loaded and ex-
ecuted, gets rewritten. Second, one has to come up with a way to
track taint information for all values, including unboxed values.
Unboxed values are particularly challenging as they represent prim-
itive values that cannot be augmented with fields to store the taints,
and as they do not have addresses that can be used to look up the
taints in a table. This problem is made worse by the fact that some
unboxed values cannot be boxed without breaking the program.
Third, one has to perform the rewriting in a way that preserves the
semantics of the JavaScript code, which is made difficult by fea-
tures like DOM accesses, interactions with native libraries inside
the browser, and appropriate boxing and unboxing of values. In this
paper, we make the following contributions:

• We present a rewrite-based dynamic information flow frame-
work for JavaScript. Section 2 gives an overview of our frame-
work, whereas Sections 3 and 4 provides a detailed description
of the rewrite rules.
• We have implemented an instantiation of our framework in

the Chrome browser, and have used our enhanced browser to
surf the web on on a variety of real web sites. Although our
framework slows the browsing experience, all sites are still
usable.
• We have used our Chrome implementation to measure the pre-

cision and performance of our framework on the Alexa top 100
web sites. We show that

2. Overview
We begin with an example that gives a high-level overview of our
approach for dynamically enforcing information flow policies.



var initSettings = function(s){
searchUrl = s;

}

initSettings("a.com");

var doSearch = function() {
var searchBox = document.searchBoxValue;
var searchQry = searchUrl + searchBox;
document.location = searchQry;

}

eval(load("http://adserver.com/display.js"));

Figure 1. JavaScript code from a website a.com.

initSettings("evil.com");

Figure 2. A malicious string from adserver.com

Webpage Consider the JavaScript in Figure 1. Suppose that this
code is a distillation of the JavaScript on a webpage belonging to
the domain a.com. The webpage has a text box whose contents
are stored in the global variable searchBoxValue. The function
initSettings is intended to be called once to initialize settings
used by the page. The doSearch function is called when the user
clicks a particular button on the page.

Dynamically Loaded Code The very last line of the code in Fig-
ure 1 is a call to load() which is used to dynamically obtain a
string from adserver.com. This string is then passed to eval()
which has the effect of “executing” the string in order to update the
webpage with an advertisement tailored to the particular user.

Malicious Code Suppose that for one reason or another , the string
returned by the call to adserver.com was that shown in Figure 2.
When this string is passed to eval() and executed, it overwrites
the page’s settings. In particular, it sets the variable searchUrl
which is used as the prefix of the query string, to refer to an
attacker site evil.com. Now, if the user clicks the search button,
the document.location gets set to the attacker’s site, and thus
the user is redirected to a website which can then compromise her
machine. Similarly, dynamically loaded code can cause the user to
leak their password or other sensitive information.

2.1 Information Flow
The flexibility and dynamic nature of JavaScript makes it diffi-
cult to use existing language-based isolation mechanisms. First,
JavaScript does not have any information hiding mechanisms like
private fields that could be used to isolate document.location
from dynamically loaded code. Indeed, a primary reason for the
popularity of the language is that the absence of such mechanisms
makes it easy to rapidly glue together different libraries distributed
across the web. Second, the asynchronous nature of web applica-
tions makes it difficult to enforce isolation via dynamic stack-based
access control. Indeed, in the example above, the malicious code
has done its mischief and departed well before the user clicks the
button and causes the page to relocate.

Thus, to reconcile safety and flexible, dynamic code compo-
sition, we need fine-grained isolation mechanisms that prevent un-
trusted code from viewing or affecting sensitive data. Our approach
to isolation is information flow control [5, 11], where the isolation
is ensured via two steps. First, the website’s developer provides
a fine-grained policy that describes which values can affect and be

affected by others. Second, the language’s compiler or run-time en-
force the policy, thereby providing fine-grained isolation.
Policies We require that website developers specify fine-grained
isolation via information flow policies. An object-location is a pair
of an object identifier and a field name. For example the object-
location (document, “location”) describes the object-location
corresponding to the loaded website’s URL. An integrity policy
is a map from object-locations to URLs whose code is allowed
to influence the values stored at that object-location. For exam-
ple, the developer for a.com would specify an integrity policy that
mapped (document, “location”) to a.com, indicating that only
values from a.com can flow into the document’s location. By de-
fault, if a object-location is not mapped to anything, we assume that
it can be influenced by values originating at any URL. A confiden-
tiality policy is a map from object-locations to URLs whose code is
allowed to be influenced by the values stored at the object-location.
For example, the developer for a.com would specify a confidential-
ity policy that mapped (document, “cookie”) to a.com, indicat-
ing that the values held in the document’s cookie can only flow into
code that originates at a.com.
Enforcement Policies are enforced via a three-step process.

1. Taint Injection: First, we associate with each program object
a set of taints that describe where the object has come from,
and where it is allowed to go. An integrity taint is of the
form 〈InfBy , url〉 that specifies that the tainted object has been
influenced by code originating at url . Every object created in
code from url is injected with this taint. A confidentiality taint
is of the form 〈CnfTo, url〉 that specifies that the tainted object
is confidential to code originating at url . Every value stored in
a confidential object-location is injected with this taint.

2. Taint Propagation Second, we propagate the taints with the
objects as they flow through the program via assignments, pro-
cedure calls etc.. A static analysis would carry out this propaga-
tion via some form of dataflow analysis [14], while a dynamic
analysis [4] would attach taints with the objects and copy them
around together with the object.

3. Taint Checking Third, at each point where value-flow happens,
i.e., at each assignment of a source object to a target object-
location, we check if the assignment is legal with respect to the
taints associated with the objects. The flow is legal if: (a) for
each integrity taint 〈InfBy , url〉 carried by the object, the target
object-location is allowed to be influenced by url , (b) for each
confidentiality taint 〈CnfTo, url〉 carried by the object, the
assignment occurs within code originating at url .

2.2 Rewriting-based Dynamic Information Flow
While the above three-step recipe for policy enforcement can be
implemented statically or dynamically, the nature of JavaScript and
dynamic code loading makes precise static enforcement problem-
atic, as it is impossible to predict what code will be loaded at run-
time. Thus, our approach is to carry out the enforcement in a fully
dynamic manner, by rewriting the code in order to inject, propagate
and checks taints appropriately.
Rewriting Strategy Our strategy for enforcing flow policies, is to
extend the browser with a function that takes a code string and
the URL from which the string was loaded, and returns a rewritten
string which contains operations that perform the injection, propa-
gation and checking of taints. Thus, to enforce the policy, we ensure
that the code on the webpage is appropriately rewritten before it is
evaluated. We ensure that “nested” eval-sites are properly handled
as follows. We implement our rewriting function as a procedure in
the browser source language (e.g., C++) that can be called from
within JavaScript using the name RW and the rewriter wraps the ar-



//var initSettings = function(){...}
tmp0 = box(function(s){searchUrl = s;}, "a.com"),
var initSettings = tmp0;

//initSettings("a.com");
tmp1 = box("a.com", "a.com"),
initSettings(tmp1);

//var doSearch = function(){...}
var doSearch = box(function(){

var searchBox = document.searchBoxValue;

//var searchQry = searchBox + searchUrl;
var searchQry = TSET.direct.add(searchUrl),

tmp2 = unbox(searchUrl),

TSET.direct.add(searchBox),
tmp3 = unbox(searchBox),

tmp4 = tmp2 + tmp3,
TSET.boxAndTaint(tmp4, "a.com");

//document.location = searchQry;
check(searchQry, document, "location", "a.com"),
document.location = searchQry;
}, "a.com");

//eval(load("http://adserver.com/display.js"));
tmp5 = box("http://adserver.com/display.js", "a.com"),
tmp6 = box(load(tmp5), "www.a.com"),
tmp6.url = tmp5,
eval(RW(tmp6, tmp6.url));

Figure 3. Rewritten code from a.com. The comments above each
block denote the original version of the rewritten block.

guments of eval within a call to RW to ensure they are (recursively)
rewritten before evaluation [21].

When the rewriting procedure is invoked on the code from
Figure 1 and the URL a.com, it emits the code shown in Figure 3.
The rewriting procedure rewrites each statement and expression.
(In Figure 3, we write the original code as a comment above the
rewritten version.) Next, we step through the rewritten code to
illustrate how taints are injected, checked and propagated, for the
integrity property that specifies that document.location should
only be influenced by a.com.

Injection To propagate taints, we extend every object with a special
field taint. Whenever an object is created. To achieve this, we
wrap all object creations inside a call to a special function box
which takes a value and a url and creates a boxed version of the
value where the taint field is set to 〈InfBy , url〉 indicating that
the object has an integrity taint denoting where it was created.
We do this uniformly for all objects, including functions (e.g., the
one assigned to initSettings), literals (e.g., the one passed as a
parameter to initSettings), etc..

Checking To check taints, we add, before every assignment, a call
to a function check which takes four arguments and determines
whether the value of its first argument can be assigned to (i.e., is
allowed to flow to) the object-location corresponding to its second
and third arguments, in code from the URL denoted by the fourth
argument. For example, consider the rewritten version of the as-
signment to document.location in the body of doSearch. The
rewrite inserts before the assignment, a call to check that deter-
mines whether the taints stored in searchQry.taint allow it to be
assigned to document.location in code from a.com. At run-time,
when this call is executed it halts the program with a flow-violation

message if searchQry.taint has a taint of the form 〈InfBy , url〉
where url is not a.com, the only URL that is allowed (by the in-
tegrity policy) to influence document.location.

Propagation Next, we consider how the rewriting instruments the
code to add instructions that propagate the taints.

• For assignments and function calls, as all objects are boxed,
the taints are carried over directly, once we have created tem-
poraries that hold boxed versions of values. For example, the
call to initSettings uses tmp0, the boxed version of the ar-
gument, and hence passes the taints into the function’s formals.
The assignment to searchBox is unchanged from before, as the
right-hand side is a variable (which has already been boxed).
• For binary operations, we must do a little more work, as

many binary operations (e.g., string concatenation) require
their arguments be unboxed. To handle such operations, we
extend the code with a new object called the taint-set,
named TSET. We use this object to accumulate the taints of
sub-expressions of compound expressions. The object sup-
ports two operations. First, TSET.direct.add(x, url), which
adds x.taint and 〈InfBy , url〉 to the taint-set. Second,
TSET.boxAndTaint(x, url), which creates a boxed version
of x (if it is not boxed), taints it with 〈InfBy , url〉 and the
taints accumulated on the taint-set, clears the taint-set, and re-
turns the boxed-and-tainted version of x. (We use the direct
field as there are several other uses for the TSET object that
are explained later.) For example, consider the rewritten ver-
sion of searchBox + searchUrl. We add the taints from
searchBox (resp. searchUrl) to the taint-set, and assign an
unboxed version to the fresh temporary tmp2 (resp. tmp3).
Next, we concatenate the unboxed strings, and assign the result
to tmp4. Finally, we call TSET.boxAndTaint(tmp4, “a.com”),
which boxes tmp4, adds the taints for the sub-expressions
stored in the taint-set and 〈InfBy , “a.com”〉, and returns the
boxed-and-tainted result.
• For code loading operations (modeled as load(·)), the rewriting

boxes the strings, and then adds a url field to the result that
indicates the domain from which the string was loaded. For
example, consider the code loaded from adserver.com. The
name of the URL is stored in the temporary tmp5, and the boxed
result is stored in a fresh temporary tmp6, to which we add a
url field that holds the value of tmp5.
• For eval operations, our rewriting interposes code that passes

the string argument to eval and the URL from which the string
originated to the the rewriting function RW, thereby ensuring the
code is rewritten before it is evaluated. For example, consider
the operation at the last line of the code from Figure 1 which
eval’s the string loaded from adserver.com. In the rewritten
version, we have a boxed version of the string stored in tmp6;
the rewriting ensures that the string that gets executed is actu-
ally tmp6 rewritten assuming it originated at tmp6.url, which
will have the effect of ensuring that taints are properly injected,
propagated and checked within the dynamically loaded code.

Assumptions The above code makes two assumptions for ease of
exposition. First, the fields taint and url are not read, written or
removed by any code other than was placed for tracking. Second,
that eval fails on programmatically constructed strings which lack
a url field. In practice, we use the 〈InfBy , ·〉 taints associated with
the string to determine the URL from which it originated.

Attack Prevention Suppose that the load(·) operation returns the
string from Figure 2. The rewritten code invokes the rewriting func-
tion RW on the string, and the URL adserver.com yielding the
string shown in Figure 4. Notice that now, the argument passed to



tmp10 = box("evil.com", "adserver.com"),
initSettings(tmp10);

Figure 4. Rewritten version of code from Figure 2.

initSettings carries the taint 〈InfBy , “adserver.com”〉, which
flows into searchUrl when the assignment inside initSettings
is executed. Finally, when the button click triggers a call to
doSearch, the taint flows through the taint-set into the value re-
turned by the call TSET.boxAndTaint(tmp4, “a.com”), and from
there into searchQry. Finally, the check (just before the assign-
ment to document.location) halts execution as the flow violates
the integrity policy, thereby preventing the redirection attack.

Rewriting for Confidentiality Policies The above example il-
lustrates how rewriting enforces integrity policies. The case for
confidentiality policies differs only in how taints are injected and
checked; the taints are propagated in an identical fashion. To inject
taints, the rewriting adds a 〈CnfTo, url〉 taint to the results of each
read from a object-location confidential to url . To check taints, the
TSET.boxAndTaint(x, url) function creates a boxed-and-tainted
version of x and checks that the taints indicate that the value can
be read by url. If so, the tainted version is returned, and if not,
execution is halted with a warning.

The above example gives a high-level overview of our rewriting-
based approach to enforcing information flow policies. Next, we
describe a core language (Section 3), and then precisely describe
the rewriting rules for the core language (Section 4).

3. Core JavaScript
We start by formalizing Core JavaScript, a subset of the complete
language which we use to describe our rewriting-based approach.

3.1 Language: Core JavaScript
For ease of exposition, we assume that a Core JavaScript program is
an expression (i.e., unlike JavaScript we do not distinguish between
statements and expressions). Core JavaScript expressions include:

basic constants of the form c that represent integers, strings etc.,

variable reads of the form x

field reads of the form e1[e2], where e1 is an expression that
evaluates to the object whose field is being read, and e2 is an
expression that evaluates to the name of the field being read

binary operations of the form e1 op e2 that include primitive
operations like integer addition, string concatenation etc.,

object literals of the form {f1 :e1 . . .} that map a set of fields
f1 . . . to a set of objects represented by e1 . . . respectively

variable assignments of the form x= e; the assignment updates x
and evaluates to the object that e evaluates to,

field assignments of the form e1[e2] = e3, where e1 evaluates
to the object whose field is updated, e2 evaluates to (a string
naming) the field being written, and e3 is the expression whose
value the field is updated with; field-assignments evaluate to the
object that e3 evaluates to

sequence expressions of the form e1; e2 where e1 is evaluated first,
then e2; the result is the value of e2

branches of the form if e1 e2 e3; a branch expression evaluates
to the trivial null object

functions of the form fun(x1 . . .){e} where x1 . . . are the formals
of the function and e the function’s body (the function returns

the value of e); in our encoding, methods are functions with a
this parameter, that are bound to the fields of objects

function calls of the form e(e1 . . .) where e evaluates to the callee
and e1 . . . to the arguments; we encode method calls as function
calls made through a field, and for which the target object is
passed as the first parameter (for example x.f(x, ...))

with-expressions of the form with (e1) {e2} where e1 evaluates
to an object within whose scope e2 is evaluated; i.e., variable
accesses in e2 correspond to field on e1

Dynamic Loading Core JavaScript includes two operations that
are used to model dynamic code loading:

loads of the form load(e) where e evaluates to a URL (string);
the contents of the page identified by the URL is retrieved and
returned as a string

evals of the form eval(e) where e evaluates to a string that is
dynamically executed at that point

Example Suppose that we wish to load and run a web-application
from the URL a.com. We model this by the program:

eval(load("a.com"))

If the code from a.com requires a function foo from a library
provided by b.com then the above load could return the string:

eval(load("b.com")); foo(x);...

where the first line loads the code from the library site, and the
second line calls the library function. The code loaded from b.com
could contain its own loads and evals in order to dynamically stitch
together code from other libraries. The eval operation can also
be used on strings that have been constructed locally (e.g., by
concatenating substrings).
DOM Instead of explicitly modeling the webpage and the DOM,
we assume that there is a “global” variable called document with
the appropriate fields (e.g., cookie, location) that are manipu-
lated in the Core JavaScript program.
Operational Semantics The operational semantics of Core
JavaScript operations are based on the semantics of the correspond-
ing operations for JavaScript [10].

4. Information Flow via Rewriting
Our goal is to track the flow of information through the program,
in order to prevent flows that violate confidentiality and integrity
policies. Next, we formalize the notion of policies, and describe
how we rewrite the program so that it injects, propagates and
checks taints in order to enforce flow policies.

4.1 Information Flow Policies
First, we formalize the notion of object-locations and confidential-
ity and integrity policies.
Object-locations Suppose that every object that is created in the
program is stamped with a unique object identifier drawn from
the set ID . A object-location is a pair of an object identifier and
a field name (string). For example, the top-level DOM variable
document refers to a special object identified by iddocument. Hence,
(iddocument, “cookie”) is the object-location corresponding to the
top-level document’s cookie, and (iddocument, “location”) is the
object-location corresponding to the top-level document’s URL.
Policies A policy is a pair of the form (Cnf, Itg), where Cnf is
a confidentiality policy that is a finite map from object-locations
to the URLs that are allowed to read that object-location, Itg is
a integrity policy that is a finite map from object-locations to the
URLs that are allowed to write that object-location.



Example The policy (Cnf, Itg) where

Cnf
.
= [(iddocument, “cookie”) 7→ “a.com”]

Itg
.
= [(iddocument, “location”) 7→ “a.com”]

specifies that the value of document.cookie (resp.
document.location) should only flow to (resp. from) code
originating at a.com.

4.2 Rewriting Algorithm
Figure 5 summarizes our rewriting procedure RW(e, url), which
takes as input a Core JavaScript program e and the URL the ex-
pression was loaded from url and returns a rewritten version of
the program. The figure is given as a series of rules of the form:

RWA(e, url)
.
= e′

where each rule describes how an expression that matches e is
rewritten to the expression e′. We use italics to denote meta vari-
ables that range over expressions and typewriter to denote con-
crete expressions and variables.
URL Tracking The url is used to determine the domain from
which the code was dynamically loaded. In particular, the rewriting
procedure uses the url to (1) place checks that determine whether
a given confidential value may flow into code from url, (2) place
new 〈InfBy , ·〉 taints on values created by the loaded code, in
order to subsequently prevent those values from flowing into and
violating the integrity of a object-location.
Dynamic Rewriting As dynamically loaded code can itself load
code dynamically, our rewriting procedure places a call to itself
when rewriting an eval expression. These deferred calls are sig-
nified via the typewriter (RW) font, in contrast to the serif (RW)
font which denotes the “eager” invocations that rewrites (known)
subexpressions.
Goals At a high level, our rewriting has two goals. First, to ensure
that each object has a special taint field that contains taints which
describe the URLs that the object can be read by, and has been
influenced with. Second, to ensure that each assignment is checked
to determine if it violates the given flow policy. Next, we describe
how the rewriting procedure achieves these goals by describing
how it tracks and checks different kinds of flows.

4.3 Direct Flows
We start by describing how our rewriting tracks direct flows, where
the value of one object-location flows into another due to a se-
quence of assignments.
Taint-Set Library Our dynamic taint tracking is carried out using
a taint-set object stored in a variable called TSET. The TSET object
implements a variety of methods that are invoked to store and
access taints as the program executes. We define a TSET variable
for each function, instead of a single global TSET variable as it
simplifies the handling of closures, and is safe with respect to the
asynchronous concurrency supported by JavaScript (which we do
not model in our subset for simplicity). Instead of describing all
the TSET operations at once, we describe how the operations are
invoked at different points in the rewritten program.
Direct Taint Stack (TSET.direct) To deal with the complex rules
that govern the order of evaluation of sub-expressions, and the fact
that (like C) JavaScript assignments return a value (corresponding
to the value being assigned), we carry out a form of dynamic three-
address translation, by equipping the TSET object with a direct-taint
stack (named TSET.direct). This object contains a stack of taint-
sets, and the rewriting maintains the invariant that at each point
where an (original) sub-expression finishes evaluating, the taints
associated with that sub-expression’s value are stored at the top

of the direct-taint stack. That is, our rewriting function has the
property that when e is rewritten to e′, the value that e′ evaluates
to is exactly the same as e (except for the taint field) and the
taints of e (and hence, e′) are stored at the top of the direct-taint
stack. We ensure this invariant by having the rewrite function RW
call an auxiliary function RWA to actually carry out the rewrite,
after which the result is wrapped inside a call to TSET.direct.add
which adds the result’s taints and the taint 〈InfBy , url〉 to the top
of the direct-taint stack and returns the result.

Confidentiality Enforcement is carried out by the method
TSET.boxAndTaint, which takes as input two parameters x, an
object and url a URL in which a read occurs. It creates a boxed
version of the object (if the object is unboxed) and adds to the
object’s taint field (1) all the taints currently accumulated in
the top of the taint-set stack TSET, and (2) all the taints due
to control dependences, accumulated in the indirect-taint stack
(described later). Before returning the boxed-and-tainted object,
TSET.boxAndTaint checks if the returned object has a confiden-
tiality taint of the form 〈CnfTo, url〉 where url 6= url. If such a
taint exists, it means that code from url is not allowed to read x
and so execution is halted.

Integrity Enforcement is carried out by the method TSET.check
which takes as input a source object x, a target object-location
represented by a pair of an object d obj and field name d fld. The
method checks if x has an integrity taint of the form 〈InfBy , url〉
where url 6= Itg(d obj, d fld)). If such a taint exists, it means
that x has been influenced by code from URLs that should not
influence the target object-location and so execution is halted.

Taint Accumulation The base cases for the rewriting procedure
are constants c and variable reads x, which are simply rewritten to
themselves (they will be boxed-and-tainted before being assigned
anywhere). The latter is simply rewritten to itself. For binary op-
erations, we recursively invoke the rewriting procedure to create
new temporary variables to store the values of each sub-expression,
and then apply the binary operation to the temporaries. Note that
the recursive calls have the effect of accumulating the taints of the
two sub-expressions on the top of the direct-taint stack. Thus, the
taints for the result, which is the union of the taints for the sub-
expressions, is at the top of the direct-taint stack when the rewritten
expression finishes evaluating.

Assignments For variable assignment expressions x = e, the
rewriting procedure first rewrites the right-hand side (RHS) e. The
rewritten RHS is wrapped in a call to TSET.boxAndTaint which
returns the object together with a taint field that has been em-
bellished with all the associated taints for that expression includ-
ing both direct taints from sub-expressions and indirect taints from
the control-dependences under which the assignment occurs. The
call also checks that code from url is allowed to read the RHS
value, and if not, halts execution. The returned boxed-and-tainted
object is stored in a temporary variable. Next, the rewriting adds a
call to TSET.check which enforces the integrity policy by check-
ing whether an object with the RHS taints is allowed to flow into
the object-location represented by x. If the check fails, the pro-
gram halts with an error message. Otherwise, the tainted object is
assigned to x and returned. (The← denotes box-sensitive assign-
ment, a notion we explain later: for now, think of it as plain assign-
ment.) The rewriting for field-assignments is similar, except that
in this case, to identify the object-location being assigned to, the
TSET.check is passed the host-object tmp1 and the field tmp2.

Field Reads For field read expressions of the form e1[e2], we
rewrite the host object e1 and field name expressions e2 and store
the results in new temporaries tmp1 and tmp2 respectively. Finally,
the rewritten expression uses the temporaries to carry out the field



RW(e, url)
.
=

tmp = RWA(e, url)
TSET.direct.add(tmp, url)

RWA(load(e), url)
.
=

tmp = RW(e, url),
tmp1 = load(tmp),
tmp1[“url”] = tmp,
tmp1

RWA(eval(e), url)
.
=

tmp = RW(e, url),
eval(RW(tmp, tmp[“url”]))

RWA(c, url)
.
= c

RWA(x, url)
.
= x

RWA(e1 op e2, url)
.
=

tmp1 = RW(e1, url),
tmp2 = RW(e2, url),
unbox(tmp1) op unbox(tmp2)

RWA({f1 :e1 . . .}, url)
.
=

tmp1 . . . = RW(e1 . . ., url)
{f1 :tmp1 . . .}

RWA(e1; e2, url)
.
=

RW(e1, url);RW(e2, url)

RWA(x = e, url)
.
=

TSET.direct.push(),
tmp = RW(e, url)
tmp = TSET.boxAndTaint(tmp, url),
TSET.check(tmp, None, “x”),
x ← tmp
TSET.direct.pop(),
tmp

RWA(e1[e2], url)
.
=

tmp1 = RW(e1, url),
tmp2 = RW(e2, url),
tmp3 = “taint ” + tmp2,
TSET.direct.add(tmp1[tmp3], url),
tmp1[tmp2]

RWA(e1[e2] = e3, url)
.
=

tmp1 = RW(e1, url),
tmp2 = RW(e2, url),
TSET.direct.push(),
tmp3 = RW(e3, url),
tmp3 = TSET.boxAndTaint(tmp3, url),
TSET.check(tmp3, tmp1, tmp2),
tmp1[tmp2] ← tmp3,
TSET.direct.pop(),
tmp3

RWA(if e1 e2 e3, url)
.
=

tmp1 = RW(e1, url)
TSET.indirect.push(tmp1),
if (unbox(tmp1))

RW(e2, url))
RW(e3, url)),

TSET.indirect.pop()

RWA(fun(x1 . . .){e}, url)
.
=

tmp = TSET.indirect.get(),
fun(x1 . . . , I){

TSET = new TSET();
TSET.indirect.push(tmp);
TSET.indirect.push(I);
RW(e, url)

}

RWA(e(e1 . . .), url)
.
=

tmp = RW(e, url),
RW(tmp1 = e1 . . ., url),
tmp(tmp1 . . . , TSET.indirect.get())

RWA(with (e1) {e2}, url)
.
=

tmp1 = RW(e1, url),
with(tmp1){

TSET.with.push(tmp1),
tmp2 = RW(e2, url)
TSET.with.pop(),
tmp2

}

Figure 5. Rewrite Function: Each tmp variable is fresh, we elide the var declarations for clarity.

read. For now, ignore the TSET.direct.add(·, ·) call, we explain it
when describing box-sensitive assignments.
Direct-Taint Stack Revisited Notice that the rewritten as-
signment expressions are enclosed within a pair of calls to
TSET.direct.push() and TSET.direct.pop(). To understand
why, consider the following JavaScript expression:

e1 + (x = e2) + e3

The result of the expression must contain the accumulated taints
of e1, e2 and e3, but the variable x should be updated with an
object that only contains the taints of e2. To achieve this, when
rewriting an assignment we push a new, initially empty set of
taints onto the top of the direct-taint stack, accumulate the taints
for that assignment at the top of the stack, and when we are done
with that assignment, we pop the taint set off the stack to resume
the accumulation on the super-expression to which the assignment
belonged. Thus for the example above, we would accumulate the
taints for e1 on the top of the stack, then push a new taint set on top
of the stack to accumulate the taints for e2. When the assignment is
finished (and x assigned to the result of e2), the taint set is popped
off the stack and added to the taints accumulated for e1. Finally,
the taints for e3 are computed and added to the top of the stack
resulting in the accumulation of taints for the whole expression.

4.4 Indirect Flows
Next, we look at how the rewriting handles indirect flows due to
control dependencies. We start with the data structure that dynam-
ically tracks indirect flows, and then describe the key expressions
that are affected by indirect flows.
Indirect Taint Stack (TSET.indirect) To track indirect flows, we
augment the taint set object with an indirect-taint stack (named
TSET.indirect). Our rewriting ensures that indirect taints are
added and removed from the indirect taint stack as the code
enters and leaves blocks with new control dependences. The

TSET.boxAndTaint(·, ·) function, which is used to gather the
taints for the RHS of assignments, embellishes the (RHS) object
with the direct taints at the top of the direct taint stack, and the
indirect taints stored throughout the indirect taint stack. The latter
ensures that at each assignment also propagates the indirect taints
that held at the point of the assignment.
Branches For branch expressions of the form if e1 e2 e2, we first
assign the rewritten guard to a new temporary tmp1, and push the
taints on the guard onto the indirect taint stack. These taints will
reside on the indirect taint stack when (either) branch is evaluated,
thereby tainting the assignments that happen inside the branches.
After the entire branch expression has been evaluated, the rewritten
code pops the taints, thereby reverting the stack to the set of indirect
taints before the branch was evaluated.
Example Consider the branch expression: if (z) { x = 0 } To
ensure that taints from z flow into x when the assignment occurs
inside the then-branch, the expression is rewritten to:

tmp = z,
TSET.indirect.push(tmp),
if (unbox(tmp)) { x = TSET.boxAndTaint(box(0,...),...)}
TSET.indirect.pop()

The ellipses denote the URL string passed to RW and we omit the
calls to check and TSET.direct.add(·, ·) for brevity. The rewrite
ensures that the taints from the guard z are on the indirect taint
stack inside the branch, and these taints are added to the (boxed
version of) 0 that is used for the assignment, thereby flowing them
into x. The pop after the branch finishes reverts the indirect stack
to the state prior to the branch.
Indirect vs. Implicit Flows. The above example illustrates a lim-
itation of our fully dynamic approach; we can track indirect flows
(such as the one above) but not implicit flows that occur due to the
absence of an assignment. For example, if the above branch was
preceded by an assignment that initialized x with 1, then an ob-



server that saw that x had the value 1 after the branch would be
able to glean a bit of information about the value of z. Our rewrit-
ing, and indeed, any fully dynamic analysis [4] will fail to detect
and prohibit such implicit flows.

Function Definitions For each function definition of the form
fun(x1 . . .){e}, our rewriting does several things. First, we invoke
TSET.indirect.get() to save the indirect taints at the point of
definition in an temporary variable tmp that is in-scope for the
rewritten function. Second, we create a new formal parameter I for
the rewritten function; this parameter is used to pass in the indirect
taints that hold at the caller. Third, we equip the rewritten function
with its own local TSET object, and we initialize the indirect taint
stack with the indirect taints at the definition site (tmp) and at the
callsite (I). As a result, the rewritten function body evaluates in a
context that holds the relevant indirect taints.

Example Consider the following function definition:

if (a) { f = function(){ var p = ...; return 0;};}

To ensure that taints from a flow into values returned by calls to f,
the expression is rewritten to:

tmp = a,
TSET.indirect.push(tmp),
if (tmp) {

tmp1 = TSET.indirect.get(),
f = TSET.boxAndTaint(

function(I){
var TSET = new TSET();
TSET.indirect.push(tmp1),
TSET.indirect.push(I),
p = TSET.boxAndTaint(...,...),
TSET.boxAndTaint(box(0,...),...)

},...)
},
TSET.indirect.pop()

where again, we elide some instrumentation for brevity. Again,
the taints for the branch are pushed onto the indirect taint stack.
Now, for the function, we create a new parameter for the indirect
taints at the callsite, and a new local TSET object to which we add
the indirect taints. The value returned by the function is boxed-
and-tainted with all the taints at that point, which will include the
indirect taints in tmp1 and hence, the guard a. Finally, note that the
function object itself is boxed-and-tainted, before the taints from
the guard get popped off.

Function Calls For each function call of the form e(e1 . . .), we
create temporaries to hold the values of the function and its argu-
ments, and then call the function with the arguments and the current
set of indirect taints (for the new indirect taint parameter I).

Example Consider the call expression: if (b) { f() } where f
is bound to the function defined in the previous example. To ensure
that taints from b flow into p (in the body of f) when the function
is called, the expression is rewritten to

tmp = b,
TSET.indirect.push(tmp),
if (tmp) { f(TSET.indirect.get()) },
TSET.indirect.pop()

which has the effect of passing the indirect taints at the callsite to
the (rewritten) callee, as the value of the parameter I which is added
to the indirect taint stack as soon as the function begins execution,
thereby flowing into boxed-and-tainted RHS expression which is
then assigned to p.

4.5 Unboxed Objects
So far, we have assumed that we can always add a taint field to
each object. Unfortunately, this assumption only holds for boxed
values, and not for unboxed values. Indeed, in our implementation,
we found that several DOM API functions are implemented in
native code, and require unboxed objects as arguments. Thus, the
rewriting must be capable of tracking taints for object-locations
such as the cookie field of the document object, which is always
unboxed (which precludes using document.cookie.taint).

To solve this problem, we observe that whenever the f field
of an object must have an unboxed value, we can store the
taints associated with that value in a special field taint f of
the “parent” object. Thus, for example, we store the taints as-
sociated with the cookie field of the document object inside
document.taint cookie.

Note that this scheme is robust to aliasing. This is because we
only attach taints to the parent when the field f in question holds an
unboxed object. As unboxed objects are immutable, we can safely
assume that the f fields of two different parents refer to distinct
copies of the unboxed object, and hence there is never any aliasing
of unboxed fields.
Box-Sensitive Assignments: Fields To attach the taints with the
“parent” object, we use a special box-sensitive assignment (imple-
mented as a JavaScript library call, but shown as an infix opera-
tion for clarity). A field box-sensitive assignment v1[v2] ← v3 as-
sumes that v3 is a boxed object. It checks if the v1 object’s v2 field
can be boxed. If so, the assignement is carried out as directly. If not
i.e., if the field must be unboxed, then v3 is unboxed and the result
assigned to the field and the taints associated with v3 are assigned
to the special field of the parent object v1.taint f. Notice that for
field-reads e1[e2], we add the taints from the special parent field (if
any) to the top of the direct-taint stack, via the call

TSET.direct.add(tmp1[“taint ” + tmp2], url)

before returning the object corresponding to the field read.
With Scoping Box-sensitive assignments work well for field-
assignments which contain an explicit reference to the host-object.
The with-expressions of JavaScript allow programmers to access
fields implicitly, without mentioning the host object. For example

with (document) {location = x}
has the effect of assigning x to document.location, since the
assignment occurs in the scope of the document object. Thus, even
variable assignments must be box-sensitive, as they may be field-
assignments within a with-expression, and to do so, we must track
the object in whose scope an expression is evaluated.
With Stack (TSET.with) To track the object in whose scope any
given assignment occurs, we augment the taint set object with a
with-scope stack (named TSET.with). For with expressions of the
form with (e1) {e2}, we push the object in whose scope the body
is evaluated (namely the object e1 evaluates to) onto the top of the
stack (via a call to TSET.with.push()) and we pop it off the stack
after the body has been evaluated, taking care to save and return the
result via a temporary.
Box-Sensitive Assignments: Variables With this stack in place,
we can handle variable box-sensitive assignments v1 ← v2 by
treating them as field box-sensitive assignments v[v1] ← v2
where v is the object at the top of the current with stack, if v has a
field named v1. Otherwise, it is treated as a normal assignment.
Example The rewrite function converts the with-expression shown
above (with(document){...})) to:

tmp = document,
with(tmp){



TSET.with.push(tmp),
TSET.check(x, None, "location", ...),
TSET.bsAsgn("location", x),
TSET.with.pop()

}

which is simplified for clarity. In the rewritten version the
document object (via tmp) is pushed onto the with-stack. Next,
a check is added to determine if the assignment is legal, and the ac-
tual assignment is converted into a box-sensitive assignment via an
invocation of the bsAsgn method of TSET. Finally, the with-stack is
reverted to its original state. The check and bsAsgn methods use
the top of the with-stack to determine the target object-location.
The former enforces the flow policy (and halts execution if x has
the wrong taints), and the latter assigns causes the taints from x to
flow into document.location.

5. Evaluation
We have implemented our dynamic rewrite-based information flow
framework for JavaScript in the Chrome browser. We implement
the rewriting function as a C++ method (within Chrome) that is
invoked on any JavaScript code just before it gets sent into the
V8 execution engine. Thus, our implementation rewrites every
piece of JavaScript including that which is loaded by <script>
tags, executed by eval or executed by changing the webpage
via document.write. The TSET library is implemented in pure
JavaScript, and we modified the resource loader of Chrome to in-
sert the TSET library code into every JavaScript program it ac-
cesses. The TSET library is inserted into each web page as ordinary
JavaScript using a <script> tag before any other code is loaded.

5.1 Experimental setup
The enhanced Chrome can run in normal mode or in taint tracking
mode. When the taint tracking is on, the modified Chrome tracks
the taint flow as a user surfs on websites.
Benchmarks We use the web sites from the latest Alexa top 100 list
as our benchmark. Alexa is a web company which ranks web sites
based on traffic. The web sites on the Alexa top 100 vary widely
in size and how heavily they use JavaScript, from 0.1 KLOC to
31.6 KLOC of JavaScript code. We successfully ran our dynamic
analysis on all of the pages of Alexa top 100 list, and we visited
many of them manually to make sure that they operate properly.
Policies We checked two important policies on each site. First,
document.cookie should remain confidential to the site. Second,
document.location should not be influenced by another site.
Both policies depend on a definition of what “another site” is.
Unfortunately, using exactly the same URL or domain name often
leads to many false alarms as what looks like a single web site
is in fact the agglomeration of several different domain names.
For example, facebook.com refers to fbcdn.net for many of
their major resources, including JavaScript code. Moreover, there
are relatively well known and safe websites for traffic statistics
and advertisements, which are referenced on many other websties,
and one may want to consider those as safe. Thus, we considered
three URL policies (i.e., three definitions for “another site”) (1) the
same-origin policy stating that any website whose hostname is
different from the hostname of the current one is considered a
different site. (2) the same-domain policy, which is the same as
the same-origin policy, except that web sites from the same domain
are considered to be the same (e.g., ads.cnn.com is considered
the same as www.cnn.com). (3) the white-list policy, which is the
same as the same-domain policy, except that there is a global list
of common web sites that are considered the same as the source
website. For our experiments, we treat websites referenced by three
or more different Alexa benchmarks as safe. The white-list mainly

consists of statistics and advertisement websites. Our rewriting
framework makes it trivial to consider different URL policies; we
need only alter the notion of URL equality in the checks done inside
TSET.boxAndTaint and TSET.check.

5.2 Precision
Figure 6 shows the results of running our dynamic information flow
framework on the Alexa top 100 list using the above policies. Be-
cause of space constraints, we only show a subset of the bench-
marks, but the average row is for all 100 benchmarks.
Table format The columns in the table are as follows: “Site and
rank” is the name of the web site and its rank in Alexa 100
list; “Total LOC” is the number of lines of JavaScript code on
each website, including code from other sites, as formatted by our
pretty printer built in Chrome; “Other Domain KLOC” is the num-
ber of lines of code from other sites; “# Taint Val” is the num-
ber of dynamically created tainted values; “Cookie” describes the
document.cookie confidentiality policy, and “Location” describes
the document.location integrity policy: Xindicates policy viola-
tion, and ×indicates no flow i.e., policy satisfaction).

The above columns are sub-categorized into three subcolumns
depending on the applied URL policy: “same” is for the same-
origin policy; “dmn” is for the same-domain policy; “whlst” is for
the white-list policy. A dash in a table entry means that the value
for that table entry is the same as the entry immediately to its left.

The code for each website changes on each visit. Thus, we ran
our enhanced Chrome 10 times on each website. To gain confidence
in our tool, we manually inspected every program on which a flow
is detected, and confirmed that every flow was indeed real.
Variation based on URL policies The number of lines of code
from other sites decreases we as move from the same-origin pol-
icy to the same-domain policy to the white-list policy. Note that in
some cases, for example facebook, code from other sites is almost
the same as the total lines of code. This is because all the JavaScript
code for facebook comes from a web site fbcdn.net. This web
site is not in the same domain as facebook, and it is only refer-
enced by one web site and hence, not included in our whitelist. In
such situations, a site-specific white-list would help, but we have
not added such white-lists because it would be difficult for us to
systematically decide for all 100 benchmarks what these white-lists
should be. Thus, as we do not use site-specific white-lists, our pol-
icy violations may not correspond to undesirable flows.

As the amount of other-site code decreases as we move from
“same” to “dmn” to “’whlst’, the number of dynamically created
taint values also decreases, at about the same rate. That is, a large
drop in other-site code leads to a correspondingly large drop in
the number of taint values created. Moreover, as expected, the
number of policy violations also decreases, as shown on the last
line of the table: the violations of the document.cookie poli-
cies goes from 48 to 38 to 17. We did not see a violation of the
document.location policy in any of our benchmarks.
Comparison with previous results Previous work on informa-
tion flow for JavaScript has shown how to detect policy viola-
tions in a hybrid static-dynamic approach called Staged Informa-
tion Flow(SIF). We compare our purely dynamic results with the
ones reported in the SIF work [3]. For the document.cookie lo-
cation, there are some websites for which our tool detects flow, but
SIF did not, and vice-versa. The SIF results show that there are sev-
eral web sites in which the document.location policy is violated,
whereas our dynamic approach has not uncovered any such viola-
tions. These differences can be explained by two factors. First, the
SIF analysis had a static component, that was conservative in the
face of various control-flow constructs, such as branches, loops,
first-class functions and dynamic field accesses. Thus, the viola-
tions reported in [3] may well be false-positives. Our rewrite-based



Site and rank Total Other Domain KLOC # Taint Val(k) Cookie Location
KLOC same dmn whlst same dmn whlst same dmn whlst same dmn whlst

1. google 1.8 0 - - 0 - - × × × × × ×
2. yahoo 7.4 7.0 - 0 29.5 - 0 × × × × × ×
3. facebook 9.1 9.1 9.1 9.1 12.4 9.3 8.4 × × × × × ×
4. youtube 7.5 7.3 7.3 5.7 21.0 20.7 20.7 X X X × × ×
5. myspace 12.2 11.9 - 8.6 35.3 - 28.4 X X X × × ×
6. wikipedia <0.1 0 - - 0 - - × × × × × ×
7. bing 0.7 0 - - 0 - - × × × × × ×
8. blogger 1.8 1.1 - 0 0.8 - 0.2 X X × × × ×
9. ebay 13.6 13.4 - 12.9 244.9 - 244.9 X X X × × ×

10. craigslist 0 0 - - 0 - - × × × × × ×
11. amazon 5.3 4.8 - - 40.1 - - × × × × × ×
12. msn 7.3 6.7 6.1 5.6 462.4 462.3 462.3 X × × × × ×
13. twitter 5.6 5.5 - 1.3 48.2 - 38.3 × × × × × ×
14. aol 12.7 9.6 - <0.1 129.8 - 60.9 X X × × × ×
15. go 1.1 0.9 0.2 - 76.3 2.0 - X × × × × ×
−. Average 8.2 6.1 3.9 3.0 63.1 52.7 35.9 48 38 17 0 0 0

Figure 6. Precision results for a subset of the Alexa 100 websites. The last row summarizes results for all 100 sites.

framework, on the other hand, is purely dynamic and thus only
reports real violations that actually occur. Second, there is a non-
trivial amount of churn that happens on a regular basis on the web
sites themselves and the JavaScript code that they run (not to men-
tion that each visit to the web site, even seconds apart can return
substantially different code because of different ads being intro-
duced). Thus, the JavaScript code that our tool analyzed may be
quite different from the code used in the SIF experiments.

5.3 Performance
Our rewrite-based information flow technique performs taint-
tracking dynamically, and so it is important to evaluate the perfor-
mance overhead of our approach. We measure performance using
two metrics: total page load time, and JavaScript run time.
Timing Measurements We modified the Chrome browser to al-
low us to measure for each website (1) the time spent executing
JavaScript on the site, and (2) the total time spent to download and
display the site. Figures 7 describes our timing measurements for
JavaScript time, and total download time on the 10 benchmarks
with the largest JavaScript code bases. The measurements were
performed while tracking both the document.cookie confiden-
tiality and document.location integrity policies. The “average”
benchmark represents the average time over all 10 benchmarks. For
each benchmark there are five bars which represent running time,
so smaller bars mean faster execution. For each benchmark, the 5
bars are normalized to the time for the unmodified Chrome browser
for that benchmark. Above each benchmark we display the time
in milliseconds for the unmodified Chrome browser (which indi-
cates what “1” means for that benchmark). The left most bar “not-
optimized” represents our technique using the original version of
our TSET library, and using the same-origin URL policy. For the
remaining bars, each bar represents a single change from the bar
immediately to its left: “optimized” uses a hand-optimized version
of our TSET library, rather than the original version; “dmn” changes
the URL policy to same-domain; “whlist” changes the URL policy
to white-list; and “trust-all” changes the URL policy to the trivial
policy where all web sites are trusted.
Optimizations We describe the three most important optimizations
we performed for the “optimized” bar. First, in the TSET.direct
stack, when there is a pop followed by a push, and just before the
pop there are no taints stored at the top of the stack, we cache the
object at the top of the stack before poping, and then reuse that same
object at the next push, thus avoiding having to create a new object.
Because the push is called on every assignment, removing the ob-
ject creation provides a significant savings. Second, we also cache

field reads in our optimized TSET library. For example, whenever
a property a.b is referenced several times in the library, we store
the value of the property in a temporary variable and reuse the value
again. This produces significant savings, despite the fact that all our
measurements used the JIT compiler of the V8 engine.

JavaScript execution time The left chart of Figure 7 shows just the
JavaScript execution time. As expected, the bars get shorter from
left-to-right; from “not-optimized” to “optimized”, we are adding
optimizations; and then the remaining bars consider progressively
more inclusive URL policies meaning there are fewer taints to
generate, propagate and check. There are a few exceptions. For
example, in the case of huff-post and mapquest, the “dmn”
bar is slightly slower than the bar to its left. This is because for
these benchmarks, the additional overhead that “dmn” introduces
to check for sub-domains is not recouped by the savings from the
drop in number of tainted objects.

The data from Figure 7 shows that our original TSET library
slows down JavaScript execution significantly – anywhere from
about 50% to just over 9X, and on average about 6X. The optimized
TSET library provides significant performance gains over the orig-
inal library. The various white-lists provide some additional gain,
but the gain is relatively small. To understand the limits of how
much white-lists can help, we use the “trust-all” bar, which essen-
tially corresponds to having a white-lists with every web site on
it. Overall, it seems that even in the best case scenario, white-lists
do not help much in the overhead of our approach. This is because
our approach needs to track the flow of cookie regardless of the
number of external sites.

Total execution time The right chart of Figure 7 shows the total
execution time of Chrome while loading the web page and running
the scripts on it. These measurements were collected on a fast
network at a large university. The faster the network, the larger the
overheads in Figure 7 will be, as the time to download the web
page can essentially hide the overhead of running JavaScript. Thus,
by using a fast network, Figure 7 essentially shows some of the
worst case slowdowns of our approach. Here again, we see that the
“optimized” bar is significantly faster than the “not-optimized” bar.
We can also see that the “whlst” bar provides a loading experience
that is about 2.4 times slower.

Conclusions Our experiments show that dynamic information flow
control is feasible, but imposes a perceptible overhead in the run-
ning time. However, simple optimizations have yielded significant
improvements in the run-time, and much of the overhead is masked
by the latency of downloading pages. Thus, we believe that with



521

519

115

1519 440

452 411

510

337

392

522 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

not‐optimized optimized dmn whlst trust‐all

1078

1487

241

3097

1032

1454

810

1218

677

1631

1273

0 

1 

2 

3 

4 

5 

6 

7 

not‐optimized optimized dmn whlst trust‐all

521

519

115

1519 440

452 411

510

337

392

522 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

huff‐post wsj mapquest foxnews cnn nytimes twitpic wheather walmart latimes average

not‐optimized optimized dmn whlst trust‐all

1078

1487

241

3097

1032

1454

810

1218

677

1631

1273

0 

1 

2 

3 

4 

5 

6 

7 

huff‐post wsj mapquest foxnews cnn nytimes twitpic wheather walmart latimes average

not‐optimized optimized dmn whlst trust‐all

Figure 7. Slowdown for JavaScript (left) and Page Loading (right)

careful engineering, dynamic rewriting based policy checking can
become a practical way to secure JavaScript web-applications.

6. Related Work
Information flow [4] and non-interference [5] have been used to
formalize fine-grained isolation for nearly three decades. Several
static techniques guarantee that certain kinds of inputs do no flow
into certain outputs. These include type systems [19, 13], model
checking [16], Hoare-logics [1], and dataflow analyses [8, 14]. Of
these, the most expressive policies are captured by the dependent
type system of [11], which allows the specification and (mostly)
static enforcement of rich flow and access control policies includ-
ing the dynamic creation of principals and declassification of high-
security information. Unfortunately, fully static techniques are not
applicable in our setting, as parts of the code only become available
(for analysis) at run time, and as they often rely on the presence of
underlying program structure (e.g., a static type system).

Several authors have investigated the use of dynamic taint prop-
agation and checking, using specialized hardware [15, 17], virtual
machines [2], and binary rewriting [12]. [18] modifies the browser’s
JavaScript engine to track a taint bit that determines whether a piece
of data is sensitive, and reports an XSS attack if this data is sent to
a domain other than the page’s domain. Our approach provides a
different point in the design space than [18]. In particular, our poli-
cies are more expressive, in that our framework can handle both
integrity and confidentiality policies, and more fine-grained, in that
our framework can carry multiple taints from different sources at
the same time, rather than just a single bit of taint. Our approach is
also implemented using a JavaScript rewriting strategy rather than
modifying the JavaScript run-time. Because of all of these reasons,
our approach also has a larger performance overhead.

Many web application exploits are caused by not correctly san-
itizing user generated content on the server. Several authors have
proposed static analyses that determine if user generated content
has been correctly sanitized [20]. Gatekeeper [9] is a static analysis
that finds bugs on the JavaScript code known on the server.

One way to ensure safety on the client is to disallow unknown
scripts from execution [6]. However, this will likely make it hard
to use dynamic third-party content. Finally [21] present a formal
semantics of the interaction between JavaScript and browsers and
builds on it a proxy-based rewriting framework for dynamically
enforcing automata-based security policies [7]. These policies are
quite different from information flow in that they require sparser
instrumentation, and cannot enforce fine-grained isolation.

References
[1] T. Amtoft and A. Banerjee. Information flow analysis in logical form.

In SAS, pages 100–115, 2004.

[2] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding data lifetime via whole system simulation. In USENIX
Security Symposium, pages 321–336, 2004.

[3] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information
flow for javascript. In PLDI, pages 50–62, 2009.

[4] D. E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

[5] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[6] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In WWW, 2007.

[7] H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov. Javascript
instrumentation in practice. In APLAS 08, pages 326–341, 2008.

[8] M. S. Lam, M. Martin, V. B. Livshits, and J. Whaley. Securing web
applications with static and dynamic information flow tracking. In
PEPM, pages 3–12, 2008.

[9] B. Livshits and S. Guarnieri. Gatekeeper: Mostly static enforcement
of security and reliability policies for javascript code. Technical
Report MSR-TR-2009-16, Microsoft Research, Feb. 2009.

[10] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for
javascript. In APLAS, pages 307–325, 2008.

[11] A. C. Myers. Programming with explicit security policies. In ESOP,
pages 1–4, 2005.

[12] J. Newsome and D. X. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[13] F. Pottier and V. Simonet. Information flow inference for ml. In
POPL, pages 319–330, 2002.

[14] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format
string vulnerabilities with type qualifiers. In USENIX Security, 2001.

[15] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS, 2004.

[16] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In SAS, pages 352–367, 2005.

[17] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. A. Blome, G. Reis, M. Vachharajani, and D. I. August. Rifle: An
architectural framework for user-centric information-flow security. In
MICRO, 2004.

[18] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna.
Cross site scripting prevention with dynamic data tainting and static
analysis. In NDSS, 2007.



[19] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In
POPL, 2000.

[20] G. Wassermann and Z. Su. Static detection of cross-site scripting

vulnerabilities. In ICSE, pages 171–180, 2008.

[21] D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript instrumenta-
tion for browser security. In POPL, pages 237–249, 2007.


	Introduction
	Overview
	Information Flow
	Rewriting-based Dynamic Information Flow

	Core JavaScript
	Language: Core JavaScript

	Information Flow via Rewriting
	Information Flow Policies
	Rewriting Algorithm
	Direct Flows
	Indirect Flows
	Unboxed Objects

	Evaluation
	Experimental setup
	Precision
	Performance

	Related Work

