
Dsolve: Safety Verification via Liquid Types ?

Ming Kawaguchi, Patrick M. Rondon, and Ranjit Jhala

University of California, San Diego
{mwookawa,prondon,jhala}@cs.ucsd.edu

Abstract. We present Dsolve, a verification tool for OCaml. Dsolve
automates verification by inferring “Liquid” refinement types that are
expressive enough to verify a variety of complex safety properties.

1 Overview

Refinement types are a means of expressing rich program invariants by combining
classical types with logical predicates. For example, using refinement types, one
can express the fact that x is an array of positive integers by stating that x
has the type {ν : int | 0 < ν} array. While refinement types have been shown
to be a powerful technique for verifying higher-order functional programs [1–4],
refinement type systems have previously been difficult to use because of a high
programmer annotation burden.

We present Dsolve, a tool that automates the verification of safety prop-
erties of OCaml programs by inferring refinement types. Using Dsolve, we
were able to verify properties of real-world OCaml programs as diverse as array
bounds safety and correctness of sorting and tree-balancing algorithms while
incurring a modest overhead in terms of the annotations and hints required
for verification. Further, we were able to use the refinement types inferred by
Dsolve on buggy programs to diagnose and correct the problems, demonstrat-
ing its value as a tool for program understanding.

Dsolve works by inferring Liquid Types, which are refinement types whose
refinements are conjunctions of predicates taken from a user-provided finite set of
logical qualifiers. Each logical qualifier is a predicate over the program variables
and the special value variable ν, which is used to refer to values of the refined
type. The Liquid Type restriction makes inference tractable while still retaining
enough expressiveness to verify safety properties of real-world OCaml programs.

2 Example

In this section, we illustrate Liquid Types and show how Dsolve is able to verify
a polymorphic, higher-order, array-manipulating program, shown in Figure 1.
We will show how Dsolve statically verifies the safety of the program’s array
? This work was supported by NSF grants CCF-0644361, CNS-0720802, CCF-0702603,

and a gift from Microsoft Research.

Fig. 1: An Example OCaml Program

accesses and division operation (i.e., that the array indices are within bounds on
lines 5, 6, 7 and that the denominator is non-zero on line 9).
Qualifiers Dsolve takes a set of logical qualifiers as input from the user, which
it uses to construct refinement types. Assume that the user has supplied the
following qualifiers: {0 < ν, ? ≤ ν, ν < ?, ν < len ?}, where the uninterpreted
function symbol len is an abbreviation for Array.length and ? denotes a “wild-
card” that is instantiated with program variables.

The higher-order function foldn folds over the integers from m to n. Dsolve
infers that foldn calls g with values between m and n, that is, foldn has type

m :int → n :int → α → (g :{ν : int | m ≤ ν ∧ ν < n} → α → α) → α.

This is a Liquid Type since the refinement for the input of g is the conjunction of
? ≤ ν and ν < ?, where the wildcards are instantiated with m and n, respectively.

The function weighted avg uses foldn to compute the weighted average of
the array x’s values using the corresponding weights in array w. From the call
on line 13, Dsolve infers that x and w have the same positive length and that
w contains only positive entries. Dsolve then determines that the condition on
line 5 is always true, so the assertion on line 11 never executes, and that the
array accesses on line 6 are within bounds. Using the types of foldn and x,
Dsolve also determines that function f on line 7 has type

f :: {ν : int | 0 < ν ∧ ν < len x ∧ ν < len w} → int ∗ pos → int ∗ pos.

where pos abbreviates {ν : int | 0 < ν}. Thus, Dsolve determines that all ac-
cesses to arrays x and w within f are safe. Finally, Dsolve determines from f’s
type that n is always positive, and so the division on line 9 is safe.
Modular Verification Dsolve verified the safety of this program using whole-
program analysis, i.e., by analyzing the call to weighted avg on line 13. The pro-
grammer could also verify the above program by writing the following interface
specification (or “contract”) for weighted avg:

x :{ν : int array | len ν > 0} → {ν : pos array | len ν = len x} → int

Dsolve can use these specifications to verify modules without driver code and
also to verify a module’s clients.

3 Tool

Architecture Dsolve is divided into the following three phases, described in
detail in [5, 6]. First, the OCaml compiler’s parser and typechecker are used to
translate the input program to a typed AST; this phase also parses the module’s
refinement type specification. Second, the typed AST is traversed to generate
a set of subtyping constraints over templates that represent the potentially un-
known refinement types of the program expressions. Third, the constraints are
solved using predicate abstraction over a finite set of predicates generated from
user-provided logical qualifiers. This pass uses the Z3 SMT solver [7] to discharge
logical implications corresponding to the subtyping constraints. If the constraints
can be satisfied, the program is deemed safe. Otherwise, Dsolve reports a type
error and the lines in the original source program that yielded the unsatisfiable
constraints.

Dsolve is conservative. If an error is reported, it may be because the program
is unsafe, or because the set of qualifiers provided was insufficient, or because
the invariants needed to prove safety cannot be expressed within our refinement
type system.

Input Dsolve takes as input a source (.ml) file containing an OCaml pro-
gram, an interface (.mlq) file containing a refinement type specification for the
interface functions of the .ml file, and a qualifier (.hquals) file containing a set
of logical qualifiers. Dsolve combines the qualifiers from the .hquals file with
some scraped from the specification .mlq file and a standard qualifier library to
obtain the set of logical qualifiers used to infer liquid types.

Output Dsolve produces as output a refinement type for each program ex-
pression in a standard OCaml type annotation (.annot) file. The user can
view the inferred refinement types using standard tools like Emacs, Vim, and
Caml2HTML. If all the constraints are satisfied, the program is reported as
safe. Otherwise, Dsolve outputs warnings indicating the potentially unsafe ex-
pressions in the program.

Modular Checking Dsolve verifies one module at a time. If a module depends
on another module, it can be checked against that module’s .mlq file; the other
module’s source code is not required.

Abstract Modules It is possible to create a .mlq file which defines types, ax-
ioms (background predicates), and uninterpreted functions without a .ml file.
Such “abstract modules” allow the user to extend Dsolve with reasoning about
mathematical structures which do not appear directly in the program. For ex-
ample, an abstract module Set.mlq might contain a type which represents a
polymorphic set collection, along with an appropriate refined interface and ax-
ioms which build a set theory. This set theory can be used in another module’s
type refinements; for example, it may be used in a sorting module to verify that
the sets of elements in the input and output lists of a sorting function are equal.

Availability The Dsolve source distribution is available, along with bench-
marks and an online demo, at http://pho.ucsd.edu/liquid/.

4 Experiments

We report the results of applying Dsolve to real-world OCaml programs.
Static Array Bounds Checking We have previously used benchmarks from
the DML project [1, 8] to show that Dsolve significantly reduces annotation
overhead burden in the static verification of array safety [9]. In our study, we au-
tomatically generated qualifiers of the form ν ./ X, where ./∈ {<,≤,=, 6=, >,≥}
and X ∈ {0, ?, len ?}. This allowed us to reduce annotation overhead from 17%
of LOC using DML to under 1% of LOC using Dsolve. Runtimes ranged from
1 to 64 seconds, the longest being for bitv [10], a 426-line bit vector library.
Data Structures We have also used Dsolve to verify data structure invariants
in production OCaml libraries [6], including that OCaml’s List.stablesort
outputs a sorted list, that OCaml’s Map module implements an AVL tree and
that Map’s keys form a set. Runtimes in this study ranged from 1 to 103 seconds,
the longest being for vec [11], a 343-line OCaml extensible array library.
Program Understanding Dsolve also helped us find and fix a subtle bug in
vec. A vec extensible array is represented by a balanced tree with a balance
factor of at most 2. As originally released, vec contained a flawed recursive
balancing routine, recbal, which was meant to efficiently merge two balanced
trees of arbitrarily different heights into a single balanced tree. When run on
this code, the strongest invariant Dsolve could infer was that the output tree
would have a balance factor of at most 4. By changing recbal and re-inferring
types, we were able to isolate the faulty code paths and find test inputs with
output balance factor of 4. Dsolve verified the fix, which the author adopted.

References

1. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: PLDI. (1998)

2. Cui, S., Donnelly, K., Xi, H.: Ats: A language that combines programming with
theorem proving. In: FroCos. (2005)

3. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: CSF. (2008)

4. Dunfield, J.: A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA (2007)

5. Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI. (2008)
6. Kawaguchi, M., Rondon, P., Jhala, R.: Type-based data structure verification. In:

PLDI. (2009) 304–315
7. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: TACAS. (2008) 337–340
8. Xi, H.: DML code examples. http://www.cs.bu.edu/fac/hwxi/DML/
9. Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI. (2008) 158–169

10. Filliátre, J.C.: Bitv. http://www.lri.fr/ filliatr/software.en.html
11. de Alfaro, L.: Vec. http://www.dealfaro.com/ luca/vec.html

