
State of the Union:

Type Inference via Craig Interpolation ⋆

Ranjit Jhala1 Rupak Majumdar2 Ru-Gang Xu2

1UC San Diego 2UC Los Angeles

Abstract. The ad-hoc use of unions to encode disjoint sum types in
C programs and the inability of C’s type system to check the safe use
of these unions is a long standing source of subtle bugs. We present
a dependent type system that rigorously captures the ad-hoc protocols
that programmers use to encode disjoint sums, and introduce a novel
technique for automatically inferring, via Craig Interpolation, those de-
pendent types and thus those protocols. In addition to checking the safe
use of unions, the dependent type information inferred by interpolation
gives programmers looking to modify or extend legacy code a precise un-
derstanding of the conditions under which some fields may safely be ac-
cessed. We present an empirical evaluation of our technique on 350KLOC
of open source C code. In 80 out of 90 predicated edges (corresponding
to 1472 out of 1684 union accesses), our type system is able to infer
the correct dependent types. This demonstrates that our type system
captures and explicates programmers’ informal reasoning about unions,
without requiring manual annotation or rewriting.

1 Introduction

We present a type system and inference algorithm for statically checking the
safety of downcasts in imperative programs. Our type system is motivated by
the problem of checking the safety of union accesses in C programs. C pro-
grammers extensively use unions to encode disjoint sum types in an ad-hoc
manner. The programmer uses the value of a tag field to determine which ele-
ment of the union an instance actually corresponds to. For example, Figure 1
shows networking code that manipulates packets represented as a C structure
(packet) which contains an union (icmp hun) to represent different types of
packets. The packet is interpreted as a parameter message (field ih gwaddr)
when the field icmp type = 12, as a redirect message (field ih pptr) when the
field icmp type = 5, and as an unreachable message (field ih pmtu) when the
field icmp type = 3. This ad-hoc protocol determining the mapping between tag
values and the union elements is informally documented in the protocol descrip-
tion, but not enforced by the type system. The absence of static checking for the
correctness of these accesses can be a source of subtle bugs.

⋆ This research was funded in part by the grants NSF-CCF-0427202 and NSF-CCF-
0546170.

The problem of checking the safety of union accesses is an instance of the
more general problem of checking the safety of downcasts in a language with
subtyping —consider each possible “completion” of a structure with the differ-
ent elements of the union as subtypes of that structure, and view union accesses
as downcasts to the appropriate completion. At run-time, each instance of a su-
pertype corresponds to an instance of one of its immediate subtypes. To ensure
safety, programmers typically associate with each subtype, a guard predicate over
some tag fields. The predicates for the different subtypes are pairwise inconsis-
tent. Before performing a downcast (i.e., accessing the union), the programmer
tests the tag fields to ensure that the corresponding subtypes’ guard predicate
holds, and similarly before performing an upcast (i.e., constructing the union),
the programmer sets the tag field to ensure the guard predicate holds.

We formalize this idiom in a type system comprising two ingredients. The
first ingredient is a type hierarchy corresponding to a directed tree of types,
where the nodes correspond to types, and children to immediate subtypes. The
second is a predicated refinement of the hierarchy, where the edges of the type
hierarchy tree are labeled with edge predicates over the fields of the structure that
hold when the supertype can be safely downcast to the subtype corresponding to
the target of the edge, and conversely, must be established when the subtype is
upcast to the supertype. By requiring that the edge predicates for the different
children of a supertype be pairwise inconsistent, we ensure that there is a single
subtype of which the supertype is an instance at runtime.

Given a predicated refinement for the subtype hierarchy of the program,
we can statically type check the program by verifying that at each occurrence
of an upcast or downcast, the edge predicate for the cast holds. Instead of a
general invariant generator, we present a simple syntax-directed system that is
scalable, captures the idiomatic ways in which programmers test fields, and
concisely specifies the set of programs that are accepted by our type system. The
technique converts the programs to SSA form, and then conjoins the statements
dominating each cast location to obtain a cast predicate that is an invariant at
the cast location. Our type checking algorithm verifies that at each cast location
the edge predicate corresponding to the cast holds by using a decision procedure
to check that the cast predicate implies the edge predicate.

We eliminate the burden of explicitly providing the predicated type refine-
ment by devising a technique to infer types via interpolation. Our inference algo-
rithm generates a system of predicate constraints with variables representing the
unknown edge predicates. These constraints force the solutions for the variables
to have the following key properties: (1) they are over the fields of the structure,
(2) the edge predicates for the subtypes are pairwise inconsistent, and, (3) the
edge predicates hold at each cast point, i.e., at each (up- or down-) cast point,
the cast predicate implies the edge predicate. We use pairwise Craig interpola-
tion, a variant of Craig interpolation [3, 16], to solve these constraints. We show
that a predicated refinement exists if for each type, the cast predicates for its
subtypes are pairwise inconsistent. Thus, to solve the predicate constraints and

struct packet{
u_char icmp_type;
u_char icmp_code;

u_short icmp_cksum;
union {

int ih_gwaddr;
short ih_pptr;

short ih_pmtu
} icmp_hun; };

00 int type, dest, code;

01 struct packet icp;
02 . . .

03 type = icp.icmp_type;
04 if (type == 5) {

05 icp.icmp_hun.ih_gwaddr = dest;
06 }
07 else {

08 if (type == 12) {
09 icp.icmp_hun.ih_pptr = 0;

10 code = 0;
11 } else if (type == 3) {
12 icp.icmp_hun.ih_pmtu = 0; } }

Fig. 1. (a) ICMP Example (b) (Union) Subtype Hierarchy and its Predicated
Refinement

infer the predicated refinement, we compute the edge predicates for the subtypes
of each type as pairwise interpolants of the corresponding cast predicates.

We have implemented the predicated subtype inference algorithm for C, and
used it to infer the edge predicates for subtype hierarchies obtained from unions,
for a variety of open source C programs totaling 350K lines of code. We empir-
ically show that our inference algorithm is effective. In 80 out of 90 predicated
edges (corresponding to 1472 out of 1684 union access points), our algorithm
finds the correct predicate guards (which we then manually verified).

2 Language and Type System

We formalize our approach with a core imperative language with simple types.
We first describe the language, then define our type system. Our core language
capture C programs such as Figure 1(a). In the converted program, union fields
are accessed after casting the lvalue down to the subtype containing the field.
Thus, the problem of checking the correct use of unions is reduced to that of
checking the safety of downcasts.

2.1 Syntax and Semantics

Types. Figure 2(b) shows the types in our language. The set of types include
base types bool and int, and structure types where each structure is defined
by a list of fields that are pairs of a label l and a type t. We write void as an
abbreviation for the type s{}. The set of types is equipped with a partial order:
we say t′ � t, or t′ is a subtype of t, if both t, t′ are structures and fields of t are
a prefix of the fields of t′. Note that every structure type is a subtype of void.

Syntax. Figure 2(a) shows the grammar for expressions and statements in our
imperative language. An lvalue lv is either an integer, structure or a field access,
together with an explicit type cast. The new(t) statement is used to allocate
a structure of type t. For ease of exposition, in our language every lvalue lv
includes a type-cast (t) which specifies how lv is interpreted. This captures ex-
plicit upcasts, downcasts and the trivial cast to the statically declared type of
lv. Arithmetic expressions are constructed from constants and integer lvalues us-
ing arithmetic operations. Boolean expressions comprise arithmetic comparisons.
Statements are skip (or no-op), assignments, sequential composition, condition-
als, and while loops. A program P is a tuple (T, Γ0, s) where T is a set of types,
Γ0 is a map from the program lvalues to their declared types, and s is a statement
corresponding to the body of the program. While we present the intraprocedu-
ral, pointer-free case, our implementation, described in Section 5, handles both
procedures and pointers.

Static Single Assignment Form. For convenience in describing the type
checking and type inference rules, we shall assume that the programs are con-
verted to static single assignment (SSA) form [4], where each variable in the pro-
gram is defined exactly once. Programs in SSA form have special Φ-assignment
operations of the form lv := Φ(lv1, . . . , lvℓ) that capture the effect of control flow
joins. A Φ-assignment lv := Φ(lv1, . . . , lvn) for lvalues lv, lv1, . . . , lvn at a node n
implies: (1) n has exactly n predecessors in the control flow graph, (2) if control
arrives at n from its jth predecessor, then lv has the value lvj at the beginning
of n. Formally, we extend the syntax with Φ-assignments:

Statements s ::= . . . | lv := Φ(lv1, . . . , lvn)

We assume that the program has first been transformed into SSA form. We
describe type checking and inference on programs in this form.

Semantics. We define the operational semantics of the language using a store
and a memory in the standard way but additionally taking into account the run-
time type information [15]. We assume a store Σ mapping variables to values, a
partial mapping memoryM from addresses to values, and a partial mapping run-
time type information (RTTI) W from variables and addresses to types. When a
structure is created during execution using the new(t) operation, it is tagged with
the (leaf) type t that remains with it during the remainder of the execution. This
value can be cast up or down along the path from the leaf t to the root type void,
and any attempt to downcast it to a type not along this path leads the program
into a “stuck” state. The (small step) operational semantics is defined using a re-
lation (Σ,M,W ; s) → (Σ′,M ′,W ′; s′). The rules take into account the RTTI W ,
and execution gets “stuck” if a bad cast is made (i.e., an lvalue is cast to a type
incompatible with its RTTI). We write →∗ for the reflexive transitive closure of
→. For store Σ, memory M , RTTI W , and statement s, we say (Σ,M,W ; s) di-
verges if there is an infinite sequence (Σ,M,W ; s) → (Σ1,M1,W1; s1) → We
say (Σ,M,W ; s) is stuck if (1) s is not skip, and (2) there is no (Σ′,M ′,W ′; s′)
such that (Σ,M,W ; s) → (Σ′,M ′,W ′; s′).

Lvalues lv ::= (t)lv.l | (t)v
Expressions e ::= n | new(t) | lv | e1 ⊕ e2
Boolean p ::= e1 ∼ e2
Statements s ::= skip | lv := e | s1; s2

| if e then s1 else s2
| while p do s1

Types t ::= int | bool | s{m1, ..., mk}i
Fields m ::= (l, t)
Declarations ::= t v

Fig. 2. Syntax and Types. (a) Expressions and Statements (b) Types and declarations.
n is an integer constant, v a variable, l a string label, ∼∈ {<,>,≤,≥,=, 6=}.

2.2 Predicated Refinements of Subtype Hierarchies

Programs in our language are type checked by the standard typing rules dealing
with booleans, integers and structures. However, we also want to show that each
runtime downcast executes safely. To do so, we shall assume we are given a
predicated refinement of the subtype hierarchy of the program.

Subtype Hierarchy. A Subtype Hierarchy is a forest (T,E) where nodes cor-
respond to a set of types T , and edges E ⊆ T × T are such that (t, t′) ∈ E if t′

is the immediate subtype of t, i.e., t′ � t and there is no t′′ such that t′ � t′′

and t′′ � t. Consider the structure definitions of the program of Figure 1(a). We
can “unroll” the union definitions to obtain three subtypes of the type packet,
namely redirect, parameter and unreachable, which correspond, respectively
to instances of packet where the union field is actually a ih gwaddr, ih pptr

or ih pmtu. Thus, as shown in Figure 1(b), each of the subtypes is a structure
containing all the fields of the supertype packet together with the extra field
from the union. In this setting, t′ � t if the fields of t form a prefix of the fields
of t′.

Therefore, we reduce the problem of checking the safety of union accesses
to checking the safety of downcasts in our system by converting each union
access into a downcast to the subtype containing the particular union field being
accessed, followed by a standard field access on the subtype. Next, we see how
to refine the subtype hierarchy to enable the static checking of the safety of
downcasts and thus, union accesses.

Predicated Refinement and Tags. We say that (T,E, φ) is a predicated (re-
finement of the) subtype hierarchy (T,E) if φ is a map from the edges E to
first-order edge predicates such that:

R1 For each edge (t, t′) ∈ E, the edge predicate φ(t, t′) has one free variable
this that refers to a structure of type t, i.e., all lvalues are field accesses of
a structure of type t.

R2 For each node t ∈ T , for each pair of its children t′, t′′ the predicates φ(t, t′)
and φ(t, t′′) are inconsistent, i.e., φ(t, t′) ∧ φ(t, t′′) is unsatisfiable.

The tag fields of a type t are the fields that occur in the edge predicates for
any edge in the subtree rooted at t in the subtype hierarchy. Formally, the tag
fields of t ∈ T are defined as tag(t, φ) ≡ {l | ∃t′ � t : this.l occurs in φ(·, t′)}.

We use the predicate refinement to statically check the safety of downcasts
and thus, union accesses. A predicated refinement captures the intuition that
the programmer performs a downcast from t to t′ only when a certain “tag”
condition on the fields of t is met, and this tag condition is disjoint from the
conditions under which downcasts are made from t to subtypes other than t′.
Our type system checks that the first time a leaf type structure is upcast, the
edge predicate for the structure holds, and that subsequently, the fields occurring
in the edge predicate are not modified. As this is done for all structures, and the
edge predicates for different downcasts are disjoint, we can statically deduce that
if the edge predicate for that subtype holds at the downcast point, the downcast
is safe. In Figure 1(b) each edge of the subtype hierarchy is labeled with its edge
predicate. For example, ih gwaddr field can be safely accessed only after the
packet structure has been downcast to a redirect struct, which is permissible
only when the icmp type field equals 5.

3 Type Checking

Informally, a program is type safe when all structures of type t (created by
new(t)) are accessed only as the type t or a supertype of t. Given a predicated
subtype hierarchy (T,E, φ), a program is type safe if the hierarchy meets re-
quirements R1, R2, and at each point in the program where an expression e of
type t is cast to the type t′, we have: (1) either t′ is a supertype of t, i.e., we
have an upcast, or (2) t′ is a subtype of t, i.e., we have a downcast. In either
case, the predicate obtained by substituting this with the variable e in the edge
predicate φ(t, t′) holds at that point. Thus, to type check the program, the edge
predicates must satisfy:

R3 The edge predicate φ(t, t′) with this substituted with e must hold at each
program location where an expression e is downcast from a type t to a
subtype t′, or upcast from t′ to t.

R4 The tag fields of a structure are not modified.

Our type checking algorithm proceeds in three steps. First, we use standard
type checking to verify that each field access is to a field in the type of the
expression, and that each cast conforms to the subtype hierarchy, i.e., is either
an upcast to a supertype or a downcast to a subtype. Second, we use a decision
procedure to check that the edge predicates satisfy requirements R1, R2. Third,
we perform a flow sensitive analysis to check that the edge predicates hold at
each upcast or downcast. We now describe the last step in detail.

Judgments. A judgment in the type system for a statement s is of the form
Γ, φ, I ⊢ s � I ′. The judgment states: using the edge predicate map φ from the
predicated subtype hierarchy (T,E, φ), we can deduce that if the program begins
execution from a state satisfying the type environment Γ and the precondition
I, the execution of a statement s proceeds without getting stuck (cast errors)
and results in a state satisfying postcondition I ′.

Our syntax-directed derivation rules for inferring type judgments are shown
in Figure 3. At each cast point, the rules check, using a decision procedure, that
the invariants imply the corresponding edge predicate. A typing rule transforms
the invariant by adding the effect of the current statement on the invariant. Since
our program is in SSA form, we have an invariant by taking the conjunction of the
predicate representing the current statement with the previous derived invariant
[12, 6]. Assignments are represented by equality as shown in rules Var-Assign and
Field-Assign of Figure 3). The latter rule also stipulates that tag fields should
not be assigned to, once the structure has been upcast. The rule permits the
usual C idiom of appropriately “initializing” the structure by setting the data
and tag fields before casting up to the supertype, as the tag field only appears
on the parent edge of the (base) subtype, and not in the edges of the subtree
rooted at the subtype. Conditionals on some predicate p are represented by p on
then branch and ¬p on the else branch (rule If in Figure 3).

Example 1. In Figure 1, consider the implicit cast (at the union access) from
packet (t) to the redirect message (t′) at line 05. The statement 05 is dominated
by the then branch at 04 and the assignment 03, and so the invariant at 05 is:

(icp.icmp type = type) ∧ (type = 5) (1)

Similarly, the invariants at 09 and 11 are respectively:

(icp.icmp type = type) ∧ (type 6= 5) ∧ (type = 12), and,

(icp.icmp type = type) ∧ (type 6= 5) ∧ (type 6= 12) ∧ (type = 3)

Thus, for each statement s where a downcast or upcast occurs, we compute,
using the constraints generated by the type checking rules, the invariant at s.

Checking using Access Predicates. From the invariant, we construct an
access predicate ψs(t, t

′) by syntactically renaming all local variables in the in-
variant to fresh names, and renaming the cast expression with this. By replacing
icp with this and type with a fresh, subscripted version, we have the access
predicate ψ05(packet, redirect):

this.icmp type = type1 ∧ type1 = 5 (2)

To ensure that condition R3 is met, we use a decision procedure[5] to check
that at each downcast s of t to a subtype t′, or upcast of t′ to t, the access
predicate ψs(t, t

′) implies the edge predicate φ(t, t′) (Rules Var-Up, Var-Down in
Figure 3). So, for the downcast of icp from packet to redirect at line 05, we use
a decision procedure to check the validity of the implication: this.icmp type =
type1 ∧ type1 = 5 ⇒ (this.icmp type = 5). In the given code snippet, at
each downcast statement (there are no upcasts), the access predicate implies the
corresponding edge predicate and so we conclude that the program is type safe.

Intuitively, the soundness of our type system follows from the following ob-
servations. First, we ensure that every new structure is a “leaf” of the type
hierarchy. Thus, at run time, any instance that is ever downcast from, must

Γ (x) = t t′ � t I [this/x] ⇒ φ(t, t′)

Γ, φ, I ⊢l (t′)x : t′
Var-Down

Γ (x) = t′ t′ � t I [this/x] ⇒ φ(t, t′)

Γ, φ, I ⊢l (t)x : t
Var-Up

Γ, φ, I ⊢e e : t Γ, φ, I ⊢l (t)x : t

Γ, φ, I ⊢ (t)x := e� I ∧ (lv = e)
Var-Assign

Γ, φ, I ⊢e e : t
Γ, φ, I ⊢e (t)lv.l : t Γ ′, φ, I ⊢l lv : t′ l 6∈ tag(t′, φ)

Γ, φ, I ⊢ (t)lv.l := e� I ∧ (lv.l = e)
Field-Assign

Γ, φ, I ⊢l lvi : t for all i Γ, φ, I ⊢l lv : t

Γ, φ, I ⊢ lv := Φ(lv1, . . . , lvn) � I
Assign-Φ

Γ, φ, I ⊢e p : bool Γ, φ, I ∧ p ⊢ s� I ′ Γ, φ, I ∧ ¬p ⊢ s′ � I ′′

Γ, φ, I ⊢ if p then s else s′ � I
If

Γ, φ, I ⊢e p : bool Γ, φ, I ∧ p ⊢ s� I ′

Γ, φ, I ⊢ while p do s� I ∧ ¬p
While

Fig. 3. Relevant type checking rules. Hypotheses in boxes correspond to queries to
the decision procedure made in the checking phase, or the predicate constraints in the
inference phase. A complete set of rules is in [11]

have been upcast to at some point in the past. Second, our type system ensures
that the tag fields are not altered, and therefore, any edge predicate that held at
the upcast in the past, will continue to hold till the downcast. Thus, by checking
the edge predicates at upcasts, and by requiring that edge predicates for sibling
edges be pairwise inconsistent, our type system ensures there is a unique sub-
type that each supertype value is an instance of (and therefore, can be safely
downcast to), namely the subtype whose edge predicate holds at the downcast
point.

4 Type Inference via Interpolation

In the previous section, we assumed that we were given a predicated refinement
of the subtype hierarchy with which the program could be type checked to en-
sure statically that all casts were safe. In practice, these annotations are not
available. We now present an algorithm that given a program and the subtype
hierarchy, automatically infers a predicated refinement of the hierarchy such that
the program type checks, if indeed the program is type safe. In other words, given

a program (T, Γ0, s), the inference algorithm computes an edge predicate map
φ that satisfies conditions R1-R4 or reports that no such map exists, i.e., the
program is not type safe.

To find the predicate map φ, we introduce for each edge (t, t′) in E a predicate
variable πt,t′ . Next, using the syntax-directed type checking rules, we generate
a set of predicate constraints on the predicate variables, such that a solution for
the constraints will give us edge predicates that satisfy the three requirements.
Finally, we describe how to solve the constraints and thus infer φ.

4.1 Generating Predicate Constraints

We use the syntax-directed typing rules of Figure 3 to generate the predicate
constraints. The constraint generation is done in two phases.

In the first phase, we make a syntax-directed pass over the program to com-
pute the set of fields that cannot be tag fields because they are modified after
an upcast. This information is captured by computing a map tag(t) from types
t to the sets of fields that cannot be used in the edge predicates for edges (t, ·).

In the second phase, we use type checking rules to compute the invariants at
each access point. For a predicate I and a set of field names F , and a location
s, define rename(I, F, s) as the predicate where all occurrences of free variables
x other than this are substituted with a fresh name xs and all occurrences
of field names l ∈ F are substituted with a fresh name ls. At each downcast
and upcast location s, i.e., where one of the rules Var-Down, Var-Up (Figure 3)
applies, instead of checking that the access predicate I[this/lv] implies the edge
predicate for the cast, we introduce a predicate constraint:

rename(I[this/lv], tag(t), s) ⇒ πt,t′

We call the LHS of the constraint above the renamed access predicate at
location s. The renaming does not get in the way of inferring appropriate φ as
the fields in tag(t) cannot appear in φ(t, t′). Instead, it will force the inferred
predicates to not contain the fields in tag(t), thus yielding a φ that suffices to type
check the program, if one exists. Given a program P ≡ (T, Γ0, s), let Cons(P) be
the set of predicate constraints generated by the algorithm described above.

We can always make the only upcasts and downcasts in the program be be-
tween immediate subtypes. Thus, the constraint generation introduces predicate
constraints for πt,t′ for edges (t, t′) ∈ E.

Example 2. The downcast on line 05 in Figure 1(a) generates the constraint:

(type05 = this.icmp type ∧ type05 = 5) ⇒ πpacket,redirect

Similarly, the downcasts on line 09 and 12 generate constraints:

(type09 = this.icmp type ∧ type09 6= 5 ∧ type09 = 12) ⇒ πpacket,parameter

(type12 = this.icmp type ∧ type12 6= 5 ∧ type12 6= 12 ∧ type12 = 3) ⇒ πpacket,unreachable

Notice that the substitution renames icp to this and the variable type in
each constraint.

Solutions. A solution to a set of constraints Cons(P) is a mapping Π from each
predicate variable πt,t′ to a predicate such that:

S1 For each predicate variable πt,t′ , the predicate Π(πt,t′) has a single free
variable this.

S2 For each triple t, t′, t′′, the predicates Π(πt,t′) and Π(πt,t′′) are inconsistent.
S3 For each constraint ψs ⇒ πt,t′ in Cons(P), the implication ψs ⇒ Π(πt,t′) is

valid.
S4 For each t, t′, the predicate Π(πt,t′) should not contain any field name in

tag(t).

Every solution Π for the set of constraints Cons(P), yields a predicated subtype
hierarchy for P with which we can prove the safety of P .

Theorem 1. [Soundness of Constraint Generation] For every program
P ≡ (T, Γ0, s), if Π is a solution for the constraints Cons(P) then φ ≡
λ(t, t′).Π(πt,t′) is such that: Γ0, φ, true ⊢ s� ·.

4.2 Solving Predicate Constraints

We now give an algorithm to find a solution to a set of constraints Cons(P) if
one exists. We define for each edge (t, t′) ∈ E a cast predicate ψ(t, t′) as:

ψ(t, t′) ≡
∨

ψs⇒πt,t′∈Cons(P)

ψs

The cast predicate for an edge is the disjunction over all the renamed access
predicates ψs for the locations where a t is downcast to t′ or a t′ is upcast to
t. Note that by the properties of disjunction and implication, a map Π from
the type variables to predicates is a solution for the constraints Cons(P) iff it
satisfies conditions S1, S2 and S4, and in addition

S3’ For each (t, t′) we have ψ(t, t′) ⇒ Π(πt,t′).

For each ψs ⇒ πt,t′ we have ψs ⇒ ψ(t, t′) as the RHS cast predicate is the
disjunction of all the corresponding access predicates ψs. Thus, by the properties
of disjunction and implication, any solution Π satisfies requirement S3’ iff it
satisfies S3.

Existence of a Solution. A solution can only exist if for each triple t, t′, t′′, the
conjunction ψ(t, t′)∧ψ(t, t′′) is unsatisfiable. If not, i.e., if there are t, t′, t′′ such
that: ψ(t, t′) ∧ ψ(t, t′′) is satisfiable, then for any candidate solution such that
ψ(t, t′) ⇒ Π(πt,t′) and ψ(t, t′′) ⇒ Π(πt,t′′), the conjunction Π(πt,t′)∧Π(πt,t′′) is
satisfiable, thus violating S2. Intuitively, if the conjunction of the cast predicates
for t′, t′′ is satisfiable, it means that there is some condition under which the
program casts to (or from) type t′ as well as to (or from) t′′ thus one of those
casts may be unsafe, or depends on a modified field i.e., a field in tag(t). In
this case, the type inference fails with an error message pointing out the two
conflicting casts.

Algorithm 1 PredTypeInference

Input: Program P = (T, Γ0, s)
Output: Refinement (T, E,φ) or Error

E = edges induced by � on T ; C = Cons(P)
for all (t, t′) ∈ E do ψ(t, t′) = ∨{ψs | ψs ⇒ πt,t′ ∈ C}
for all t ∈ T with immediate subtypes t1, . . . , tn do

if ψ(t, t1) ∧ . . . ∧ ψ(t, tn) is unsatisfiable then

φ(t, t1), . . . , φ(t, tn) := ITP(ψ(t, t1), . . . , ψ(t, tn))
else return Error

return (T,E, φ)

Constraint Solving via Interpolation. Dually, we show that if for each
triple t, t′, t′′ the cast predicates ψ(t, t′) and ψ(t, t′′) are inconsistent, then
through Craig interpolation [3] we can infer a solution to the constraints, and
thus a predicated subtype hierarchy that suffices to type check the program.
Given a sequence of predicates A1, . . . , An such that for all i, j, the predicate
Ai ∧ Aj is unsatisfiable, a pairwise interpolant for the sequence is the sequence

Â1, . . . , Ân ≡ ITP(A1, . . . , An) such that (I1) For each i, the variables of Âi
occur in each of A1, . . . , An, (I2) for each pair i, j, the predicate Âi ∧ Âj is un-

satisfiable, and (I3) for each i, the implication Ai ⇒ Âi is valid. For predicates
over theories of equality and arithmetic, pairwise interpolants can be computed
from the proof of unsatisfiability of conjunctions of two predicates [16].

For each node t ∈ T with immediate subtypes t1, . . . , tn, we define:

Π(t, t1), . . . , Π(t, tn) ≡ ITP(ψ(t, t1), . . . , ψ(t, tn))

The properties of pairwise interpolants suffice to show thatΠ is indeed a solution
to the constraints Cons(P). The only variable common to ψ(t, t1), . . . , ψ(t, tn) is
this and hence, by I1 each Π(t, t′) contains the sole free variable this, thus
enforcing requirement S1. In addition, as we renamed all the fields in tag(t),
there is no field name in tag(t) that is in any ψ(t, t′) and thus Π meets condition
S4. Property I2 of interpolants ensure requirement S2. Finally, property I3 of
interpolants ensures requirement S3’ and hence, S3.

By Theorem 1, we have inferred an edge map φ and thus, a predicated sub-
type hierarchy that suffices to show that all casts are safe. The inference algo-
rithm runs in time quadratic in the number of constraints, and thus, the pro-
gram, and makes a quadratic (in the size of T) calls to an interpolating decision
procedure.

We summarize the predicated type inference algorithm PredTypeInference in
Algorithm 1. The correctness of the algorithm is stated in the following theorem.

Theorem 2. [Correctness of Type Inference] For every program P ≡
(T, Γ0, s), PredTypeInference(P) terminates. If PredTypeInference(P) returns
(T,E, φ) then Γ0, φ, true ⊢ s � ·. If PredTypeInference(P) returns Error then
there is no φ such that Γ0, φ, true ⊢ s� ·.

Fig. 4. Predicate subtype hierarchy for (a)gdkevent (b)lua

Example 3. For the constraints from Example 2, we get the cast predicates:

ψ(packet, redirect) type05 = this.icmp type ∧ type05 = 5
ψ(packet, unreachable) type09 = this.icmp type ∧ type09 6= 5 ∧ type09 = 12
ψ(packet, parameter) type12 = this.icmp type ∧ type12 6= 5 ∧ type12 6= 12 ∧ type12 = 3

The only common names are this and the allowed fields. The pairwise
interpolant of these predicates yields the edge predicates: this.type = 5,
this.type = 12 and this.type = 3.

5 Implementation and Experiences

Implementation. We have implemented the predicated type inference algo-
rithm for C. We use CIL [17] to parse and manipulate the C program, the struc-
tural invariant package [12] to generate constraints, and the theorem prover Foci

[16] to generate interpolants and check implications at cast locations. We first
use physical subtyping [20] to get subtyping hierarchy based on structural pre-
fixes. Next we model union accesses as casts. We add types representing each
field in an union. If a structure t contains a union t.u with fields fi, we create
a immediate subtype t′i representing the same structure t but only allowing ac-
cess to t.u.fi. In the implementation, access to the union field t.u.fi is the same
as a downcast from t to t′i. We extend the invariants generation algorithm as
described previously with pointers and functions using the techniques in [12].

Experimental Results. We summarize our experimental results on nine open
source programs in Table 1. Our algorithm identified 1,684 downcasts requir-
ing predicate guards. These accesses were determined by a predicated subtyping
hierarchy of 90 edges. We were able to infer 77 predicate edges corresponding
to union fields correctly. We also correctly inferred the 3 predicate edges corre-
sponding to explicit C type casts in moapsource. Our tool can derive complex
predicated subtyping hierarchies. Figure 4 shows the two partial predicated sub-
typing hierarchies for gdkevent and lua. Some subtypes are dropped because

Predicate Edges

Program Description LOC Inferred Actual Accesses Time

ip icmp FreeBSD ICMP 7K 7 7 15 1s
xl SPEC Lisp interpreter 12K 8 8 428 875s
moapsource Emstar packet processor 14K 3 3 5 1s
gdkevent GDK events 16K 12 13 90 38s
lua Lua compiler 18K 13 15 274 151s
snort Intrusion detector 42K 7 7 26 12s
sendmail Mail server 106K 17 24 406 995s
ssh ssh secure shell 35K 0 0 0 12s
bash Bourne again shell 101K 13 13 440 1157s

Total 351K 80 90 1684 3242s

Table 1. Experimental Results: LOC is lines of code. Time is the number of sec-
onds spent on inference. Predicate Edges is the number of predicated edges in the
predicated subtype hierarchy. Inferred is the number such edges for which our tool
inferred an edge predicate, and Actual is the number of edges constructed by manual
inspection of the code. Accesses is the number of predicated cast points. Experiments
were run on a Dell PowerEdge 1800 with two 3.6GHz processors and 5GB memory.

of space. Note that predicate edges are not simply single tag assignments but
rather more complex predicates involving ranges.

Conflicts and Bugs. There are two sources of conflicts: casts on edges for
which the predicated access idiom is not followed, and casts on edges where a
predicate was inferred but where the generated access predicate was not strong
enough to establish the edge predicate.

For the first case, we use the following heuristic to determine which edges have
no predicates. Given a type node, if all cast instances of an outgoing predicate
edge conflict with all cast instance of any other outgoing predicate edge, then we
conclude that type node has no guards. An example of this is the memset macro
which uses a union to access different bytes in memory. Our heuristic correctly
distinguishes all such accesses from predicated casts.

For the second case, when the access predicate was not strong enough to
imply the edge predicate, the downcast instance typically conflicted with many
other downcast instances. Here either our generated invariant was too weak,
the predicate guard used variables that were not part of the structure, or there
was a bug. For the few cases where our invariants are too weak, more precise
invariant generators (e.g., Blast [10]) can be used to statically verify that the
edge predicates hold at the cast points, or alternatively, dynamic checking can
be inserted to ensure type-safety at runtime [18, 7, 15]. One bug is when the pro-
grammer forget to check the predicate before the access, leaving the possibility
of an unsafe access. For example, there are 23 cases in Lua where two different
variables are assumed to have the same predicate hold. An union field in one of
those variables is accessed after the appropriate predicate is checked. However,
the same union field in the other variable is also accessed without checking if the

appropriate predicate holds as well. That is, there is an unchecked assumption
that two different variables always satisfy the same predicate.

6 Related Work

Language support. Functional programming languages like ML and Haskell
provide disjoint sum types within the language. The Cyclone language [13] pro-
vides mechanisms such as sum types and subtyping within C, allowing safer
programs to be written within a C-like language. Our goal on the other hand
is to check for safe usage in a large body of legacy code written in C or in low
level code where bytes “off the wire” must be cast to proper data types (as in
networking code).

Static analysis. There is a large body of recent work on statically proving
memory safety of C programs (augmented with adding runtime checks) to make
them execute safely [15, 18, 2]. CCured [18] performs a pointer-kind inference
and adds runtime checks to make C programs memory safe. However, CCured
leaves open the question of statically checking proper usage of unions or down-
casts of pointers: either putting in additional tags or removing unions altogether
and replacing them with structures. The former technique ignores checks the
programmer already has in place, the latter technique may not work for ap-
plications such as network packet processors where the data layout cannot be
changed. Runtime type information has been used for bug finding and provid-
ing debugging information for bad casts or union access [15], but the inference
problem has not been studied. Identifying correct use of datatypes in the pres-
ence of memory layout and casts has been studied in [2, 20]. However, these type
systems do not correlate guards to ensure correctness of downcasts.

Dependent types. There is substantial previous work in dependent types [22, 9,
21]. The predicate subtyping scheme of PVS [19] is more general than our system.
All these systems require interactive theorem proving as the type systems are
undecidable. By restricting our target properties and proof strategies, we provide
an automatic mechanism. Closer to our work, [9] provides dependent record
types to encode safety properties such as array bound checks and null pointer
dereferences. The type system of [8] infers dependent types for representing ML
values passed to C programs through the foreign language interface. Unlike our
algorithm, they fix a set of dataflow facts for the guards.

Our type system is closest to the type systems in [1] and [14]. The type system
in [1] only tracks the evaluation of ML-style pattern-matching statements. Our
type system tracks all assignments and conditionals dominating the access. In
[14], the authors consider the problem of identifying record types and guarded
disjoint unions in COBOL programs. However, both approaches infer types by
using a dataflow analysis to track equalities between variables and constants
appearing in branch statements. In many of our experiments we have found that
this simple language of guards is insufficient (because, for example, programmers
use guards of the form tag ≥ 5). Further, the problem of identifying guards in
terms of the in scope fields is not considered.

Acknowledgments. We thank Todd Millstein and Pat Rondon for carefully
reading drafts and providing valuable feedback.

References

1. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types.
In POPL 94, pages 163–173. ACM, 1994.

2. S. Chandra and T. Reps. Physical type checking for c. In PASTE 99, pages 66–75.
ACM, 1999.

3. W. Craig. Linear reasoning. J. Symbolic Logic, 22:250–268, 1957.
4. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficiently

computing static single assignment form and the program dependence graph. ACM
TOPLAS, 13:451–490, 1991.

5. D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

6. Y. Fang. Translation validation of optimizing compilers. PhD thesis, New York
University, 2005.

7. C. Flanagan. Hybrid type checking. In POPL 06, pages 245–256. ACM, 2006.
8. M. Furr and J. Foster. Checking type safety of foreign function calls. In PLDI 05:

Programming Language Design and Implementation, pages 62–72. ACM, 2005.
9. M. Harren and G.C. Necula. Using dependent types to certify the safety of assembly

code. In SAS 05, LNCS 3672, pages 155–170. Springer, 2005.
10. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL

02: Principles of Programming Languages, pages 58–70. ACM, 2002.
11. R. Jhala, R. Majumdar, and R. Xu. Type inference using Craig interpolation.

http://www.cs.ucla.edu/∼rxu/techrep.ps.
12. R. Jhala, R. Majumdar, and R. Xu. Structural invariants. In SAS 06. Springer,

2006.
13. T. Jim, J.G. Morrisett, D. Grossman, M.W. Hicks, J. Cheney, and Y. Wang. Cy-

clone: A safe dialect of C. In Usenix Tech. Conf., pages 257–288, 2002.
14. R. Komondoor, G. Ramalingam, S. Chandra, and J. Fields. Dependent types for

program understanding. In TACAS 05, LNCS 3440, pages 157–173. Springer, 2005.
15. A. Loginov, S. Yong, S. Horwitz, and T. Reps. Debugging via run-time type

checking. In FASE 01, LNCS 2029, pages 217–232. Springer, 2001.
16. K.L. McMillan. An interpolating theorem prover. TCS, 345:101–121, 2005.
17. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In CC 02: Compiler
Construction, LNCS 2304, pages 213–228. Springer, 2002.

18. G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy software. ACM TOPLAS, 27(3):477–526, 2005.

19. J.M. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Trans. Software Eng., 24(9):709–720, 1998.

20. M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with type
casts in C. In ESEC/FSE 99, pages 180–198. ACM, 1999.

21. H. Xi and R. Harper. A dependently typed assembly language. In ICFP 01:
International Conference on Functional Programming, pages 169–180. ACM, 2001.

22. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL 99:
Principles of Programming Languages, pages 214–227. ACM, 1999.

