
Structural Invariants⋆

Ranjit Jhala1 Rupak Majumdar2 Ru-Gang Xu2

1UC San Diego 2UC Los Angeles

Abstract. We present structural invariants (SI), a new technique for
incrementally overapproximating the verification condition of a program
in static single assignment form by making a linear pass over the dom-
inator tree of the program. The 1-level SI at a program location is the
conjunction of all dominating program statements viewed as constraints.
For any k, we define a k-level SI by recursively strengthening the domi-
nating join points of the 1-level SI with the (k − 1)-level SI of the pre-
decessors of the join point, thereby providing a tunable selector to add
path-sensitivity incrementally. By ignoring program paths, the size of
the SI and correspondingly the time to discharge the validity query re-
mains small, allowing the technique to scale to large programs. We show
experimentally that even with k ≤ 2, for a set of open-source programs
totaling 570K lines and properties for which specialized analyses have
been previously devised, our method provides an automatic and scalable
algorithm with a low false positive rate.

1 Introduction

An invariant at a program location is a (first-order) predicate over the program
state that holds whenever the location is visited during execution. Thus to prove
that a programmer-specified assertion always holds at a location, it suffices to
check if any invariant implies the asserted predicate. Verification-conditions (VC)
are a powerful technique for generating invariants, and hence verifying properties
of programs [18, 13, 16]. However, the use of VCs has been hindered by several
considerations. First, in order to generate the VC, the fixpoint semantics of
every loop in the program must be provided as loop invariants. Second, in order
to be precise, VC generators encode all execution paths of the program. When
applied to large programs, this results in large formulas that cannot be solved
efficiently. Thus, while generic, in that they are applicable to any user specified
assertion, and precise, in that they capture all path correlations, the use of
VC-based techniques has been limited to proving deep properties of programs,
often with substantial manual intervention. For checking properties over large
code bases, researchers typically develop specialized analyses based on dataflow
analysis or abstract interpretation, which use a fixpoint computation to find
the semantics of the program over a fixed abstraction. These techniques often
sacrifice genericity and precision to gain automation and scalability: they use

⋆ This research was sponsored in part by the NSF grants CCF-0427202 and CNS-
0541606.

property-specific abstractions to gain automation and thus are not generic; they
gain scalability by merging execution paths at join points, leading to imprecision
in the form of false alarms.

In this paper, we consider a middle ground. We present a lightweight VC
generation technique that is automatic and scalable enough to prove many useful
safety properties over large code bases, without requiring an expert to devise a
specialized analysis for each program and each property, and yet is precise enough
to capture many structural idioms used by the programmer to ensure correctness,
even in the presence of path correlations typically missed by dataflow tools. We
achieve this using structural invariants (SI), a series of increasingly precise over-
approximations of the VC, which can be efficiently computed from the dominator
tree of the program’s control-flow graph (CFG) in static single assignment (SSA)
form. SIs use the dominator tree to capture control flow information and the SSA
form to capture data flow information about the program. By using these well-
optimized compiler techniques, and by incrementally refining approximate VCs,
our algorithm scales to large code bases. By not requiring explicitly provided
loop invariants but using simple approximations, our algorithm is automatic.
While this restricts the properties we can prove, we provide empirical evidence
that shows extremely coarse approximations suffice to prove a large variety of
useful properties on many large applications. In particular, we show for a set of
different safety properties considered in the software verification literature [19,
21, 20, 7, 14], our technique is generic, yet completely automatic and scalable,
running in time comparable to specialized dataflow analyses, often with better
precision.

The first and coarsest over-approximation (the 1-structural invariant) is ob-
tained as the conjunction of the dominating operations’ predicates. That this
forms an invariant follows from two observations. First, the operations domi-
nating the target location are guaranteed to execute on any path to the target.
Second, if the program is in SSA form, then the variables occurring in a dominat-
ing operation will not be modified after the last occurrence of that operation on
a path to the target. The 1-SI ignores the predecessors of control flow join points
dominating the target. Hence, correlated conditional control flow to the target
location is not tracked. To regain path-sensitivity that distinguishes between
the executions prior to the join point, we recursively strengthen the predicate of
the join using the disjunction of SIs of predecessors of the join. The degree of
distinguishing or “branch-sensitivity” is parameterized: for any k > 1, the k-SI
is obtained by strengthening the join points using the (k − 1)-SI of the prede-
cessors. By only strengthening join points (and not loop heads), we compute an
SI by traversing a subset of the dominator tree in a single pass. For each k > 0,
the k-SI provides an over-approximation of the VC, becoming more precise with
increasing k. In the limit, i.e., when k equals the number of CFG nodes, the SI
is equivalent to the standard VC [16, 17] obtained by unrolling each loop of the
program once and arbitrarily updating the loop-modified variables. The parame-
ter k provides a tunable selector for statements that most influence the assertion.
For example, the 1-SI includes only the operations that must happen on all CFG

paths to the target, and the 2-SI captures one level of branching (required to
prove, e.g., conditional locking behavior). Empirically, we have found the 1-SI to
be two orders of magnitude smaller than a full VC that sweeps over the entire
program, and the resulting validity queries are discharged up to two orders of
magnitude faster than the queries for the full VC. Despite dropping the other
constraints, we found that the 1-SI is sufficient to prove 70% of the assertions
we examined, and for most of the remaining assertions, 2-SI sufficed.

To demonstrate the precision and genericity of our technique, we have im-
plemented a tool psi that generates k-SIs, and used this to successfully analyze a
diverse set of open-source programs for three important safety properties with a
low false positive rate. psi takes as input a C program annotated with assertions,
and a number k, and computes the k-SI for the program at each assertion point,
and then uses Simplify [12] to discharge the validity query, and thus prove the
assertion. The first property (studied in [20] using language-level techniques)
checks the consistent use of tag fields when using unions inside structures in C
programs. In the example of Figure 1(a), which is representative of networking
code, the header field h corresponds to a TCP packet if the proto field has value
TCP and is a UDP packet otherwise, and the property checks that at each cast
to TCP * (resp. UDP *), proto==TCP (resp. proto==UDP). The second property
(studied in [19, 24, 14]) checks that Linux drivers acquire and release locks in
strict alternation. In most cases, each call to unlock is dominated by a call
to lock and vice versa. As seen in Figure 3(a), in the few cases where branch
sensitivity is required to capture some idiomatic uses like conditional locks and
trylocks, the 2-SI suffices. The third property is for privilege levels (studied in
[7]): at any point where a suid program calls execv, the effective user-id is non-
root. In our experiments, system calls setting the user-id dominate the call to
execv so the 1-SI suffices to prove these assertions. We have used psi to check
these properties on a total of 570K lines of code containing 759 assertions. With
k ≤ 2, we proved 667 of these, and found 16 bugs and 76 false alarms. The
total running time of all experiments was less than one hour. In contrast, the
software model checker Blast took at least an order of magnitude more time on
all experiments, and did not finish on several runs. We believe this demonstrates
that lightweight VC-based techniques can be made as automatic and scalable as
a variety of specialized analyses. While our coarse approximations may generate
an invariant that is not strong enough to prove the property of interest, our
experience is that SIs can be used as an effective pre-pass for any verification
effort to “filter out” many assertions, leaving sophisticated program verification
tools to focus their resources on more complicated properties.

2 Structural VC Generation

We formalize structural invariants for an imperative language with integer vari-
ables. We begin with the intraprocedural case.

Operations. Our programs are built using: (1) assignment operations x := e,
which correspond to assigning the value of expression e to the variable x. A

struct iphdr {
int check;

int proto; // TCP or UDP

. . .

char *h; // payload

};
example1(struct iphdr *ip) {
1:if (!ip->check) {

. . . // perform checks

2: ip->check = 1; }
. . .

3:t = ip->proto;

4:if (t==TCP) {
5: TCP *tcphdr = (TCP *)ip->h;

. . .

6:} else {
7: UDP *udphdr = (UDP *)ip->h;

. . . }
}

Fig. 1. (a) Example 1 (b) CFG in SSA form (c) Dominator Tree of CFG

basic block is a sequence of assignments. (2) Assume operations assume (p),
which continue program execution if the boolean expression p evaluates to true,
and halt the program otherwise.

Control-Flow Graphs. The control flow of a procedure is given by a Control-
flow Graph (CFG), a rooted, directed graph G = 〈N, E, ne, nx〉 with:

1. A set of control nodes N , each labeled by a basic block or assume operation;
2. Two distinguished nodes: an entry node ne and an exit node nx;
3. A set of edges E ⊆ N ×N connecting control nodes: (n1, n2) ∈ E if control

can transfer from the end of n1 to the beginning of n2. We assume that ne

has no incoming edges, and nx has no outgoing edges.

Let pred(n) denote the set {n′ | (n′, n) ∈ E} of predecessors of n in the CFG. We
assume that the set pred(n) is ordered, and refer to the k-th predecessor of a
node n to denote the k-th element in the ordering in pred(n). We write vars(n)
to denote the set of variables appearing in the operation op labeling n. A path
π of length m to a node n in the CFG is a sequence n1 . . . nm where n1 = ne,
nm = n, and for each 1 ≤ i < m the pair (ni, ni+1) ∈ E. We denote by π(i) the
ith node ni along the path. We denote by π[j] the prefix of the path, n1 . . .nj .
A node n is reachable in the CFG if there is a path π to n. We assume that all
nodes in N are reachable from ne.

Dominators. For two CFG nodes n, n′ we say n dominates n′ if for every path
π to n′ of length m, there is some 1 ≤ i ≤ m such that π(i) = n. We say n

strictly dominates n′, written n D n′, if n dominates n′ and n, n′ are distinct. We
write D(n) for the set {n′ | n′ D n}. We write D−1(n) for the set {n′ | n D n′}.
We say n is the immediate dominator of n′ if for every n′′ ∈ D(n′), we have n′′

dominates n. Each node n of the CFG has a unique immediate dominator which
we write as Idom(n). A dominator tree is a rooted tree whose nodes are the nodes

of the CFG, whose root is the entry node ne, and where the parent of a node n

is Idom(n).

SSA. We assume that programs are represented in static single assignment
(SSA) form [10], in which each variable in the program is syntactically assigned
exactly once. Programs in SSA form have special φ-assignment operations of
the form x := φ(x1, . . . , xn) that capture the effect of control flow joins. A φ-
assignment x := φ(x1, . . . , xn) for variables x, x1, . . . , xn at a node n implies:
(1) n has exactly n predecessors in the CFG, (2) if control arrives at n from its
jth predecessor, then x has the value xj at the beginning of n. Further, we distin-
guish two kinds of φ-assignments: those at the header of natural loops (denoted
φℓ), and the others (denoted φ).

Semantics. For a set of variables X , an X-state is a valuation for the variables
X . The set of all X-states is written as V.X . Each operation op gives rise to
a transition relation

op
; ⊆ V.X × V.X as follows. We say s

op
;s′ if either op ≡

assume (p), s |= p, and s′ = s, or op ≡ x := e and s′ = s[x 7→ s.e]. The relation
op
; is extended to basic blocks by sequential composition. We say that a state s
can execute the operation op if there exists some s′ such that s

op
;s′. A formula ϕ

over the variables X represents all X-states where the valuations of the variables
satisfy ϕ. For a formula ϕ, we write vars(ϕ) for the set of variables appearing
syntactically in ϕ. We say that ϕ′ is a postcondition of ϕ w.r.t. an operation op

if {s′ | ∃s ∈ ϕ.s
op
;s′} ⊆ ϕ′, i.e., executing op from a state satisfying ϕ results

in a state satisfying ϕ′. We say that a path π satisfies the formula ϕ if ϕ is a
postcondition of true w.r.t. the sequence of operations along π. For a CFG node
n we say that a formula ϕ is an n-invariant if every path π to n satisfies ϕ.

Operation Predicates. For an operation op, define an operation predicate [[op]]:
op [[op]] op [[op]] op [[op]]

x := e x = e assume (p) p op
1
; . . . ; op

n

V

n

i=1
[[op

i
]]

x := φ(x1, , . . . , xn)
W

n

i=1
x = xi x := φℓ(x1, , . . . , xn) true

For a node n labeled with operation op, we write [[n]] for [[op]]. For a program in
SSA form, the operation predicate [[op]] is a postcondition of true w.r.t. the oper-
ation op. Additionally, for a node n we define Φ(n, j) to be x = xj if n is labeled
x := φ(x1, . . . , xj, . . . , xn) and [[n]] otherwise. In other words, Φ(n, j) constrains
the variable assigned at a φ-node to the value held at the j-th predecessor of n.

2.1 Structural Invariants

Dominator Invariants. We first relate dominator nodes in the CFG to pro-
gram invariants. This provides an efficient algorithm to compute invariants. Our
technique follows from three observations about dominators and programs in
SSA form. First, immediately after an operation op is executed, the new state
satisfies the operation predicate [[op]]. Second, if n′ dominates n, then along every
execution path to n, there is an instant, just after the dominator n′ is executed,
at which [[n′]] is satisfied. Third, if n′Dn, then in any execution path, after the
last occurrence of n′, the only nodes visited are those that are dominated by n′

(this is illustrated in Figure 2(a)), and none of the variables in vars(n′) are ever

modified. Thus, as [[n′]] held immediately after (the last occurrence of) n′, it is
preserved until execution reached n. Hence [[n′]] is a n-invariant. It follows that
the conjunction of node predicates for all nodes dominating n is an n-invariant.
We call this the dominator invariant of n.

Theorem 1. [Dominator Invariants] For a node n of a CFG in SSA form,
the formula [[n]] ∧

∧
n′∈D(n)[[n

′]] is an n-invariant.

Example 1. [Tagged-Union Verification] Figure 1(a) shows an example of a
C program that deserializes a stream of bytes to extract a packet. The packet is
represented by the C structure iphdr, with a tag field int proto which specifies
if the payload field char *h, a stream of characters, corresponds to a TCP or
a UDP payload. Precisely, if proto is TCP, then h is a TCP payload, else h

is a UDP payload. Figure 1(b) shows the CFG of the program in SSA form.
For simplicity, we treat pointer accesses such as ip→check as unaliased scalars,
our implementation handles pointers correctly. Since union types are not tagged
explicitly in C, programmers use a tag field to determine the type of the union
instance and then cast the data appropriately before access. However, absent or
incorrect checks lead to data access bugs which are a common cause of hard to
find bugs or crashes. This data access specification introduces implicit assertions
in the code wherever the field h is accessed. For example, in Figure 1(a), there
are two implicit assertions: one at line 5 where h is cast to a TCP pointer which
asserts: ip → proto = TCP and one at line 7 where h is cast to UDP pointer which
asserts: ip → proto 6= TCP. To check correct usage of tagged unions, we must
find a program invariant at these assertion points that implies the assertions.

Example 2. The CFG in SSA form and the dominator tree for the example of
Figure 1(a) are shown in Figures 1(b), 1(c). In Figure 1(c), we see that the
nodes dominating n5 in Figure 1(b) are n2, n3, n4. By conjoining their respective
operation predicates we get the dominator invariant:

(ip → check
′′ = ip → check∨ip → check

′′ = ip → check
′)∧ t = ip → proto ∧ t = TCP

which implies, and thus proves, the implicit data access assertion ip → proto =
TCP at 5. By virtue of the program being in SSA form, the dominator invariant
captures the flow of value through the local variable t.

φ-Strengthening. Dominator invariants ignore conditional control flow merges
in the code and, as Example 3 below shows, are often not precise enough to
prove properties of interest.

Example 3. In the networking example of Figure 1, suppose that we additionally
wish to verify that the payload h is only accessed after the checksum has been
verified (i.e., check field is set to a non-zero value). This yields the additional
(implicit) assertions at statements 5: and 7: that ip → check′′ 6= 0. The con-
junction of the operation predicates of the dominators of n5, namely n2, n3, n4 is
insufficient due to the φ-node, n2 where control joins after the branch. At such a
node, a variable may get a value from one of several predecessors, neither of which
dominates the target node. So, as dominator invariants only conjoin operation
predicates for dominating operations, they do not capture branch correlations.

To gain path sensitivity, we recursively compute the invariant of each prede-
cessor of a φ-node n (a join point) and take their disjunction to strengthn the
node predicate of n. While computing the invariant for the ith predecessor, we ad-
ditionally conjoin the predicate Φ(n, i), thus updating the value of each variable
assigned at n to the value in the ith predecessor. We call this process recursive
φ-strengthening. We explicitly parameterize the recursive φ-strengthening with a
bound k. For k = 1 we get exactly the dominator invariants (there is no recursive
strengthening), while for higher values of k we recursively strengthen using the
(k − 1)-SI of the predecessors of the φ-nodes.

Formally, we define k-structural invariants using two recursively defined func-
tions Ψ and Γ. The function Ψ is defined for nodes nr, n and integer k as:

Ψ((nr, n), k) ≡ [[n]] ∧
∧

n′∈D(n)∩D−1(nr)

[[n′]] ∧ Γ(n′, k)

if k > 0 and nr 6= n and true otherwise. Intuitively, the parameter nr is the
ancestor in the dominator tree whose subtree is being used to generate the SI
for n, and the parameter k is an explicit bound on the recursion depth. The
function Γ is used for the recursive φ-strengthening. For node n′ and integer k, if
k > 0, and pred(n′) ∩ D−1(n′) = ∅, i.e., n′ is a join node (and not a loop header
otherwise one of the predecessors would be dominated by n′) then:

Γ(n′, k) ≡
∨

nj∈pred(n′)

(Φ(n′, j) ∧ Ψ((Idom(n′), nj), k − 1)

and it is defined as true otherwise, i.e., no strengthening is done. Recall that for
a join φ-node, the formula Φ(n′, j) simply constrains the value of the “merged”
variable to be that of the variable at the j-th predecessor of n′. The k-structural
invariant of a node n of the CFG is Ψ((ne, n), k). The structural invariant of a
node n is Ψ((ne, n), N).

A k-SI “unfolds” the nesting structure of the program. The parameter k al-
lows us to incrementally tune the precision of the invariant, and use coarser (and
faster computed) invariants wherever possible. By raising k, we are increasing
the branch-width sensitivity of the analysis, and setting k to the number of CFG
nodes gives us the exact SI. This provides a dual approximation to the usual
“bounded-depth” analyses, where all paths of length less than a certain bound
are analyzed.

We use induction on k to prove that k-SI are invariants, Theorem 1 provides
the base case.

Theorem 2. [Structural Invariants] For every CFG G = (N, E, ne, nx) in SSA
form, n ∈ N , and k ∈ N, (1) the k-Structural Invariant of n is an n-invariant,
and (2) Ψ((ne, n), k + 1) ⇒ Ψ((ne, n), k).

Figure 2 shows how the recursive strengthening works vis-a-vis the dominator
tree and the CFG. The 1-SI conjoins the node predicates for each node in the
path from the root node to the target node (shaded) in the dominator tree,

Fig. 2. (a) If a node n′′ not dominated by n′ appears after the last occurrence of n′ on
a path to n, then n is not dominated by n′. (b) φ-strengthening: For a join φ-node n,
the strengthening Γ(n) is the disjunction of the SIs of the two predecessors n′, n′′ of n,
which are in the tree “hanging off” Idom(n) (c) To compute the (k− 1)-SI for n′, n′′ we
strengthen all the join nodes in the path from n′, n′′ to the root Idom(n), recursively
exploring the trees hanging off the inner paths.

i.e., the nodes that dominate the target node. The 2-SI strengthens the node
predicates for each join φ-node n′ along the path to the root in the dominator
tree. To do so, it takes the disjunctions of the 1-SI for the predecessors of the
join node. As shown in the figure, for join nodes, the predecessors are guaranteed
to be in the subtree “hanging off” the join node’s immediate dominator. Hence,
the recursive SI for the predecessors is computed using the subtree rooted at the
immediate dominator of the join node. The 3-SI would further strengthen each
φ-node appearing in the recursive strengthening and so on. Thus, by increasing
k we pick up more and more of the CFG nodes, but each node only appears once
in the SI.

Example 4. Consider the φ-node n2 in the CFG of Figure 1(b). It is a join
point and its two predecessors are the nodes n1 and n0′ . Notice that in the
dominator tree in Figure 1(c), the predecessors belong in the subtree hanging off
the immediate dominator of n2 namely the entry node. We recursively compute
the SIs: Ψ(n1) = ip → check = 0 ∧ ip → check′ = 1 (from the dominators
n0, n1), and, Ψ(n0′) = ip → check 6= 0, (from the dominating branch condition
n0′). Thus, the strengthening the φ-node n2 yields the following 2-SI for n5:

((ip → check′′ = ip → check′

∧ ip → check = 0 n0

∧ ip → check′ = 1) n1

∨ Γ(n2)
(ip → check′′ = ip → check

∧ ip → check 6= 0)) n0′

∧ t = ip → proto ∧ t = TCP n3 and n4

which is strong enough to prove the (implicit) assertion that the check field is
non-zero, at the access location 5. A similar sufficient SI is obtained for 7.

Example 5. [Conditional Locking] Figure 3(a) shows conditional locking on
an arbitrary predicate p. Consider the φ-node n4 in the CFG of Figure 3(b).

example2() {
1:lock := 0;

2:if (p) {
3: lock := 1;

}
4:

5:if (p) {
6: assert(lock=1);

lock := 0;
}

}

Fig. 3. (a) Example 2 (b) CFG (c) Dominator Tree

It is a join point and its two predecessors are the nodes n3 and n2′ . Notice in
the dominator tree in Figure 3(c), that the predecessors belong in the subtree
“hanging” off the immediate dominator of n4 namely n1. We recursively compute
the SIs: Ψ(n3) = lock′ = 0∧p∧lock′′ = 1 and Ψ(n2′) = lock′ = 0∧¬p. Thus, the
strengthening for the φ-node 4 is Γ(n4) ≡ (lock′′′ = lock′′ ∧Ψ(n3))∨ (lock′′′ =
lock′ ∧ Ψ(n2)). We need not further strengthen the SIs for n3, n

′

2 as they have
no dominating join nodes. The 2-SI at n6 is:

lock′ = 0 from n1

∧ ((lock′′′ = lock′′ ∧ lock′′ = 1 ∧ p) ∨ (lock′′′ = lock′ ∧ ¬p)) from Γ(n4)
∧ p from n5

This is an invariant strong enough to prove the assertion lock′′′ = 1 at line 6.

2.2 Interprocedural Structural Invariants

We now extend programs to include function calls. The set of operations is
extended to include function calls l := f(e1, . . . , en) and return statements
return(ret), where ret is a special variable. A program is now a set of CFG’s,
one for each function, with a specified function main where execution starts.
Further, we assume that the only operation on the exit node nx of each CFG is
return(ret), and the operation return(·) does not appear anywhere else. We
assume for simplicity there are no global variables, these can be incorporated
with additional notation (and are handled by our implementation). We extend
k-structural invariants to programs with function calls through two approaches:
summarization and abstract summarization.

Summarization. For interprocedural analysis, each function is abstracted into
a set of input-output relations, called the summary, that captures the observed
behavior of the function. For function foo, we have to consider both transitive
callees of foo (i.e., calls to functions within the body of foo), and transitive
callers of foo (i.e., the call chains from main to foo).

To deal with callees, we extend [[op]] to the new operations. First, assume
there is no recursion. Let f be a function with formal parameters x1, . . . , xn, local

variables L, and CFG Gf = (Nf , Ef , nf
e , nf

x). We define [[l := f(e1, . . . , en)]] as

(∃L.Ψ((nf
e , nf

x), k))[l/ret, e1/x1, . . . , en/xn] (1)

and [[return(ret)]] = true. Intuitively, we recursively construct the k-SI for
the exit node of f , rename all local variables of f with fresh names (to avoid
name clashes), and substitute the formal parameters and return variable in the
expression. This k-SI is the summary of f . In the presence of recursion, we
additionally pass the stack of function calls in the computation of [[·]], and return
[[l := f(e1, . . . , en), s]] = true if f appears in the stack s.

To deal with callers, we generalize our definition of dominators to the in-
terprocedural case, using the call graph of the program. In particular, we add
edges from every call site x := f(. . .) to the entry node ne of f (but not edges
from the exit nodes to the call sites), and compute dominators in this expanded
graph. If n′ dominates n in this expanded graph, then every return-free path
from the entry node of main to n passes through n′ (if n′ and n are in the same
function, we get back the original definition). The algorithm to compute k-SI for
the transitive callers is then identical to the intraprocedural algorithm with this
new definition.

Abstract Summarization. In abstract summarization, summaries are com-
puted relative to two non-empty sets of input and output predicates for each
function. Fix a function f . Let P and P ′ be the input and output predicates
over variables in scope in f respectively. An abstract summary S is a subset of
P × P ′ with the property that for every execution of the function starting from
a state satisfying p to a state satisfying p′, we have (p, p′) ∈ S.

To perform abstract summarization, we traverse the call graph of the pro-
gram bottom up. For any k, function f , and sets P and P ′ of predicates, our
summarization algorithm constructs the k-SI ϕ of the exit node nf

x of f with
respect to the entry point nf

e of f . For any function call l = g(e1, . . . , en) in
the body of f with summary Sg, we use the operation predicate from Equa-
tion 1 with Ψ((nf

e , nf
x), k) replaced with

∨
(p,p′)∈Sg

(p ∧ p′). If g has not been
summarized, e.g. , for recursive calls, we use the constraint true. Let ϕ be
the k-SI for f . Finally, the abstract summary Sf of f is computed as the set
{(p, p′) ∈ P × P ′ | p ∧ ϕ ∧ p′ is satisfiable}.

If
∨

P and
∨

P ′ are not both equivalent to true, abstract summariza-
tion can lead to unsoundness. To be sound, we add additional assertions
to the program. At each call site x := f(e1, . . . , en), we add the assertion
assert(∃L.

∨
P)[e1/x1, . . . , en/xn] which checks that the precondition of the

function holds at the call site. At the exit node of f , we add the assertion
∨

P ′

that checks that the postcondition of the function holds at the return point.
These assertions are checked in addition to the assertions in the program, and
the original assertions are proved soundly if all these assertions also hold. If these
assertions do not hold, the summary for the function is replaced with (true, true)
when checking other assertions.

Abstract summarization allows our algorithms to scale by keeping the sum-
maries small (just in terms of the abstract predicates), and also acts as a useful

fault localization aid in our experiments. However, it requires user-supplied pred-
icates, reducing automation. Instead of requiring user intervention or performing
predicate inference [2, 21], we adopt the approach of [11, 24]. We perform abstract
summarization with respect to predicates obtained automatically from the prop-
erty. For example, to checking correct locking, we add predicates corresponding
to each value of lock being taken or freed. This allows our tool to be automatic,
though sometimes with less precision.

3 Experiments

We have implemented psi, an assertion checker for C programs using struc-
tural invariants. Our tool takes as input a C program annotated with asser-
tions and a number k, statically constructs the k-structural invariant for each
assertion, and checks if the k-structural invariant implies the assertion. Our tool
is written in Objective Caml and uses the CIL library [22] for manipulating
C programs. To prove an assertion, psi checks if the k-SI implies the asser-
tion using the Simplify theorem prover [12]. The implementation is staged in
five parts: alias analysis, SSA conversion, dominator tree construction, construc-
tion of the k-SI, and assertion verification. Our tool uses a flow-insensitive may
alias analysis. After alias analysis, we transform the program so that condi-
tionals on possibly aliased objects are added at each pointer dereference. This
accurately reflects state update for the structural invariant. For example, for
the code *p = 5, assuming p may point to a or b, we transform the code to
*p=5; if(p==&a) a=5; if (p==&b) b=5;. Our alias analysis is field insensi-
tive. We heuristically add field sensitivity based on field types to determine a
more precise match. We ran three sets of experiments with psi: checking tagged
unions, correct locking, and correct suid privileges. Our experiments were all run
on a Dell PowerEdge 1800 with two 3.6Ghz Xeon processors and 5 GB of mem-
ory. The running time is dominated by the alias analysis and the generation of
the structural invariants. In comparison, the parsing, ssa conversion, dominator
tree construction, and theorem prover calls take relatively little time.

1. Tagged Unions. Tagged unions are checked by adding an assertion describ-
ing the predicate that must hold when a certain field is accessed or cast before
that access or cast. We added these assertions manually. We ran our tool on
three programs: icmp (a protocol for error notification on the internet, 7K lines
of code), gdk (the GTK+ drawing toolkit, 16K lines of code), and lua (an inter-
preter, 18K lines of code). We checked 69 assertions and found 14 false positives
with k = 2 and 18 false positives with k = 1. The total run time was 684s with
k = 2, dominated by lua (682s). Since most programmers check the tag near
the data access point, we did not propagate k-SIs to the callers of the function
containing the assertion for this set of experiments. This resulted in 8 false pos-
itives that required assumptions about formal parameters. Our theorem prover
only models integers so there was 1 false positive that required the modeling of
unsigned integers. Four false positives are due to modeling pointer arithmetic

program LOC func’s asserts total ok error ptrs List loops unc t(s) cqual

scc 16K 638 36 57 47 2 7 0 0 1 38 60
DAC960 24K 763 46 54 38 0 10 0 4 2 141 N/A
af netrom 22K 958 23 25 21 0 0 3 1 3 12 20
af rose 23K 958 15 29 28 0 0 0 0 1 7 9
as-iosched 14K 576 10 17 10 0 4 0 0 3 8 4
elevator 13K 512 2 3 3 0 0 0 0 0 1 0
floppy 18K 696 30 48 43 0 0 0 2 3 35 48
genhd 13K 529 4 6 6 0 0 0 0 0 2 0
ll rw blk 15K 625 8 30 25 0 0 0 2 3 8 N/A
nr route 18K 788 19 34 30 0 0 1 1 2 9 20
wavelan cs 17K 621 19 35 30 1 4 0 0 0 14 4
rose route 42K 953 51 73 55 13 0 0 3 2 35 31

Totals 235K 8,617 263 414 336 16 25 4 13 20 310 196

Table 1. Lock experiments. LOC is lines of code. Asserts gives the original number of
asserts, and total gives the total asserts to check pre- and post-conditions. ok gives the
asserts proved safe. error the number of bugs. False positives are broken into pointers
(ptrs), lists, loops, and unclassified errors (unc). t(s) is time in seconds. Cqual shows
the false positives from Cqual (N/A indicates we did not run Cqual).

and data structures and one due to type-unsafe programmer assumptions about
memory layout.

2. Locking. The second set of experiments checked double locking errors in
the Linux kernel. Double locking has been extensively studied using dataflow
analysis [19] and BMC [24]. Double locking occurs when locking something that
already has been locked (causing a deadlock) or unlocking something that al-
ready has been unlocked (can cause kernel panic). We model this by adding an
assertion that the lock is in a locked (resp. unlocked) state before every call to
unlock (resp. lock). We use abstract summarization for locks, similar to Saturn
[24]. Predicates for abstract summarization are the lock values. Instead of user
provided pre- and post-conditions, we use a simple heuristic to guess predicates
and psi automatically checks whether those predicates are correct. For each func-
tion, we find the first assertions for each lock and make these the precondition
predicates. Similarly, we find the last lock or unlock statements in the function
and make the corresponding lock states the postcondition predicates. This is
sometimes imprecise, but retains automation. We run psi with a depth k = 2.
We found increasing k > 2 does not reduce the number of false positives in our
experiments since a depth k = 2 captures all the relevant nesting of conditionals.

Table 1 summarizes our results. We examined 12 device driver files in the
Linux kernel, totaling 235K lines of code. Since we consider drivers one file
at a time, our current experimentation is unsound in the way we deal with
function summaries. In particular, we do a global alias analysis at a per file
level, but assume functions in other files do not have any effect on lock values or
aliasing. There were a total of 414 asserts. Among these, 151 assertions were due

to adding pre- and post-condition assertions for the summaries. We analyzed
a total of 8,617 functions in 310 seconds. We found 16 real bugs and 62 false
positives. We found errors in wavelan and rose route not mentioned in the Saturn
bug database. The bug in wavelan cs, a wireless card driver, was caused by an
obscure case where a packet is recieved when the wireless connection is being
handed over from one access point to another. This bug spans 3 functions.

The false positives are in three categories: loss of precision in abstract summa-
rization (25), getting locks from dynamic data structures or external functions
(4), and loops (13). There are 20 additional errors we have not classified yet.
Loop false positives occur when a lock is acquired and released in a loop. Inter-
estingly, some such examples can be proved using Cqual or dataflow analysis,
showing the orthogonality of these methods. Other false positives relate to dy-
namic data structures (where locks are stored in lists) or pointers returned from
external functions.

Imprecise summary predicates are the most significant false positives (25
of them), but could be remedied by better predicate generation heuristics or
some editing of the source code. When we heuristically add preconditions and
postconditions, it is possible that the predicate we include in our precondition
mentions a variable that is not in the formal parameter of our function or a
global variable. For example, for the code

void lock (dev *ptr) {

struct receive_queue *q;

q = ptr -> q; assert (q -> lock == 0); q -> lock = 1; }

our heuristics infer that the pre- and post-conditions are (q->lock == 0) and
(q->lock == 1) respectively. This can be solved by correcting the pre- and post-
conditions to (ptr->q->lock == 0) and (ptr->q->lock == 1) respectively.
The 25 false positives involving these issues are all removed after these simple
modifications. Alternately, we could construct the weakest precondition of these
predicates in terms of the formals and used those for abstract summarization.

Program FP Time (s)
af netrom 4 248
nr route 1 1755
rose route 1 1513

Table 2. Blast results

To compare, we ran Blast [21] on some of the Linux
drivers. Table 2 summarizes the results of running Blast
on three of the drivers. While the false positive rate
is lower (although not zero, since Blast produces false
positives when locks are put into lists, and when the
driver makes unmodeled assumptions about external
pointers), the time taken is significantly higher in all
cases.

Our work in lock analysis is most similar to Saturn.
We found all bugs that Saturn found except one that required analysis of two
different files. In addition, we find two extra bugs not reported by Saturn. In
comparison with Cqual [19], we take more time, but have fewer false positives.
Running Cqual on 10 of our 12 device driver examples resulted in 196 type
errors, even though Cqual does reduce loop false positives. In contrast to Cqual,
we get at most one message per assertion site, making it easier to track down
false errors.

k Size (KB) Time FP
1 259 1.5s 241
2 15764 1m45s 62
3 19996 1m54s 62
4 21091 1m58s 62

Table 3. Precision

Finally, Table 3 summarizes the precision-time trade-
off as we increase k over all our lock experiments. Size
measures the total size of the Simplify queries written as
a text file, time is the time to solve all the queries, and
FP the number of false alarms found. In our experiments,
k = 1 is already enough to prove most assertions, and in-
creasing k beyond to 2 does not help in reducing the false
alarms. The size of the formula does not increase appre-
ciably beyond k = 4. For our examples, it is rare to find
complex control flow, i.e., more than four nested conditionals.

3. Privilege Levels. Finally, we checked whether a Unix setuid program gives
up its owner privileges before executing certain system calls [7]. In unix systems,
programs have privileges associated with users. Normally, a program will execute
under the permission of the user executing the program. However, suid programs
run with root privileges when they are started, which are required to access
certain system resources. After the privileged action is performed, suid programs
give up their root privileges by making a setuid or a seteuid call. A suid
program should give up its root privileges before making further system calls
to reduce the chance of an exploit gaining root access. We model the effective
user id with an integer which is 0 for root, and 1 for any other user. The id
is set to 1 whenever setuid or seteuid is called. We check that whenever a
program calls system or exec, this id is not zero. We examine three programs:
OpenSSH 2.9.9p (the widely used secure shell program), GNU Privacy Guard
(open source pgp), and mtr (a network diagnostic tool), for a total of 294K
lines of code. All these programs follow good security programming guidelines.
After the required privileged action was taken, the effective user id was set to
the user executing the program. We used abstract summarization, using the
state of the id bit as the predicate. This caused 254 out of 270 assertions to
be automatically added, however, summarization made our technique scale well.
Further, k = 1 was enough to prove all assertions with no false positives. Our
results are shown in Table 4, where the time does not include time for alias
analysis. Our total running time (excluding alias analysis) was 20 minutes. As the
size of the programs increased, CIL’s alias analysis became the bottleneck. It took
610s for OpenSSH and did not terminate for gpg within 6 hours. However, since
the address of the id bit is not taken and id is only assigned integer constants,
and we additionally check that the k-SI is satisfiable, we can conclude in this
case that our technique is sound without the alias analysis. In comparison, Blast
did not finish the verification of openssh or gpg in two hours.

4 Related Work and Conclusions

Related Work. SIs are similar to bounded model checking (BMC) [4, 9, 24],
which builds VCs capturing all program executions of a certain bounded execu-
tion length. Typically BMC is useful for finding bugs, while SI provides a sound
verification technique. While BMC unrolls the last (or first) k operations of a

Program LOC Asserts Original FP Time (s)

mtr 13K 43 8 0 13s
openssh 61K 37 5 0 51s
gpg 219K 190 3 0 1106s

Table 4. Suid Programs. Asserts = total number of asserts, Original = original asserts
in the code, FP = false positives.

program, the “unrolling metric” in k-structural constraints is (roughly) the nest-
ing depth of conditionals. Thus, 1-SI may be strong enough to prove a property
even though the relevant code blocks are separated by arbitrarily many lines of
irrelevant code. SIs are less precise than VC based program verification tools
[16], but we have demonstrated that the loss of precision is not significant for a
large class of interesting properties. We have traded off precision for automation
and scalability. Algorithms for computing compact weakest preconditions have
been studied [17, 3], however these did not consider the effects of approximat-
ing the VC using the nesting depth, and the results of the loss of precision in
property checking.

Counterexample-guided abstraction refinement [8, 2, 21] automates the dis-
covery of abstractions using spurious counterexamples. While theoretically as
efficient as SI and as complete as general VC-generation, in practice, these tools
do not scale well for large programs even if there is an “obvious” proof of correct-
ness. This is mainly because these tools strive to be generic, and do not always
exploit “simple” control/data flow tricks, reverting to more expensive but more
general symbolic processing. In fact, our motivation for this work was the obser-
vation that simple algorithms can filter out many assertions quickly before these
more sophisticated tools are applied.

SSA and dominators have been used to find program invariants that facili-
tate certain compiler optimizations [1, 6] and to check security properties [25];
our work is a generalization of these algorithms to arbitrary invariants. Indepen-
dent of our work, dominator invariants have been recognized as a quick way to
generate invariants for translation validation [15]. However, that work does not
provide a parameter to adjust the precision.

SI vs Dataflow Analysis. Another scalable technique of finding invariants
is via fixpoint computations over an abstract domain of dataflow facts tai-
lored to the property being checked. Examples are [5, 23], which use sophisti-
cated domains to find complex invariants over data, or [19, 14, 11] which address
more control-oriented properties. Our VC-based method provides a scalable and
generic technique to introduce path correlations incrementally to a variety of
simple properties without requiring an expert-specified and program dependent
abstract domain.

The invariants obtained using k-SI and (flow-sensitive) dataflow analysis that
merges information at join points are, in general, incomparable. For k > 1, the
k-structural constraints incorporate path correlation information that dataflow

analysis merges. For k = 1, if the domain of dataflow facts is fixed (as is usual)
from the property and not tailored to a particular program, the dominator in-
variant may be more precise. For example, suppose p = p1 ∧ p2, and consider
the program:

if (p1) { if (p2) { L: assert(p); } }

where the dataflow domain only tracks p (obtained from the assert).
On the other hand, there are programs where dataflow analysis is more pre-

cise. Consider:

x := 1; while (*) { if(x=1) x := 1; } L: assert(x=1);

When the state of x is tracked, a dataflow analysis produces the invariant x =
1 at L. However, for any k, the k-SI at L is true, since x within the loop is
unconstrained.

Conclusions. SIs form a scalable, lightweight algorithm to prove useful prop-
erties of programs. Although our algorithm is simple, we showed it can prove
many instances of useful and well-studied properties such as setuid, locking, and
tagged unions. These programs and properties are frequently used to test more
complex tools such as SLAM or Blast. However, in our experience, for the same
properties and programs, Blast is usually an order of magnitude slower than
psi. even though the false positive rate is only slightly better than SIs in the
programs and properties we checked.

Thus, we advocate a hybrid verification approach where efficient, simple tools
that incorporate structural idioms are run first to eliminate most assertions, and
more sophisticated but slower tools are focused on the remaining assertions that
escape the purview of the simple tools.

References

1. B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables in
programs. In POPL 88, pages 1–11. ACM, 1988.

2. T. Ball and S.K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, 2002.

3. M. Barnett and K.R.M. Leino. Weakest-precondition of unstructured programs.
In PASTE 2005, pages 82–87. ACM, 2005.

4. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS 99: Tools and Algorithms for the Construction and Analysis of

Systems, LNCS 1579, pages 193–207. Springer, 1999.
5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In PLDI 03:

Programming Languages Design and Implementation, pages 196–207. ACM, 2003.
6. R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds checks on

demand. In PLDI 00, pages 321–333. ACM, 2000.
7. H. Chen, D. Dean, and D. Wagner. Model checking one million lines of c code.

In NDSS 04: Annual Network and Distributed System Security Symposium, pages
171–185, 2004.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer, 2000.

9. E.M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In TACAS 04: Tools and Algorithms for the construction and analysis of systems,
LNCS 2988, pages 168–176. Springer, 2004.

10. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficiently
computing static single assignment form and the program dependence graph. ACM

Transactions on Programming Languages and Systems, 13:451–490, 1991.
11. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in

polynomial time. In PLDI 02: Programming Language Design and Implementation,
pages 57–68. ACM, 2002.

12. D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

13. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
14. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-

specific, programmer-written compiler extensions. In OSDI 00: Operating System

Design and Implementation. Usenix Association, 2000.
15. Y. Fang. Translation validation of optimizing compilers. PhD thesis, 2005.
16. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.

Extended static checking for Java. In PLDI 02: Programming Language Design

and Implementation, pages 234–245. ACM, 2002.
17. C. Flanagan and J.B. Saxe. Avoiding exponential explosion: generating compact

verification conditions. In POPL 00: Principles of Programming Languages, pages
193–205. ACM, 2000.

18. R.W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Com-

puter Science, pages 19–32. American Mathematical Society, 1967.
19. J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI 02:

Programming Language Design and Implementation, pages 1–12. ACM, 2002.
20. D. Grossman. Safe Programming at the C Level of Abstraction. PhD thesis, 2003.
21. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL

02: Principles of Programming Languages, pages 58–70. ACM, 2002.
22. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In CC 02: Compiler

Construction, LNCS 2304, pages 213–228. Springer, 2002.
23. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued

logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.
24. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In POPL

05: Principles of Programming Languages, pages 351–363. ACM, 2005.
25. X. Zhang, T. Jaeger, and L. Koved. Applying static analysis to verifying security

properties, 2004. Grace Hopper Conference.

